JP2007243065A - Circuit board - Google Patents

Circuit board Download PDF

Info

Publication number
JP2007243065A
JP2007243065A JP2006066565A JP2006066565A JP2007243065A JP 2007243065 A JP2007243065 A JP 2007243065A JP 2006066565 A JP2006066565 A JP 2006066565A JP 2006066565 A JP2006066565 A JP 2006066565A JP 2007243065 A JP2007243065 A JP 2007243065A
Authority
JP
Japan
Prior art keywords
circuit board
insulating layer
support
thermal expansion
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006066565A
Other languages
Japanese (ja)
Inventor
Daisuke Mizutani
大輔 水谷
Keishiro Okamoto
圭史郎 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006066565A priority Critical patent/JP2007243065A/en
Publication of JP2007243065A publication Critical patent/JP2007243065A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost circuit board with high reliability by reducing the effect of stress generated by variation in ambient temperature. <P>SOLUTION: The circuit board has a single or a plurality of insulating layers 4 formed on a surface of a base 1 and has a via hole 6 for inter-layer connection with a wiring pattern in the respective layers 4. As the circuit board, a circuit board is used which satisfies a relation of K1>K2<K3 among the coefficient K1 of thermal expansion of a semiconductor element mounted on the circuit board and the coefficients K2 and K3 of thermal expansion of the base 1 and insulating layers 4 and uses a material obtained by impregnating optically transparent reinforcing fiber 2 with photosensitive resin 3 for the insulating layers 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体素子の実装用回路基板に係り、特に周囲温度の変化により半導体素子との間に発生する応力を低減した回路基板に関する。   The present invention relates to a circuit board for mounting a semiconductor element, and more particularly to a circuit board in which stress generated between the semiconductor element and the semiconductor element due to a change in ambient temperature is reduced.

半導体素子の実装用回路基板は支持体上に配線層と絶縁層を必要層数だけ繰り返し形成したものから成っており、回路基板への半導体素子の実装は、半導体素子の内部回路に接続されている電極を回路基板の最表面の配線層に形成されている電極にハンダ接続することにより行われる。   A circuit board for mounting a semiconductor element is formed by repeatedly forming a wiring layer and an insulating layer as many times as necessary on a support, and the mounting of the semiconductor element on the circuit board is connected to an internal circuit of the semiconductor element. This is done by soldering the electrode to the electrode formed on the wiring layer on the outermost surface of the circuit board.

回路基板の製造に際しては、通常、エポキシ樹脂やポリイミド樹脂を主材料とする絶縁基板を支持体として用い、この支持体上にフォトリソグラフィ技術を用いて配線パターンを形成し配線層とする。配線層材料として近年は銅等の高導電率金属が用いられる。配線層を多層化する場合には、上記配線層を1層目の配線層としてこの上に絶縁層を積層形成する。絶縁層材料としては、処理の容易さや製造コストの点から通常は支持体材料と同じエポキシ樹脂やポリイミド樹脂等の樹脂材が用いられる。ついで、上記絶縁層の上に同様なフォトリソグラフィ技術を用いて2層目の配線層となる配線パターンを形成するとともに絶縁層の所定位置にビアホールを形成しその内部を導電材で埋め込み、これにより1層目と2層目の配線層を電気的に接続する。ビアホールの形成には、プラズマプロセスを利用したドライエッチング法やレーザ光を照射して絶縁層に穴あけするいわゆるレーザドリリング法が一般に用いられる。以上のような工程を繰り返すことにより配線層の多層化が行われる。   In manufacturing a circuit board, an insulating substrate mainly made of an epoxy resin or a polyimide resin is usually used as a support, and a wiring pattern is formed on the support using a photolithography technique to form a wiring layer. In recent years, a high conductivity metal such as copper is used as a wiring layer material. When the wiring layer is multilayered, the above wiring layer is used as the first wiring layer, and an insulating layer is stacked thereon. As the insulating layer material, a resin material such as an epoxy resin or a polyimide resin, which is the same as the support material, is usually used from the viewpoint of ease of processing and manufacturing cost. Next, a wiring pattern to be a second wiring layer is formed on the insulating layer using the same photolithography technique, and a via hole is formed at a predetermined position of the insulating layer, and the inside is filled with a conductive material, thereby The first and second wiring layers are electrically connected. For the formation of the via hole, a dry etching method using a plasma process or a so-called laser drilling method in which a laser beam is irradiated to make a hole in an insulating layer is generally used. By repeating the steps as described above, the wiring layer is multi-layered.

通常、電子機器では半導体素子は回路基板に実装された状態で用いられる。そのため、電子機器の小型化・高密度化の進展に伴い回路基板に対しても高密度、高精度化が求められており、配線層における配線パターンはより微細且つ高密度に、また、多層化された配線層間を接続するビアホールに対してもその径はより小さく且つ高い寸法加工精度が要求されている。   Usually, in an electronic device, a semiconductor element is used in a state of being mounted on a circuit board. For this reason, with the progress of miniaturization and high density of electronic devices, there is a demand for high density and high precision for circuit boards. The via holes connecting the wiring layers are also required to have a smaller diameter and high dimensional processing accuracy.

ところが、ビアホールの形成に際してドライエッチング法を用いた場合にはサイドエッチングの影響を大きく受けて充分な寸法加工精度を確保することが難しく、一方、レーザドリリング法では寸法加工精度は確保できるものの回路基板上で配線パターンの密度が高くなりビアホール数が多くなると加工に時間を要し製造コストが高くなるという問題がある。   However, when the dry etching method is used for forming the via hole, it is difficult to ensure sufficient dimensional processing accuracy due to the influence of side etching. On the other hand, the laser drilling method can ensure dimensional processing accuracy, but the circuit board. When the wiring pattern density is increased and the number of via holes is increased, processing takes time and the manufacturing cost increases.

また、半導体素子の主材料となるシリコンの熱膨張率は3ppm程度であるのに対して、回路基板を構成する支持体や絶縁層の材料として一般に用いられるエポキシ樹脂やポリイミド樹脂ではその熱膨張率は12〜15ppm程度の大きさに達する。そのため、半導体素子を回路基板に実装した場合、電子機器の使用環境の変化あるいは、動作中の半導体素子から発生する熱により周囲温度が大きく変化したとき、熱膨張率の差に起因して回路基板上に実装されている半導体素子には位置ずれが生じ、それに伴って半導体素子に大きな応力が加えられることになり、これが半導体素子の実装された回路基板の信頼性を低下させる原因となる。特に、回路基板の容積の大部分を占める支持体から半導体素子に加えられる応力の影響が大きい。   In addition, the thermal expansion coefficient of silicon, which is the main material of the semiconductor element, is about 3 ppm, whereas the thermal expansion coefficient of epoxy resin and polyimide resin generally used as a material for the support and insulating layer constituting the circuit board. Reaches a size of about 12 to 15 ppm. Therefore, when a semiconductor element is mounted on a circuit board, when the ambient temperature changes greatly due to a change in the usage environment of the electronic device or heat generated from the operating semiconductor element, the circuit board is caused by a difference in thermal expansion coefficient. A positional shift occurs in the semiconductor element mounted thereon, and a large stress is applied to the semiconductor element accordingly, which causes a decrease in the reliability of the circuit board on which the semiconductor element is mounted. In particular, the influence of the stress applied to the semiconductor element from the support that occupies most of the circuit board volume is large.

そこで、熱膨張率が半導体素子より小さな材料を回路基板の支持体として用いることにより半導体素子を回路基板に実装したときの応力をできるだけ抑えることが試みられている。このような支持体材料として、例えば炭素繊維強化プラスチックや表面に絶縁処理を施したインバー合金等が挙げられる。これらの材料の熱膨張率は1〜2ppm程度の大きさであり、これを用いることにより前述した半導体素子の位置ずれを小さくし支持体から半導体素子へ加えられる応力を低減することが可能となる。しかし、このような熱膨張率の小さな材料からなる支持体上に形成される絶縁層材料として従来と同様のエポキシ樹脂やポリイミド樹脂を用いた場合、ビアホール形成時にビアホール開口部近傍にクラックが発生しやすくなるという問題がある。   Therefore, an attempt has been made to suppress as much stress as possible when the semiconductor element is mounted on the circuit board by using a material having a smaller coefficient of thermal expansion than that of the semiconductor element as a support for the circuit board. Examples of such a support material include carbon fiber reinforced plastic and Invar alloy whose surface has been subjected to insulation treatment. These materials have a coefficient of thermal expansion of about 1 to 2 ppm, and by using this, it is possible to reduce the above-mentioned positional deviation of the semiconductor element and to reduce the stress applied from the support to the semiconductor element. . However, when using the same epoxy resin or polyimide resin as the insulating layer material formed on the support made of such a material having a small coefficient of thermal expansion, cracks are generated in the vicinity of the opening of the via hole when the via hole is formed. There is a problem that it becomes easy.

熱膨張率が1〜2ppm程度の支持体上に熱膨張率12〜15ppm程度の絶縁層を積層した場合、支持体と絶縁層の接合部で絶縁層に対し新たに大きな応力が加わることになる。この絶縁層に対する応力は絶縁層が支持体上で数十μm程度の厚みで均一に形成されている限り絶縁層全体に広く分散され半導体素子や回路基板に大きな影響を与えることはないものの、ビアホール形成に際して用いられるレーザドリリングの際に絶縁層に加わる衝撃あるいはビアホールの形成によって絶縁層膜厚に生じる局所的不均一のため絶縁層全体に均一に分散していた応力がビアホール開口部付近に集中する。そして、これをトリガーとして絶縁層にクラックが発生するものと考えられる。このような事態を避けるためには絶縁層材料として支持体と同程度の熱膨張率を持つ材料を用いる必要があるが、前述した処理の容易さや製造コストの点でエポキシ樹脂やポリイミド樹脂等の樹脂材料の使用は、現在の所、不可避である。   When an insulating layer having a thermal expansion coefficient of about 12 to 15 ppm is laminated on a support having a thermal expansion coefficient of about 1 to 2 ppm, a large new stress is applied to the insulating layer at the joint between the support and the insulating layer. . The stress on the insulating layer is widely dispersed throughout the insulating layer as long as the insulating layer is uniformly formed on the support with a thickness of about several tens of μm, and does not significantly affect the semiconductor element or the circuit board. The stress uniformly distributed throughout the insulating layer is concentrated in the vicinity of the opening of the via hole due to the local non-uniformity generated in the insulating layer film thickness due to the impact applied to the insulating layer during laser drilling or the formation of the via hole. . And it is thought that a crack generate | occur | produces in an insulating layer by using this as a trigger. In order to avoid such a situation, it is necessary to use a material having a thermal expansion coefficient comparable to that of the support as the insulating layer material. However, in terms of the ease of processing and the manufacturing cost described above, epoxy resin, polyimide resin, etc. The use of resin materials is unavoidable at present.

そこで、絶縁層の材料として感光性樹脂を用いフォトプロセスによりビアホールを形成する方法が提案されている(特許文献1)。この方法では、レーザドリリンク装置等の加工設備を用意することなく、回路基板の製造に通常用いられる露光・現像装置及びそれを用いたフォトリソグラフィ技術等の製造技術をそのまま流用することができるため製造コストを抑えることが可能であり、且つレーザドリリンクによる加工時の衝撃もなく微細且つ高精度のビアホール形成が可能となる。   Therefore, a method of forming a via hole by a photo process using a photosensitive resin as a material of an insulating layer has been proposed (Patent Document 1). In this method, it is possible to divert the manufacturing technique such as an exposure / development apparatus usually used for manufacturing a circuit board and a photolithography technique using the same without preparing processing equipment such as a laser drilling apparatus. The manufacturing cost can be reduced, and a fine and highly accurate via hole can be formed without impact during processing by laser drilling.

しかしながら、この方法では支持体に塗布された感光性樹脂が後工程における熱処理等の影響を受けて支持体から剥離し易くなる等の問題があり、また、感光性樹脂自体の強度にも問題があって回路基板の信頼性が低下するという問題があった。また、ビアホールの形成によって絶縁層全体に均一に分散していた応力がビアホール開口部付近に集中する恐れは依然として残る。   However, this method has a problem that the photosensitive resin applied to the support is easily peeled off from the support under the influence of heat treatment or the like in a later step, and there is a problem with the strength of the photosensitive resin itself. Therefore, there is a problem that the reliability of the circuit board decreases. In addition, there still remains a risk that stress that has been uniformly dispersed throughout the insulating layer due to the formation of the via hole is concentrated in the vicinity of the opening of the via hole.

一方、感光性樹脂の強度を高めることを目的として感光性樹脂にガラス繊維を混在させ、これを回路基板の絶縁層として用いる従来技術(特許文献2)はレーザドリリング等の方法を用いることなくフォトプロセスによりビアホールを形成することが出来、その上、絶縁層へ支持体から加わる応力をガラス繊維を介して均一化することが可能である。
特開平9−64538号公報 特開昭53−123871号公報
On the other hand, in the prior art (Patent Document 2) in which glass fibers are mixed in a photosensitive resin for the purpose of increasing the strength of the photosensitive resin and this is used as an insulating layer of a circuit board, a photo without using a method such as laser drilling. Via holes can be formed by the process, and furthermore, the stress applied from the support to the insulating layer can be made uniform through the glass fibers.
JP-A-9-64538 JP-A-53-123871

感光性樹脂にガラス繊維を混在させ、これを回路基板の絶縁層として用いる方法はレーザドリリング等の方法を用いることなくフォトプロセスによりビアホールを形成することができるため製造コストを低くすることが可能であり、且つ絶縁層に加わる応力をガラス繊維を介して均一化することができる。しかし、従来はガラス繊維を混在させる目的が絶縁層の硬度増大にあったため、感光性樹脂に混在させるガラス繊維の構造が最適化されることなく、そのためビアホールの寸法加工精度等に問題が残り、必ずしも回路基板の信頼性向上には寄与していなかった。   The method of mixing glass fiber in a photosensitive resin and using this as an insulating layer of a circuit board can reduce the manufacturing cost because a via hole can be formed by a photo process without using a method such as laser drilling. In addition, the stress applied to the insulating layer can be made uniform through the glass fiber. However, since the purpose of mixing glass fibers was to increase the hardness of the insulating layer in the past, the structure of the glass fibers mixed in the photosensitive resin was not optimized, so problems remained in the dimension processing accuracy of via holes, It did not necessarily contribute to improving the reliability of the circuit board.

そこで、本発明は周囲温度の変化によって生じる応力の影響を低減し、低コストで高い信頼性を持つ回路基板を提供することを目的とする。   Accordingly, an object of the present invention is to provide a circuit board having a low cost and high reliability by reducing the influence of stress caused by a change in ambient temperature.

上記課題の解決は、支持体の表面に単層又は複数層の絶縁層が形成され、各絶縁層には配線パターンと層間接続用のビアホールが形成されている回路基板において、前記回路基板に実装される半導体素子の熱膨張率K1と、前記支持体及び絶縁層の熱膨張率K2、K3がK1>K2<K3なる関係を満たし、且つ前記絶縁層材料として光学的に透明な補強繊維に感光性樹脂を含浸させたものを用いることを特徴とする回路基板、
あるいは、上記回路基板において、前記補強繊維はガラス繊維であることを特徴とする回路基板、
あるいは、上記回路基板において、前記支持体は炭素繊維を補強材とするコンポジットにより形成されていることを特徴とする回路基板によって達成される。
A solution to the above problem is that a single or multiple insulating layers are formed on the surface of the support, and each insulating layer is provided with a wiring pattern and via holes for interlayer connection. The thermal expansion coefficient K1 of the semiconductor element to be satisfied and the thermal expansion coefficients K2 and K3 of the support and the insulating layer satisfy the relationship of K1> K2 <K3, and an optically transparent reinforcing fiber is photosensitive as the insulating layer material. A circuit board characterized by using a resin impregnated with a conductive resin,
Alternatively, in the circuit board, the reinforcing fiber is a glass fiber,
Alternatively, in the above circuit board, the support is formed by a circuit board formed of a composite using carbon fiber as a reinforcing material.

本発明に係る回路基板では、実装される半導体素子に比べて熱膨張率の小さな支持体上に支持体より熱膨張率の大きな絶縁層を積層することにより回路基板全体の熱膨張率を半導体素子のそれに近づけて半導体素子に加わる応力を低下させている。さらに、絶縁層材料として光学的に透明な補強繊維に感光性樹脂を含浸させたものを用いることにより、絶縁層に対しては通常のフォトリソグラフィ技術を用いたビアホールの形成を可能にし、ドライエッチング法やレーザドリリング法を用いた場合に比べて製造コストを低く抑え且つ絶縁層に対して局所的な衝撃を与えることなく高精度でビアホールを形成することを可能にする。さらに、ビアホール形成により絶縁層の膜厚が不均一となった場合にも絶縁層に加わる応力は補強繊維で均一に負担されることになるため、ビアホール開口部への応力の集中を避けてクラックの発生を防ぐことが可能となる。   In the circuit board according to the present invention, the thermal expansion coefficient of the entire circuit board is increased by laminating an insulating layer having a thermal expansion coefficient larger than that of the support on the support having a smaller thermal expansion coefficient than the semiconductor element to be mounted. As a result, the stress applied to the semiconductor element is reduced. In addition, by using an optically transparent reinforcing fiber impregnated with a photosensitive resin as an insulating layer material, via holes can be formed on the insulating layer using ordinary photolithography technology, and dry etching is performed. As compared with the case where the method or the laser drilling method is used, it is possible to reduce the manufacturing cost and to form the via hole with high accuracy without giving a local impact to the insulating layer. In addition, even if the insulating layer thickness becomes non-uniform due to the formation of via holes, the stress applied to the insulating layer is uniformly borne by the reinforcing fiber, so cracks are avoided by avoiding stress concentration on the via hole opening. Can be prevented.

また、補強繊維における繊維間の隙間を繊維の太さより小さくすることによりフォトリソグラフィ工程における露光光の透過率をより均一にすることができ配線パターンやビアホール径に対する寸法加工精度の劣化を防ぐことができる。   In addition, by making the gap between fibers in the reinforcing fiber smaller than the thickness of the fiber, the transmittance of exposure light in the photolithography process can be made more uniform, and deterioration of dimensional processing accuracy with respect to the wiring pattern and via hole diameter can be prevented. it can.

本発明に係る回路基板の製造には、まず、支持体の表面に光学的に透明な補強繊維に感光性樹脂を含浸させたものから成る絶縁層をラミネートする。回路基板に実装される半導体素子としてシリコンLSIを用い、支持体にはシリコンの熱膨張率より小さい熱膨張率を持つ材料として炭素繊維を補強材とするコンポジットを用いる。この材料は従来から用いられてきたエポキシ樹脂に近い性質を持っているため扱い易く且つ熱膨張率はエポキシ樹脂が12ppm程度であるのに対して1〜2ppmと小さく、また、エポキシ樹脂は弾性率が20GPaであるのに対して100GPaと5倍に達する強度を有しており支持体に適している。上記コンポジット以外にもインバー合金の表面を絶縁処理したものを用いることもできる。光学的に透明な補強繊維としてガラス繊維を縦横に織ったクロスを用い、感光性樹脂として感光性ポリイミドを用いる。   In producing the circuit board according to the present invention, first, an insulating layer made of an optically transparent reinforcing fiber impregnated with a photosensitive resin is laminated on the surface of the support. A silicon LSI is used as a semiconductor element mounted on a circuit board, and a composite made of carbon fiber as a reinforcing material is used for a support as a material having a thermal expansion coefficient smaller than that of silicon. This material is easy to handle because it has properties similar to those of conventionally used epoxy resins, and its thermal expansion coefficient is as low as 1-2 ppm, compared to about 12 ppm for epoxy resins. It is suitable for a support because it has a strength reaching 5 times as high as 100 GPa. In addition to the composite, a material obtained by insulating the surface of the Invar alloy can also be used. A cloth in which glass fibers are woven vertically and horizontally is used as an optically transparent reinforcing fiber, and photosensitive polyimide is used as a photosensitive resin.

支持体上にラミネートされた絶縁層に対しては、通常のフォトリソグラフィ技術により所定の位置に所定の径を有するビアホールを形成する。ガラス繊維を織ったクロスはフォトリソグラフィ工程で照射される露光光に対して透明であるためビアホールパターンの形成を妨げることはないものの、光の透過率に多少の不均一を生じさせてパターン精度を低下させる原因となる。これを防ぐためには、絶縁層の厚さ方向におけるガラス繊維量の面分布をより均一化することを目的としてガラス繊維間の隙間をガラス繊維自体の太さより小さくするいわゆる扁平化処理をガラス繊維に対して行うことが効果的である。   For the insulating layer laminated on the support, a via hole having a predetermined diameter is formed at a predetermined position by a normal photolithography technique. The cloth woven with glass fiber is transparent to the exposure light irradiated in the photolithography process, so it does not interfere with the formation of the via hole pattern. It causes a decrease. In order to prevent this, the so-called flattening treatment is applied to the glass fiber in order to make the surface distribution of the glass fiber amount in the thickness direction of the insulating layer more uniform so that the gap between the glass fibers is smaller than the thickness of the glass fiber itself. It is effective to carry out against this.

以上のように支持体上の絶縁層に対してビアホールを形成した後、ビアホール内部をめっきにより銅等の導電材で埋め込み配線層間の接続のために用いる。そして、この上に配線パターンを形成する。以上の工程を繰り返すことにより多層化された配線層を有する回路基板を得ることができる。   After the via hole is formed in the insulating layer on the support as described above, the inside of the via hole is used for connection between the buried wiring layers with a conductive material such as copper by plating. Then, a wiring pattern is formed thereon. By repeating the above steps, a circuit board having a multilayered wiring layer can be obtained.

図1(a)−(d)は本発明の実施例を説明する工程断面図である。支持体1は炭素繊維を補強材とするコンポジットから成っておりその熱膨張率は凡そ1ppmである。補強繊維2は直径7μm程度のガラス繊維を束にして縦横に織ったクロスから成っており、この補強繊維2に感光性樹脂3を含浸させたものを回路基板の絶縁層4として用いる。ガラス繊維を織ったクロスに対しては扁平化処理を行うことにより後の露光工程のときに照射される光の透過率をできるだけ均一にし寸法加工精度を高めるようにする。感光性樹脂3としては感光性ポリイミドを用いることができる。   FIGS. 1A to 1D are process sectional views for explaining an embodiment of the present invention. The support 1 is made of a composite using carbon fiber as a reinforcing material, and its coefficient of thermal expansion is about 1 ppm. The reinforcing fiber 2 is made of cloth made of glass fibers having a diameter of about 7 μm bundled and woven vertically and horizontally. The reinforcing fiber 2 impregnated with the photosensitive resin 3 is used as the insulating layer 4 of the circuit board. The cloth woven with glass fibers is flattened so that the transmittance of light irradiated in the subsequent exposure process is made as uniform as possible to increase the dimensional processing accuracy. Photosensitive polyimide can be used as the photosensitive resin 3.

まず、図1(a)に示したように、補強繊維2に未感光且つ未硬化の感光性樹脂3を含浸させ、温度180℃の加熱環境下で支持体1の表面にラミネートし厚み40μmの絶縁層4を形成する。   First, as shown in FIG. 1A, the reinforcing fiber 2 is impregnated with an unphotosensitized and uncured photosensitive resin 3 and laminated on the surface of the support 1 in a heating environment at a temperature of 180 ° C. to a thickness of 40 μm. The insulating layer 4 is formed.

ついで、図1(b)に示すように、通常のフォトリソグラフィ技術に従ってラミネートされた絶縁層4の上からクロムマスク5を介して露光する。   Next, as shown in FIG. 1B, exposure is performed through a chrome mask 5 from above the insulating layer 4 laminated according to a normal photolithography technique.

ついで、図1(c)に示すように、選択的に露光された感光性ポリイミド3を現像することによりビアホール6を形成する。絶縁層4の厚みを40μmとしたとき、水銀ランプを光源として用いたフォトリソグラフィ工程における照射光の露光量を600mJに設定することにより開口径80μmのビアホール6を精度良く形成することができた。   Next, as shown in FIG. 1C, the via-hole 6 is formed by developing the selectively exposed photosensitive polyimide 3. When the thickness of the insulating layer 4 was 40 μm, the via hole 6 with an opening diameter of 80 μm could be formed with high accuracy by setting the exposure amount of irradiation light in the photolithography process using a mercury lamp as a light source to 600 mJ.

ビアホール6の形成後、400℃で1時間の加熱処理を施すことによって感光性ポリイミド3を硬化させた。これによりビアホール6に補強繊維2が貫通した状態で絶縁層4が形成される。   After the via hole 6 was formed, the photosensitive polyimide 3 was cured by heat treatment at 400 ° C. for 1 hour. As a result, the insulating layer 4 is formed with the reinforcing fibers 2 penetrating the via holes 6.

ついで、無電解銅メッキによりビアホール6の底面を含む全面に銅を付着させる。続けて電解銅メッキを行うことによりビアホール6の内部を銅で埋め込み、表面をCMP法により研磨すると、図1(d)に示すように、銅から成る層間接続材7を形成することができる。   Next, copper is deposited on the entire surface including the bottom surface of the via hole 6 by electroless copper plating. Subsequently, by performing electrolytic copper plating, the inside of the via hole 6 is filled with copper and the surface is polished by the CMP method, so that an interlayer connection material 7 made of copper can be formed as shown in FIG.

上記工程を繰り返すことにより、5層の配線層を有する回路基板を絶縁層にクラックを発生させることなく形成することができた。
(付記1) 支持体の表面に単層又は複数層の絶縁層が形成され、各絶縁層には配線パターンと層間接続用のビアホールが形成されている回路基板において、前記回路基板に実装される半導体素子の熱膨張率K1と、前記支持体及び絶縁層の熱膨張率K2、K3がK1>K2<K3なる関係を満たし、且つ前記絶縁層材料として光学的に透明な補強繊維に感光性樹脂を含浸させたものを用いることを特徴とする回路基板。
(付記2) 前記補強繊維は繊維間の隙間が繊維の太さより小さいことを特徴とする上記回路基板。
(付記3) 前記補強繊維はガラス繊維であることを特徴とする上記回路基板。
(付記4) 前記支持体は炭素繊維を補強材とするコンポジットにより形成されていることを特徴とする上記回路基板。
By repeating the above steps, a circuit board having five wiring layers could be formed without causing cracks in the insulating layer.
(Supplementary note 1) A circuit board in which a single layer or a plurality of layers of insulating layers are formed on the surface of a support, and a wiring pattern and via holes for interlayer connection are formed in each insulating layer. Photosensitive resin is used for the optically transparent reinforcing fiber as the insulating layer material, in which the thermal expansion coefficient K1 of the semiconductor element and the thermal expansion coefficients K2 and K3 of the support and the insulating layer satisfy the relationship of K1> K2 <K3. What is impregnated with a circuit board is used.
(Additional remark 2) The said reinforcing fiber is the said circuit board characterized by the clearance gap between fibers being smaller than the thickness of a fiber.
(Additional remark 3) The said reinforcing fiber is a glass fiber, The said circuit board characterized by the above-mentioned.
(Additional remark 4) The said support body is formed with the composite which uses carbon fiber as a reinforcing material, The said circuit board characterized by the above-mentioned.

本発明は、回路基板の周囲温度の変化、あるいは実装される半導体素子の発する熱による温度の変化によって生じる回路基板の応力を低減し回路基板の信頼性を向上させる上で有効である。   The present invention is effective in improving the reliability of a circuit board by reducing the stress of the circuit board caused by a change in the ambient temperature of the circuit board or a temperature change caused by heat generated by a semiconductor element to be mounted.

本発明の実施例に係る回路基板の製造方法を示す工程断面図。Process sectional drawing which shows the manufacturing method of the circuit board based on the Example of this invention.

符号の説明Explanation of symbols

1 支持体
2 補強繊維
3 感光性樹脂
4 絶縁層
5 クロムマスク
6 ビアホール
7 層間接続材
DESCRIPTION OF SYMBOLS 1 Support body 2 Reinforcing fiber 3 Photosensitive resin 4 Insulating layer 5 Chrome mask 6 Via hole 7 Interlayer connection material

Claims (3)

支持体の表面に単層又は複数層の絶縁層が形成され、各絶縁層には配線パターンと層間接続用のビアホールが形成されている回路基板において、
前記回路基板に実装される半導体素子の熱膨張率K1と、前記支持体及び絶縁層の熱膨張率K2、K3がK1>K2<K3なる関係を満たし、且つ前記絶縁層材料として光学的に透明な補強繊維に感光性樹脂を含浸させたものを用いることを特徴とする回路基板。
In a circuit board in which a single layer or a plurality of insulating layers are formed on the surface of the support, and a wiring pattern and a via hole for interlayer connection are formed in each insulating layer,
The thermal expansion coefficient K1 of the semiconductor element mounted on the circuit board and the thermal expansion coefficients K2 and K3 of the support and the insulating layer satisfy the relationship of K1> K2 <K3, and are optically transparent as the insulating layer material What is claimed is: 1. A circuit board using a reinforced fiber impregnated with a photosensitive resin.
前記補強繊維はガラス繊維であることを特徴とする請求項1記載の回路基板。   The circuit board according to claim 1, wherein the reinforcing fiber is a glass fiber. 前記支持体は炭素繊維を補強材とするコンポジットにより形成されていることを特徴とする請求項1記載の回路基板。
The circuit board according to claim 1, wherein the support is formed of a composite having carbon fiber as a reinforcing material.
JP2006066565A 2006-03-10 2006-03-10 Circuit board Withdrawn JP2007243065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066565A JP2007243065A (en) 2006-03-10 2006-03-10 Circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066565A JP2007243065A (en) 2006-03-10 2006-03-10 Circuit board

Publications (1)

Publication Number Publication Date
JP2007243065A true JP2007243065A (en) 2007-09-20

Family

ID=38588276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066565A Withdrawn JP2007243065A (en) 2006-03-10 2006-03-10 Circuit board

Country Status (1)

Country Link
JP (1) JP2007243065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135516A (en) * 2008-07-09 2014-07-24 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135516A (en) * 2008-07-09 2014-07-24 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP5125470B2 (en) Wiring board and manufacturing method thereof
US9538642B2 (en) Wiring board and method for manufacturing the same
US20090250253A1 (en) Printed circuit board and manufacturing method thereof
US20070114203A1 (en) High density printed circuit board and method of manufacturing the same
US9674937B2 (en) Circuit board and method of manufacturing the same
JP2007081157A (en) Multilevel wiring substrate and its manufacturing method
CN1863438A (en) Verfahren zum herstellen einer leiterplatte mit darin eingebetteten elektronikkomponenten
CN101409986B (en) Core substrate and manufacturing method thereof
US20060102383A1 (en) Method of fabricating high density printed circuit board
TWI298613B (en) Method for manufacturing via holes used in printed circuit boards
TW201448682A (en) Wiring substrate and method of manufacture thereof
CN101076229A (en) Method for producing printing-circuit board conducting hole
US20170064841A1 (en) Resin-coated copper foil for manufacturing a printed circuit board and method of manufacturing a printed circuit board using the same
US20100214752A1 (en) Multilayer wiring board and method for manufacturing the same
JP6674016B2 (en) Printed wiring board and manufacturing method thereof
JP2008172151A (en) Multilayer wiring circuit board
JP2007243065A (en) Circuit board
JP2009302459A (en) Wiring board, and manufacturing method thereof
JP2010034260A (en) Wiring substrate, method of manufacturing the same, and mounting structure
JP2002252436A (en) Double-sided laminate and its manufacturing method
JP7087618B2 (en) Passive element
JP2005191113A (en) Wiring board and electrical device, and method of manufacturing wiring board
JP7411354B2 (en) Printed wiring board and its manufacturing method
US20230284380A1 (en) Wiring substrate
JP2017028079A (en) Manufacturing method of printed wiring board and printed wiring board

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512