JP2007242530A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2007242530A
JP2007242530A JP2006066049A JP2006066049A JP2007242530A JP 2007242530 A JP2007242530 A JP 2007242530A JP 2006066049 A JP2006066049 A JP 2006066049A JP 2006066049 A JP2006066049 A JP 2006066049A JP 2007242530 A JP2007242530 A JP 2007242530A
Authority
JP
Japan
Prior art keywords
air
fuel cell
passage
pressure regulating
regulating valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006066049A
Other languages
Japanese (ja)
Inventor
Kazuo Saito
和男 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006066049A priority Critical patent/JP2007242530A/en
Publication of JP2007242530A publication Critical patent/JP2007242530A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system in which deterioration of an operation efficiency is prevented and an operation failure of an adjustment valve at a low temperature is prevented. <P>SOLUTION: The adjustment valve 23 is provided in an air exhausting passage 15 in which an exhausted air from the fuel cell flows. A compressed air from an air compressor 17 is supplied through an air supplying passage 19 to the fuel cell 1 and a part of the compressed air is supplied to the adjustment valve 23 through an air bypass passage 25 bifurcated from the air supplying passage 19, and freezing of the adjustment valve is prevented. A ventilating air is supplied to a fuel cell case 27 through a ventilating passage 37 bifurcated from the air supplying passage 19, and the exhaust is supplied to the adjustment valve 23. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池に燃料ガスと酸化剤ガスを供給して発電させる燃料電池システムに関する。   The present invention relates to a fuel cell system that generates power by supplying fuel gas and oxidant gas to a fuel cell.

水素と酸素との電気化学反応によって発電する燃料電池においては、従来氷点下などの低温時の起動を正常に行うためには、ヒータなどの加熱手段を用いてシステム構成部品を暖めるというものが多い。   In a fuel cell that generates power by an electrochemical reaction between hydrogen and oxygen, conventionally, in order to normally start at a low temperature such as below freezing point, a system component is often warmed using a heating means such as a heater.

ところが、この場合には加熱手段を別途設ける必要があることから、駆動電力が余計に必要となって、特に自動車などの移動体に燃料電池を搭載する場合には、コストや設置スペースなどを考慮すると採用が困難となる。   However, in this case, since it is necessary to provide a separate heating means, extra driving power is required, especially when a fuel cell is mounted on a moving body such as an automobile, in consideration of cost and installation space. Then, adoption becomes difficult.

ここで、上記した燃料電池システムの構成部品のうち、燃料電池に供給する反応ガス(水素や空気)の圧力を調整する調圧弁に着目すると、例えば、下記特許文献1によれば、氷点下などの低温時に調圧弁が凍結しないように、凍結しそうな状態であることを検知したときに、調圧弁の開度を所定開度以下にしないように制御するという方法がある。
特開2004−311288号公報
Here, focusing on the pressure regulating valve that adjusts the pressure of the reaction gas (hydrogen or air) supplied to the fuel cell among the components of the fuel cell system described above, for example, according to Patent Document 1 below, There is a method of controlling the pressure regulation valve so that the opening degree of the pressure regulation valve does not become a predetermined degree or less when it is detected that the pressure regulation valve is likely to be frozen so that the pressure regulation valve does not freeze at low temperatures.
JP 2004-31288 A

しかしながら、上記した従来の燃料電池システムにおいては、発電が開始されてから水分を持った排出ガスが調圧弁に導入されると、流速が上がって圧力が低下するため、流路内面に霜付きが生じやすく、それが高じて弁の動作を遅くしたり、最悪凍結して弁を固着させ、調圧不能にするという問題がある。   However, in the conventional fuel cell system described above, when exhaust gas with moisture is introduced into the pressure regulating valve after power generation is started, the flow velocity increases and the pressure decreases, so that the inner surface of the flow channel is frosted. There is a problem that it is easy to occur and slows down the operation of the valve, or worst freezes to fix the valve and make the pressure adjustment impossible.

また、調圧弁の開度を所定開度以下にしないように制御していることから、調圧弁による圧力制御の範囲が制限されて燃料電池システムとして運転効率の低下を招くという問題も発生する。   In addition, since the pressure control valve is controlled so that the opening degree of the pressure regulation valve is not less than a predetermined opening degree, a range of pressure control by the pressure regulation valve is limited, which causes a problem that the operation efficiency of the fuel cell system is reduced.

そこで、本発明は、燃料電池システムとして運転効率の低下を防止しつつ、調圧弁の低温時での作動不良を防止することを目的としている。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to prevent a malfunction of a pressure regulating valve at a low temperature while preventing a decrease in operating efficiency as a fuel cell system.

本発明は、燃料電池に燃料ガスと酸化剤ガスを供給して発電させる燃料電池システムにおいて、前記燃料電池に圧縮機から酸化剤ガスを含む空気を供給する空気供給通路および、前記燃料電池から排出空気が流れる空気排出通路をそれぞれ設けるとともに、前記空気排出通路に空気の圧力を調整する調圧弁を設け、この調圧弁に前記空気供給通路から前記圧縮空気を供給する調圧弁用空気供給通路を接続して設けたことを最も主要な特徴とする。   The present invention provides a fuel cell system in which fuel gas and oxidant gas are supplied to a fuel cell to generate power, an air supply passage for supplying air containing oxidant gas from a compressor to the fuel cell, and exhaust from the fuel cell Each air discharge passage through which air flows is provided, and a pressure regulating valve for adjusting the pressure of the air is provided in the air discharge passage, and a pressure regulating valve air supply passage for supplying the compressed air from the air supply passage is connected to the pressure regulating valve. The most important feature is that

本発明によれば、燃料電池の空気排出通路に設けた調圧弁には、圧縮機を出て温度が高く、乾燥した空気が直接供給できるので、別途加熱手段を設けることなく、調圧弁の霜付や凍結などに起因する低温時での作動不良を防止して低温始動性を高めることができ、この際、調圧弁の開度を制限する必要がないので、燃料電池システムとして運転効率の低下を回避することができる。   According to the present invention, the pressure regulating valve provided in the air discharge passage of the fuel cell has a high temperature and can be supplied with dry air directly from the compressor, so that the frost of the pressure regulating valve can be provided without any additional heating means. It is possible to improve the low temperature startability by preventing malfunction at low temperature due to sticking or freezing, etc. At this time, it is not necessary to limit the opening of the pressure regulating valve, so the operating efficiency of the fuel cell system is reduced Can be avoided.

また、燃料電池をアイドル運転時のような低負荷で運転する際、圧縮機をあまり低回転で運転することは効率が悪いため、ある程度回転を維持したまま燃料電池に空気を供給すると、燃料電池が乾燥して発電性能が落ちてしまう可能性がある。このような場合であっても、低負荷時にて余剰となる空気を、調圧弁用空気供給通路を経て調圧弁に供給すれば、燃料電池の発電性能を維持したまま、圧縮機の効率も落とさず運転することができる。   Also, when operating the fuel cell at a low load such as during idle operation, it is inefficient to operate the compressor at a very low speed, so if air is supplied to the fuel cell while maintaining a certain degree of rotation, the fuel cell May dry out and power generation performance may drop. Even in such a case, if the excess air at low load is supplied to the pressure regulating valve via the pressure regulating valve air supply passage, the efficiency of the compressor is reduced while maintaining the power generation performance of the fuel cell. You can drive without stopping.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係わる燃料電池システムを示す全体構成図である。燃料電池1に対し、図示しない水素タンクなどの燃料供給源から燃料ガスである水素ガスが、水素供給通路3に設けた水素調圧弁5を通して供給され、燃料電池1から排出される排出水素ガスは、水素循環通路7に設けた水素循環装置9を通して水素調圧弁5の下流に戻され、これにより水素循環系を構成している。   FIG. 1 is an overall configuration diagram showing a fuel cell system according to a first embodiment of the present invention. Hydrogen gas, which is a fuel gas, is supplied to the fuel cell 1 from a fuel supply source such as a hydrogen tank (not shown) through a hydrogen pressure regulating valve 5 provided in the hydrogen supply passage 3, and the discharged hydrogen gas discharged from the fuel cell 1 is Then, the hydrogen is returned to the downstream side of the hydrogen pressure regulating valve 5 through a hydrogen circulation device 9 provided in the hydrogen circulation passage 7, thereby constituting a hydrogen circulation system.

水素循環通路7の水素循環装置9より下流には、燃料ガス排出通路となるパージ配管11を接続し、このパージ配管11に設けたパージ弁13を通して、後述する空気排出通路15に循環水素の一部を流す。   A purge pipe 11 serving as a fuel gas discharge passage is connected downstream of the hydrogen circulation device 9 in the hydrogen circulation passage 7, and through the purge valve 13 provided in the purge pipe 11, the circulating hydrogen is supplied to an air discharge passage 15 to be described later. Shed part.

一方、空気は、圧縮機17から空気供給通路19に設けた加湿装置21を通って燃料電池1に供給され、燃料電池1から排出される排出空気は前記した空気排出通路15を通って外部に排出される。空気排出通路15には、燃料電池1側から前記した加湿装置21および調圧弁23をそれぞれ設置している。この調圧弁23の下流に、前記したパージ配管11を接続している。   On the other hand, the air is supplied from the compressor 17 to the fuel cell 1 through the humidifier 21 provided in the air supply passage 19, and the exhaust air discharged from the fuel cell 1 passes through the air discharge passage 15 to the outside. Discharged. The air exhaust passage 15 is provided with the humidifier 21 and the pressure regulating valve 23 described above from the fuel cell 1 side. The purge pipe 11 described above is connected downstream of the pressure regulating valve 23.

加湿装置21では、空気排出通路15を流れる排出空気中の水分により、空気供給通路19を流れる乾燥した空気を加湿し、この加湿空気を燃料電池1に供給することで、燃料電池1の構成部品である固体高分子電解質膜を湿潤状態に確保する。   In the humidifying device 21, the dry air flowing through the air supply passage 19 is humidified by the moisture in the exhaust air flowing through the air discharge passage 15, and the humidified air is supplied to the fuel cell 1. The solid polymer electrolyte membrane is ensured in a wet state.

圧縮機17と加湿装置21との間の空気供給通路19には、燃料電池1をパイパスして空気が流れる空気バイパス通路25の一端を上流側に、燃料電池1を収容する燃料電池ケース27内に空気を供給する換気入口通路29の一端を、下流側にそれぞれ接続する。これら空気バイパス通路25および換気入口通路29には、通路開閉手段としてのバイパス弁31および換気弁33をそれぞれ設置する。   In the air supply passage 19 between the compressor 17 and the humidifier 21, an end of an air bypass passage 25 that bypasses the fuel cell 1 and through which air flows is located upstream, and in the fuel cell case 27 that houses the fuel cell 1. One end of a ventilation inlet passage 29 that supplies air to the downstream is connected to the downstream side. The air bypass passage 25 and the ventilation inlet passage 29 are provided with a bypass valve 31 and a ventilation valve 33 as passage opening / closing means, respectively.

そして、上記した空気バイパス通路25の他端を、調圧弁23に接続する。また、燃料電池ケース27には、上記した換気入口通路29の他端を接続するとともに、換気出口通路35の一端を接続し、換気出口通路35の他端を調圧弁23に接続する。この換気出口通路35と換気入口通路29とで換気通路37を構成している。また、換気通路37および空気バイパス通路25は、調圧弁用空気供給通路を構成している。   Then, the other end of the air bypass passage 25 described above is connected to the pressure regulating valve 23. Further, the other end of the ventilation inlet passage 29 is connected to the fuel cell case 27, one end of the ventilation outlet passage 35 is connected, and the other end of the ventilation outlet passage 35 is connected to the pressure regulating valve 23. The ventilation outlet passage 35 and the ventilation inlet passage 29 constitute a ventilation passage 37. Further, the ventilation passage 37 and the air bypass passage 25 constitute a pressure regulating valve air supply passage.

調圧弁23より下流の空気排出通路15には、燃料ガス濃度検出手段としての水素濃度センサ39を設置し、水素濃度センサ39が検出する水素濃度が、所定値以下になっているか否かを、制御手段としての制御装置41が監視している。   A hydrogen concentration sensor 39 as a fuel gas concentration detection means is installed in the air discharge passage 15 downstream from the pressure regulating valve 23, and whether or not the hydrogen concentration detected by the hydrogen concentration sensor 39 is equal to or lower than a predetermined value is determined. A control device 41 as a control means monitors.

図2(a)は調圧弁23の簡略化した断面図で、図2(b)は図2(a)のA−A線断面に対応する断面図である。ただし、図2(a)と図2(b)とでは、調圧弁23の開度を異ならせている。   2A is a simplified cross-sectional view of the pressure regulating valve 23, and FIG. 2B is a cross-sectional view corresponding to a cross section taken along line AA of FIG. 2A. However, the opening degree of the pressure regulating valve 23 is different between FIG. 2A and FIG.

上記した調圧弁23は、円筒形状のハウジング43内に、その通路壁に対して回転可能な軸部45と、この軸部45に設けられて内部の通路、すなわち空気供給通路15を開閉する弁体47とを備えている。   The pressure regulating valve 23 includes a shaft portion 45 that is rotatable with respect to the passage wall in a cylindrical housing 43, and a valve that is provided on the shaft portion 45 and opens and closes the internal passage, that is, the air supply passage 15. And a body 47.

ハウジング43は、軸部45および弁体47より図2中で右側の上流側を二重管構造として、環状の空気供給空間49を備えるとともに、空気供給空間49より下流側には、空気供給空間49に連続する空気流出空間51を備えている。これら空気供給空間49および空気流出空間51により空気導入通路53を構成している。   The housing 43 has a double-pipe structure on the right upstream side in FIG. 2 with respect to the shaft portion 45 and the valve body 47 and includes an annular air supply space 49, and an air supply space downstream from the air supply space 49. 49, an air outflow space 51 is provided. The air supply space 49 and the air outflow space 51 constitute an air introduction passage 53.

上記した空気供給空間49および空気流出空間51からなる空気導入通路53の形状を図3に斜視図として示す。図3に示すように、空気流出空間51は、円周方向の相互に対向する2箇所にて、空気供給空間49の下流側端部からさらに下流に向けて延長し、その下流端に空気流出口55を設けている。   The shape of the air introduction passage 53 including the air supply space 49 and the air outflow space 51 described above is shown as a perspective view in FIG. As shown in FIG. 3, the air outflow space 51 extends further downstream from the downstream end of the air supply space 49 at two locations facing each other in the circumferential direction. An outlet 55 is provided.

一方、空気供給空間49の上記した空気流出空間51とは円周方向に沿って90度隔てた相互に対向する位置に、空気流入口57を設け、この各空気流入口57に前記した空気バイパス通路25および換気出口通路35をそれぞれ接続する。   On the other hand, air inlets 57 are provided at positions facing each other at 90 degrees along the circumferential direction of the air supply space 49 with respect to the air outflow space 51 described above, and each of the air inlets 57 has the air bypass described above. The passage 25 and the ventilation outlet passage 35 are connected to each other.

上記した構成の燃料電池システムによれば、水素調圧弁5にて調圧された水素が水素供給通路3を通って燃料電池1に供給されるとともに、圧縮機17で圧縮された空気が加湿装置21にて加湿されて燃料電池1に供給され、これにより燃料電池1が発電する。   According to the fuel cell system having the above-described configuration, the hydrogen regulated by the hydrogen regulating valve 5 is supplied to the fuel cell 1 through the hydrogen supply passage 3, and the air compressed by the compressor 17 is humidified. Humidified at 21 and supplied to the fuel cell 1, the fuel cell 1 generates power.

この際、燃料電池1から排出される排出水素ガスは、水素循環装置9により水素循環通路7を通って水素供給通路3に戻され再度燃料電池1に供給される。一方、燃料電池1の運転状態に応じてパージ弁13が開いたときに、排出水素ガスの一部がパージ配管11を通って調圧弁23下流の空気排出通路15に流れ込む。   At this time, the discharged hydrogen gas discharged from the fuel cell 1 is returned to the hydrogen supply passage 3 through the hydrogen circulation passage 7 by the hydrogen circulation device 9 and supplied to the fuel cell 1 again. On the other hand, when the purge valve 13 is opened according to the operating state of the fuel cell 1, part of the discharged hydrogen gas flows into the air discharge passage 15 downstream of the pressure regulating valve 23 through the purge pipe 11.

一方、燃料電池1から排出される排出空気は、加湿装置21にて空気供給通路19を流れる乾燥した空気を加湿し、調圧弁23にて調圧された後、システム外に放出される。   On the other hand, the exhausted air discharged from the fuel cell 1 humidifies the dried air flowing through the air supply passage 19 by the humidifying device 21, is regulated by the pressure regulating valve 23, and then is discharged outside the system.

また、空気供給通路19から換気入口通路29に流れる換気空気は、常に一定開度で開いている換気弁33を通して燃料電池ケース27内に流入し、燃料電池ケース27内において、燃料電池1から僅かに透過して燃料電池ケース27内空間に漏れ出た微量な水素が滞留し、その濃度が高くならないように希釈して燃料電池ケース27外に放出される。   Further, the ventilation air flowing from the air supply passage 19 to the ventilation inlet passage 29 always flows into the fuel cell case 27 through the ventilation valve 33 that is open at a constant opening, and in the fuel cell case 27, the ventilation air slightly passes from the fuel cell 1. A small amount of hydrogen that has permeated into the fuel cell case 27 and leaked into the internal space of the fuel cell case 27 is retained, diluted so that its concentration does not increase, and discharged outside the fuel cell case 27.

そして、この希釈後の空気は、換気出口通路35を通って調圧弁23に供給されるとともに、空気供給通路19から空気バイパス通路25に流れる空気が、そのときの運転状態に応じて開度が調整されるバイパス弁31を通って調圧弁23に供給される。   The diluted air is supplied to the pressure regulating valve 23 through the ventilation outlet passage 35, and the air flowing from the air supply passage 19 to the air bypass passage 25 has an opening degree according to the operating state at that time. It is supplied to the pressure regulating valve 23 through the adjusted bypass valve 31.

空気バイパス通路25に流れる空気および換気出口通路35を流れる空気が、上記のように調圧弁23に供給される際には、図2,図3に示すように、環状の空気供給空間49に空気流入口57を通して流入した後、空気流出空間51を経て空気流出口55から、軸部45の通路壁近傍の端部に向けて流出する。   When the air flowing through the air bypass passage 25 and the air flowing through the ventilation outlet passage 35 are supplied to the pressure regulating valve 23 as described above, air is introduced into the annular air supply space 49 as shown in FIGS. After flowing in through the inflow port 57, it flows out from the air outflow port 55 through the air outflow space 51 toward the end of the shaft portion 45 near the passage wall.

ここで、上記したような、いわゆるバタフライ弁型の調圧弁23において、図2(b)に示すように軸部45近傍の弁体47と通路壁面との隙間が一番小さく流速が高いため、圧力が下がって温度も下がり、低温起動時にハウジング43が冷え切った状態で水分を持った排出空気が導入されると、従来では、図4に示すように、軸部45近傍の通路壁面周辺で霜59が付着しやすく、これが高じると、霜59を掻き取るように弁体47が動くことによって霜59が堆積し、霜59と弁体47との摩擦で動作が遅くなったり、最悪凍結して固着してしまう場合がある。   Here, in the so-called butterfly valve type pressure regulating valve 23 as described above, the gap between the valve body 47 near the shaft portion 45 and the passage wall surface is the smallest and the flow velocity is high as shown in FIG. When the exhaust air with moisture is introduced when the pressure is lowered and the temperature is lowered and the housing 43 is cooled at the time of low temperature startup, conventionally, as shown in FIG. When the frost 59 is easily attached and increases, the valve body 47 moves so as to scrape the frost 59, so that the frost 59 accumulates, and the friction between the frost 59 and the valve body 47 causes the operation to be slow or the worst freeze. May stick.

しかしながら、本実施形態においては、上記のように軸部45の通路壁近傍の端部に、圧縮機17を出て温度が高く、乾燥している空気を供給するので、上記したような霜59の付着を防止し、スムーズな低温起動を実施できる。この際、本実施形態では、調圧弁23の開度を制限する必要がないので、燃料電池システムとして運転効率の低下を回避することができる。   However, in the present embodiment, the frost 59 as described above is supplied to the end of the shaft portion 45 in the vicinity of the passage wall as described above, since the air that is out of the compressor 17 and has a high temperature is supplied. Can be prevented and smooth start-up can be performed. At this time, in this embodiment, since it is not necessary to limit the opening degree of the pressure regulating valve 23, it is possible to avoid a decrease in operating efficiency as the fuel cell system.

また、燃料電池システムにおけるアイドル運転のような低負荷で運転する際に、圧縮機17をあまり低回転で運転することは効率が悪いため、ある程度回転を維持したまま燃料電池1に空気を供給すると、燃料電池1が乾燥して発電性能が落ちてしまう問題が発生する。そこで、低負荷時にて余剰となる空気を、バイパス弁31を用いて燃料電池1をバイパスさせることで、燃料電池1の発電性能を維持したまま、圧縮機17の効率も落とさず運転することができるという効果もある。   Further, when operating at a low load such as an idle operation in the fuel cell system, it is inefficient to operate the compressor 17 at a very low rotation, so if air is supplied to the fuel cell 1 while maintaining a certain degree of rotation. As a result, the fuel cell 1 is dried and the power generation performance is reduced. Therefore, by bypassing the fuel cell 1 using the bypass valve 31 with excess air at the time of low load, the compressor 17 can be operated without reducing the efficiency while maintaining the power generation performance of the fuel cell 1. There is also an effect that can be done.

図5は、燃料電池システムの負荷とバイパス弁31の開度との関係を示しており、これによれば、調圧弁23内にて霜の発生や凍結の発生しやすい低温時には、破線で示すように、低負荷時にバイパス弁31を負荷Lとなるまでの一定期間だけ全開として調圧弁23に供給する空気を多くし、その後の負荷の増大とともにバイパス弁31の開度を徐々に小さくしていく。これにより、霜の発生や凍結の発生を防止しつつ、燃料電池システムの運転効率を所望に維持することができる。   FIG. 5 shows the relationship between the load of the fuel cell system and the opening degree of the bypass valve 31. According to this, it is indicated by a broken line at a low temperature where frost or freezing is likely to occur in the pressure regulating valve 23. As described above, when the load is low, the air supplied to the pressure regulating valve 23 is increased only for a certain period until the bypass valve 31 reaches the load L, and the opening degree of the bypass valve 31 is gradually reduced as the load increases thereafter. Go. Thereby, the operation efficiency of the fuel cell system can be maintained as desired while preventing generation of frost and freezing.

一方、温度が高まる通常の発電時には、霜の発生や凍結の発生の恐れがないことから、実線で示すように、運転開始から負荷の増大とともにバイパス弁31の開度を全開から徐々に小さくする。この際、低負荷では圧縮機17の効率を維持できる回転数のまま、燃料電池1に負荷に応じた必要な空気が供給されるようにバイパス弁31の開度を設定する。   On the other hand, during normal power generation when the temperature rises, there is no risk of frost or freezing. Therefore, as shown by the solid line, the opening of the bypass valve 31 is gradually reduced from full opening as the load increases from the start of operation. . At this time, the opening degree of the bypass valve 31 is set so that necessary air corresponding to the load is supplied to the fuel cell 1 while maintaining the rotation speed at which the efficiency of the compressor 17 can be maintained at a low load.

また、上記した実施形態によれば、霜の発生しやすい軸部45の端部近傍に集中して温度の高い乾燥空気を導入することにより、効率的に調圧弁23の動作不良を防止できる。   In addition, according to the above-described embodiment, it is possible to efficiently prevent malfunction of the pressure regulating valve 23 by introducing dry air having a high temperature in the vicinity of the end portion of the shaft portion 45 where frost is likely to occur.

また、空気バイパス通路25を流れる空気に加えて、換気通路37を流れる空気をも調圧弁23に供給しているので、温度の高い空気の量が増し、調圧弁23の動作不良を防止する効果をより高めることができる。   In addition to the air flowing through the air bypass passage 25, the air flowing through the ventilation passage 37 is also supplied to the pressure regulating valve 23, so that the amount of high-temperature air increases and the malfunction of the pressure regulating valve 23 is prevented. Can be further enhanced.

なお、換気弁33は、基本的には通常発電でも低温起動においても、常に一定開度で開いており、特に開度を制御する必要がないため、オリフィスを用いたり、配管そのものの径を適切に選択すれば、省略しても特に問題はない。   Note that the ventilation valve 33 is basically always opened at a constant opening even during normal power generation or cold start, and there is no need to control the opening, so an orifice is used or the diameter of the pipe itself is appropriately adjusted. If selected, there is no particular problem even if it is omitted.

図6(a)は、本発明の第2の実施形態を示す調圧弁23Aの、前記図2(a)に対応する断面図で、図6(b)は図6(a)のB−B線断面に対応する断面図である。ただし、図6(a)と図6(b)とでは、調圧弁23Aの開度を異ならせている。   FIG. 6A is a cross-sectional view corresponding to FIG. 2A of a pressure regulating valve 23A showing a second embodiment of the present invention, and FIG. 6B is a cross-sectional view taken along line BB in FIG. It is sectional drawing corresponding to a line cross section. However, the opening degree of the pressure regulating valve 23A is different between FIG. 6A and FIG. 6B.

上記した調圧弁23Aは、前記図2に示した調圧弁23と同様に、円筒形状のハウジング43A内に、その通路壁に対して回転可能な軸部45と、この軸部45に設けられて内部の通路、すなわち空気供給通路15を開閉する弁体47とを備えている。   Like the pressure regulating valve 23 shown in FIG. 2, the pressure regulating valve 23 </ b> A is provided in the cylindrical housing 43 </ b> A, a shaft portion 45 that can rotate with respect to the passage wall, and the shaft portion 45. An internal passage, that is, a valve body 47 that opens and closes the air supply passage 15 is provided.

ハウジング43Aは、軸部45および弁体47より図6中で右側の上流側を二重管構造とし、環状の空気供給空間61を備えている。空気供給空間61の上流側端部の外周には、前記した空気バイパス通路25を流れる空気を、空気供給空間61内に導入するバイパス空気流入口63と、換気出口通路35を流れる換気空気を、空気供給空間61内に導入する換気空気流入口65とをそれぞれ接続する。   The housing 43A has a double-pipe structure on the right upstream side in FIG. 6 with respect to the shaft portion 45 and the valve body 47, and includes an annular air supply space 61. On the outer periphery of the upstream end portion of the air supply space 61, bypass air inlet 63 for introducing the air flowing through the air bypass passage 25 into the air supply space 61 and ventilation air flowing through the ventilation outlet passage 35, A ventilation air inlet 65 introduced into the air supply space 61 is connected to each other.

これらバイパス空気流入口63および換気空気流入口65は、空気供給空間61内に流入した空気が、図7の矢印で示すように円周方向に沿って螺旋状に流れるように、上流側端部付近において、通路の下流に向かい、かつ通路の軸線に対して傾斜するよう接続する。   The bypass air inlet 63 and the ventilation air inlet 65 have upstream end portions so that the air flowing into the air supply space 61 flows spirally along the circumferential direction as shown by the arrows in FIG. In the vicinity, the connection is made toward the downstream of the passage and to be inclined with respect to the axis of the passage.

また、空気供給空間61の下流側の端部は、全周にわたり開口し、空気流出口67となっている。   Further, the downstream end of the air supply space 61 is opened over the entire circumference and serves as an air outlet 67.

上記した空気供給空間61と、バイパス空気流入口63および換気空気流入口65と、空気流出口67とで空気導入通路を構成している。   The air supply space 61, the bypass air inlet 63, the ventilation air inlet 65, and the air outlet 67 constitute an air introduction passage.

上記図6,図7に示した第2の実施形態においては、バイパス空気流入口63および換気空気流入口65からバイパス空気および換気空気が、空気供給空間61に流入し、空気流出口67から流出した後は通路内面に沿って流れつつ弁体47の周囲に向けて流れる。   In the second embodiment shown in FIGS. 6 and 7, the bypass air and the ventilation air flow into the air supply space 61 from the bypass air inlet 63 and the ventilation air inlet 65 and flow out from the air outlet 67. After that, it flows toward the periphery of the valve body 47 while flowing along the inner surface of the passage.

これにより、第1の実施形態と同様に、軸部45の通路壁近傍の端部に、圧縮機17を出て温度が高く、乾燥している空気を供給することになるので、前記図4に示したような霜59の付着を防止し、スムーズな低温起動を実施できる。   As a result, as in the first embodiment, air that is high in temperature and dried out of the compressor 17 is supplied to the end of the shaft portion 45 near the passage wall. Thus, it is possible to prevent the frost 59 from adhering as shown in FIG.

また、第2の実施形態では、空気供給空間61に流入したバイパス空気および換気空気が円周方向に沿って螺旋状に流れるので、ハウジング43A自体をこれら導入した温度の高い乾燥空気によって暖め、また空気流出口67から流出した乾燥空気が通路内面に沿って層を形成し、この空気層により排出空気が直接通路内面に触れないようにするため、より効果的に霜の付着および凍結を防止することができる。   In the second embodiment, since the bypass air and the ventilation air that have flowed into the air supply space 61 flow spirally along the circumferential direction, the housing 43A itself is warmed by the introduced high-temperature dry air, and Dry air that has flowed out from the air outlet 67 forms a layer along the inner surface of the passage, and this air layer prevents the exhaust air from directly contacting the inner surface of the passage, thereby preventing frost adhesion and freezing more effectively. be able to.

さらに、通常発電時には多量に水蒸気を含んだ排出空気が調圧弁23に導入されるが、空気バイパス通路25を通しての温度の高い乾燥空気導入により、軸部45や弁体47およびハウジング43Aでの水蒸気の凝縮を防止し、液水が溜まることによる調圧不良も防止できる。このような効果は第1の実施形態においても同様に発生する。   Further, during normal power generation, exhaust air containing a large amount of water vapor is introduced into the pressure regulating valve 23. However, by introducing dry air having a high temperature through the air bypass passage 25, water vapor in the shaft portion 45, the valve body 47, and the housing 43A. Condensation of the water can be prevented, and poor pressure regulation due to accumulation of liquid water can also be prevented. Such an effect similarly occurs in the first embodiment.

なお、上記した第2の実施形態においては、バイパス空気流入口63および換気空気流入口65の空気供給空間61への空気導入角度によって、空気供給空間61内に螺旋状に回転する空気流を発生させているが、例えば、空気供給空間61内に螺旋状に回転する空気流が発生するように空気流れを整流する導風板を、空気供給空間61内に取り付けてもよい。   In the second embodiment described above, a spirally rotating air flow is generated in the air supply space 61 according to the air introduction angle of the bypass air inlet 63 and the ventilation air inlet 65 to the air supply space 61. However, for example, an air guide plate that rectifies the air flow so as to generate a spirally rotating air flow in the air supply space 61 may be attached in the air supply space 61.

図8は、換気弁33の開度動作の一例を示した説明図である。この例は、換気弁33を、開度調整可能な弁とし、通常発電時は実線で示すように開度一定とし、低温起動時には、破線で示すように、開度を大きくし、負荷の増大とともに開度を徐々に小さくする。これにより、低温起動時の低負荷時には、空気バイパス通路25による空気の導入に加え、さらに多量の温度の高い乾燥空気を調圧弁23に導入できるため、より効率的に凍結防止が可能となる。   FIG. 8 is an explanatory view showing an example of the opening operation of the ventilation valve 33. In this example, the ventilation valve 33 is a valve whose opening degree can be adjusted, the opening degree is constant as shown by a solid line during normal power generation, and the opening degree is increased and the load is increased as shown by a broken line at low temperature startup. At the same time, the opening is gradually reduced. Thereby, in addition to the introduction of air through the air bypass passage 25 at the time of low load at the time of low temperature start-up, a larger amount of high-temperature dry air can be introduced into the pressure regulating valve 23, so that freezing can be prevented more efficiently.

また、通常所定濃度以上であった場合の警告をするだけの目的で設置されている水素濃度センサ39を使用し、開度調整可能なバイパス31弁および換気弁33を用いて、水素濃度センサ39で検知した水素濃度に応じてこれらバイパス弁31および換気弁33の開度を、制御装置41が変化させることで、より運転領域を広げることが可能となる。   Further, a hydrogen concentration sensor 39 that is usually installed only for the purpose of giving a warning when the concentration is higher than a predetermined concentration is used, and a bypass 31 valve and a ventilation valve 33 that are adjustable in opening degree are used, and a hydrogen concentration sensor 39 is used. When the control device 41 changes the opening degree of the bypass valve 31 and the ventilation valve 33 in accordance with the hydrogen concentration detected in step 1, the operating range can be further expanded.

例えば、所定の水素濃度以上を検知した場合、バイパス弁31および換気弁33の開度が全開でなく、かつ燃料電池1への運転に必要な供給空気量を維持できる範囲で、バイパス弁31および換気弁33の開度を大きくすることで、空気排出通路15内の水素濃度を下げることができ、運転を継続できる時間をより長くすることができる。   For example, when a predetermined hydrogen concentration or more is detected, the bypass valve 31 and the ventilation valve 33 are not fully opened and the supply air amount necessary for operation of the fuel cell 1 can be maintained. By increasing the opening degree of the ventilation valve 33, the hydrogen concentration in the air discharge passage 15 can be lowered, and the time during which the operation can be continued can be extended.

本発明の第1の実施形態に係わる燃料電池システムを示す全体構成図である。1 is an overall configuration diagram showing a fuel cell system according to a first embodiment of the present invention. (a)は調圧弁の簡略化した断面図で、(b)は(a)のA−A線断面に対応する断面図である。(A) is simplified sectional drawing of a pressure regulation valve, (b) is sectional drawing corresponding to the AA sectional view of (a). 図2の調圧弁における空気導入通路の形状を示す斜視図である。It is a perspective view which shows the shape of the air introduction channel | path in the pressure regulation valve of FIG. 調圧弁の軸部近傍の通路壁面で霜が付着した状態を示す斜視図である。It is a perspective view which shows the state in which frost adhered to the channel | wall wall surface of the axial part vicinity of a pressure regulation valve. 燃料電池システムの負荷とバイパス弁の開度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the load of a fuel cell system, and the opening degree of a bypass valve. (a)は本発明の第2の実施形態を示す調圧弁の断面図で、(b)は(a)のB−B線断面に対応する断面図である。(A) is sectional drawing of the pressure regulation valve which shows the 2nd Embodiment of this invention, (b) is sectional drawing corresponding to the BB sectional view of (a). 図6の調圧弁における空気導入通路の形状および空気の流れ状態を示す斜視図である。It is a perspective view which shows the shape of the air introduction channel | path in the pressure regulation valve of FIG. 6, and the flow state of air. 燃料電池システムの負荷と換気弁の開度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the load of a fuel cell system, and the opening degree of a ventilation valve.

符号の説明Explanation of symbols

1 燃料電池
11 パージ配管(燃料ガス排出通路)
15 空気排出通路
17 圧縮機
19 空気供給通路
23 空気の圧力を調整する調圧弁
25 空気バイパス通路(調圧弁用空気供給通路)
31 バイパス弁(通路開閉手段)
33 換気弁(通路開閉手段)
37 換気通路(調圧弁用空気供給通路)
39 水素濃度センサ(燃料ガス濃度検出手段)
41 制御装置(制御手段)
43,43A 調圧弁のハウジング
45 調圧弁の軸部
47 調圧弁の弁体
49 空気供給空間(空気導入通路)
51 空気流出空間(空気導入通路)
53 空気導入通路
55 空気流出空間の空気流出口(流出口)
61 空気供給空間(空気導入通路)
63 バイパス空気流入口(空気導入通路,流入口)
65 換気空気流入口(空気導入通路,流入口)
67 空気流出口(空気導入通路,流出口)
1 Fuel cell 11 Purge piping (fuel gas discharge passage)
DESCRIPTION OF SYMBOLS 15 Air discharge passage 17 Compressor 19 Air supply passage 23 Pressure regulation valve which adjusts the pressure of air 25 Air bypass passage (Air supply passage for pressure regulation valves)
31 Bypass valve (passage opening / closing means)
33 Ventilation valve (passage opening / closing means)
37 Ventilation passage (Air supply passage for pressure regulating valve)
39 Hydrogen concentration sensor (fuel gas concentration detection means)
41 Control device (control means)
43, 43A Pressure regulating valve housing 45 Pressure regulating valve shaft 47 Pressure regulating valve disc 49 Air supply space (air introduction passage)
51 Air outflow space (air introduction passage)
53 Air introduction passage 55 Air outlet (outlet) of air outflow space
61 Air supply space (air introduction passage)
63 Bypass air inlet (air introduction passage, inlet)
65 Ventilation air inlet (air introduction passage, inlet)
67 Air outlet (air introduction passage, outlet)

Claims (8)

燃料電池に燃料ガスと酸化剤ガスを供給して発電させる燃料電池システムにおいて、前記燃料電池に圧縮機から酸化剤ガスを含む空気を供給する空気供給通路および、前記燃料電池から排出空気が流れる空気排出通路をそれぞれ設けるとともに、前記空気排出通路に空気の圧力を調整する調圧弁を設け、この調圧弁に前記空気供給通路から前記圧縮空気を供給する調圧弁用空気供給通路を接続して設けたことを特徴とする燃料電池システム。   In a fuel cell system in which fuel gas and oxidant gas are supplied to a fuel cell to generate power, an air supply passage for supplying air containing oxidant gas from a compressor to the fuel cell, and air through which exhaust air flows from the fuel cell Each of the discharge passages is provided, and a pressure regulating valve for adjusting the pressure of air is provided in the air discharge passage, and a pressure regulating valve air supply passage for supplying the compressed air from the air supply passage is connected to the pressure regulating valve. A fuel cell system. 請求項1に記載の燃料電池システムにおいて、前記調圧弁用空気供給通路は、前記空気供給通路と前記調圧弁とを接続して前記燃料電池を空気がバイパスして流れる空気バイパス通路であることを特徴とする燃料電池システム。   2. The fuel cell system according to claim 1, wherein the air supply passage for the pressure regulating valve is an air bypass passage that connects the air supply passage and the pressure regulating valve to allow the air to bypass the fuel cell. A fuel cell system. 請求項1に記載の燃料電池システムにおいて、前記調圧弁用空気供給通路は、前記燃料電池を収容する燃料電池ケース内に連通する換気通路であることを特徴とする燃料電池システム。   2. The fuel cell system according to claim 1, wherein the pressure regulating valve air supply passage is a ventilation passage communicating with a fuel cell case that houses the fuel cell. 3. 請求項1ないし3のいずれか1項に記載の燃料電池システムにおいて、前記調圧弁を、通路壁に対して回転可能な軸部と、この軸部に設けられ前記空気供給通路を開閉する弁体とを有する構成とし、前記調圧弁用空気供給通路を流れる空気を前記軸部の前記通路壁近傍に供給することを特徴とする燃料電池システム。   4. The fuel cell system according to claim 1, wherein the pressure regulating valve includes a shaft portion that is rotatable with respect to a passage wall, and a valve body that is provided on the shaft portion and opens and closes the air supply passage. 5. The fuel cell system is characterized in that the air flowing through the pressure regulating valve air supply passage is supplied to the vicinity of the passage wall of the shaft portion. 請求項4に記載の燃料電池システムにおいて、前記調圧弁用空気供給通路を流れる空気を前記軸部の前記通路壁近傍に供給する空気導入通路を、前記調圧弁のハウジングに設けたことを特徴とする燃料電池システム。   5. The fuel cell system according to claim 4, wherein an air introduction passage for supplying air flowing through the pressure regulating valve air supply passage to the vicinity of the passage wall of the shaft portion is provided in the housing of the pressure regulating valve. Fuel cell system. 請求項5に記載の燃料電池システムにおいて、前記空気導入通路は、前記調圧弁の上流側における前記ハウジングの通路壁に設けた環状の空気供給空間と、この空気供給空間の下流側に位置して前記軸部の前記通路壁近傍に空気を供給するよう流出口が開口する空気流出空間とを備えていることを特徴とする燃料電池システム。   6. The fuel cell system according to claim 5, wherein the air introduction passage is located on the downstream side of the air supply space and an annular air supply space provided in a passage wall of the housing on the upstream side of the pressure regulating valve. A fuel cell system comprising: an air outflow space in which an outflow port opens so as to supply air to the vicinity of the passage wall of the shaft portion. 請求項5に記載の燃料電池システムにおいて、前記空気導入通路は、前記調圧弁の上流側における前記ハウジングの通路壁に設けた環状の空気供給空間と、この空気供給空間の円周方向における一部に、空気供給空間に供給した空気が円周方向に沿って流れるよう流入する流入口と、前記空気供給空間の下流側端部に、前記空気を前記軸部の前記通路壁近傍に供給するよう開口する流出口とをそれぞれ備えていることを特徴とする燃料電池システム。   6. The fuel cell system according to claim 5, wherein the air introduction passage includes an annular air supply space provided in a passage wall of the housing on the upstream side of the pressure regulating valve, and a part of the air supply space in the circumferential direction. In addition, the air is supplied to the vicinity of the passage wall of the shaft portion at the inflow port where the air supplied to the air supply space flows so as to flow in the circumferential direction and the downstream end portion of the air supply space. A fuel cell system comprising an outlet and an outlet. 請求項1ないし7のいずれか1項に記載の燃料電池システムにおいて、前記燃料電池から排出される排出燃料ガスが流れる燃料ガス排出通路を、前記調圧弁の下流の前記空気排出通路に接続し、前記燃料ガス排出通路よりも下流の前記空気排出通路に燃料ガス濃度検出手段を設けるとともに、前記調圧弁用空気供給通路に通路開閉手段を設け、前記燃料ガス濃度検出手段の検出濃度に応じて前記通路開閉手段を開閉制御する制御手段を設けたことを特徴とする燃料電池システム。   The fuel cell system according to any one of claims 1 to 7, wherein a fuel gas discharge passage through which exhaust fuel gas discharged from the fuel cell flows is connected to the air discharge passage downstream of the pressure regulating valve, A fuel gas concentration detection means is provided in the air discharge passage downstream of the fuel gas discharge passage, and a passage opening / closing means is provided in the air supply passage for the pressure regulating valve, and the fuel gas concentration detection means is provided according to the detected concentration of the fuel gas concentration detection means. A fuel cell system comprising control means for controlling opening and closing of the passage opening and closing means.
JP2006066049A 2006-03-10 2006-03-10 Fuel cell system Pending JP2007242530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066049A JP2007242530A (en) 2006-03-10 2006-03-10 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066049A JP2007242530A (en) 2006-03-10 2006-03-10 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2007242530A true JP2007242530A (en) 2007-09-20

Family

ID=38587849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066049A Pending JP2007242530A (en) 2006-03-10 2006-03-10 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2007242530A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317474A (en) * 2006-05-25 2007-12-06 Toyota Motor Corp Fuel cell system
JP2009193713A (en) * 2008-02-12 2009-08-27 Nissan Motor Co Ltd Fuel cell system, and control method of fuel cell system
CN114023995A (en) * 2021-10-28 2022-02-08 三一汽车制造有限公司 Fuel cell system, control method and control device thereof, and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317474A (en) * 2006-05-25 2007-12-06 Toyota Motor Corp Fuel cell system
JP2009193713A (en) * 2008-02-12 2009-08-27 Nissan Motor Co Ltd Fuel cell system, and control method of fuel cell system
CN114023995A (en) * 2021-10-28 2022-02-08 三一汽车制造有限公司 Fuel cell system, control method and control device thereof, and vehicle

Similar Documents

Publication Publication Date Title
US7354673B2 (en) Fuel cell system and method of controlling the same fuel cell system
KR101637727B1 (en) AIR PROCESSING SYSTEM FOR FUEL CELL VEHICLE EQUIPPED INTERGRATED VAlVE
JP2007134154A (en) Fuel cell system
CN103534857A (en) System for adjusting temperature of cooling liquid for fuel cell, and thermostat valve
JP4770268B2 (en) Fuel cell system
JP4953051B2 (en) Fuel cell system
JP2009140902A (en) Cooling-water temperature adjusting device for fuel cell vehicle
JP4894156B2 (en) Fuel cell system
US6777124B2 (en) Back pressure control apparatus for fuel Cell system
JP2006339080A (en) Fuel cell system
JP2007242530A (en) Fuel cell system
WO2012035974A1 (en) Fuel cell system
JP2008123697A (en) Fuel cell system
WO2007122979A1 (en) Fuel cell system and vehicle mounted with fuel cell system
JP2007280676A (en) Fuel cell system
JP2020136237A (en) Fuel cell system and hydrogen circulation pump
JP5205718B2 (en) Fuel cell system
JP4905330B2 (en) ON / OFF VALVE, FUEL CELL SYSTEM, AND METHOD FOR CONTROLLING FUEL CELL SYSTEM
JP2005158282A (en) Fuel cell system
JP2008243764A (en) Fuel cell system
JP2019096576A (en) Fuel cell system
JP2008053081A (en) Pressure control valve
EP3291346B1 (en) Fuel-cell power generation system
JP2011049040A (en) Fuel cell system
JP2007280800A (en) Fuel cell operation system and valve abnormality detecting method in same