JP2007242293A - Insulating strength control structure of switch - Google Patents

Insulating strength control structure of switch Download PDF

Info

Publication number
JP2007242293A
JP2007242293A JP2006059892A JP2006059892A JP2007242293A JP 2007242293 A JP2007242293 A JP 2007242293A JP 2006059892 A JP2006059892 A JP 2006059892A JP 2006059892 A JP2006059892 A JP 2006059892A JP 2007242293 A JP2007242293 A JP 2007242293A
Authority
JP
Japan
Prior art keywords
electrode
insulating
insulating case
switch
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006059892A
Other languages
Japanese (ja)
Other versions
JP4778812B2 (en
Inventor
Ryuichi Takahashi
隆一 高橋
Hisaharu Kato
久晴 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kouatsu Electric Co
Original Assignee
Nippon Kouatsu Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kouatsu Electric Co filed Critical Nippon Kouatsu Electric Co
Priority to JP2006059892A priority Critical patent/JP4778812B2/en
Publication of JP2007242293A publication Critical patent/JP2007242293A/en
Application granted granted Critical
Publication of JP4778812B2 publication Critical patent/JP4778812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating strength control structure wherein insulation between main circuits of different phases is coordinated, in a switch equipped with a stationary electrode and a movable electrode housed in an insulating case for every one phase. <P>SOLUTION: Intermediate electrodes 7 are horizontally fixed to the electrodes respectively by screws 8 on the upper side of the projecting wall 3b of the outer surface of an insulating case 3 so that their tip parts 7a face the outside. Discharge gaps are formed between the tip parts of the respective electrodes, the tip part of the screw 8 protrudes to the inside of the insulating case 3, and a discharge gap G2 is formed between the tip part and the head part of a stationary spring 10 in an arc distinguishing chamber 9. Thereby, insulating strength can be controlled so as to satisfy the following; insulating strength between the main circuit and the ground is less than insulating strength between main circuits of different phases, which is less than insulating strength between main circuits. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高圧配電線路などの電路を開閉するために使用される開閉器に用いられ、開閉部内部における絶縁強度を制御する方法である。更に詳しくは、1相毎に可動電極や固定電極が絶縁ケースに収納されている開閉器において、異相主回路間における絶縁強度を制御するための構成に関するものである。 The present invention is a method for controlling the insulation strength inside an opening / closing part used in a switch used for opening / closing an electric circuit such as a high-voltage distribution line. More specifically, the present invention relates to a configuration for controlling the insulation strength between different-phase main circuits in a switch in which a movable electrode and a fixed electrode are housed in an insulating case for each phase.

高圧配電線路には、配電線路の電路を開閉するために固定電極、および可動電極の開閉部と消弧室を本体ケース内部に収納しているケース入り開閉器が設置されており、上記開閉器には、例えば、遮断器や開閉器の負荷開閉時発生する断路器サージ、開閉サージ、雷による雷サージ等で発生する過電圧において適切な裕度を保つためにも、絶縁強度に格差を設け地絡優先とすることが従来の知見であることから、絶縁強度は次のように規定されている。主回路と対地間<異相主回路間<同相主回路間の順に絶縁強度を上げる必要がある(上記のように適切な裕度を勘案して絶縁強度を選定することを絶縁協調と言う)。 The high-voltage distribution line is provided with a fixed electrode for opening and closing the distribution line, and a cased switch that houses the opening and closing part of the movable electrode and the arc extinguishing chamber inside the main body case. For example, in order to maintain an appropriate margin for overvoltage generated by disconnector surges, switching surges, lightning surges caused by lightning, etc. that occur when a circuit breaker or switch is opened and closed, there is a difference in insulation strength. Since it is a conventional knowledge to make the connection priority, the insulation strength is defined as follows. It is necessary to increase the insulation strength in the order between the main circuit and ground <between different phase main circuit <in-phase main circuit (selecting the insulation strength in consideration of an appropriate margin as described above is called insulation coordination).

例えば、特許文献1記載の発明においては、開閉器ケース内に3相充電部を一括で収納した開閉器において、負荷側充電部導体に先端部が隣り合う負荷側充電部導電体に向かう電極を設けた構成がある。
特許第3013770号公報
For example, in the invention described in Patent Document 1, in a switch in which a three-phase charging unit is collectively stored in a switch case, an electrode directed to a load side charging unit conductor whose tip is adjacent to the load side charging unit conductor is provided. There is a configuration provided.
Japanese Patent No. 3013770

しかしながら、特許文献1記載の発明においては、3相充電部を一括して収納する場合においては有効であるが、1相毎充電部を仕切られた絶縁壁を有する場合においては前記電極が有効に働かず、異相主回路間における絶縁強度を制御することが困難であった。 However, in the invention described in Patent Document 1, it is effective in the case where the three-phase charging unit is stored in a lump, but the electrode is effective in the case where the charging unit is divided for each phase. It did not work and it was difficult to control the insulation strength between the different phase main circuits.

そのため、上記のような1相毎電極が絶縁ケースに収納された開閉器においても、異相主回路間の絶縁強度を制御することが課題となった。 Therefore, even in a switch in which the electrodes for each phase as described above are housed in an insulating case, it has been a problem to control the insulation strength between the different-phase main circuits.

本発明においては上記のように、相間に絶縁板が用いられ而も両側電源に対応可能とするために、上記の課題を解決するために請求項1記載の発明においては、本体ケース2内部に絶縁材料からなる絶縁ケース3を3相並列に備え、内部に固定電極5と、前記固定電極5に投入開放するための可動電極6とを備えた開閉器1において、中央に配置された前記絶縁ケース3の前記固定電極5が配置された外側側面には、円弧形状の先端部7aが隣り合う絶縁ケース3に向かうように配置された導電性の金属材料からなる電極7と、さらに、左右両側に配置された前記絶縁ケース3の前記固定電極5が配置された外側側面には同様に前記電極7とを設け、それぞれの前記絶縁ケース3に設けられた前記電極7と同ケース7の前記固定電極5とで放電ギャップG2を形成し、而も中央の絶縁ケース3に設けられた電極7とその左右両側の絶縁ケース3に設けられた電極7の先端部7aとが対向し放電ギャップG1を形成することを特徴とする開閉器の絶縁強度制御構造であり、請求項2記載の発明においては、本体ケース2内部に絶縁材料からなる絶縁ケース3を3相並列に備え、内部に固定電極5と、前記固定電極5に投入開放するための可動電極6とを備えた開閉器1において、上記中央に配置された前記絶縁ケース3に収納された前記可動電極6には、前記可動電極6の最大開放時において、前記絶縁ケースの上端近傍に位置し、而も両側に突出した電極22と、さらに、前記左右両側に配置された絶縁ケース3内の可動電極6には、前記電極22の先端に対して放電ギャップG3を形成するために配置された導電性の金属材料からなる電極20とを設けたことを特徴とする開閉器の絶縁強度制御構造であり、請求項3記載の発明においては、請求項1並びに請求項2からなる開閉器の絶縁強度制御構造である。 In the present invention, as described above, an insulating plate is used between the phases, so that both sides of the power supply can be handled. In the switch 1 having an insulating case 3 made of an insulating material in parallel in three phases, and having a fixed electrode 5 inside and a movable electrode 6 for opening and closing the fixed electrode 5, the insulation disposed at the center. On the outer side surface of the case 3 where the fixed electrode 5 is disposed, the electrode 7 made of a conductive metal material is disposed so that the arc-shaped tip portion 7a faces the adjacent insulating case 3, and both left and right sides Similarly, the electrode 7 is provided on the outer side surface of the insulating case 3 arranged on the outer side where the fixed electrode 5 is arranged, and the electrode 7 provided on the insulating case 3 and the fixing of the case 7 are provided. Release with electrode 5 A gap G2 is formed, and the electrode 7 provided in the central insulating case 3 and the tip portions 7a of the electrodes 7 provided in the insulating cases 3 on the left and right sides thereof face each other to form a discharge gap G1. In the invention according to claim 2, the main body case 2 is provided with an insulating case 3 made of an insulating material in parallel in three phases, and the fixed electrode 5 and the fixed electrode In the switch 1 provided with the movable electrode 6 for opening and closing to 5, the movable electrode 6 accommodated in the insulating case 3 disposed in the center has a maximum opening when the movable electrode 6 is opened. An electrode 22 located in the vicinity of the upper end of the insulating case and projecting on both sides, and a movable electrode 6 in the insulating case 3 disposed on both the left and right sides, have a discharge gap with respect to the tip of the electrode 22. G3 An insulating strength control structure for a switch, characterized in that it is provided with an electrode 20 made of a conductive metal material arranged to form the switch. 2 is an insulating strength control structure of a switch composed of 2;

上記の発明により、1相毎に電極が絶縁ケースに収納された開閉器においても、異相主回路間の絶縁強度が制御できるようになったために、開閉器内部における絶縁協調が取れるようになった。 According to the above invention, even in a switch in which an electrode is housed in an insulating case for each phase, the insulation strength between different-phase main circuits can be controlled, so that insulation coordination inside the switch can be achieved. .

請求項1記載の発明においては、電源線路が固定電極に接続されている状態での開放状態や閉路状態では、高圧配電線路内に開閉サージや雷サージによる過電圧が侵入した場合でも被害を最小限度に留めることができ、さらに開閉器の内部短絡事故が発生した場合でも開閉器の損傷を小さく抑えることができる。 In the first aspect of the invention, in an open state or a closed circuit state in which the power line is connected to the fixed electrode, even if an overvoltage due to an open / close surge or a lightning surge enters the high-voltage distribution line, the damage is minimized. Further, even when an internal short circuit accident of the switch occurs, damage to the switch can be suppressed to a small level.

また、請求項2記載の発明においては、電源線路が可動電極に接続されている状態での開放状態では、上記同様に高圧配電線路内に開閉サージや雷サージによる過電圧の侵入した場合でも、被害を最小限度に留めることができる。 Further, in the invention according to claim 2, in the open state in a state where the power line is connected to the movable electrode, even if an overvoltage due to an open / close surge or a lightning surge enters the high-voltage distribution line as described above, the damage is caused. Can be kept to a minimum.

さらに、請求項3記載の発明においては、電源線路が固定電極や可動電極のどちらにでも接続された場合での開放状態及び閉路状態であっても絶縁協調が取れる構成となっている。そのため、電柱上への開閉器の取付においては特に電源側や負荷側を意識せず取付けることができるために開閉器の柱上への取付作業が向上され、さらに開閉器の主回路開放状態においても過電圧に対して保護ができる。 Furthermore, in the invention according to claim 3, the insulation coordination can be achieved even in the open state and the closed state when the power line is connected to either the fixed electrode or the movable electrode. For this reason, when installing a switch on a utility pole, it can be installed without being aware of the power supply side or load side, so the installation work on the switch pole is improved. Can protect against overvoltage.

発明を実施するための最良の形態を図に基づいて説明する。
図1乃至図4は、本発明の実施例を示す。
The best mode for carrying out the invention will be described with reference to the drawings.
1 to 4 show an embodiment of the present invention.

図1に示すように開閉器1は、上面が開口し有底の金属材料からなる、例えばステンレス板や鋼板からなる本体ケース2を有し、該本体ケース2内部には1相毎に分割された絶縁性を有する樹脂材料、例えばエポキシ樹脂や不飽和ポリエステェルからなる絶縁ケース3が3相設けられ、それらは台板4にネジにて固定されている。 As shown in FIG. 1, the switch 1 has a main body case 2 made of a metal material with an open top and made of a bottom, for example, a stainless steel plate or a steel plate. The main body case 2 is divided into phases. Insulating case 3 made of an insulating resin material such as an epoxy resin or unsaturated polyester is provided in three phases, and these are fixed to base plate 4 with screws.

絶縁ケース3は上部が開口した略長方形の箱形状にて形成されており、絶縁ケース3の内部には固定電極5、可動電極6が対向して設けられている。
また、絶縁ケース3の固定電極5、可動電極6が設けられている両側壁部には表裏を貫通する貫通穴3aが設けられ、貫通穴3aと同心円状で二重に形成された突出壁3bを有している。
The insulating case 3 is formed in a substantially rectangular box shape with an open top, and a fixed electrode 5 and a movable electrode 6 are provided inside the insulating case 3 so as to face each other.
Further, through walls 3a penetrating the front and back are provided on both side walls where the fixed electrode 5 and the movable electrode 6 of the insulating case 3 are provided, and projecting walls 3b that are concentric with the through hole 3a and formed double. have.

また、図3に示すように固定電極5が設けられている側の絶縁ケース3外面で上記突出壁3bの上側には中間電極7が次のように設けられている。なお、中間電極7は金属材料の例えば銅やステンレス等からなる略長方形の板形状のもので、一方の先端部7aが略円弧状に形成されており、絶縁ケース3に取付けるための長穴3bを備えている。 Further, as shown in FIG. 3, an intermediate electrode 7 is provided as follows on the outer surface of the insulating case 3 on the side where the fixed electrode 5 is provided and above the protruding wall 3b. The intermediate electrode 7 has a substantially rectangular plate shape made of a metal material such as copper or stainless steel, and one end portion 7 a is formed in a substantially arc shape, and an elongated hole 3 b for mounting on the insulating case 3. It has.

中央に配置された絶縁ケース3で固定電極5が配置されている側の側面外側には、前記中間電極7の先端部7aが外側(両側に配置された絶縁ケース3側)に向くように水平に配置され、それらは絶縁ケース3に対してねじ8にて固定されている。また、両側に配置された絶縁ケース3で同様に固定電極5が配置されている側の側面外側には、前記中間電極7の先端部7aに向かい合うように所定間隔を置いて絶縁ケース3にねじ8固定されている(それぞれの中間電極7の先端7aにより、放電ギャップG1が形成されている)。なお、上記説明の所定間隔については異相主回路間の絶縁強度が適切になるように調整し、その調整が行なえるように前記中間電極7には取付用の穴は長穴7bで構成されている(図4参照願います)。 On the outer side of the side where the fixed electrode 5 is disposed in the insulating case 3 disposed in the center, the tip 7a of the intermediate electrode 7 is horizontal so as to face the outside (the side of the insulating case 3 disposed on both sides). They are fixed to the insulating case 3 with screws 8. Further, the insulating case 3 arranged on both sides is similarly screwed to the insulating case 3 at a predetermined interval so as to face the front end portion 7a of the intermediate electrode 7 on the outer side surface on the side where the fixed electrode 5 is arranged. 8 (the discharge gap G1 is formed by the tip 7a of each intermediate electrode 7). Note that the predetermined interval in the above description is adjusted so that the insulation strength between the different phase main circuits is appropriate, and the mounting hole is formed in the intermediate electrode 7 by a long hole 7b so that the adjustment can be performed. (Refer to Fig. 4).

また、図1や図2に示すように上記3相の絶縁ケース3に取付けられた中間電極7のねじ8固定位置は、上記ねじ8の先端部が前記絶縁ケース3側面より内側へ突出し、而もその先端部が後述する消弧室9の固定ねじ10の頭部に対して遮蔽するものがない空間を保つように取り付けられている(上記ねじ8と上記固定ねじ10との間にて放電ギャップG2が形成されている)。 Further, as shown in FIGS. 1 and 2, the screw 8 fixing position of the intermediate electrode 7 attached to the three-phase insulating case 3 is such that the tip of the screw 8 protrudes inward from the side surface of the insulating case 3, and Is attached so that there is no space to shield the head of the fixing screw 10 of the arc extinguishing chamber 9 described later (discharging between the screw 8 and the fixing screw 10). A gap G2 is formed).

なお、本実施例の説明においては中央に配置された上記中間電極7は2部材で独立して構成されているが、この形態に限定されるものではなく、例えば2つの中間電極7を接合させた1部材の構成であってもかまわない。その場合、中間電極7間の距離の所定距離の調整は、左右に設けられた中間電極7を移動させることで可能となる。 In the description of the present embodiment, the intermediate electrode 7 disposed in the center is configured by two members independently. However, the present invention is not limited to this form. For example, two intermediate electrodes 7 are joined. It may be a single member configuration. In this case, the predetermined distance between the intermediate electrodes 7 can be adjusted by moving the intermediate electrodes 7 provided on the left and right.

次に、前記絶縁ケース3に設けられた貫通穴3aには、金属性の導電材料からなる接続導電体11が挿通して絶縁ケース3に対して図示しないねじ固定又は圧入等の方法により固定されており、それらは後述する固定電極5や可動電極6と電気的に接続されている。また、絶縁ケース3より外側へ突出した接続部11aには後述するブッシング12の接続部12aが取付けられる。 Next, the connecting conductor 11 made of a metallic conductive material is inserted into the through hole 3a provided in the insulating case 3 and fixed to the insulating case 3 by a screw fixing or press fitting method (not shown). They are electrically connected to a fixed electrode 5 and a movable electrode 6 described later. Further, a connecting portion 12a of a bushing 12, which will be described later, is attached to the connecting portion 11a protruding outward from the insulating case 3.

固定電極5は前記接続導電体11と固定接触子13で構成されており、導電性の金属材料からなる板状の固定接触子13は、前記接続導電体11に設けられた平行な2つの平面と平行となるように2箇所のピン14にて回転しないように支持されている。 The fixed electrode 5 includes the connection conductor 11 and the fixed contact 13, and the plate-shaped fixed contact 13 made of a conductive metal material has two parallel planes provided on the connection conductor 11. Are supported by two pins 14 so as not to rotate.

さらに、固定電極5には、主回路の開放時に発生するアークを消弧するために、アーク熱により熱分解した際に消弧性ガスを発生するユリア樹脂やポリアセタール樹脂材料からなる消弧室9が固定接触子13を覆うように設けられている。また、前記消弧室9外面には、固定接触子13近傍に消弧性能を上げるための図示しない鉄材が設けられている。 Further, in order to extinguish the arc generated when the main circuit is opened, the fixed electrode 5 has an arc extinguishing chamber 9 made of urea resin or polyacetal resin material that generates arc extinguishing gas when thermally decomposed by arc heat. Is provided so as to cover the stationary contact 13. Further, on the outer surface of the arc extinguishing chamber 9, an iron material (not shown) for improving the arc extinguishing performance is provided in the vicinity of the fixed contact 13.

また、消弧室9は、接続導電体11と電気的に接続された断面形状が略コの字からなる導電性の金属材料からなる取付部材15にねじ固定されている。一方、前記取付部材15は絶縁ケース3に対して回転しないように図示しないねじにてねじ固定されている。
上記取付構造により、消弧室9を固定するための前記固定ねじ10と前記固定接触子13や接続導電体11は同電位となっている。
Further, the arc extinguishing chamber 9 is screwed to a mounting member 15 made of a conductive metal material having a substantially U-shaped cross section electrically connected to the connection conductor 11. On the other hand, the mounting member 15 is fixed with screws (not shown) so as not to rotate with respect to the insulating case 3.
With the mounting structure, the fixing screw 10 for fixing the arc extinguishing chamber 9, the fixed contact 13 and the connecting conductor 11 have the same potential.

可動電極6は前記接続導電体11と可動接触子16にて構成され、前記可動接触子16は湾曲する逆V字形状に形成され、さらに別の板状部材17で股状に形成され平行に配設されており、前記可動接触子16と板状部材17により接続導電体11設けられた平行な2つの平面を狭持し、而も接続導電体11に貫通されたピン18に対して回転可能に支持されている。
なお、図2に示すように前記可動接触子16の回転支点部にある前記ピン18と同軸上には、コイルバネ19が圧縮状態で配設されており、この付勢力により所定の圧力により前記接続導電体11を狭持している。
The movable electrode 6 is composed of the connection conductor 11 and the movable contact 16, and the movable contact 16 is formed in an inverted V-shape that is curved, and is further formed in a crotch shape in parallel with another plate-like member 17. The movable contact 16 and the plate-like member 17 hold the two parallel planes provided with the connection conductor 11 and rotate with respect to the pin 18 penetrating the connection conductor 11. Supported as possible.
As shown in FIG. 2, a coil spring 19 is arranged in a compressed state coaxially with the pin 18 at the rotation fulcrum of the movable contact 16, and the connection is made by a predetermined pressure by this biasing force. The conductor 11 is held.

また、可動接触子16と板状部材17の接合部は、金属材料の例えばステンレスからなる、ボルト20、ねじ22やナット21にて以下のように固定されている。中央に配置された絶縁ケース3内部の可動接触子16には、両側に所定量の長さが突出するねじ22を前記接合に構成された図示しない取付穴に対して貫通させ、その後両側より2枚の板状部材16、17を狭持するようにナット21で締め付けることでねじ固定させる。この構造により、可動接触子16及び接続導電体11と前記ねじ22は同電位となっている。 The joint between the movable contact 16 and the plate-like member 17 is fixed as follows with a bolt 20, a screw 22 and a nut 21 made of a metal material such as stainless steel. In the movable contact 16 inside the insulating case 3 disposed in the center, a screw 22 protruding a predetermined amount on both sides is passed through a mounting hole (not shown) formed in the joint, and then 2 from both sides. The plate-like members 16 and 17 are tightened with nuts 21 so as to sandwich the plate-like members 16 and 17 and fixed with screws. With this structure, the movable contact 16 and the connecting conductor 11 and the screw 22 are at the same potential.

さらに、両側に位置するそれぞれの可動接触子16の接合部16aには、導電性の金属材料の例えばステンレス材量で頭部とねじ部が一体となったボルト20のねじ部を図示しない取付穴に対して貫通させ、前記ボルト20の頭部とは反対側より可動接触子16と板状部材17を挟持するためナット21を締め付けねじ固定させる。なお、前記3相の可動接触子16に設けられたボルト20やねじ22の先端部は、それぞれ所定間隔を置いて向かい合うように構成されており、しかも可動電接触子16の最大開放位置において、前記ボルト20やねじ22の先端部は絶縁ケース3の上端面近傍となるように配置されている(それぞれボルト20とのねじ22の先端間にて放電ギャップG3を形成)。 Further, in the joint portions 16a of the movable contacts 16 located on both sides, a screw portion of a bolt 20 in which a head portion and a screw portion are integrated with a conductive metal material, for example, a stainless steel material, is not shown. In order to sandwich the movable contact 16 and the plate-like member 17 from the side opposite to the head of the bolt 20, the nut 21 is tightened and screwed. The tip portions of the bolts 20 and screws 22 provided on the three-phase movable contact 16 are configured to face each other at a predetermined interval, and at the maximum open position of the movable electric contact 16, The front ends of the bolts 20 and the screws 22 are arranged in the vicinity of the upper end surface of the insulating case 3 (a discharge gap G3 is formed between the front ends of the screws 22 and the bolts 20).

なお、上記所定間隔とは、前記可動接触子16が固定接触子13に対して最大開放位置にある時にでも、異相間の絶縁強度が適切な値となるように設定されている。 The predetermined interval is set so that the insulation strength between different phases becomes an appropriate value even when the movable contact 16 is at the maximum open position with respect to the fixed contact 13.

図1に示すようにブッシング12は本体ケース1の両側面から貫装取付されており、絶縁性の樹脂材料、例えばエポキシ樹脂や磁器からなるブッシング12の中央部に、導電性を備えた導電体12aが一体で形成されている。
また、ブッシング12の中央部に設けられた前記導電体12aの先端部には、導電材からなる例えば銅材の中空のパイプ形状の接続部12bを圧入している。
As shown in FIG. 1, the bushing 12 is attached through both sides of the body case 1, and a conductive material is provided at the center of the bushing 12 made of an insulating resin material such as epoxy resin or porcelain. 12a is integrally formed.
Further, a hollow pipe-shaped connecting portion 12b made of, for example, a copper material made of a conductive material is press-fitted into the distal end portion of the conductor 12a provided in the central portion of the bushing 12.

上記構成のブッシング14を本体ケース1に周知の方法で貫装取付することで、ブッシング14の接続部12bは接続導電体11の接続部11aに圧入勘合されブッシング14の接続導電体11は可動電極5や固定電極6と電気的に接続される。なお、本体ケース1に接続されたブッシング12の円筒部12cは、絶縁ケース3に設けられた突起部3bの間に挿入されることで絶縁空間を形成している。 By connecting the bushing 14 having the above structure to the main body case 1 by a known method, the connecting portion 12b of the bushing 14 is press-fitted into the connecting portion 11a of the connecting conductor 11, and the connecting conductor 11 of the bushing 14 is the movable electrode. 5 and fixed electrode 6 are electrically connected. The cylindrical portion 12 c of the bushing 12 connected to the main body case 1 is inserted between the protruding portions 3 b provided on the insulating case 3 to form an insulating space.

この絶縁空間により、充電部(導電体12aや接続導電体11)から本体ケース1へと至る空間絶縁距離を伸ばすことが出来る。つまり、充電部から突出壁3b(内側)と円筒部12c間の空間を通り、次に円筒部12cと突出壁3b(外側)の間の空間を経て本体ケース1へと至り絶縁距離が長くなることで絶縁性能が向上する。 With this insulating space, the space insulating distance from the charging part (conductor 12a or connecting conductor 11) to main body case 1 can be extended. That is, the charging distance passes through the space between the protruding wall 3b (inner side) and the cylindrical part 12c, and then passes through the space between the cylindrical part 12c and the protruding wall 3b (outer side) to reach the main body case 1 to increase the insulation distance. This improves the insulation performance.

次に、図1及び図2を参照し上記構成において異相主回路間において絶縁破壊される動作について説明する。開閉器1の投入状態において、電源線路に過電圧が印加された場合は以下の通りである。絶縁強度は主回路と大地間が一番弱く設定されているため、始めに主回路と大地間で絶縁破壊が生じ、その後異相主回路間で絶縁破壊が生じる。なお、ここでは主回路と大地間における絶縁破壊の動作説明に関しては省略する。 Next, with reference to FIGS. 1 and 2, the operation of dielectric breakdown between the different phase main circuits in the above configuration will be described. When an overvoltage is applied to the power line in the state where the switch 1 is turned on, the operation is as follows. Since the insulation strength is set to be the weakest between the main circuit and the ground, first, a breakdown occurs between the main circuit and the ground, and then a breakdown occurs between the different-phase main circuits. Here, the description of the operation of dielectric breakdown between the main circuit and the ground is omitted.

異相主回路間での絶縁破壊は、過電圧により固定電極接触子13や接続導電体11が昇圧することで、3相それぞれの固定電極5に取付けられた消弧室9を固定するための固定ねじ10が昇圧し、中間電極7を固定しているねじ8の先端部の間で絶縁破壊する(放電ギャップG2より放電する)。それにより中間電極7が昇圧した後、それぞれの中間電極7の間で絶縁破壊が発生し(放電ギャップG1より放電する)、異相主回路間の絶縁破壊が生じる。このとき、可動接触子16に設けられた電極も同様に昇圧はするものの、絶縁ケース3内部に収納された状態であるために絶縁強度は異相主回路間より強く構成されているため、可動接触子16間では絶縁破壊は発生しない。 The dielectric breakdown between the different-phase main circuits is caused by the fixed screw for fixing the arc extinguishing chamber 9 attached to the fixed electrode 5 of each of the three phases by increasing the pressure of the fixed electrode contactor 13 and the connecting conductor 11 due to overvoltage. 10 is boosted, and dielectric breakdown occurs between the tip portions of the screws 8 fixing the intermediate electrode 7 (discharge occurs from the discharge gap G2). As a result, after the intermediate electrode 7 is boosted, dielectric breakdown occurs between the intermediate electrodes 7 (discharge occurs from the discharge gap G1), and dielectric breakdown occurs between the different-phase main circuits. At this time, although the voltage provided to the movable contact 16 is also boosted in the same manner, the insulation strength is higher than that between the different-phase main circuits because it is housed in the insulating case 3, so that the movable contact Insulation breakdown does not occur between the sub-elements 16.

また、開閉器1の開放状態においては、次の通りである。電源線路が固定電極部5側に接続されている場合には上記投入状態と同様の現象のため省略する。
電源線路が可動電極6部側に接続されている場合に電源線路に過電圧が印加されるとそれぞれの可動接触子16や接続導電体11が昇圧し、始めに主回路と大地間での絶縁破壊が発生し、次に異相主回路間での絶縁破壊が生じる。異相主回路間では、過電圧により可動接触子16が昇圧し、同時に可動接触子16に設けられたボルト20やねじ22も昇圧する。
お互いの昇圧したボルト20やねじ22の先端部が向き合っているため、その間で絶縁破壊が発生する。
Moreover, in the open state of the switch 1, it is as follows. When the power supply line is connected to the fixed electrode portion 5 side, it is omitted because it is the same phenomenon as in the above-described input state.
When an overvoltage is applied to the power supply line when the power supply line is connected to the movable electrode 6 side, the respective movable contact 16 and connection conductor 11 are boosted, and first, the insulation breakdown between the main circuit and the ground Next, dielectric breakdown occurs between the different-phase main circuits. Between the different phase main circuits, the movable contact 16 is boosted by an overvoltage, and at the same time, the bolt 20 and the screw 22 provided on the movable contact 16 are also boosted.
Since the tips of the bolts 20 and the screws 22 that are boosted with each other face each other, dielectric breakdown occurs between them.

上記のように本発明の構成によれば、開閉器1の開放状態や投入状態に関わらず、絶縁強度を大地間<異相主回路間<主回路間と制御できるものである。
As described above, according to the configuration of the present invention, the insulation strength can be controlled such that the ground strength <between different phase main circuits <between main circuits regardless of whether the switch 1 is opened or closed.

本発明の実施例である開閉器の正面側からの断面図Sectional drawing from the front side of the switch which is an Example of this invention 図1における3相の絶縁ケースを表した平面図Plan view showing the three-phase insulation case in FIG. 図2における固定電極側からの側面図Side view from fixed electrode side in FIG. 中間電極の正面図Front view of intermediate electrode

符号の説明Explanation of symbols

1 開閉器
2 本体ケース
3 絶縁ケース
5 固定電極
6 可動電極
7 中間電極
8 ねじ(中間電極用)
9 消弧室
10 固定ねじ(消弧室固定用)
15 取付金具
20 ボルト
22 ねじ
G1 放電ギャップ(中間電極間)
G2 放電ギャップ(中間電極と固定電極間)
G3 放電ギャップ(開放時における可動電極間)
DESCRIPTION OF SYMBOLS 1 Switch 2 Main body case 3 Insulation case 5 Fixed electrode 6 Movable electrode 7 Intermediate electrode 8 Screw (for intermediate electrode)
9 Arc extinguishing chamber 10 Fixing screw (for arc extinguishing chamber fixing)
15 Mounting bracket 20 Bolt 22 Screw G1 Discharge gap (between intermediate electrodes)
G2 Discharge gap (between intermediate electrode and fixed electrode)
G3 Discharge gap (between movable electrodes when opened)

Claims (3)

本体ケース2内部に絶縁材料からなる絶縁ケース3を3相並列に備え、内部に固定電極5と、前記固定電極5に投入開放するための可動電極6とを備えた開閉器1において、
中央に配置された前記絶縁ケース3の前記固定電極5が配置された外側側面には、円弧形状の先端部7aが隣り合う絶縁ケース3に向かうように配置された導電性の金属材料からなる電極7と、
さらに、左右両側に配置された前記絶縁ケース3の前記固定電極5が配置された外側側面には同様に前記電極7とを設け、それぞれの前記絶縁ケース3に設けられた前記電極7と同ケース7の前記固定電極5とで放電ギャップG2を形成し、
而も中央の絶縁ケース3に設けられた電極7とその左右両側の絶縁ケース3に設けられた電極7の先端部7aとが対向し放電ギャップG1を形成することを特徴とする開閉器の絶縁強度制御構造。
In the switch 1 provided with an insulating case 3 made of an insulating material in the body case 2 in three phases in parallel, and provided with a fixed electrode 5 and a movable electrode 6 for opening and closing to the fixed electrode 5,
On the outer side surface of the insulating case 3 arranged in the center on which the fixed electrode 5 is arranged, an electrode made of a conductive metal material is arranged so that the arc-shaped tip 7a faces the adjacent insulating case 3 7 and
Further, the electrode 7 is similarly provided on the outer side surface of the insulating case 3 disposed on the left and right sides where the fixed electrode 5 is disposed, and the same case as the electrode 7 provided on each of the insulating cases 3 is provided. 7 to form a discharge gap G2.
Insulation of a switch characterized in that the electrode 7 provided in the central insulating case 3 and the tip portions 7a of the electrodes 7 provided on the left and right insulating cases 3 face each other to form a discharge gap G1. Strength control structure.
本体ケース2内部に絶縁材料からなる絶縁ケース3を3相並列に備え、内部に固定電極5と、前記固定電極5に投入開放するための可動電極6とを備えた開閉器1において、
上記中央に配置された前記絶縁ケース3に収納された前記可動電極6には、前記可動電極6の最大開放時において、前記絶縁ケースの上端近傍に位置し、而も両側に突出した電極22と、
さらに、前記左右両側に配置された絶縁ケース3内の可動電極6には、前記電極22の先端に対して放電ギャップG3を形成するために配置された導電性の金属材料からなる電極20とを設けたことを特徴とする開閉器の絶縁強度制御構造。
In the switch 1 provided with an insulating case 3 made of an insulating material in the body case 2 in three phases in parallel, and provided with a fixed electrode 5 and a movable electrode 6 for opening and closing to the fixed electrode 5,
The movable electrode 6 accommodated in the insulating case 3 disposed in the center includes an electrode 22 located near the upper end of the insulating case when the movable electrode 6 is fully opened, ,
Furthermore, the movable electrode 6 in the insulating case 3 arranged on both the left and right sides is provided with an electrode 20 made of a conductive metal material arranged to form a discharge gap G3 with respect to the tip of the electrode 22. Insulation strength control structure of a switch characterized by being provided.
請求項1並びに請求項2からなる開閉器の絶縁強度制御構造。
An insulating strength control structure for a switch comprising the switch according to claim 1 and claim 2.
JP2006059892A 2006-03-06 2006-03-06 Insulation strength control structure of switch Active JP4778812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006059892A JP4778812B2 (en) 2006-03-06 2006-03-06 Insulation strength control structure of switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059892A JP4778812B2 (en) 2006-03-06 2006-03-06 Insulation strength control structure of switch

Publications (2)

Publication Number Publication Date
JP2007242293A true JP2007242293A (en) 2007-09-20
JP4778812B2 JP4778812B2 (en) 2011-09-21

Family

ID=38587631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059892A Active JP4778812B2 (en) 2006-03-06 2006-03-06 Insulation strength control structure of switch

Country Status (1)

Country Link
JP (1) JP4778812B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129869A (en) * 1977-04-19 1978-11-13 Tokyo Electric Power Co Switch with arrester
JPS5823132A (en) * 1981-08-05 1983-02-10 株式会社東芝 Method of self-holding relay
JPH09147692A (en) * 1995-11-27 1997-06-06 Togami Electric Mfg Co Ltd Method for controlling arc generating part inside a switch, and the switch
JP2002352675A (en) * 2001-05-23 2002-12-06 Energy Support Corp Switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129869A (en) * 1977-04-19 1978-11-13 Tokyo Electric Power Co Switch with arrester
JPS5823132A (en) * 1981-08-05 1983-02-10 株式会社東芝 Method of self-holding relay
JPH09147692A (en) * 1995-11-27 1997-06-06 Togami Electric Mfg Co Ltd Method for controlling arc generating part inside a switch, and the switch
JP2002352675A (en) * 2001-05-23 2002-12-06 Energy Support Corp Switch

Also Published As

Publication number Publication date
JP4778812B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
CN101436474B (en) Electrical switching apparatus, and arc hood assembly and chimney therefor
US11521817B2 (en) Switching device and method for operating a switching device
CA2725925C (en) Method and apparatus to move an arcing fault to a different location in an electrical enclosure
KR20100040819A (en) An arc remover with a current sensor and a hybrid switch with a current sensor
CN105280449B (en) Breaker
KR20100044760A (en) An improved method of removing arc, an arc remover, and an hybrid switch
KR20140036111A (en) Arc extinguishing mechanism of direct current switch and direct current switch and direct current circuit breaker having arc extinguishing mechanism
KR101797021B1 (en) Supporting Structure of Closing Resistor of Gas Insulated Switchgear
JP2012138173A (en) Circuit breaker
KR100474173B1 (en) Insulated Switchgear
CN114551131A (en) Direct current arc extinguishing device and motor type direct current switch equipment
JP2009158319A (en) Arc-extinguishing device of circuit breaker
JP4778812B2 (en) Insulation strength control structure of switch
US7863537B2 (en) Gassing insulator assembly, and conductor assembly and electrical switching apparatus employing the same
US9799471B2 (en) Multipolar power contactor
JP2023028398A (en) gas insulated switchgear
KR20000015895U (en) device for interception arc in the fixing terminal &amp;mobility terminal of magnetic contactor
JP3374723B2 (en) Vacuum switchgear
JP2009026627A (en) Switch device
JP4696665B2 (en) Earth leakage breaker
WO2014005713A1 (en) Pushrod assembly for a medium voltage vacuum circuit breaker
KR20130001367U (en) Terminal mechanism for molded case circuit breaker
KR102281673B1 (en) Disconnecting switch and earthing switch for gas insulated switchgear
KR20170102085A (en) Case for vacuum circuit breaker
US20230145656A1 (en) Low voltage switch pole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

R150 Certificate of patent or registration of utility model

Ref document number: 4778812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250