JP2007242099A - Magnetic recording medium for perpendicular magnetic recording - Google Patents

Magnetic recording medium for perpendicular magnetic recording Download PDF

Info

Publication number
JP2007242099A
JP2007242099A JP2006060447A JP2006060447A JP2007242099A JP 2007242099 A JP2007242099 A JP 2007242099A JP 2006060447 A JP2006060447 A JP 2006060447A JP 2006060447 A JP2006060447 A JP 2006060447A JP 2007242099 A JP2007242099 A JP 2007242099A
Authority
JP
Japan
Prior art keywords
magnetic recording
magnetic
layer
magnetization
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006060447A
Other languages
Japanese (ja)
Inventor
Koji Matsumoto
幸治 松本
Shingo Hamaguchi
慎吾 濱口
Takuya Kamimura
拓也 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006060447A priority Critical patent/JP2007242099A/en
Publication of JP2007242099A publication Critical patent/JP2007242099A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium for perpendicular magnetic recording capable of effectively suppressing a WATER (Wide Area Track ERasure) phenomenon by providing desired coercive force. <P>SOLUTION: In the magnetic recording medium A for perpendicular magnetic recording provided with a plurality of soft magnetic films 2 and 4 as a backing layer 10 to a magnetic recording layer 6, a non-magnetic layer 3 is provided between the plurality of soft magnetic films 2 and 4 so as to cause coercive force of desired intensity. The plurality of soft magnetic films 2 and 4 have the same composition and the same thickness, wherein magnetization directions with an external magnetic field in an inactive state are formed so as to be reverse to each other in a layered plane. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、垂直磁気記録用の磁気記録媒体に関する。   The present invention relates to a magnetic recording medium for perpendicular magnetic recording.

従来の垂直磁気記録用の磁気記録媒体としては、特許文献1に記載されたものがある。同文献に記載された磁気記録媒体は、垂直方向に磁化方向を保持する磁気記録層(垂直磁気記録膜)、その裏打ち層として設けられた例えば2つの軟磁性層(軟磁性膜)、および軟磁性層の間に設けられた反強磁性膜などを備えて構成されている。このような構成によれば、裏打ち層からのノイズやスパイクノイズの低減などといった効果が期待される。   A conventional magnetic recording medium for perpendicular magnetic recording is described in Patent Document 1. The magnetic recording medium described in this document includes a magnetic recording layer (perpendicular magnetic recording film) that maintains the magnetization direction in the vertical direction, two soft magnetic layers (soft magnetic films) provided as the backing layer, and a soft recording layer. An antiferromagnetic film provided between the magnetic layers is provided. According to such a configuration, effects such as reduction of noise from the backing layer and spike noise are expected.

特開2005−285149号公報JP 2005-285149 A

しかしながら、上記従来の磁気記録媒体のように反強磁性膜を2つの軟磁性層の間に設けた構成では、磁気記録層の広域にわたって記録情報が消失する、いわゆるWATER(Wide Area Track ERasure )現象の抑制にそれほど効果がなく、適度な強さの保磁力を得ることができなかった。   However, in a configuration in which an antiferromagnetic film is provided between two soft magnetic layers as in the conventional magnetic recording medium, the so-called WATER (Wide Area Track ERasure) phenomenon in which recorded information disappears over a wide area of the magnetic recording layer. It was not so effective in suppressing the coercive force, and a coercive force with an appropriate strength could not be obtained.

本発明は、上記した事情のもとで考え出されたものであり、所望とする保磁力をもたせてWATER現象を効果的に抑制することができる垂直磁気記録用の磁気記録媒体を提供することをその課題としている。   The present invention has been conceived under the circumstances described above, and provides a magnetic recording medium for perpendicular magnetic recording capable of effectively suppressing the WATER phenomenon with a desired coercive force. Is the issue.

上記課題を解決するため、本発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

本発明により提供される垂直磁気記録用の磁気記録媒体は、磁気記録層に対する裏打ち層として複数の軟磁性層を備えた垂直磁気記録用の磁気記録媒体であって、上記複数の軟磁性層の間には、所望とする強さの保磁力を生じさせるように非磁性層が設けられていることを特徴としている。   A magnetic recording medium for perpendicular magnetic recording provided by the present invention is a magnetic recording medium for perpendicular magnetic recording comprising a plurality of soft magnetic layers as a backing layer for the magnetic recording layer. In the meantime, a nonmagnetic layer is provided so as to generate a coercive force having a desired strength.

好ましくは、上記複数の軟磁性層は、同一の組成および同一の厚みをもち、かつ、外部磁界が作用しない状態での磁化方向が層面内において互いに逆向きをなすように形成されている。   Preferably, the plurality of soft magnetic layers have the same composition and the same thickness, and are formed such that magnetization directions in a state where an external magnetic field does not act are opposite to each other in the layer plane.

好ましくは、上記非磁性層の厚みは、上記保磁力の強さをHc、上記複数の軟磁性層間に生じる交換磁界の強さをHs、上記軟磁性層の異方性磁界の強さをHkとした場合、以下の式が成り立つように設定されている。   Preferably, the thickness of the nonmagnetic layer is such that the strength of the coercive force is Hc, the strength of the exchange magnetic field generated between the plurality of soft magnetic layers is Hs, and the strength of the anisotropic magnetic field of the soft magnetic layer is Hk. Is set so that the following equation holds.

Figure 2007242099
Figure 2007242099

このような構成によれば、複数の軟磁性層の間に非磁性層が設けられているため、軟磁性層間に反強磁性結合による交換磁界(Hs)を適当な強さで発生させることができ、これにより裏打ち層としての軟磁性層に所望とする保磁力を持たせてWATER現象を効果的に抑制することができる。   According to such a configuration, since the nonmagnetic layer is provided between the plurality of soft magnetic layers, an exchange magnetic field (Hs) due to antiferromagnetic coupling can be generated with an appropriate strength between the soft magnetic layers. Thus, the WATER phenomenon can be effectively suppressed by giving a desired coercive force to the soft magnetic layer as the backing layer.

本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。   Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.

以下、本発明の好ましい実施の形態を、図面を参照して具体的に説明する。図1〜3は、本発明に係る垂直磁気記録用の磁気記録媒体の一実施形態を示している。図1に示すように、本実施形態の磁気記録媒体Aは、磁気ヘッドBから垂直に印加される外部磁界Hに応じて磁区A0ごとに垂直方向上向きあるいは下向きに磁化方向を保持可能な特性を持つものである。この磁気記録媒体Aは、磁気ヘッドBに対して遠い方から順に、基板層1、第1の軟磁性層2、非磁性層3、第2の軟磁性層4、中間層5、磁気記録層6、および保護層7を有して構成されている。第1および第2の軟磁性層2,4ならびに非磁性層3は、磁気記録層6に対する裏打ち層10として設けられている。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. 1 to 3 show an embodiment of a magnetic recording medium for perpendicular magnetic recording according to the present invention. As shown in FIG. 1, the magnetic recording medium A of the present embodiment has a characteristic that can maintain the magnetization direction vertically upward or downward for each magnetic domain A0 according to the external magnetic field H applied perpendicularly from the magnetic head B. It is what you have. The magnetic recording medium A includes a substrate layer 1, a first soft magnetic layer 2, a nonmagnetic layer 3, a second soft magnetic layer 4, an intermediate layer 5, and a magnetic recording layer in order from the distance from the magnetic head B. 6 and a protective layer 7. The first and second soft magnetic layers 2 and 4 and the nonmagnetic layer 3 are provided as a backing layer 10 for the magnetic recording layer 6.

基板層1は、たとえば非磁性材料のガラスからなり、厚みがたとえば0.6mm程度に形成されている。   The substrate layer 1 is made of, for example, glass of a nonmagnetic material and has a thickness of about 0.6 mm, for example.

第1の軟磁性層2および第2の軟磁性層4は、同一の組成および同一の厚みをもち、組成がCo80Zr10Nb10の軟磁性材料からなる。第1および第2の軟磁性層2,4のそれぞれの厚みtは、たとえば25nm程度である。第1および第2の軟磁性層2,4のそれぞれは、たとえば900emu/cc(=103A/m)程度の飽和磁化Msをもつとともに、たとえば25Oe(=103/4πA/m)程度の異方性磁界Hkをもつ。これら第1および第2の軟磁性層2,4は、図2の(A)に示すように、外部磁界Hが作用しない状態での磁化方向(第1の軟磁性層2については破線の矢印、第2の軟磁性層4については実線の矢印で示す)が層面内において互いに逆向きをなすように形成されている。このような第1および第2の軟磁性層2,4は、磁気ヘッドBから印加された磁束の通り道(磁路)として機能し、その磁束を再び磁気ヘッドBに還流させるといった裏打ち層10としての役割を果たす。なお、軟磁性材料としては、たとえば組成がFe60Co30B10で1700emu/cc(=103A/m)程度の飽和磁化をもつ軟磁性材料でもよい。 The first soft magnetic layer 2 and the second soft magnetic layer 4 are made of a soft magnetic material having the same composition and the same thickness and having a composition of Co80Zr10Nb10. The thickness t of each of the first and second soft magnetic layers 2 and 4 is, for example, about 25 nm. Each of the first and second soft magnetic layers 2 and 4 has a saturation magnetization Ms of about 900 emu / cc (= 10 3 A / m), for example, and about 25 Oe (= 10 3 / 4πA / m), for example. Has an anisotropic magnetic field Hk. As shown in FIG. 2A, the first and second soft magnetic layers 2 and 4 have a magnetization direction in a state where the external magnetic field H does not act (broken arrows for the first soft magnetic layer 2). The second soft magnetic layer 4 is indicated by solid arrows) in opposite directions in the layer plane. Such first and second soft magnetic layers 2 and 4 function as a path (magnetic path) of the magnetic flux applied from the magnetic head B, and serve as the backing layer 10 for returning the magnetic flux to the magnetic head B again. To play a role. The soft magnetic material may be, for example, a soft magnetic material having a composition of Fe60Co30B10 and a saturation magnetization of about 1700 emu / cc (= 10 3 A / m).

非磁性層3は、たとえば非磁性材料のRu(ルテニウム)からなり、厚みが第1および第2の軟磁性層2,4よりも相当小さく、たとえば0.8nm程度の厚みで第1および第2の軟磁性層2,4の間に形成されている。この厚みが極薄の非磁性層3によれば、第1および第2の軟磁性層2,4の間に交換磁界Hsが生じ、その結果、磁化方向が一方向に揃いやすくなる。このような非磁性層3は、裏打ち層10に所望とする磁気特性をもたせるために設けられている。交換磁界Hsは、非磁性層3による交換結合エネルギーをσ、第1および第2の軟磁性層2,4の厚みをt、それらの飽和磁化をMsとした場合、次の式で一般的に定義される。なお、非磁性層3の交換結合エネルギーσは、0.5erg/cm2(=10-3J/m2)程度となっている。 The nonmagnetic layer 3 is made of, for example, Ru (ruthenium), which is a nonmagnetic material. The thickness of the nonmagnetic layer 3 is considerably smaller than that of the first and second soft magnetic layers 2 and 4. Are formed between the soft magnetic layers 2 and 4. According to the nonmagnetic layer 3 having an extremely thin thickness, an exchange magnetic field Hs is generated between the first and second soft magnetic layers 2 and 4, and as a result, the magnetization directions are easily aligned in one direction. Such a nonmagnetic layer 3 is provided in order to give the backing layer 10 the desired magnetic properties. The exchange magnetic field Hs is generally expressed by the following equation, where σ is the exchange coupling energy by the nonmagnetic layer 3, t is the thickness of the first and second soft magnetic layers 2 and 4, and Ms is their saturation magnetization. Defined. The exchange coupling energy σ of the nonmagnetic layer 3 is about 0.5 erg / cm 2 (= 10 −3 J / m 2 ).

Figure 2007242099
Figure 2007242099

中間層5は、たとえば下地としてのPt(プラチナ)層5Aと非磁性をもつRu層5Bとの多層構造からなる。Pt層5Aは、厚みが5nm程度に形成されており、Ru層5Bは、厚みが20nm程度に形成されている。このような中間層5は、磁気記録層6の結晶配向性を向上させるために設けられている。   The intermediate layer 5 has, for example, a multilayer structure of a Pt (platinum) layer 5A as a base and a nonmagnetic Ru layer 5B. The Pt layer 5A has a thickness of about 5 nm, and the Ru layer 5B has a thickness of about 20 nm. Such an intermediate layer 5 is provided in order to improve the crystal orientation of the magnetic recording layer 6.

磁気記録層6は、たとえば組成がCo77Cr10Pt13−SiO211(CCP−SiO2)の磁性材料からなり、厚みがたとえば17nm程度に形成されている。この磁気記録層6は、たとえば520emu/cc(=103A/m)程度の飽和磁化をもち、垂直方向の保磁力が水平方向の保磁力よりも大きく、たとえば垂直方向の保磁力が4.2kOe(=106/4πA/m)となっている。このような磁気記録層6には、磁区A0ごとに垂直方向上向きあるいは下向きに磁化方向が揃った状態となり、これにより磁気記録がなされる。 The magnetic recording layer 6 is made of, for example, a magnetic material having a composition of Co77Cr10Pt13-SiO 2 11 (CCP-SiO 2 ) and has a thickness of, for example, about 17 nm. This magnetic recording layer 6 has a saturation magnetization of about 520 emu / cc (= 10 3 A / m), for example, and has a vertical coercive force larger than a horizontal coercive force. 2 kOe (= 10 6 / 4πA / m). In such a magnetic recording layer 6, the magnetization direction is aligned vertically upward or downward for each magnetic domain A0, and magnetic recording is thereby performed.

保護層7は、たとえばカーボンの層からなり、厚みが3nm程度に形成されている。このような保護層7は、磁気記録層6に対して磁気ヘッドBが接触するのを防ぐ役割をもつ。   The protective layer 7 is made of, for example, a carbon layer and has a thickness of about 3 nm. Such a protective layer 7 has a role of preventing the magnetic head B from coming into contact with the magnetic recording layer 6.

次に、上記磁気記録媒体Aの磁気特性、特に、第1および第2の軟磁性層2,4ならびに非磁性層3からなる裏打ち層10の磁気特性について考察する。   Next, the magnetic properties of the magnetic recording medium A, particularly the magnetic properties of the backing layer 10 composed of the first and second soft magnetic layers 2 and 4 and the nonmagnetic layer 3 will be considered.

まず、図2の(A)に示すように、裏打ち層10には、外部磁界Hが作用していない状態とし、第1および第2の軟磁性層2,4との磁化方向が層面内において互いに逆向きで磁化容易軸方向Feに沿った状態とする。このときの状態を初期状態とする。裏打ち層10の層面内においては、磁化容易軸方向Feに対して垂直な方向に磁化困難軸方向Fdが存在する。第1の軟磁性層2については、同図に破線の矢印で示すように、飽和磁化をMs1、初期状態の磁化方向を磁化容易軸方向Feに沿って右向きとする。第2の軟磁性層4については、同図に実線の矢印で示すように、飽和磁化をMs2、初期状態の磁化方向を磁化容易軸方向Feに沿って左向きとする。 First, as shown in FIG. 2A, the external magnetic field H is not applied to the backing layer 10, and the magnetization directions of the first and second soft magnetic layers 2 and 4 are in the plane of the layer. The states are opposite to each other and along the easy magnetization axis direction Fe. This state is the initial state. Within the layer surface of the backing layer 10, a hard magnetization axis direction Fd exists in a direction perpendicular to the easy magnetization axis direction Fe. For the first soft magnetic layer 2, as indicated by the dashed arrow in the figure, the saturation magnetization is Ms 1 , and the initial magnetization direction is rightward along the easy axis direction Fe. For the second soft magnetic layer 4, the saturation magnetization is Ms 2 , and the initial magnetization direction is leftward along the easy magnetization axis direction Fe, as indicated by the solid line arrow in FIG.

ここで、図2の(A)に示すように、磁化容易軸方向Feに対して外部磁界Hが任意になす角をθ0、外部磁界Hに対して飽和磁化Ms1,Ms2が任意になす角をθ1,θ2とした場合、裏打ち層10がもつ磁気エネルギーEは、次の式(2)で与えられる。 Here, as shown in FIG. 2A, the angle that the external magnetic field H arbitrarily forms with respect to the easy axis direction Fe is θ 0 , and the saturation magnetizations Ms 1 and Ms 2 are arbitrary with respect to the external magnetic field H. When the formed angles are θ 1 and θ 2 , the magnetic energy E of the backing layer 10 is given by the following formula (2).

Figure 2007242099
Figure 2007242099

上記式(2)において、Kuは、第1および第2の軟磁性層2,4がもつ単位体積当たりの磁気異方性エネルギー(磁気異方性定数)であり、Msは、Ms=Ms1=Ms2としている。式(2)の右辺において、第1項は、磁気異方性エネルギーを表し、第2項は、外部磁界Hに起因するゼーマンエネルギーを表し、第3項は、交換結合エネルギーを表している。 In the above formula (2), Ku is the magnetic anisotropy energy (magnetic anisotropy constant) per unit volume of the first and second soft magnetic layers 2 and 4, and Ms is Ms = Ms 1. = Ms 2 . On the right side of Equation (2), the first term represents magnetic anisotropy energy, the second term represents Zeeman energy due to the external magnetic field H, and the third term represents exchange coupling energy.

そして、図2の(B)に示すように、初期状態の裏打ち層10に対して磁化困難軸方向Fdに沿って外部磁界Hが作用した場合と、同図の(C)に示すように、磁化容易軸方向Feに沿って外部磁界Hが作用した場合とについて、第1および第2の軟磁性層2,4の磁化過程を数学的モデルに基づいてシミュレーションを行う。   As shown in FIG. 2B, when an external magnetic field H acts on the backing layer 10 in the initial state along the hard axis direction Fd, as shown in FIG. For the case where the external magnetic field H acts along the easy magnetization axis direction Fe, the magnetization process of the first and second soft magnetic layers 2 and 4 is simulated based on a mathematical model.

まず、磁化困難軸方向Fdに外部磁界Hが作用した場合に磁化過程がどうなるか検討する。この場合、外部磁界Hのなす角θ0は、θ0=π/2となり、飽和磁化Ms1,Ms2のなす角θ1,θ2は、θ1=−π/2,θ2=π/2から最終的にθ1=0,θ2=0になる。第1および第2の軟磁性層2,4は、同一の磁気特性をもち、かつ、磁化困難軸方向Fdの外部磁界Hに対して対称的に飽和磁化Ms1,Ms2(=Ms)が配向すると考えられるため、θ1=−θ2=θとする。これらθ0=π/2,θ1=−θ2=θといった条件に基づいて式(2)を変形すると、次のようになる。 First, it will be examined what happens to the magnetization process when an external magnetic field H acts in the hard axis direction Fd. In this case, the angle theta 0 of the external magnetic field H, θ 0 = π / 2, and the saturation magnetization Ms 1, the angle theta 1 of Ms 2, theta 2 is, θ 1 = -π / 2, θ 2 = π / 2 finally becomes θ 1 = 0 and θ 2 = 0. The first and second soft magnetic layers 2 and 4 have the same magnetic characteristics and have saturation magnetizations Ms 1 and Ms 2 (= Ms) symmetrically with respect to the external magnetic field H in the hard axis direction Fd. Since it is considered to be oriented, θ 1 = −θ 2 = θ. When Expression (2) is modified based on the condition of θ 0 = π / 2, θ 1 = −θ 2 = θ, the following is obtained.

Figure 2007242099
Figure 2007242099

次に、上記式(3)をθで微分して磁気エネルギーEが極値をとる条件を調べる。   Next, the above equation (3) is differentiated by θ, and the conditions under which the magnetic energy E takes an extreme value are examined.

Figure 2007242099
Figure 2007242099

ここで、異方性磁界Hkは、一般的にHk=2Ku/Ms…(5)で定義される。この式(5)と式(1)とに基づき、上記式(4)については、以下の式(6)に変形することができる。   Here, the anisotropic magnetic field Hk is generally defined by Hk = 2 Ku / Ms (5). Based on this formula (5) and formula (1), the above formula (4) can be transformed into the following formula (6).

Figure 2007242099
Figure 2007242099

これにより、磁気エネルギーEが極値をとる条件としては、式(6)が0となるための次のような式(7)で与えられる。   As a result, the condition that the magnetic energy E takes an extreme value is given by the following equation (7) for the equation (6) to be zero.

Figure 2007242099
Figure 2007242099

初期状態および式(3)を考慮した場合、磁気エネルギーEは、式(7)のうち数式解cosθ=H/(Hk+σ/tMs)のときに極小値をとる。   In consideration of the initial state and the equation (3), the magnetic energy E takes a minimum value when the equation solution cos θ = H / (Hk + σ / tMs) in the equation (7).

ここで、第1および第2の軟磁性層2,4の飽和磁化Msを合成した磁化困難軸方向Fdの磁化をMtotalとすると、この磁化Mtotalは、次の式(8)で表すことができる。 Here, when the magnetization in the hard axis direction Fd obtained by synthesizing the saturation magnetization Ms of the first and second soft magnetic layers 2 and 4 is M total , this magnetization M total is expressed by the following equation (8). Can do.

Figure 2007242099
Figure 2007242099

磁化過程を調べるため、式(8)に式(7)の数式解を代入する。これにより、次のような式(9)が導かれる。   In order to investigate the magnetization process, the mathematical solution of equation (7) is substituted into equation (8). As a result, the following equation (9) is derived.

Figure 2007242099
Figure 2007242099

これにより、図3に示すように、磁化困難軸方向Fdに外部磁界Hが作用した場合の裏打ち層10の磁化過程を表す磁化曲線MHdは、Mtotal=0からMtotal=2Ms(M/Ms=1)になるまで1/(Hk+σ/tMs)の傾きで概ね単調に増加し、外部磁界がHaになると、M/Ms=1となって磁化が飽和したような傾向を示す。この磁化が飽和する時点の外部磁界Haは、式(9)にMtotal=2Msを代入し、さらに式(1)のHs=σ/tMsを代入することにより、Ha=Hk+Hs…(10)となる。これは、裏打ち層が単層である場合の異方性磁界Hkに対し、交換磁界Hsの分だけ磁化を飽和させる外部磁界Haが大きくなることを意味している。 As a result, as shown in FIG. 3, the magnetization curve MHd representing the magnetization process of the backing layer 10 when the external magnetic field H acts in the hard axis direction Fd is M total = 0 to M total = 2Ms (M / Ms = 1) until it reaches approximately 1 / (Hk + σ / tMs), and when the external magnetic field becomes Ha, M / Ms = 1 and the magnetization is saturated. The external magnetic field Ha at the time when the magnetization is saturated is obtained by substituting M total = 2Ms into the equation (9) and further substituting Hs = σ / tMs in the equation (1), so that Ha = Hk + Hs (10) Become. This means that the external magnetic field Ha that saturates the magnetization by the amount of the exchange magnetic field Hs is larger than the anisotropic magnetic field Hk when the backing layer is a single layer.

具体的な数値を式(9)に代入して上記の外部磁界Haを求める。たとえば、Hk=25Oe(=103/4πA/m)、Ms=900emu/cc(=103A/m)、t=25nm、σ=0.5erg/cm2(=10-3J/m2)とした場合、外部磁界Haは、Ha=25+222=247Oe(=103/4πA/m)となる。これは、実際に実験して得られた結果と概ね合致している。 The above-mentioned external magnetic field Ha is obtained by substituting specific numerical values into the equation (9). For example, Hk = 25 Oe (= 10 3 / 4πA / m), Ms = 900 emu / cc (= 10 3 A / m), t = 25 nm, σ = 0.5 erg / cm 2 (= 10 −3 J / m 2) ), The external magnetic field Ha is Ha = 25 + 222 = 247 Oe (= 10 3 / 4πA / m). This generally agrees with the results obtained from actual experiments.

次に、磁化容易軸方向Feに外部磁界Hが作用した場合に磁化過程がどうなるか検討する。この場合、外部磁界Hのなす角θ0は、θ0=0となり、飽和磁化Ms1,Ms2のなす角θ1,θ2は、θ1=−π,θ2=0から最終的にθ1=0,θ2=0になる。θ0=0を式(2)に代入すると、次の式(11)が得られる。 Next, the magnetization process will be examined when an external magnetic field H acts on the easy axis direction Fe. In this case, the angle θ 0 formed by the external magnetic field H is θ 0 = 0, and the angles θ 1 and θ 2 formed by the saturation magnetizations Ms 1 and Ms 2 are finally determined from θ 1 = −π and θ 2 = 0. θ 1 = 0 and θ 2 = 0. Substituting θ 0 = 0 into equation (2) yields the following equation (11).

Figure 2007242099
Figure 2007242099

次に、上記式(11)をθ1,θ2で偏微分して磁気エネルギーEが極値をとる条件を調べる。 Next, the above equation (11) is partially differentiated by θ 1 and θ 2 to examine conditions under which the magnetic energy E takes an extreme value.

Figure 2007242099
Figure 2007242099

Figure 2007242099
Figure 2007242099

上記式(12)と式(13)により、次の式(14)が導かれる。   The following equation (14) is derived from the above equations (12) and (13).

Figure 2007242099
Figure 2007242099

式(14)において左辺と右辺が等しくなるためには、θ1=θ2=0、θ1=θ2
θ1=−θ2といった条件が考えられる。本来は、極小値および極大値の判定を行うべきであるが、θ1=θ2の場合、反強磁性結合による交換結合エネルギーσが最大になることが明らかであるので、θ1=−θ2の場合について調べる。式(12)にθ1=−θ2を代入すると、次のような式(15)が導かれる。
In Equation (14), in order for the left side and the right side to be equal, θ 1 = θ 2 = 0, θ 1 = θ 2 ,
A condition such as θ 1 = −θ 2 can be considered. Originally, the minimum value and the maximum value should be determined. However, when θ 1 = θ 2 , it is clear that the exchange coupling energy σ due to antiferromagnetic coupling is maximized, so θ 1 = −θ Investigate the case of 2 . Substituting θ 1 = −θ 2 into equation (12), the following equation (15) is derived.

Figure 2007242099
Figure 2007242099

次に、初期状態θ1=−π、θ2=0から式(15)の状態(θ1=−θ2)になる遷移磁界について調べる。初期状態における磁化エネルギーE0と遷移磁界に達した時点の磁化エネルギーEAとのエネルギー差Edは、式(11)から次の式(16)で与えられる。 Next, the transition magnetic field from the initial state θ 1 = −π, θ 2 = 0 to the state (θ 1 = −θ 2 ) of the equation (15) is examined. The energy difference E d between the magnetization energy E 0 in the initial state and the magnetization energy E A when the transition magnetic field is reached is given by the following equation (16) from the equation (11).

Figure 2007242099
Figure 2007242099

式(16)が0になるとき、磁化状態が遷移するので、式(16)の括弧の中の数式が0になる条件を式(15)から求める。   When the equation (16) becomes 0, the magnetization state transitions, and therefore the condition that the equation in parentheses in the equation (16) becomes 0 is obtained from the equation (15).

Figure 2007242099
Figure 2007242099

これにより、図3に示すように、磁化容易軸方向Feに外部磁界Hが作用した場合の裏打ち層10の磁化過程を表す磁化曲線MHeは、外部磁界Hが式(17)のHcよりも大となる条件下において式(15)で示されるような傾向を示す。すなわち、Hcは、保磁力となる。このときの磁化の変化は、次のようになる。ここで、第1および第2の軟磁性層2,4の飽和磁化Msを合成した磁化容易軸方向Feの磁化をMtotalとすると、この磁化Mtotalは、次の式(18)で表すことができる。 As a result, as shown in FIG. 3, the magnetization curve MHe representing the magnetization process of the backing layer 10 when the external magnetic field H acts in the easy axis direction Fe is such that the external magnetic field H is larger than Hc in Expression (17). It shows a tendency as shown by the formula (15) under the following conditions. That is, Hc becomes a coercive force. The change in magnetization at this time is as follows. Here, when the magnetization in the easy axis direction Fe obtained by combining the saturation magnetization Ms of the first and second soft magnetic layers 2 and 4 is M total , this magnetization M total is expressed by the following equation (18). Can do.

Figure 2007242099
Figure 2007242099

磁化の変化を調べるため、上記式(18)に式(15)を代入する。   In order to examine the change in magnetization, the equation (15) is substituted into the equation (18).

Figure 2007242099
Figure 2007242099

これにより、磁化容易軸方向Feに外部磁界Hが作用した場合には、磁化が飽和する時点の外部磁界Hbは、式(19)に基づいてHb=Hs−Hk…(20)となる。これは、交換磁界Hsから異方性磁界Hkを差し引いた分だけで磁化が飽和することを意味するが、その理由は、磁化容易軸方向Feにおいて磁気エネルギーが低下するためである。   Thus, when the external magnetic field H acts in the easy axis direction Fe, the external magnetic field Hb at the time when the magnetization is saturated becomes Hb = Hs−Hk (20) based on the equation (19). This means that the magnetization is saturated only by subtracting the anisotropic magnetic field Hk from the exchange magnetic field Hs, because the magnetic energy is reduced in the easy axis direction Fe.

ここで、初期状態θ1=−π、θ2=0からθ1=−θ2に遷移し、最終的にθ1=θ2=0となる条件としては、次のようになる。 Here, the initial state θ 1 = −π, transition from θ 2 = 0 to θ 1 = −θ 2 , and finally the condition that θ 1 = θ 2 = 0 is as follows.

Figure 2007242099
Figure 2007242099

上記式(21)の条件から、Hs<2Hkの場合、H=Hkでθ1=−π、θ2=0からθ1=θ2=0へと磁化遷移が起こると考えられる。 From the condition of the above equation (21), it is considered that when Hs <2Hk, magnetization transition occurs from H 1 = −π and θ 2 = 0 to θ 1 = θ 2 = 0 when H = Hk.

上記式(1)を式(21)に代入し、具体的な数値に基づいて交換結合エネルギーσの条件を調べる。たとえば、Hk=25Oe(=103/4πA/m)、Ms=900emu/cc(=103A/m)、t=25nmとした場合、初期状態θ1=−π、θ2=0からθ1=−θ2に遷移し、最終的にθ1=θ2=0となる条件は、σ>0.113erg/cm2(=10-3J/m2)となる。これは、先述したように交換結合エネルギーσがσ=0.5erg/cm2(=10-3J/m2)であるので、磁化遷移が起こる条件を満たしている。 The above equation (1) is substituted into equation (21), and the condition of the exchange coupling energy σ is examined based on specific numerical values. For example, when Hk = 25 Oe (= 10 3 / 4πA / m), Ms = 900 emu / cc (= 10 3 A / m), and t = 25 nm, the initial state θ 1 = −π, θ 2 = 0 to θ The condition for transitioning to 1 = −θ 2 and finally θ 1 = θ 2 = 0 is σ> 0.113 erg / cm 2 (= 10 −3 J / m 2 ). As described above, since the exchange coupling energy σ is σ = 0.5 erg / cm 2 (= 10 −3 J / m 2 ), this satisfies the condition for causing the magnetization transition.

また、式(17)から保磁力Hcを求めると、Hc=70.2Oe(=103/4πA/m)となる。 Further, when the coercive force Hc is obtained from the equation (17), Hc = 70.2 Oe (= 10 3 / 4πA / m).

また、式(19)に式(17)を代入すると、初期状態θ1=−π、θ2=0からθ1=−θ2に遷移する場合の相対磁化Ma/Msの値が求まり、この相対磁化Ma/Msは、Ma/Ms=0.36程度となる。 Further, by substituting the equation (17) into the equation (19), the value of the relative magnetization Ma / Ms when the initial state θ 1 = −π and θ 2 = 0 to θ 1 = −θ 2 is obtained is obtained. The relative magnetization Ma / Ms is about Ma / Ms = 0.36.

さらに、式(20)に基づき、磁化が飽和する時点の外部磁界Hbを求めると、この外部磁界Hbは、Hb=197.2Oe(=103/4πA/m)程度となる。 Further, when the external magnetic field Hb at the time when the magnetization is saturated is obtained based on the equation (20), the external magnetic field Hb is about Hb = 197.2 Oe (= 10 3 / 4πA / m).

以上をまとめると、磁化困難軸方向Fdと磁化容易軸方向Feとのそれぞれに外部磁界Hが作用した場合の裏打ち層10の磁化過程を表す磁化曲線MHd,MHeは、次のようになる。   In summary, the magnetization curves MHd and MHe representing the magnetization process of the backing layer 10 when the external magnetic field H acts on each of the hard axis direction Fd and the easy axis direction Fe are as follows.

Figure 2007242099
Figure 2007242099

したがって、本実施形態の磁気記録媒体Aによれば、第1および第2の軟磁性層2,4の間に適当な厚みの非磁性層3が設けられているため、第1および第2の軟磁性層2,4間に反強磁性結合による交換磁界Hsを適当な強さで発生させることができ、これにより裏打ち層10に所望とする保磁力Hcを持たせてWATER現象を効果的に抑制することができる。   Therefore, according to the magnetic recording medium A of the present embodiment, since the nonmagnetic layer 3 having an appropriate thickness is provided between the first and second soft magnetic layers 2 and 4, the first and second soft magnetic layers 2 and 4 are provided. An exchange magnetic field Hs due to antiferromagnetic coupling can be generated between the soft magnetic layers 2 and 4 with an appropriate strength, thereby effectively giving the backing layer 10 the desired coercive force Hc and effectively causing the WATER phenomenon. Can be suppressed.

本発明に係る垂直磁気記録用の磁気記録媒体の一実施形態を示す構成図である。1 is a configuration diagram showing an embodiment of a magnetic recording medium for perpendicular magnetic recording according to the present invention. 図1に示す磁気記録媒体の磁気特性を解析するための参考図である。FIG. 2 is a reference diagram for analyzing magnetic characteristics of the magnetic recording medium shown in FIG. 1. 図1に示す磁気記録媒体の磁気特性を説明するための説明図である。It is explanatory drawing for demonstrating the magnetic characteristic of the magnetic recording medium shown in FIG.

符号の説明Explanation of symbols

A 垂直磁気記録用の磁気記録媒体
2 第1の軟磁性層
3 非磁性層
4 第2の軟磁性層
6 磁気記録層
10 裏打ち層
A magnetic recording medium for perpendicular magnetic recording 2 first soft magnetic layer 3 nonmagnetic layer 4 second soft magnetic layer 6 magnetic recording layer 10 backing layer

Claims (3)

磁気記録層に対する裏打ち層として複数の軟磁性層を備えた垂直磁気記録用の磁気記録媒体であって、
上記複数の軟磁性層の間には、所望とする強さの保磁力を生じさせるように非磁性層が設けられていることを特徴とする、垂直磁気記録用の磁気記録媒体。
A magnetic recording medium for perpendicular magnetic recording comprising a plurality of soft magnetic layers as a backing layer for a magnetic recording layer,
A magnetic recording medium for perpendicular magnetic recording, wherein a nonmagnetic layer is provided between the plurality of soft magnetic layers so as to generate a coercive force having a desired strength.
上記複数の軟磁性層は、同一の組成および同一の厚みをもち、かつ、外部磁界が作用しない状態での磁化方向が層面内において互いに逆向きをなすように形成されている、請求項1に記載の垂直磁気記録用の磁気記録媒体。   The plurality of soft magnetic layers have the same composition and the same thickness, and are formed so that magnetization directions in a state where an external magnetic field does not act are opposite to each other in a layer plane. The magnetic recording medium for perpendicular magnetic recording as described. 上記非磁性層の厚みは、上記保磁力の強さをHc、上記複数の軟磁性層間に生じる交換磁界の強さをHs、上記軟磁性層の異方性磁界の強さをHkとした場合、以下の式が成り立つように設定されている、請求項1または2に記載の垂直磁気記録用の磁気記録媒体。
Figure 2007242099
The thickness of the nonmagnetic layer is such that the coercive force is Hc, the exchange magnetic field strength generated between the plurality of soft magnetic layers is Hs, and the anisotropic magnetic field strength of the soft magnetic layer is Hk. The magnetic recording medium for perpendicular magnetic recording according to claim 1, wherein the magnetic recording medium is set so that the following expression is satisfied.
Figure 2007242099
JP2006060447A 2006-03-07 2006-03-07 Magnetic recording medium for perpendicular magnetic recording Pending JP2007242099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060447A JP2007242099A (en) 2006-03-07 2006-03-07 Magnetic recording medium for perpendicular magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060447A JP2007242099A (en) 2006-03-07 2006-03-07 Magnetic recording medium for perpendicular magnetic recording

Publications (1)

Publication Number Publication Date
JP2007242099A true JP2007242099A (en) 2007-09-20

Family

ID=38587495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060447A Pending JP2007242099A (en) 2006-03-07 2006-03-07 Magnetic recording medium for perpendicular magnetic recording

Country Status (1)

Country Link
JP (1) JP2007242099A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003296925A (en) * 2002-03-29 2003-10-17 Ken Takahashi Magnetic recording medium, method for manufacturing the same, and magnetic recording device
JP2004071037A (en) * 2002-08-05 2004-03-04 Hoya Corp Magnetic recording medium for magnetic disk
JP2005302238A (en) * 2004-04-15 2005-10-27 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003296925A (en) * 2002-03-29 2003-10-17 Ken Takahashi Magnetic recording medium, method for manufacturing the same, and magnetic recording device
JP2004071037A (en) * 2002-08-05 2004-03-04 Hoya Corp Magnetic recording medium for magnetic disk
JP2005302238A (en) * 2004-04-15 2005-10-27 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5361259B2 (en) Spin torque oscillator, magnetic recording head, magnetic head assembly, and magnetic recording apparatus
JP5558365B2 (en) Information recording device
JP5153575B2 (en) Thermally assisted magnetic recording medium and magnetic recording apparatus
JP4960319B2 (en) Magnetic recording device
JP4905526B2 (en) Laminate structure including FePt magnetic layer and magnetoresistive element using the same
US20120113542A1 (en) Oscillator in which polarity is changed at high speed, magnetic head for mamr and fast data transfer rate hdd
JP2013251042A (en) Spin torque oscillator, magnetic recording head, magnetic head assembly, and magnetic recorder
US20060044680A1 (en) Laminated high moment magnetic films with antiferromagnetic coupling as write pole of perpendicular magnetic recording head
JP2010040060A (en) Magnetic head for high-frequency field assist recording and magnetic recording apparatus using the same
JP6442978B2 (en) Magnetic recording / reproducing device
US8064161B2 (en) Perpendicular magnetic recording head and method for manufacturing the same
JP2007250094A (en) Magnetic recording medium, manufacturing method of magnetic recording medium and magnetic recording device
JP2007035082A (en) Perpendicular recording magnetic head and its manufacturing method
JP2007220177A (en) Perpendicular magnetic recording medium
JP2007250150A (en) Perpendicular magnetic recording medium
JP2005038535A (en) Perpendicular magnetic recording element, magnetic head, magnetic head device and magnetic recording and reproducing device
JP2004086961A (en) Magnetic head and magnetic recorder
JP2007311013A (en) Perpendicular magnetic head
JP2009054219A (en) Perpendicular magnetic recording head
US20070211379A1 (en) Perpendicular magnetic head
US20150103431A1 (en) Sto with anti-ferromagnetic coupling interlayer
KR20070097179A (en) Magnetic recording media
JP2005174449A (en) Vertical magnetic recording element, thin film magnetic head, magnetic head device, and magnetic recording/reproducing device
JP2007213790A (en) Perpendicular magnetic recording medium including soft magnetic underlayer with diffusion barrier layer inserted therein
JP2007242099A (en) Magnetic recording medium for perpendicular magnetic recording

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706