JP2007240520A - Optical position sensor component, optical position sensor, and manufacturing method therefor - Google Patents

Optical position sensor component, optical position sensor, and manufacturing method therefor Download PDF

Info

Publication number
JP2007240520A
JP2007240520A JP2007018024A JP2007018024A JP2007240520A JP 2007240520 A JP2007240520 A JP 2007240520A JP 2007018024 A JP2007018024 A JP 2007018024A JP 2007018024 A JP2007018024 A JP 2007018024A JP 2007240520 A JP2007240520 A JP 2007240520A
Authority
JP
Japan
Prior art keywords
light
position sensor
meth
input
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007018024A
Other languages
Japanese (ja)
Other versions
JP4853311B2 (en
Inventor
Yuuichi Eriyama
祐一 江利山
Takashi Kouho
俊 皇甫
Yukio Maeda
幸勇 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2007018024A priority Critical patent/JP4853311B2/en
Publication of JP2007240520A publication Critical patent/JP2007240520A/en
Application granted granted Critical
Publication of JP4853311B2 publication Critical patent/JP4853311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical position sensor component and an optical position sensor, using a waveguide of high photoconductivity, and a manufacturing method therefor. <P>SOLUTION: This optical position sensor component is provided with a light guide part 13 for input and a photoreceiving light guide part 23. The light guide part 13 comprises polymer waveguides for setting light emitted from a near infrared ray source 11 incident, and for emitting the incident light from a plurality of terminal ends to collimating lenses 14. The photoreceiving light guide part 23 comprises a plurality of polymer waveguides for setting light emitted from the light guide part 13 incident from the terminal ends, and for emitting the incident light to photoreception elements 21. A cured resin of a photosensitive resin composition is used in a core portion for constituting the polymer waveguide, in the light guide part 13 and the photoreceiving light guide part 23. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学式位置センサー部品、光学式位置センサー及びその製造方法に関する。   The present invention relates to an optical position sensor component, an optical position sensor, and a manufacturing method thereof.

従来の位置センサー部品は、ディスプレイのスクリーンに抵抗を有するフィルム、容量を有するフィルム、あるいは導電性材料を蒸着、又は塗布したフィルムをかぶせることによって作成されている。例えば、特許文献1に従来の技術が開示されている。しかしながら、この方法においては、表示機能を目的としないフィルムで覆われるため、通常と同じ輝度を得るためにはスクリーンの光強度を大きくしなければならない。このスクリーンの光強度を増大させるためには、エネルギーの消費量が増大してしまう。   Conventional position sensor components are made by covering a display screen with a resistive film, a capacitive film, or a film deposited or coated with a conductive material. For example, Patent Document 1 discloses a conventional technique. However, in this method, since it is covered with a film that does not have a display function, it is necessary to increase the light intensity of the screen in order to obtain the same luminance as usual. In order to increase the light intensity of the screen, energy consumption increases.

しかしながら、このような位置センサー部品が頻度よく用いられる携帯情報端末やノートパソコンなどにおいては、使用できるバッテリーの量が決められているものが多く、あまり電気消費量の多い位置センサーは好ましいものではない。
米国特許出願公開第2006/002655号明細書
However, in portable information terminals and laptop computers where such position sensor components are frequently used, the amount of battery that can be used is often determined, and a position sensor that consumes too much electricity is not preferable. .
US Patent Application Publication No. 2006/002655

そこで、本発明は、このような問題点を解決するためになされたものであり、光伝導度が高い導波路を用いた光学式位置センサー部品、光学式位置センサー及びその製造方法を提供することを目的とする。   Therefore, the present invention has been made to solve such problems, and provides an optical position sensor component, an optical position sensor using a waveguide having high photoconductivity, and a manufacturing method thereof. With the goal.

本発明の光学式位置センサー部品の一態様は、入力用導光部と受光用導光部とを備える。前記入力用導光部は、近赤外の発光源において発光した光を入射し、入射した光を複数の末端からコリメート用のレンズへ出射する高分子導波路からなる。前記受光用導光部は、前記入力用導光部から出射された光を末端から入射し、入射した光を近赤外の受光素子へ出射する複数の高分子導波路からなる。また、前記入力用導光部及び前記受光用導光部において、前記高分子導波路を構成するコア部分は、感光性樹脂組成物の硬化物からできている。   One aspect of the optical position sensor component of the present invention includes an input light guide and a light receiving light guide. The input light guide unit is made of a polymer waveguide that receives light emitted from a near-infrared light source and emits the incident light from a plurality of ends to a collimating lens. The light receiving light guide unit includes a plurality of polymer waveguides that allow light emitted from the input light guide unit to enter from a terminal and emit the incident light to a near-infrared light receiving element. Moreover, in the light guide for input and the light guide for light reception, the core portion constituting the polymer waveguide is made of a cured product of a photosensitive resin composition.

また、本発明の光学式位置センサーの一態様は、入力用光部品と、前記入力用光部品と平面基板上に対向して配置される受光用光部品と、を備える。前記入力用光部品は、近赤外の発光源、複数のコリメート用のレンズ、及び前記近赤外の発光源において発光した光を入射する端部と、入射した光を前記複数のコリメート用のレンズへ出射する複数の末端とを有する高分子導波路からなる入力用導光部を含む。前記受光用光部品は、複数の近赤外の受光素子及び前記入力用導光部が出射した光を入射する末端と、入射した光を前記複数の近赤外の受光素子へ出射する他の末端とを有する複数の高分子導波路からなる受光用導光部を含む。また、前記入力用導光部及び前記受光用導光部において、前記高分子導波路は、感光性樹脂組成物の硬化物で構成されるコア部分を有する。   In addition, an aspect of the optical position sensor of the present invention includes an input optical component, and a light receiving optical component that is disposed to face the input optical component on a flat substrate. The input optical component includes a near-infrared light source, a plurality of collimating lenses, an end portion that receives light emitted from the near-infrared light source, and incident light for the plurality of collimators. An input light guide unit including a polymer waveguide having a plurality of ends emitting to the lens is included. The light receiving optical component includes a plurality of near-infrared light receiving elements and a terminal for receiving the light emitted from the input light guide unit, and another light emitting the incident light to the plurality of near-infrared light receiving elements. A light-receiving light-guiding unit including a plurality of polymer waveguides having ends. Moreover, in the light guide for input and the light guide for light reception, the polymer waveguide has a core portion made of a cured product of a photosensitive resin composition.

さらに、光学式位置センサーの製造方法の一態様は、次のステップを含む。一つの端部と複数の末端を有する高分子導波路からなる入力用導光部、及び複数の高分子導波路からなる受光用導光部を、感光性樹脂組成物を硬化させて作製するステップ。前記入力用導光部が有する複数の末端に光のコリメート用のレンズを配するステップ。前記入力用導光部の端部に近赤外の発光源を配するステップ。前記受光用導光部を構成する高分子導波路それぞれに近赤外の受光素子を配するステップ。   Furthermore, one aspect of a method for manufacturing an optical position sensor includes the following steps. A step of producing a light guide for input composed of a polymer waveguide having one end and a plurality of ends, and a light guide for light reception composed of a plurality of polymer waveguides by curing the photosensitive resin composition. . Disposing lenses for collimating light at a plurality of ends of the light guide for input; Disposing a near-infrared light source at an end of the input light guide; Disposing a near-infrared light receiving element in each of the polymer waveguides constituting the light receiving light guide;

前記光学式位置センサーの製造方法の一態様において、前記感光性樹脂組成物を硬化させて作製するステップは、前記高分子導波路を構成するコア部分をアルカリ現像型のフォトリソグラフ法で製作する方法である。   In one aspect of the method of manufacturing the optical position sensor, the step of curing the photosensitive resin composition is a method of manufacturing a core portion constituting the polymer waveguide by an alkali development type photolithographic method. It is.

また、前記感光性樹脂組成物は、(A)少なくともヒドロキシアルキル(メタ)アクリレートと(メタ)アクリル酸をモノマーとする共重合体と、分子中に1個以上の(メタ)アクリロキシ基を含有するイソシアネート化合物との付加物、(B)分子中に1個以上のエチレン性不飽和基を含有する化合物(ただし、上記(A)成分は除く)、(C)光重合開始剤、を含有するものである。   The photosensitive resin composition contains (A) a copolymer having at least hydroxyalkyl (meth) acrylate and (meth) acrylic acid as monomers, and one or more (meth) acryloxy groups in the molecule. An adduct with an isocyanate compound, (B) a compound containing one or more ethylenically unsaturated groups in the molecule (excluding the component (A) above), and (C) a photopolymerization initiator It is.

さらに、前記(A)成分が、エチレン性不飽和含有芳香族化合物、脂環式アルキル(メタ)アクリレート、及び分岐してもよいアルキル(メタ)アクリレートの中から選ばれる1種以上のモノマー、並びにヒドロキシアルキル(メタ)アクリレート及び(メタ)アクリル酸をモノマーとする共重合体と、分子中に1個以上の(メタ)アクリロキシ基を含有するイソシアネート化合物との付加物であるものである。   Furthermore, the component (A) is one or more monomers selected from ethylenically unsaturated-containing aromatic compounds, alicyclic alkyl (meth) acrylates, and optionally branched alkyl (meth) acrylates, and It is an adduct of a copolymer having hydroxyalkyl (meth) acrylate and (meth) acrylic acid as monomers and an isocyanate compound containing one or more (meth) acryloxy groups in the molecule.

本発明に係る光学式位置センサー部品、光学式位置センサー及びその製造方法の一態様によれば、導光部のコア部分が感光性樹脂組成物の硬化物であることから、発光部と導光部との光の結合や導光部と受光部との光の結合が効率よく行われるため、光学式位置センサーとして位置の検出を感度良く行うことができる。   According to one aspect of the optical position sensor component, the optical position sensor, and the manufacturing method thereof according to the present invention, the core portion of the light guide portion is a cured product of the photosensitive resin composition. As the optical position sensor can detect the position with high sensitivity, the light can be efficiently combined with the light and the light with the light guide and the light receiver.

以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。この実施の形態は、本発明を、光学式位置センサー及びその製造方法に適用した一態様を示したものである。図1は、本発明の実施の形態に係る光学式位置センサーの一例を示す構造概略図を示した図である。また、図2は、本発明の実施の形態に係る光学式位置センサーの別の一例を示す構造概略図を示した図である。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. This embodiment shows an aspect in which the present invention is applied to an optical position sensor and a manufacturing method thereof. FIG. 1 is a diagram showing a schematic structure showing an example of an optical position sensor according to an embodiment of the present invention. FIG. 2 is a schematic structural view showing another example of the optical position sensor according to the embodiment of the present invention.

図1に示した光学式位置センサーは、入力用光部品10と受光用光部品20とを備える。入力用光部品10は、近赤外の発光源11、入力用導光部13及び複数のコリメート用のレンズ14を備える。受光用光部品20は、複数の近赤外の受光素子21、受光用導光部23及びコリメート用のレンズ24を備える。また、入力用導光部13は、発光部12を備え、受光用導光部23は、受光部22を備える。   The optical position sensor shown in FIG. 1 includes an input optical component 10 and a light receiving optical component 20. The input optical component 10 includes a near-infrared light source 11, an input light guide 13, and a plurality of collimating lenses 14. The light receiving optical component 20 includes a plurality of near-infrared light receiving elements 21, a light receiving light guide 23, and a collimating lens 24. The input light guide unit 13 includes the light emitting unit 12, and the light receiving light guide unit 23 includes the light receiving unit 22.

図1に示した光学式位置センサー部品において、発光部12と受光部22とは各導光部を構成する高分子導波路(高分子光導波路)で作製されている。光学式位置センサー部品(入力用導光部13、受光用導光部23)は、各発光部12からの光が各受光部22に到達するか否かによって、位置を判定している。入力用光部品10は、発光部12からの光を光導波路内に入射させる。受光用光部品20は、光導波路からの光を受光部22に送る。図1及び図2の矢印は、光導波路内の光路を示す。   In the optical position sensor component shown in FIG. 1, the light emitting unit 12 and the light receiving unit 22 are made of polymer waveguides (polymer optical waveguides) constituting each light guide unit. The position of the optical position sensor component (the input light guide unit 13 and the light receiving light guide unit 23) is determined based on whether light from each light emitting unit 12 reaches each light receiving unit 22 or not. The input optical component 10 causes light from the light emitting unit 12 to enter the optical waveguide. The light receiving optical component 20 sends light from the optical waveguide to the light receiving unit 22. The arrows in FIGS. 1 and 2 indicate optical paths in the optical waveguide.

光学式位置センサー部品における入力用光部品10は、平面(平面基板)の端末に近紫外の発光源11を配し、分岐末端(末端)にコリメート用のレンズ14を配している。このときの発光源11は、例えばサファイアレーザを用いている。また、入力用光部品10は、複数に分岐した構造を有する高分子導波路を入力用導光部13としている。例えば、入力用導光部13は、近赤外の発光源において発光した光を入射する端部と、入射した光を前記複数のコリメート用のレンズ14へ出射する複数の末端を有する高分子導波路からなる。この導波路内を発光源11から出射された光が分岐して導波されることになる。これらの入力用導光部13は、図1に示されるように、1つの発光源11からの光をそれぞれの発光部12において分枝させてもよいし、図2に示されるように、発光源11から直接光を分枝させ、その分枝させた光をそれぞれの発光部12に導いても良い。   In the input optical component 10 in the optical position sensor component, a near-ultraviolet light source 11 is disposed at a flat (planar substrate) end, and a collimating lens 14 is disposed at a branch end (end). At this time, for example, a sapphire laser is used as the light source 11. The input optical component 10 uses a polymer waveguide having a branched structure as the input light guide 13. For example, the input light guide unit 13 is a polymer guide having an end portion that receives light emitted from a near-infrared light source, and a plurality of ends that emit the incident light to the plurality of collimating lenses 14. It consists of a waveguide. The light emitted from the light source 11 is branched and guided in the waveguide. As shown in FIG. 1, these light guides 13 for input may branch light from one light emitting source 11 in each light emitting unit 12, or emit light as shown in FIG. The light may be directly branched from the source 11 and the branched light may be guided to the respective light emitting units 12.

また、光学式位置センサー部品における受光用光部品20は、近赤外の受光素子21を配し、分岐末端にコリメート用のレンズ24を配している。このときの受光素子21は、例えばフォトダイオードを用いている。また、受光用光部品20は、複数の高分子導波路を受光用導光部23としている。例えば、受光用導光部23は、入力用導光部13が出射した光を入射する末端と、入射した光を複数の近赤外の受光素子21へ出射する他の末端を有する複数の高分子導波路からなる。このときの受光素子21は、図1に示されるように高分子導波路ごとに配置されている。このようにすることによって、受光素子21は、位置の認識を行う。
さらに、上述の入力用光部品10と受光用光部品20とは、平面基板上に対向して配置されている。従って、入力用導光部13と受光用導光部23も対向して配置されることになる。例えば、光学式位置センサー部品における左端と下端に沿って、入力用光部品10が配置されると、右端と上端に沿って、受光用光部品20が配置される。
The light receiving optical component 20 in the optical position sensor component includes a near infrared light receiving element 21 and a collimating lens 24 at the branch end. At this time, for example, a photodiode is used as the light receiving element 21. The light receiving optical component 20 uses a plurality of polymer waveguides as the light receiving light guide 23. For example, the light receiving light guide 23 has a plurality of high ends having a terminal that receives the light emitted from the light guide 13 for input and another terminal that outputs the incident light to the plurality of near-infrared light receiving elements 21. It consists of a molecular waveguide. The light receiving element 21 at this time is arranged for each polymer waveguide as shown in FIG. By doing so, the light receiving element 21 recognizes the position.
Further, the input optical component 10 and the light receiving optical component 20 described above are arranged to face each other on a flat substrate. Therefore, the input light guide unit 13 and the light receiving light guide unit 23 are also arranged to face each other. For example, when the input optical component 10 is disposed along the left end and the lower end of the optical position sensor component, the light receiving optical component 20 is disposed along the right end and the upper end.

なお、図1及び図2では、受光用光部品20は、コリメート用のレンズ24が配置された場合を示しているが、コリメート用のレンズ24を必ずしも配置しなくてよい。入力用光部品10に配置されたコリメート用のレンズ14から到達する光が、受光用導光部23へほぼ直線的に入射する場合、発光部12から出射された光が、受光部22へ到達する。このため、コリメート用のレンズ24が配置されていなくても、光学式位置センサーとして機能することができる。   1 and 2, the light receiving optical component 20 shows a case where a collimating lens 24 is arranged, but the collimating lens 24 is not necessarily arranged. When light arriving from the collimating lens 14 disposed on the input optical component 10 enters the light receiving light guide 23 almost linearly, the light emitted from the light emitting part 12 reaches the light receiving part 22. To do. For this reason, even if the collimating lens 24 is not disposed, it can function as an optical position sensor.

高分子導波路は、コア部分を下部クラッド層と上部クラッド層とで挟んでいる状態で配置されている。この高分子導波路の特性は、コア部分とクラッド層との比屈折率差が1〜4%である(本明細書では、例えば、「1から4」は、「1以上4以下」とする)。   The polymer waveguide is disposed in a state where the core portion is sandwiched between the lower clad layer and the upper clad layer. The characteristic of this polymer waveguide is that the relative refractive index difference between the core portion and the cladding layer is 1 to 4% (in this specification, for example, “1 to 4” is “1 to 4”) ).

本実施の形態に係る光学式位置センサー部品においては、高分子導波路を構成するコア部分は、(A)少なくともヒドロキシアルキル(メタ)アクリレートと(メタ)アクリル酸との共重合体と、分子中に1個以上の(メタ)アクリロキシ基を含有するイソシアネート化合物との付加物、(B)分子中に1個以上の(メタ)アクリロイル基を含有する化合物(ただし、上記(A)成分は除く)、及び(C)光重合開始剤を含有する感光性樹脂組成物の硬化物としている。   In the optical position sensor component according to the present embodiment, the core portion constituting the polymer waveguide includes (A) at least a copolymer of hydroxyalkyl (meth) acrylate and (meth) acrylic acid, and a molecule. Adducts with isocyanate compounds containing one or more (meth) acryloxy groups, (B) compounds containing one or more (meth) acryloyl groups in the molecule (excluding the component (A) above) And (C) a cured product of a photosensitive resin composition containing a photopolymerization initiator.

(A)成分を製造するための前記共重合体は、高い導波路特性を得るために、エチレン性不飽和含有芳香族化合物、脂環式アルキル(メタ)アクリレート、又は分岐してもよいアルキル(メタ)アクリレート等との共重合であることが好ましい。なお、クラッド層に使用する場合は、アルカリ現像性を付与する必要が無いため(メタ)アクリル酸を共重合させる必要がない。   The copolymer for producing the component (A) is an ethylenically-unsaturated-containing aromatic compound, an alicyclic alkyl (meth) acrylate, or an alkyl (which may be branched) in order to obtain high waveguide characteristics. Copolymerization with (meth) acrylate or the like is preferable. In addition, when using it for a clad layer, since it is not necessary to provide alkali developability, it is not necessary to copolymerize (meth) acrylic acid.

なお、感光性樹脂組成物は、有機溶剤(乳酸エチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、メチルイソブチルケトン、メチルアミルケトン)に溶解させてもよい。このときの組成物の粘度は、25℃において200mPa・s(ミリパスカル・秒)〜2000mPa・s程度が好ましい。その他、必要に応じて、重合禁止剤、増感剤、界面活性剤を添加することもできる。   The photosensitive resin composition may be dissolved in an organic solvent (ethyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, methyl isobutyl ketone, methyl amyl ketone). The viscosity of the composition at this time is preferably about 200 mPa · s (millipascal · second) to 2000 mPa · s at 25 ° C. In addition, a polymerization inhibitor, a sensitizer, and a surfactant can be added as necessary.

さらに、コア部分を構成する感光性樹脂の硬化物の物性は、波長824nm(25℃)での屈折率が1.51以上1.56以下であり、材料損失が0.05dB/cm〜0.30dB/cm、ガラス転移温度が55℃〜180℃とするのが好ましい。   Furthermore, the physical properties of the cured product of the photosensitive resin constituting the core portion are such that the refractive index at a wavelength of 824 nm (25 ° C.) is 1.51 or more and 1.56 or less, and the material loss is 0.05 dB / cm to 0.00. It is preferable that 30 dB / cm and the glass transition temperature be 55 ° C to 180 ° C.

続いて、光学式位置センサーの製造方法を説明する。図3は、光学式位置センサーの製造方法の一例を示すフローチャート図である。
まず、一つの端部と複数の末端を有する高分子導波路からなる入力用導光部13、及び二つの末端を有する複数の高分子導波路からなる受光用導光部23を、感光性樹脂組成物を硬化させて作製する(S11)。次に、入力用導光部13が有する複数の末端に光のコリメート用のレンズ14を配する(S13)。端末(端部)に近赤外の発光源11を配する(S15)。受光用導光部23を構成する高分子導波路末端それぞれに近赤外の受光素子21を配する(S17)。このようにして、入力用光部品10と受光用光部品20とを備える光学式位置センサーを製造する。感光性樹脂組成物の具体的な製造方法については、実施例において具体例を説明する。なお、図3は、光学式位置センサーの製造方法の一例を示したものであり、この手順に限られるものではない。
Then, the manufacturing method of an optical position sensor is demonstrated. FIG. 3 is a flowchart showing an example of a manufacturing method of the optical position sensor.
First, an input light guide 13 made of a polymer waveguide having one end and a plurality of ends, and a light receiving light guide 23 made of a plurality of polymer waveguides having two ends are made of a photosensitive resin. The composition is cured to prepare (S11). Next, light collimating lenses 14 are arranged at a plurality of ends of the input light guide 13 (S13). A near-infrared light source 11 is arranged at the terminal (end) (S15). A near-infrared light receiving element 21 is arranged at each end of the polymer waveguide constituting the light receiving light guide 23 (S17). In this way, an optical position sensor including the input optical component 10 and the light receiving optical component 20 is manufactured. About the specific manufacturing method of the photosensitive resin composition, a specific example is demonstrated in an Example. FIG. 3 shows an example of a method for manufacturing an optical position sensor, and the present invention is not limited to this procedure.

実施例1
ドライアイス/メタノール還流器のついたフラスコを窒素置換した後、光重合開始剤として2,2'−アゾビスイソブチロニトリル3g、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート115gを仕込み、光重合開始剤が溶解するまで攪拌した。引き続いて、ヒドロキシエチルメタクリレート20g、ジシクロペンタニルメタクリレート10g、スチレン25g、メタクリル酸10g及びn−ブチルアクリレート35gを仕込んだ後、緩やかに攪拌を始めた。その後、溶液の温度を80℃に上昇させ、この温度で6時間重合を行った。
Example 1
A flask equipped with a dry ice / methanol reflux was purged with nitrogen, and then 3 g of 2,2′-azobisisobutyronitrile as a photopolymerization initiator and 115 g of propylene glycol monomethyl ether acetate as an organic solvent were added. Stir until dissolved. Subsequently, 20 g of hydroxyethyl methacrylate, 10 g of dicyclopentanyl methacrylate, 25 g of styrene, 10 g of methacrylic acid, and 35 g of n-butyl acrylate were added, and stirring was started gently. Thereafter, the temperature of the solution was raised to 80 ° C., and polymerization was carried out at this temperature for 6 hours.

その後、得られた溶液にジラウリル酸ジ−n−ブチル錫0.13g、2,6−ジ−t−ブチル−p−クレゾール0.05gを仕込み、攪拌しながら2−メタクリロキシエチルイソシアネート23.7gを温度が60℃以下に保たれるように滴下した。滴下終了後、60℃で5時間反応させ、側鎖にメタクリル基を有するポリマー溶液を得た。その後、反応生成物を多量のヘキサンに滴下して反応生成物を凝固させた。さらに、この凝固物と同質量のテトラヒドロフランに再溶解し、多量のヘキサンで再度凝固させた。この再溶解−凝固操作を計3回行った後、得られた凝固物を40℃で48時間真空乾燥して、目的とする重合体A−1を得た。   Thereafter, 0.13 g of di-n-butyltin dilaurate and 0.05 g of 2,6-di-t-butyl-p-cresol were charged into the obtained solution, and 23.7 g of 2-methacryloxyethyl isocyanate was stirred. Was added dropwise so that the temperature was kept at 60 ° C. or lower. After completion of the dropwise addition, the mixture was reacted at 60 ° C. for 5 hours to obtain a polymer solution having a methacryl group in the side chain. Thereafter, the reaction product was dropped into a large amount of hexane to solidify the reaction product. Further, it was redissolved in tetrahydrofuran having the same mass as the coagulated product and coagulated again with a large amount of hexane. After performing this re-dissolution-coagulation operation three times in total, the obtained coagulated product was vacuum-dried at 40 ° C. for 48 hours to obtain the intended polymer A-1.

コア用組成物は、上述の重合体A−1を100g、トリブロモフェノールエトキシアクリレート(第一工業製薬社製、ニューフロンティアBR−31)を30g、光ラジカル重合開始剤(商品名「Irgacure369」、チバ・スペシャルティ・ケミカルズ社製)を3g、乳酸エチル110gを均一に混合し調製した。また、クラッド用組成物は、上述の重合体A−1を100g、トリメチロールプロパントリアクリレート(大阪有機化学工業社製、TMP3A)を30g、光ラジカル重合開始剤(商品名「Irgacure369」、チバ・スペシャルティ・ケミカルズ社製)を3g、乳酸エチル110gを均一に混合し調製した。   The composition for the core is 100 g of the above-mentioned polymer A-1, 30 g of tribromophenol ethoxy acrylate (Daiichi Kogyo Seiyaku Co., Ltd., New Frontier BR-31), photo radical polymerization initiator (trade name “Irgacure 369”, 3 g of Ciba Specialty Chemicals) and 110 g of ethyl lactate were uniformly mixed. In addition, the cladding composition is composed of 100 g of the polymer A-1 described above, 30 g of trimethylolpropane triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., TMP3A), a photo radical polymerization initiator (trade name “Irgacure 369”, Ciba 3 g of Specialty Chemicals) and 110 g of ethyl lactate were uniformly mixed.

(a)下部クラッド層の形成
クラッド用組成物を基板の表面上に、スリットコータで塗布し、オーブンを用いて100℃、60分間の条件でプリベークして塗膜を形成した。次いで、クラッド用組成物からなる塗膜に、波長365nm、照度10mW/cmの紫外線を100秒間照射して、光硬化させ、厚さ50μmの下部クラッド層を形成した。
(A) Formation of lower clad layer The clad composition was applied onto the surface of the substrate with a slit coater, and pre-baked at 100 ° C. for 60 minutes using an oven to form a coating film. Next, the coating film made of the cladding composition was irradiated with ultraviolet light having a wavelength of 365 nm and an illuminance of 10 mW / cm 2 for 100 seconds to be photocured, thereby forming a lower cladding layer having a thickness of 50 μm.

(b)コア部分の形成
次に、コア用組成物を下部クラッド層の上にスリットコータで塗布して塗膜を形成した。形成した
塗膜を、オーブンを用いて100℃、60分間の条件でプリベークし、厚さ50μmの塗膜を形成した。所定のパターンを有するフォトマスクを介して、波長365nm、照度10mW/cmの紫外線を100秒間照射して、塗膜を硬化させた。次いで、硬化させた塗膜を有する基板を2.38重量%テトラメチルアンモニウムヒドロキシド水溶液からなる現像液中に5分間浸漬して、塗膜の未露光部を溶解させた。その後、流水で2分間リンスしたのち乾燥させ、コア部分を形成した。このように、コア部分は、露光して、アルカリ現像液で現像するアルカリ現像型のフォトリソグラフ法で作成する。
(B) Formation of core part Next, the composition for cores was apply | coated with the slit coater on the lower clad layer, and the coating film was formed. The formed coating film was pre-baked using an oven at 100 ° C. for 60 minutes to form a coating film having a thickness of 50 μm. The coating film was cured by irradiating ultraviolet rays having a wavelength of 365 nm and an illuminance of 10 mW / cm 2 for 100 seconds through a photomask having a predetermined pattern. Next, the substrate having the cured coating film was immersed in a developer composed of a 2.38 wt% tetramethylammonium hydroxide aqueous solution for 5 minutes to dissolve the unexposed portion of the coating film. Then, after rinsing with running water for 2 minutes, it was dried to form a core part. As described above, the core portion is formed by an alkali development type photolithographic method in which the core portion is exposed and developed with an alkali developer.

(c)上部クラッド層の形成
次いで、コア部分を有する下部クラッド層の上面に、クラッド用組成物をスリットコータで塗布して塗膜を形成し、オーブンを用いて100℃、60分の条件で塗膜をプリベークした。その後、波長365nm、照度10mW/cmの紫外線を100秒間照射することにより上部クラッド層を形成した。
(C) Formation of upper clad layer Next, a clad composition is applied to the upper surface of the lower clad layer having the core portion by a slit coater to form a coating film, and using an oven at 100 ° C. for 60 minutes. The coating was pre-baked. Thereafter, an upper clad layer was formed by irradiating ultraviolet rays having a wavelength of 365 nm and an illuminance of 10 mW / cm 2 for 100 seconds.

なお、本発明は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

本実施の形態に係る光学式位置センサーの構造概略図である。It is the structure schematic of the optical position sensor which concerns on this Embodiment. 本実施の形態に係る光学式位置センサーの構造概略図の他の例である。It is another example of the structure schematic of the optical position sensor which concerns on this Embodiment. 本発明の実施の形態に係る光学式位置センサーの製造方法一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the optical position sensor which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10 入力用光部品 11 発光源 12 発光部 13 入力用導光部 14 レンズ
20 受光用光部品 21 受光素子 22 受光部23 受光用導光部 24 レンズ
DESCRIPTION OF SYMBOLS 10 Input optical component 11 Light emission source 12 Light emission part 13 Input light guide part 14 Lens 20 Light reception optical part 21 Light receiving element 22 Light reception part 23 Light reception light guide part 24 Lens

Claims (7)

近赤外の発光源において発光した光を入射し、入射した光を複数の末端からコリメート用のレンズへ出射する高分子導波路からなる入力用導光部と、
前記入力用導光部から出射された光を末端から入射し、入射した光を近赤外の受光素子へ出射する複数の高分子導波路からなる受光用導光部とを、備え、
前記高分子導波路を構成するコア部分が、感光性樹脂組成物の硬化物である光学式位置センサー部品。
A light guide for input composed of a polymer waveguide that enters light emitted from a near-infrared light source and emits the incident light from a plurality of ends to a collimating lens;
A light-receiving light-guiding unit composed of a plurality of polymer waveguides that enter the light emitted from the input light-guiding unit from the end and emit the incident light to the near-infrared light-receiving element,
An optical position sensor component in which a core portion constituting the polymer waveguide is a cured product of a photosensitive resin composition.
前記感光性樹脂組成物は、
(A)少なくともヒドロキシアルキル(メタ)アクリレートと(メタ)アクリル酸をモノマーとする共重合体と、分子中に1個以上の(メタ)アクリロキシ基を含有するイソシアネート化合物との付加物、
(B)分子中に1個以上のエチレン性不飽和基を含有する化合物(ただし、上記(A)成分は除く)、
(C)光重合開始剤、
を含有する、請求項1に記載の光学式位置センサー部品。
The photosensitive resin composition is
(A) an adduct of a copolymer having at least hydroxyalkyl (meth) acrylate and (meth) acrylic acid as monomers, and an isocyanate compound containing one or more (meth) acryloxy groups in the molecule;
(B) a compound containing one or more ethylenically unsaturated groups in the molecule (however, the above component (A) is excluded),
(C) a photopolymerization initiator,
The optical position sensor component according to claim 1, comprising:
前記(A)成分が、エチレン性不飽和含有芳香族化合物、脂環式アルキル(メタ)アクリレート、及び分岐してもよいアルキル(メタ)アクリレートの中から選ばれる1種以上のモノマー、並びにヒドロキシアルキル(メタ)アクリレート及び(メタ)アクリル酸をモノマーとする共重合体と、分子中に1個以上の(メタ)アクリロキシ基を含有するイソシアネート化合物との付加物である、請求項2に記載の光学式位置センサー部品。   The component (A) is one or more monomers selected from ethylenically unsaturated-containing aromatic compounds, alicyclic alkyl (meth) acrylates, and optionally branched alkyl (meth) acrylates, and hydroxyalkyl The optical component according to claim 2, which is an adduct of a copolymer containing (meth) acrylate and (meth) acrylic acid as a monomer and an isocyanate compound containing one or more (meth) acryloxy groups in the molecule. Type position sensor parts. 入力用光部品と、
前記入力用光部品と平面基板上に対向して配置される受光用光部品と、を備え、
前記入力用光部品は、
近赤外の発光源と、
複数のコリメート用のレンズと、
前記近赤外の発光源において発光した光を入射する端部と、入射した光を前記複数のコリメート用のレンズへ出射する複数の末端を有する高分子導波路からなる入力用導光部と、を含み、
前記受光用光部品は、
複数の近赤外の受光素子と、
前記入力用導光部が出射した光を入射する末端と、入射した光を前記複数の近赤外の受光素子へ出射する他の末端を有する複数の高分子導波路からなる受光用導光部と、を含み、
前記高分子導波路を構成するコア部分が感光性樹脂組成物の硬化物である光学式位置センサー。
Input optical components,
The optical component for input and the optical component for light receiving disposed opposite to the flat substrate,
The input optical component is:
A near-infrared light source;
Multiple collimating lenses,
An input light-guiding unit composed of a polymer waveguide having an end portion for incident light emitted from the near-infrared light source and a plurality of ends for emitting incident light to the plurality of collimating lenses; Including
The light receiving optical component is:
A plurality of near-infrared light receiving elements;
A light receiving light guide unit composed of a plurality of polymer waveguides having a terminal for entering the light emitted from the light guiding unit for input and another terminal for emitting the incident light to the plurality of near-infrared light receiving elements. And including
An optical position sensor in which a core portion constituting the polymer waveguide is a cured product of a photosensitive resin composition.
一つの端部と複数の末端を有する高分子導波路からなる入力用導光部、及び複数の高分子導波路からなる受光用導光部を、感光性樹脂組成物を硬化させて作製するステップと、
前記入力用導光部が有する複数の末端にコリメート用のレンズを配するステップと、
前記端部に近赤外の発光源を配するステップと、
前記受光用導光部を構成する高分子導波路それぞれに近赤外の受光素子を配するステップと、
を有する光学式位置センサーの製造方法。
A step of producing a light guide for input composed of a polymer waveguide having one end and a plurality of ends, and a light guide for light reception composed of a plurality of polymer waveguides by curing the photosensitive resin composition. When,
Arranging collimating lenses at a plurality of ends of the input light guide; and
Disposing a near-infrared light source at the end;
Arranging a near-infrared light receiving element in each of the polymer waveguides constituting the light receiving light guide; and
The manufacturing method of the optical position sensor which has this.
前記感光性樹脂組成物を硬化させて作製するステップは、前記高分子導波路を構成するコア部分をアルカリ現像型のフォトリソグラフ法で製作することを特徴とする請求項5記載の光学式位置センサーの製造方法。   6. The optical position sensor according to claim 5, wherein in the step of curing the photosensitive resin composition, the core portion constituting the polymer waveguide is manufactured by an alkali development type photolithographic method. Manufacturing method. 前記感光性樹脂組成物は、
(A)少なくともヒドロキシアルキル(メタ)アクリレートと(メタ)アクリル酸をモノマーとする共重合体と、分子中に1個以上の(メタ)アクリロキシ基を含有するイソシアネート化合物との付加物
(B)分子中に1個以上のエチレン性不飽和基を含有する化合物(ただし、上記(A)成分は除く)
(C)光重合開始剤
を含有する、請求項5または6記載の光学式位置センサーの製造方法。
The photosensitive resin composition is
(A) Adduct (B) molecule comprising a copolymer having at least hydroxyalkyl (meth) acrylate and (meth) acrylic acid as monomers, and an isocyanate compound containing one or more (meth) acryloxy groups in the molecule Compounds containing one or more ethylenically unsaturated groups (excluding the component (A) above)
(C) The manufacturing method of the optical position sensor of Claim 5 or 6 containing a photoinitiator.
JP2007018024A 2006-02-10 2007-01-29 Optical position sensor component, optical position sensor and manufacturing method thereof Expired - Fee Related JP4853311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007018024A JP4853311B2 (en) 2006-02-10 2007-01-29 Optical position sensor component, optical position sensor and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006033695 2006-02-10
JP2006033695 2006-02-10
JP2007018024A JP4853311B2 (en) 2006-02-10 2007-01-29 Optical position sensor component, optical position sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007240520A true JP2007240520A (en) 2007-09-20
JP4853311B2 JP4853311B2 (en) 2012-01-11

Family

ID=38586183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007018024A Expired - Fee Related JP4853311B2 (en) 2006-02-10 2007-01-29 Optical position sensor component, optical position sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4853311B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015247A (en) * 2008-07-01 2010-01-21 Nitto Denko Corp Optical touch panel and manufacturing method therefor
JP2010032378A (en) * 2008-07-29 2010-02-12 Nitto Denko Corp Optical waveguide for three-dimensional sensor and three-dimensional sensor using the same
JP2013522801A (en) * 2010-03-24 2013-06-13 ネオノード インコーポレイテッド Lens array for light-based touch screen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514779A (en) * 1997-03-14 2001-09-11 ポア・サナ,エル エル シー User input device for computer system
JP2003202437A (en) * 2001-12-28 2003-07-18 Jsr Corp Radiation-curable dry film for forming optical waveguide, optical waveguide using the same and method for manufacturing the optical waveguide
US20040201579A1 (en) * 2003-04-08 2004-10-14 Poa Sana, Inc., A California Corporation Apparatus and method for a data input device using a light lamina screen and an optical position digitizer
US20060002655A1 (en) * 2004-06-30 2006-01-05 National Semiconductor Corporation, A Delaware Corporation Apparatus and method for making flexible waveguide substrates for use with light based touch screens
JP2006039154A (en) * 2004-07-26 2006-02-09 Jsr Corp Photosensitive resin composition, optical waveguide and method for manufacturing the same
JP2008033239A (en) * 2006-07-05 2008-02-14 Jsr Corp Photosensitive resin composition for optical waveguide, dry film, optical waveguide and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514779A (en) * 1997-03-14 2001-09-11 ポア・サナ,エル エル シー User input device for computer system
JP2003202437A (en) * 2001-12-28 2003-07-18 Jsr Corp Radiation-curable dry film for forming optical waveguide, optical waveguide using the same and method for manufacturing the optical waveguide
US20040201579A1 (en) * 2003-04-08 2004-10-14 Poa Sana, Inc., A California Corporation Apparatus and method for a data input device using a light lamina screen and an optical position digitizer
US20060002655A1 (en) * 2004-06-30 2006-01-05 National Semiconductor Corporation, A Delaware Corporation Apparatus and method for making flexible waveguide substrates for use with light based touch screens
JP2006039154A (en) * 2004-07-26 2006-02-09 Jsr Corp Photosensitive resin composition, optical waveguide and method for manufacturing the same
JP2008033239A (en) * 2006-07-05 2008-02-14 Jsr Corp Photosensitive resin composition for optical waveguide, dry film, optical waveguide and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015247A (en) * 2008-07-01 2010-01-21 Nitto Denko Corp Optical touch panel and manufacturing method therefor
JP2010032378A (en) * 2008-07-29 2010-02-12 Nitto Denko Corp Optical waveguide for three-dimensional sensor and three-dimensional sensor using the same
JP2013522801A (en) * 2010-03-24 2013-06-13 ネオノード インコーポレイテッド Lens array for light-based touch screen

Also Published As

Publication number Publication date
JP4853311B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
KR101265319B1 (en) Photosensitive Resin Composition for Optical Waveguides, and Optical Waveguide and Manufacturing Method thereof
JP4518089B2 (en) Photosensitive resin composition for optical waveguide, dry film, optical waveguide and method for producing the same
JP5513965B2 (en) Solder resist composition and printed wiring board
TWI454761B (en) Optical waveguide
JP2014041181A (en) Substrate with lens and production method therefor, and optical waveguide with lens
JP2008542797A (en) Optical film, method for producing the same, and method for using the same
JP4853311B2 (en) Optical position sensor component, optical position sensor and manufacturing method thereof
WO2015029261A1 (en) Resin composition for forming optical waveguide, resin film for forming optical waveguide, and optical waveguide using same
JP2008116522A (en) Curable resin composition for forming antireflection film for microlens and antireflection film for microlens
JP4186462B2 (en) Method for forming optical waveguide
US8620127B2 (en) Optical waveguide and method for manufacturing the same
US7352943B2 (en) Optical position sensing component, optical position sensing device, and manufacturing method thereof
KR101918661B1 (en) Photoresist composition and method of forming a color filter using the same
JPH11202740A (en) Refractive index distribution forming material and holographic dry plate
JP2006039154A (en) Photosensitive resin composition, optical waveguide and method for manufacturing the same
US20020192601A1 (en) Process for the production of film having refractive index distribution
CN101855579A (en) Resin composition for optical waveguide and optical waveguide
KR20210038940A (en) Composition
JP2014048493A (en) Optical member and optical device
JP5548136B2 (en) ADAMANTAN DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND CURED PRODUCT COMPRISING ADAMANTAN DERIVATIVE
TW201426051A (en) Method of manufacturing optical waveguide and optical waveguide obtained by using the method
JP2011090089A (en) Photosensitive composition, color filter using the same, and liquid crystal display and organic el display using the color filter
JP7048332B2 (en) Photosensitive transfer material and its manufacturing method, resin pattern manufacturing method, and circuit wiring manufacturing method.
JP5007637B2 (en) Color filter for transflective liquid crystal display device and manufacturing method thereof
TW202336171A (en) Polymer, curable resin composition, cured object, solid state imaging element, and image display apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees