JP2007239482A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2007239482A
JP2007239482A JP2006059311A JP2006059311A JP2007239482A JP 2007239482 A JP2007239482 A JP 2007239482A JP 2006059311 A JP2006059311 A JP 2006059311A JP 2006059311 A JP2006059311 A JP 2006059311A JP 2007239482 A JP2007239482 A JP 2007239482A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006059311A
Other languages
Japanese (ja)
Other versions
JP4788403B2 (en
Inventor
Takane Hayashi
孝根 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006059311A priority Critical patent/JP4788403B2/en
Publication of JP2007239482A publication Critical patent/JP2007239482A/en
Application granted granted Critical
Publication of JP4788403B2 publication Critical patent/JP4788403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve startability, fuel economy and an exhaust emission composition in a vehicle including an operation mode temporarily stopping an internal combustion engine such as a hybrid vehicle. <P>SOLUTION: An air-fuel ratio range determination means determining whether an output from an air fuel-ratio sensor is in a predetermined air fuel ratio range at the restart of the internal combustion engine by motoring is provided. Air-fuel ratio feedback control is started under a condition that an output from the air-fuel ratio sensor is in the predetermined air fuel ratio range after the restart. Consequently, startability at the restart, operability, fuel economy and exhaust emission performance after a start can be improved since feedback control is started at an early stage only when an air fuel-ratio range is appropriate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の空燃比制御装置に関し、より詳しくは走行中に内燃機関を一時的に停止させる運転条件を有する車両に適した空燃比制御装置の改良に関するものである。   The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine, and more particularly to an improvement of an air-fuel ratio control apparatus suitable for a vehicle having an operating condition for temporarily stopping the internal combustion engine during traveling.

車両用の内燃機関では、排気空燃比センサからの信号に基づいて目標空燃比が得られるように燃料供給量をフィードバック制御する空燃比制御装置を備えたものが一般的である。このような内燃機関を、ハイブリッド車両やアイドルストップ車両など、走行中に内燃機関を一時的に停止させる運転条件を有する車両に搭載した場合の問題点として、内燃機関を停止している間に空燃比センサの活性が低下して再始動時に速やかに空燃比制御を開始できないという不都合が指摘される。   In general, an internal combustion engine for a vehicle includes an air-fuel ratio control device that feedback-controls a fuel supply amount so that a target air-fuel ratio is obtained based on a signal from an exhaust air-fuel ratio sensor. As a problem when such an internal combustion engine is mounted on a vehicle having an operating condition for temporarily stopping the internal combustion engine while traveling, such as a hybrid vehicle or an idle stop vehicle, the engine is idle while the internal combustion engine is stopped. It is pointed out that the air-fuel ratio control cannot be started immediately upon restart because the activity of the fuel ratio sensor is reduced.

この対策として、特許文献1には、機関停止中にも空燃比センサのヒータを運転中と同様に作動させることで再始動後に早期に空燃比制御を開始できるようにしたものが開示されている。また、特許文献2に開示されたものでは、内燃機関の停止中は空燃比センサのヒータ電流を運転中よりも低めに設定して消費電流を抑えつつ、再始動後に早期に空燃比制御を開始できるようにしている。
特開平9−88688号公報 特開2003−148206号公報
As a countermeasure, Patent Document 1 discloses that the air-fuel ratio control can be started early after restarting by operating the heater of the air-fuel ratio sensor in the same manner as during operation even when the engine is stopped. . Further, in the one disclosed in Patent Document 2, the air-fuel ratio control is started early after restarting while setting the heater current of the air-fuel ratio sensor to be lower than that during operation while the internal combustion engine is stopped, and suppressing the consumption current. I can do it.
JP-A-9-88688 JP 2003-148206 A

ハイブリッド車両では、内燃機関のアイドリング条件時または車両停止時に限らず、車両が走行している条件下でも内燃機関を停止する運転モードがあり、このような運転モードでは、駆動力を発生している電動機との間での動力の断続を円滑に行わせるために、再始動時により速やかに動力を発生させる必要があり、このためモータリングという操作により冷間始動時よりも高速回転で再始動を行って完爆させるようにしている。   A hybrid vehicle has an operation mode in which the internal combustion engine is stopped not only when the internal combustion engine is idling or when the vehicle is stopped, but also when the vehicle is running. In such an operation mode, a driving force is generated. In order to smoothly switch power to and from the electric motor, it is necessary to generate power more quickly at the time of restart.For this reason, the motoring operation restarts at a higher speed than at the cold start. I'm going to go to complete explosion.

しかしながら、このようなモータリング時にかかわらず早期に空燃比フィードバック制御が開始されてしまうと、モータリング時には完爆までに多くの燃料を供給する必要があるので、フィードバック制御によってかえって燃焼や始動性が悪化することがある。   However, if air-fuel ratio feedback control is started early regardless of such motoring, it is necessary to supply a large amount of fuel before the complete explosion during motoring. May get worse.

本発明は、車両の走行条件に応じて一時的に内燃機関の運転を停止させる運転制御装置と、排気空燃比センサからの信号に基づいて目標空燃比が得られるように燃料供給量をフィードバック制御する空燃比制御装置とを備え、前記運転制御装置は、前記一時的な停止状態からの内燃機関の再始動時に、モータリングにより高速回転で完爆を行わせるように構成されている内燃機関の制御装置である。   The present invention provides an operation control device for temporarily stopping the operation of an internal combustion engine according to a running condition of a vehicle, and feedback control of a fuel supply amount so that a target air-fuel ratio is obtained based on a signal from an exhaust air-fuel ratio sensor An air-fuel ratio control device that performs a complete explosion at high speed by motoring when the internal combustion engine is restarted from the temporarily stopped state. It is a control device.

本発明では、内燃機関の前記再始動後に、前記空燃比センサからの出力が所定の空燃比範囲であるか否かを判定する空燃比範囲判定手段を設け、前記再始動後は、前記空燃比センサからの出力が所定の空燃比範囲内であることを条件として空燃比フィードバック制御を開始するように前記空燃比制御装置を構成した。   In the present invention, after the restart of the internal combustion engine, air-fuel ratio range determination means for determining whether or not the output from the air-fuel ratio sensor is within a predetermined air-fuel ratio range is provided. The air-fuel ratio control apparatus is configured to start air-fuel ratio feedback control on condition that the output from the sensor is within a predetermined air-fuel ratio range.

本発明によれば、制御目標値外の、通常はより小さな空燃比が適用されるモータリング状態下にあっても、実際の空燃比が所定の許容範囲内すなわち空燃比フィードバック制御を開始しても差し支えない範囲内に入るまでは空燃比フィードバック制御が開始されないので、モータリングの間に空燃比フィードバック制御がなされて燃焼性や始動性が悪化するおそれがなく、かつ再始動後は可能な限り早期に空燃比フィードバック制御を開始できるので、ハイブリッド車両など内燃機関を一時的に停止する運転モードを有する車両において、その始動性や燃費、排気組成を改善することができる。   According to the present invention, the actual air-fuel ratio is within the predetermined allowable range, that is, the air-fuel ratio feedback control is started even under the motoring condition where the smaller air-fuel ratio is applied outside the control target value. However, air-fuel ratio feedback control is not started until it falls within the acceptable range, so air-fuel ratio feedback control is performed during motoring, and there is no possibility of deterioration in combustibility and startability, and after restart as much as possible Since air-fuel ratio feedback control can be started at an early stage, the startability, fuel consumption, and exhaust composition can be improved in a vehicle having an operation mode in which the internal combustion engine is temporarily stopped, such as a hybrid vehicle.

以下、本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態を示す機関システム図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an engine system diagram showing an embodiment of the present invention.

内燃機関1の吸気通路2にはその途中にスロットル弁3が介装されている。燃料供給は、各気筒毎に設けた燃料噴射弁4によりなされる。   A throttle valve 3 is interposed in the intake passage 2 of the internal combustion engine 1 in the middle thereof. The fuel is supplied by a fuel injection valve 4 provided for each cylinder.

蒸発燃料処理装置としては、燃料タンク5にて発生する蒸発燃料を蒸発燃料導入通路6により導いて一時的に吸着するキャニスタ7が設けられている。キャニスタ7は、容器内に活性炭などの吸着材8を充填したものである。   The evaporative fuel processing apparatus is provided with a canister 7 that guides the evaporative fuel generated in the fuel tank 5 through the evaporative fuel introduction passage 6 and temporarily adsorbs it. The canister 7 is a container filled with an adsorbent 8 such as activated carbon.

キャニスタ7には、新気導入口(大気開放口)9が形成されると共に、パージ通路10が導出されている。パージ通路10は、パージバルブ11を介して、スロットル弁3下流の吸気通路2に接続されている。パージバルブ11は、エンジンコントロールユニット(以下ECUという)20から出力される信号により開弁する。12は排気通路、13はその途中に介装された触媒コンバータ、14は触媒コンバータ13の上流側に位置し排気空燃比を検出する空燃比センサである。   The canister 7 is formed with a fresh air inlet (atmospheric opening) 9 and a purge passage 10 is led out. The purge passage 10 is connected to the intake passage 2 downstream of the throttle valve 3 via the purge valve 11. The purge valve 11 is opened by a signal output from an engine control unit (hereinafter referred to as ECU) 20. Reference numeral 12 is an exhaust passage, 13 is a catalytic converter interposed in the middle, and 14 is an air-fuel ratio sensor that is located upstream of the catalytic converter 13 and detects an exhaust air-fuel ratio.

内燃機関1の停止中などに燃料タンク5にて発生した蒸発燃料は、蒸発燃料導入通路6によりキャニスタ7に導かれて、ここに吸着される。そして、内燃機関1が始動されて、所定のパージ許可条件が成立すると、パージバルブ11が開き、内燃機関1の吸入負圧がキャニスタ7に作用する結果、新気導入口9から導入される新気によってキャニスタ7に吸着されていた蒸発燃料が脱離され、この脱離した蒸発燃料を含むパージガスがパージ通路10を通って吸気マニホールド4内に吸入され、この後、内燃機関1の燃焼室内で燃焼処理される。   The evaporated fuel generated in the fuel tank 5 while the internal combustion engine 1 is stopped is guided to the canister 7 by the evaporated fuel introduction passage 6 and adsorbed thereto. When the internal combustion engine 1 is started and a predetermined purge permission condition is satisfied, the purge valve 11 is opened, and the intake negative pressure of the internal combustion engine 1 acts on the canister 7, so that fresh air introduced from the fresh air inlet 9 is obtained. The vaporized fuel adsorbed by the canister 7 is desorbed by this, and the purge gas containing the desorbed vaporized fuel is sucked into the intake manifold 4 through the purge passage 10 and then burned in the combustion chamber of the internal combustion engine 1. It is processed.

ECU20は、CPUおよびその周辺装置からなるマイクロコンピュータにより構成されており、車両の走行条件に応じて一時的に内燃機関1の運転を停止させる運転制御装置と、前記排気空燃比センサ14からの信号に基づいて目標空燃比が得られるように燃料供給量をフィードバック制御する空燃比制御装置としての機能を備えている。ECU20は、前記運転制御装置としての基本的な制御動作として、前記の一時的な停止状態からの内燃機関1の再始動時に、モータリングにより冷間始動時よりも高速回転で完爆を行わせるように構成されている。また、空燃比制御装置としては、前記排気空燃比センサ14からの空燃比信号および図示しない他のセンサ類からの機関回転数Ne、吸入空気量Qa、冷却水温度Tw等の運転状態信号の入力に基づいて燃料噴射装置に対する燃料噴射量指令値を出力する。さらに、機関の再始動後は、前記空燃比センサ14からの出力が所定の空燃比範囲内であることを条件として空燃比フィードバック制御を開始する。すなわち、ECU20は、本願発明との関係では、空燃比センサ14からの出力が所定の空燃比範囲であるか否かを判定する空燃比範囲判定手段としての機能をも備えている。   The ECU 20 is composed of a microcomputer comprising a CPU and its peripheral devices, and an operation control device that temporarily stops the operation of the internal combustion engine 1 in accordance with the running conditions of the vehicle, and a signal from the exhaust air-fuel ratio sensor 14. Is provided with a function as an air-fuel ratio control device that feedback-controls the fuel supply amount so that the target air-fuel ratio can be obtained based on the above. As a basic control operation as the operation control device, the ECU 20 causes the motoring to complete the explosion at a higher speed than the cold start by motoring when the internal combustion engine 1 is restarted from the temporarily stopped state. It is configured as follows. As the air-fuel ratio control device, the air-fuel ratio signal from the exhaust air-fuel ratio sensor 14 and the operation state signals such as the engine speed Ne, the intake air amount Qa, and the cooling water temperature Tw from other sensors (not shown) are input. Based on this, a fuel injection amount command value for the fuel injection device is output. Further, after the engine is restarted, air-fuel ratio feedback control is started on the condition that the output from the air-fuel ratio sensor 14 is within a predetermined air-fuel ratio range. That is, in relation to the present invention, the ECU 20 also has a function as air-fuel ratio range determination means for determining whether or not the output from the air-fuel ratio sensor 14 is within a predetermined air-fuel ratio range.

なお、ECU20は前述したように車両の走行条件に応じて内燃機関1の停止または再始動を実行するが、このようなハイブリッド車両制御における内燃機関の運転または運転停止の制御パターンは目的や仕様に応じて種々様々である。一般的にはモータのみでは駆動力が不足する高負荷走行条件またはバッテリ充電が必要な条件の下で内燃機関が運転され、それ以外の条件下では内燃機関は停止するように制御される。   As described above, the ECU 20 executes the stop or restart of the internal combustion engine 1 in accordance with the traveling condition of the vehicle. The control pattern of the operation or stop of the internal combustion engine in such hybrid vehicle control depends on the purpose and the specification. There are various variations depending on the situation. In general, the internal combustion engine is operated under a high-load running condition where the driving force is insufficient with a motor alone or under a condition that requires battery charging, and the internal combustion engine is controlled to stop under other conditions.

図2は、機関停止および再始動の間に前記ECU20における制御機能部分をブロック図で示したもの、図3(図3−1〜図3−4)はECU20が一定時間毎または割り込み処理により周期的に実行する前記制御の主要部の制御ルーチンを流れ図で表したものである。以下、これらの図を参照しながらECU20の機関再始動時の制御につき説明する。なお、以下の説明および図3において符号Sは処理ステップ番号である。   FIG. 2 is a block diagram showing a control function portion of the ECU 20 during engine stop and restart. FIG. 3 (FIGS. 3-1 to 3-4) shows a cycle of the ECU 20 at regular intervals or by interruption processing. The control routine of the main part of the control to be executed automatically is represented by a flowchart. Hereinafter, the control of the ECU 20 when the engine is restarted will be described with reference to these drawings. In the following description and FIG. 3, the symbol S is a processing step number.

図2において、101は空燃比制御の許可判定部である。許可判定部101は、基本的には空燃比センサ14(図には「A/Fセンサ」と表記してある。)が活性化しており、かつ機関冷却水温度が所定の許可水温以上であり、かつ始動開始から所定の遅れ時間が経過していることを条件として空燃比フィードバック制御を許可し、前記何れかの条件でも満たされない場合には不許可とする。この動作は処理ルーチンとしては図3−1のS11〜S14に相当し、条件成立時には空燃比フィードバック制御の許可を示す許可フラグがセットされる。制御機能としては、前記判定のために、それぞれ活性条件判定部102、水温条件判定部103、始動後ディレイ条件判定部104が備えられている。活性条件判定部102では既知の判定手法、例えばセンサ温度が所定の基準値以上であること等に基づき、空燃比センサ14が活性状態にあるか否かを判定する。水温条件判定部103では、冷却水温度センサからの信号に基づき、機関冷却水温度が所定の許可水温以上であるか否かを判定する。始動後ディレイ条件判定部104では、始動時のスタータモータ起動時の機関冷却水温度に基づいて、低温時ほど増大するような特性でテーブル設定されたディレイ時間を設定し、当該ディレイ時間が経過したか否かをタイマにて判定する。   In FIG. 2, reference numeral 101 denotes an air-fuel ratio control permission determination unit. The permission determination unit 101 basically has the air-fuel ratio sensor 14 (indicated as “A / F sensor” in the figure) activated, and the engine cooling water temperature is equal to or higher than a predetermined permission water temperature. In addition, the air-fuel ratio feedback control is permitted on the condition that a predetermined delay time has elapsed since the start of the start, and is not permitted if none of the above conditions is satisfied. This operation corresponds to S11 to S14 in FIG. 3-1, as a processing routine, and a permission flag indicating permission of air-fuel ratio feedback control is set when the condition is satisfied. As control functions, an activation condition determination unit 102, a water temperature condition determination unit 103, and a post-start delay condition determination unit 104 are provided for the determination. The activation condition determination unit 102 determines whether or not the air-fuel ratio sensor 14 is in an active state based on a known determination method, for example, that the sensor temperature is equal to or higher than a predetermined reference value. The water temperature condition determination unit 103 determines whether or not the engine cooling water temperature is equal to or higher than a predetermined permitted water temperature based on a signal from the cooling water temperature sensor. The post-startup delay condition determination unit 104 sets a delay time set in a table with characteristics that increase as the temperature decreases based on the engine coolant temperature when the starter motor is started at the start, and the delay time has elapsed. Whether or not is determined by a timer.

前記始動後ディレイ時間判定部104は、車両システムがイグニッションスイッチのオン操作により最初に起動されたとき、すなわち運行開始時に作動するものであり、この他に、この制御系では車両運航開始後に前述したハイブリッド走行制御として一時的に内燃機関が停止され、その後に再始動されたときの始動後ディレイ判定の機能を含む再始動時条件判定部200を有する。図2において破線で囲んだ部分が再始動時条件判定部200である。前記再始動時条件判定部200は、主に早期化要求判断部201、第2の始動後ディレイ条件判定部202、空燃比(図には「A/F」と表記してある。)出力範囲条件判定部203からなる。   The post-start-up delay time determination unit 104 is activated when the vehicle system is first activated by turning on the ignition switch, that is, at the start of operation. The hybrid traveling control includes a restart condition determining unit 200 including a function of determining a delay after starting when the internal combustion engine is temporarily stopped and then restarted. In FIG. 2, a portion surrounded by a broken line is the restart condition determination unit 200. The restart condition determination unit 200 mainly includes an early request determination unit 201, a second post-start delay condition determination unit 202, and an air-fuel ratio (indicated as “A / F” in the drawing) output range. The condition determination unit 203 is included.

早期化要求判断部201は、前述した内燃機関の一時停止状態を判定して信号切換部105を操作し、前記許可判定部101への判定条件信号の出力元を、第1の始動後ディレイ条件判定部104または第2の始動後ディレイ条件判定部202を含む再始動時条件判定部側の何れかに切り換える機能を有する。これは処理ルーチンとしては図3−2のS21〜23に相当する。前記動作のために、早期化要求判定部201には、水温領域要求判定部201aと、センサ割れ防止要求制御部201bとを備えている。水温領域要求判定部201aは、再始動時の機関冷却水温度が所定の下限設定値A以上かつ上限設定値B未満という水温領域内にあるか否かを判定する。前記下限設定値Aは、前記の水温条件判定部103における許可水温よりも高く、内燃機関が暖機完了した状態に相当する水温に設定されている。センサ割れ防止要求制御部201bは、機関再始動時に空燃比センサ14のヒータ部に電流を供給する制御を行うことを前提として、ヒータ制御が許可されてセンサ加熱が開始されてから所定の遅れ時間を設定し、空燃比センサ14の破損を防止するためにその温度がある程度上昇するのを待つためのものである。この場合、前記センサ加熱開始時の機関冷却水温度に基づいて、低温時ほど増大するような特性でテーブル設定されたディレイ時間を設定し、当該ディレイ時間が経過したか否かをタイマにて判定する。   The early request determination unit 201 operates the signal switching unit 105 by determining the above-described temporarily stopped state of the internal combustion engine, and outputs the determination condition signal to the permission determination unit 101 as the first post-start delay condition. There is a function of switching to either the determination unit 104 or the restart condition determination unit including the second post-startup delay condition determination unit 202. This corresponds to S21 to 23 in FIG. For the above operation, the early request determination unit 201 includes a water temperature region request determination unit 201a and a sensor crack prevention request control unit 201b. The water temperature region request determination unit 201a determines whether or not the engine coolant temperature at the time of restart is within a water temperature region that is greater than or equal to a predetermined lower limit set value A and less than the upper limit set value B. The lower limit set value A is set to a water temperature that is higher than the permitted water temperature in the water temperature condition determination unit 103 and corresponds to a state in which the internal combustion engine has been warmed up. The sensor crack prevention request control unit 201b is assumed to perform control to supply current to the heater unit of the air-fuel ratio sensor 14 when the engine is restarted, and a predetermined delay time after the heater control is permitted and the sensor heating is started. Is set to wait for the temperature to rise to some extent in order to prevent the air-fuel ratio sensor 14 from being damaged. In this case, based on the engine coolant temperature at the start of the sensor heating, a delay time set in a table with characteristics that increase at lower temperatures is set, and a timer determines whether or not the delay time has elapsed. To do.

早期化要求判断部201では、前記水温領域要求判定部201aでの判定により、機関冷却水温度が前記所定領域内にあり、かつ前記センサ割れ防止要求制御部201bで前記所定のディレイ時間が経過していることを条件として、前記信号切換部105を第2の始動後ディレイ条件判定部202を含む再始動条件判定部側を許可判定部101に接続し、前記条件の何れかでも成立しない場合には第1の始動後ディレイ条件判定部104を許可判定部101に接続する。   In the early request determination unit 201, the engine coolant temperature is within the predetermined region and the predetermined delay time has elapsed in the sensor crack prevention request control unit 201b as determined by the water temperature region request determination unit 201a. If the restart condition determination unit side including the second post-start delay condition determination unit 202 is connected to the permission determination unit 101 on the condition that the signal switching unit 105 is not satisfied in any of the above conditions Connects the first post-start delay condition determination unit 104 to the permission determination unit 101.

第2の始動後ディレイ条件判定部202では、モータリング(再始動時のスタータモータ起動)時の機関冷却水温度に基づいて、低温時ほど増大するような特性でテーブル設定されたディレイ時間を設定し、当該ディレイ時間が経過したか否かをタイマにて判定する。これは処理ルーチンとしては図3−3のS31〜S36に相当し、前記ディレイ条件成立時には条件成立フラグがセットされる。本発明との関係では、前記第2のディレイ条件判定部202が遅延時間設定手段に相当する。   The second post-startup delay condition determination unit 202 sets a delay time set in a table with characteristics that increase at lower temperatures based on the engine coolant temperature during motoring (starter motor activation at restart). The timer determines whether the delay time has elapsed. This corresponds to S31 to S36 in FIG. 3-3 as a processing routine, and a condition satisfaction flag is set when the delay condition is satisfied. In relation to the present invention, the second delay condition determination unit 202 corresponds to a delay time setting unit.

空燃比出力範囲条件判定部203は、空燃比出力範囲判定部203aと、強制開始判定部203bとからなる。空燃比出力範囲判定部203aは、再始動後の空燃比フィードバック制御開始条件の一つとして、排気空燃比範囲が所定範囲にあるか否かを判定し、強制開始判定部203bは前記空燃比範囲の如何に関わらず、再始動から一定時間が経過したときには強制的に空燃比フィードバック制御の開始を許可する。本発明との関係では、前記空燃比出力範囲判定部203aは空燃比範囲判定手段に相当する。詳細について、まず強制開始判定部203bから説明すると、判定条件としてスタータスイッチの操作と前記空燃比センサ14のヒータ制御の開始を判定し、これらからモータリングまたは再始動のためのヒータ制御の開始の何れかを判定したときは、タイマにより所定時間Aの経過を判定し、経過した場合には空燃比フィードバック制御の開始を許可する。これは処理ルーチンとしては図3−4のS41〜S45、S50に相当し、前記許可条件が成立したときには条件成立フラグをセットする。一方、空燃比出力範囲判定部203aでは、空燃比センサ14からの出力に基づき、再始動時の排気空燃比が所定の下限設定値A以上かつ上限設定値B未満であり、かつその状態が所定時間以上継続したか否かをタイマでカウントし、排気空燃比が前記所定空燃比範囲内である状態が所定時間以上継続した場合には空燃比フィードバック制御を許可すべく許可フラグ処理を行う。これは処理ルーチンとしては図3−4のS46〜S50に相当する。なお前記許可フラグは機関停止時にリセットされる。   The air-fuel ratio output range condition determination unit 203 includes an air-fuel ratio output range determination unit 203a and a forced start determination unit 203b. The air-fuel ratio output range determination unit 203a determines whether the exhaust air-fuel ratio range is within a predetermined range as one of the air-fuel ratio feedback control start conditions after restart, and the forced start determination unit 203b Regardless of the case, the start of the air-fuel ratio feedback control is forcibly permitted when a certain time has elapsed since the restart. In relation to the present invention, the air-fuel ratio output range determination unit 203a corresponds to air-fuel ratio range determination means. Details will be described first from the forced start determination unit 203b. As a determination condition, the starter switch operation and the start of heater control of the air-fuel ratio sensor 14 are determined, and from these, the start of heater control for motoring or restart is determined. When either one is determined, the elapse of the predetermined time A is determined by the timer, and when the elapses, the start of the air-fuel ratio feedback control is permitted. This corresponds to S41 to S45 and S50 in FIG. 3-4 as a processing routine. When the permission condition is satisfied, a condition satisfaction flag is set. On the other hand, in the air-fuel ratio output range determination unit 203a, based on the output from the air-fuel ratio sensor 14, the exhaust air-fuel ratio at the time of restart is greater than or equal to a predetermined lower limit set value A and less than the upper limit set value B, and the state is predetermined Whether the exhaust air / fuel ratio is within the predetermined air / fuel ratio range is counted by a timer. When the exhaust air / fuel ratio remains within the predetermined air / fuel ratio range for a predetermined time or longer, permission flag processing is performed to permit air / fuel ratio feedback control. This corresponds to S46 to S50 in FIG. The permission flag is reset when the engine is stopped.

空燃比出力範囲条件判定部203では、前記空燃比出力範囲判定部203aまたは強制開始判定部203bの何れかの判定により条件成立フラグが立ったときに許可信号を出力する。このとき、前記第2の始動後ディレイ条件判定部からも条件成立の信号が出力されている場合には、許可判定部101に対して許可信号が出力され、このとき空燃比センサ活性条件、水温条件が共に成立していれば、空燃比フィードバック制御が許可される。この動作は処理ルーチンとしては図3−2のS23〜S25に相当する。   The air-fuel ratio output range condition determination unit 203 outputs a permission signal when a condition satisfaction flag is set by the determination of either the air-fuel ratio output range determination unit 203a or the forced start determination unit 203b. At this time, if a condition satisfaction signal is also output from the second post-start delay condition determination unit, a permission signal is output to the permission determination unit 101. At this time, the air-fuel ratio sensor activation condition, the water temperature If both conditions are satisfied, air-fuel ratio feedback control is permitted. This operation corresponds to S23 to S25 in FIG.

前記制御に基づき、ハイブリッド制御の間の一時的な停止状態から内燃機関を再始動させるときの空燃比範囲が所定の範囲内にあるときには速やかに空燃比フィードバック制御を開始させることができるので、空燃比フィードバック制御を早期に実施する機会を確保して再始動時の始動性を改善し、始動後の内燃機関の運転性や燃費、排気性能等を改善することができる。また、この実施形態では前記再始動時にモータリングから一定時間が経過したときには強制的に空燃比フィードバック制御を開始させるようにしている。この強制的な空燃比フィードバック制御の実施により、もしも空燃比センサ14が故障していたとしてもこれを早期に検出することが可能となる。   Based on the above control, when the air-fuel ratio range when the internal combustion engine is restarted from the temporarily stopped state during the hybrid control is within a predetermined range, the air-fuel ratio feedback control can be started promptly. It is possible to improve the startability at the time of restart by securing an opportunity to implement the fuel ratio feedback control at an early stage, and to improve the drivability, fuel consumption, exhaust performance, etc. of the internal combustion engine after the start. In this embodiment, the air-fuel ratio feedback control is forcibly started when a predetermined time has elapsed from the motoring during the restart. By performing this forced air-fuel ratio feedback control, even if the air-fuel ratio sensor 14 is out of order, this can be detected early.

また、この実施形態のように蒸発燃焼処理装置を備えた内燃機関では、前記空燃比フィードバック制御の開始許可以後にパージを行うように構成することで、空燃比フィードバック制御の開始と共に早期にパージを開始させてパージ量を増加させることができ、蒸発燃料を効率よく処理することが可能となる。   Further, in the internal combustion engine having the evaporative combustion processing apparatus as in this embodiment, the purge is performed early after the start of the air-fuel ratio feedback control by configuring the purge after the start of the air-fuel ratio feedback control. The amount of purge can be increased by starting, and the evaporated fuel can be processed efficiently.

本発明の一実施形態を示すシステム図。1 is a system diagram showing an embodiment of the present invention. 実施形態の制御機能を表すブロック図。The block diagram showing the control function of an embodiment. 実施形態の制御内容を表す第1の流れ図。The 1st flowchart showing the control contents of an embodiment. 実施形態の制御内容を表す第2の流れ図。The 2nd flowchart showing the control contents of an embodiment. 実施形態の制御内容を表す第3の流れ図。The 3rd flowchart showing the control contents of an embodiment. 実施形態の制御内容を表す第4の流れ図。The 4th flowchart showing the control contents of an embodiment.

符号の説明Explanation of symbols

1 内燃機関
2 エアクリーナ
3 スロットル弁
4 燃料噴射弁
5 燃料タンク
7 キャニスタ
12 排気通路
13 触媒コンバータ
14 排気空燃比センサ
20 ECU
101 許可判定部
102 空燃比センサ活性条件判定部
103 水温条件判定部
104 第1の始動後ディレイ条件判定部
105 出力切換部
200 再始動時条件判定部
201 早期化要求判断部
202 第2の始動後ディレイ条件判定部(遅延時間設定手段)
203 空燃比出力範囲条件判定部(空燃比範囲判定手段)
1 Internal combustion engine 2 Air cleaner 3 Throttle valve 4 Fuel injection valve 5 Fuel tank 7 Canister 12 Exhaust passage 13 Catalytic converter 14 Exhaust air / fuel ratio sensor 20 ECU
101 permission determination unit 102 air-fuel ratio sensor activation condition determination unit 103 water temperature condition determination unit 104 first post-startup delay condition determination unit 105 output switching unit 200 restart condition determination unit 201 early request determination unit 202 after second start-up Delay condition judgment unit (delay time setting means)
203 Air-fuel ratio output range condition determination unit (air-fuel ratio range determination means)

Claims (5)

車両の走行条件に応じて一時的に内燃機関の運転を停止させる運転制御装置と、空燃比センサからの信号に基づいて目標空燃比が得られるように燃料供給量をフィードバック制御する空燃比制御装置とを備え、前記運転制御装置は、前記一時的な停止状態からの内燃機関の再始動時に、モータリングにより高速回転で完爆を行わせるように構成されている内燃機関の制御装置において、
内燃機関の前記再始動後に、前記空燃比センサからの出力が所定の空燃比範囲であるか否かを判定する空燃比範囲判定手段を設け、
前記再始動後は、前記空燃比センサからの出力が所定の空燃比範囲内であることを条件として空燃比フィードバック制御を開始するように前記空燃比制御装置を構成したこと
を特徴とする内燃機関の制御装置。
An operation control device that temporarily stops the operation of the internal combustion engine according to the running condition of the vehicle, and an air-fuel ratio control device that feedback-controls the fuel supply amount so that the target air-fuel ratio is obtained based on a signal from the air-fuel ratio sensor In the control device for an internal combustion engine configured to cause a complete explosion at high speed rotation by motoring when the internal combustion engine is restarted from the temporarily stopped state,
Air-fuel ratio range determining means for determining whether the output from the air-fuel ratio sensor is within a predetermined air-fuel ratio range after the restart of the internal combustion engine;
After the restart, the air-fuel ratio control device is configured to start the air-fuel ratio feedback control on condition that the output from the air-fuel ratio sensor is within a predetermined air-fuel ratio range. Control device.
前記空燃比範囲判定手段は、前記所定の空燃比範囲である状態が所定時間以上継続したときに、排気空燃比が当該空燃比範囲内にあると判定するように構成されている請求項1に記載の内燃機関の制御装置。   The air-fuel ratio range determining means is configured to determine that the exhaust air-fuel ratio is within the air-fuel ratio range when the predetermined air-fuel ratio range continues for a predetermined time or longer. The internal combustion engine control device described. 前記空燃比制御装置は、再始動から所定時間経過後は前記空燃比センサ範囲の判定結果にかかわらず空燃比フィードバック制御を開始するように構成されている請求項1に記載の内燃機関の制御装置。   2. The control device for an internal combustion engine according to claim 1, wherein the air-fuel ratio control device is configured to start air-fuel ratio feedback control after a predetermined time has elapsed after restart regardless of a determination result of the air-fuel ratio sensor range. . 前記内燃機関は、燃料タンクからの蒸発燃料をキャニスタに導いて一時的に吸着させ、該キャニスタに吸着された蒸発燃料を新気と共に内燃機関の吸気通路に吸入させる蒸発燃料処理装置を備え、
前記蒸発燃料処理装置は、前記再始動後の空燃比フィードバック制御の開始以後にパージを実施するように構成されている請求項1に記載の内燃機関の制御装置。
The internal combustion engine includes an evaporative fuel processing device that guides the evaporated fuel from the fuel tank to the canister, temporarily adsorbs the evaporated fuel, and sucks the evaporated fuel adsorbed by the canister into the intake passage of the internal combustion engine together with fresh air.
2. The control device for an internal combustion engine according to claim 1, wherein the evaporated fuel processing device is configured to perform a purge after the start of the air-fuel ratio feedback control after the restart.
前記空燃比フィードバック制御の許可条件として、空燃比センサが活性状態にあること、内燃機関の冷却水温が所定の基準値以上であることを検出するように構成されている請求項1に記載の内燃機関の制御装置。   2. The internal combustion engine according to claim 1, which is configured to detect that the air-fuel ratio sensor is in an active state and that the cooling water temperature of the internal combustion engine is equal to or higher than a predetermined reference value as permission conditions for the air-fuel ratio feedback control. Engine control device.
JP2006059311A 2006-03-06 2006-03-06 Control device for internal combustion engine Active JP4788403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006059311A JP4788403B2 (en) 2006-03-06 2006-03-06 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059311A JP4788403B2 (en) 2006-03-06 2006-03-06 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007239482A true JP2007239482A (en) 2007-09-20
JP4788403B2 JP4788403B2 (en) 2011-10-05

Family

ID=38585273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059311A Active JP4788403B2 (en) 2006-03-06 2006-03-06 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4788403B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185387A (en) * 2009-02-12 2010-08-26 Mitsubishi Motors Corp Evaporation fuel purge control device
CN106555685A (en) * 2015-09-24 2017-04-05 比亚迪股份有限公司 The ignition method and system of vehicle
JP2018083573A (en) * 2016-11-25 2018-05-31 三菱自動車工業株式会社 Regeneration control device for hybrid vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280646A (en) * 1993-03-31 1994-10-04 Mazda Motor Corp Air-fuel ratio control device for engine
JP2005036790A (en) * 2003-06-30 2005-02-10 Toyota Motor Corp Fuel injection control device of internal combustion engine
JP2006220085A (en) * 2005-02-10 2006-08-24 Toyota Motor Corp Controller of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280646A (en) * 1993-03-31 1994-10-04 Mazda Motor Corp Air-fuel ratio control device for engine
JP2005036790A (en) * 2003-06-30 2005-02-10 Toyota Motor Corp Fuel injection control device of internal combustion engine
JP2006220085A (en) * 2005-02-10 2006-08-24 Toyota Motor Corp Controller of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185387A (en) * 2009-02-12 2010-08-26 Mitsubishi Motors Corp Evaporation fuel purge control device
CN106555685A (en) * 2015-09-24 2017-04-05 比亚迪股份有限公司 The ignition method and system of vehicle
CN106555685B (en) * 2015-09-24 2019-11-22 比亚迪股份有限公司 The ignition method and system of vehicle
JP2018083573A (en) * 2016-11-25 2018-05-31 三菱自動車工業株式会社 Regeneration control device for hybrid vehicle

Also Published As

Publication number Publication date
JP4788403B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP2010019178A (en) Engine control device
JP2011252466A (en) Purge device for purging internal combustion engine during idle stop
JP4697129B2 (en) Control device for internal combustion engine
JP2013047467A (en) Internal combustion engine control device
JP4788403B2 (en) Control device for internal combustion engine
JP6946871B2 (en) Internal combustion engine control system
JP4244824B2 (en) Fuel injection control device for internal combustion engine
JP6214214B2 (en) Control device for internal combustion engine
US11156174B2 (en) Controller for vehicle and method for controlling vehicle
JP3982159B2 (en) Lean combustion engine control system
JP6188357B2 (en) Control device for internal combustion engine
JP5332833B2 (en) Control device for internal combustion engine
JP2019100227A (en) Control device of internal combustion engine
JPH08200166A (en) Air-fuel ratio control device
JP4013654B2 (en) Exhaust gas purification device for hybrid vehicle
JP2014141958A (en) Internal combustion engine control device
JP4269948B2 (en) Fuel injection control device
JP2007138757A (en) Start control device for internal combustion engine
JP2009281176A (en) Exhaust emission control device for internal combustion engine
JP2015048722A (en) Control device of internal combustion engine
JP2015017573A (en) Control device of spark ignition type internal combustion engine
JP2015036519A (en) Driving control device of exhaust air sensor heater
JP4425729B2 (en) Hydrocarbon emission reduction device for internal combustion engine
JP5169956B2 (en) Control device for start of internal combustion engine
JP2008223558A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100715

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4788403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150