JP2007239011A - Method for manufacturing galvannealed steel sheet having excellent surface characteristic - Google Patents

Method for manufacturing galvannealed steel sheet having excellent surface characteristic Download PDF

Info

Publication number
JP2007239011A
JP2007239011A JP2006062098A JP2006062098A JP2007239011A JP 2007239011 A JP2007239011 A JP 2007239011A JP 2006062098 A JP2006062098 A JP 2006062098A JP 2006062098 A JP2006062098 A JP 2006062098A JP 2007239011 A JP2007239011 A JP 2007239011A
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
finish rolling
manufacturing
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006062098A
Other languages
Japanese (ja)
Other versions
JP4681476B2 (en
Inventor
Takashi Aramaki
高志 荒牧
Hiroyuki Tanaka
宏幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006062098A priority Critical patent/JP4681476B2/en
Publication of JP2007239011A publication Critical patent/JP2007239011A/en
Application granted granted Critical
Publication of JP4681476B2 publication Critical patent/JP4681476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a galvannealed steel sheet of mild steel which is superior in surface properties and is suppressible of the occurrence of streaky flaw. <P>SOLUTION: The method for manufacturing the galvannealed steel sheet comprises: employing a dead soft steel sheet containing, by mass%, ≤0.004% C as a base sheet; adjusting the content of S to 0.002 to 0.010%; and regulating a heating furnace charging temperature by an Mn content to regulate a hot rolling heating temperature, a finish rolling inlet side temperature and the highest temperature in a finish rolling mill train; wherein the occurrence of the surface defect of the streaky flaw is suppressed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車用、特に外板に使用される材料及びその製法に関し、特に表面性状に優れた合金化溶融亜鉛めっき鋼板の製造方法に関する。   TECHNICAL FIELD The present invention relates to materials used for automobiles, particularly outer plates, and methods for producing the same, and more particularly to a method for producing an alloyed hot-dip galvanized steel sheet having excellent surface properties.

自動車用合金化溶融亜鉛めっき鋼板は、C含有量が概ね0.004%以下である極低炭素鋼板で、かつ防錆性能及びプレス成形後の潤滑性能を付与する目的で合金化溶融亜鉛めっき鋼板が用いられる。特に近年は、自動車に高耐久性が求められることから、この使用量が増加している。上記の用途として用いられる場合には、優れた表面性状を有すること、すなわち、表面外観において筋状欠陥(模様系欠陥)がないことが肝要である。   The alloyed hot-dip galvanized steel sheet for automobiles is an ultra-low carbon steel sheet with a C content of approximately 0.004% or less, and an alloyed hot-dip galvanized steel sheet for the purpose of imparting rust prevention performance and lubrication performance after press forming. Is used. In particular, in recent years, the amount of use has increased since automobiles are required to have high durability. When used as the above-mentioned application, it is important to have excellent surface properties, that is, no streak defects (pattern defects) in the surface appearance.

一方、合金化溶融めっき鋼板の表面性状の改善においては、例えば特開平7−228944号公報(特許文献1)や特開平11−229039号公報(特許文献2)では、Ti添加極低炭素鋼板の母材とした場合に発生する笹の葉模様を抑制するために、熱間圧延条件を規制することが述べられている。   On the other hand, in improving the surface properties of the alloyed hot-dip steel sheet, for example, in JP-A-7-228944 (Patent Document 1) and JP-A-11-229039 (Patent Document 2), It is stated that the hot rolling conditions are regulated in order to suppress the bamboo leaf pattern that occurs when the base material is used.

さらに、特開2001−181786号公報(特許文献3)には、高強度溶融めっき鋼板の製法として余剰Ti量を規制、さらには、Mnを規制しMn偏析による模様系防止し、Sによる熱間脆性を防止する技術が述べられている。
また、特開2005−2363号公報(特許文献4)には、Sを0.002%以下とすることを基本として、S含有量やスラブ手入れ方法・捲取温度などを規制することで筋状欠陥防止を防止する技術が述べられている。
Furthermore, JP 2001-181786 A (Patent Document 3) discloses a method for producing a high-strength hot-dip galvanized steel sheet, which regulates the amount of excess Ti, further regulates Mn to prevent a pattern system due to Mn segregation, Techniques for preventing brittleness are described.
Further, JP 2005-2363 A (Patent Document 4) has a streak by regulating the S content, the slab care method, the cutting temperature, etc. on the basis that S is 0.002% or less. Techniques for preventing defect prevention are described.

特開平7−228944号公報JP-A-7-228944 特開平11−229039号公報JP-A-11-229039 特開2001−181786号公報JP 2001-181786 A 特開2005−2363号公報JP 2005-2363 A

しかしながら、特許文献1や特許文献2の方法であると加熱温度を低温にて規制する必要があり、熱延スラブ加熱にチャンス性が生じ、かつ在炉時間が長在炉化してしまうという問題や特許文献4であれば基準S量が低すぎるためコストアップになること、かつスラブ手入れ条件や熱延捲取温度などを複雑にコントロールせねばならないため、生産上の問題が生じるなどの課題があった。また、特許文献3であれば、高強度鋼板を対象とした製造方法であり、Mn量の添加上限が材質特性上決まっている軟鋼の容易製法を提示したものではなかった。   However, in the methods of Patent Document 1 and Patent Document 2, it is necessary to regulate the heating temperature at a low temperature, there is a problem that the hot rolling slab heating has a chance property, and the in-furnace time is prolonged. In Patent Document 4, the amount of standard S is too low, resulting in an increase in cost, and slab maintenance conditions and hot rolling milling temperature must be controlled in a complicated manner, resulting in production problems. It was. Moreover, if it is patent document 3, it is a manufacturing method aiming at a high strength steel plate, and did not present the easy manufacturing method of the mild steel in which the addition upper limit of the amount of Mn was decided on the material characteristic.

本発明は、このような問題を解決するもので、筋状欠陥のない表面性状に優れた軟鋼の合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。
すなわち、本発明者は、上記課題を解決するために、発生している筋状欠陥を詳細に調査するとともに、鋼板の成分、特に表層や鋼中のS量、製造条件として熱間圧延条件、特に加熱温度や仕上げ圧延温度と表面性状の関係を詳細に検討した。さまざまな視点からの調査の結果、筋状欠陥はこれまでの知見では鋼材の表層粒径による影響が主体であり、抽出温度を低下させて表層粒径をコントロールするとの報告がなされていたのに対し、それ以外の2種類の原因にて発生していることを発見した。
This invention solves such a problem, and it aims at providing the manufacturing method of the galvannealed steel plate of the mild steel excellent in the surface quality without a streak defect.
That is, in order to solve the above-mentioned problems, the inventor investigates the generated streak defects in detail, and at the same time, the components of the steel sheet, particularly the surface layer and the amount of S in the steel, the hot rolling conditions as production conditions, In particular, the relationship between heating temperature and finish rolling temperature and surface properties was examined in detail. As a result of investigations from various viewpoints, streak defects were mainly influenced by the surface particle size of steel materials, and it was reported that the surface temperature was controlled by lowering the extraction temperature. On the other hand, it was discovered that it occurred for two other reasons.

一つの要因は、仕上げ圧延時のスケール剥離ムラが起点であり、スケール剥離ムラとしてスケールが残存した場合、スケール箇所のみ合金化が促進され、合金化ムラを引き起こし、これが筋状欠陥として発生することが判明した。このスケール剥離ムラ原因を追究した結果、仕上げ圧延温度条件やデスケ性に影響するS量の表面濃化度合いや鋼中成分とに密接に関係しており、これらを制御することで仕上げ圧延起因の疵を予防する条件が存在する可能性を見出した。   One factor is that the scale peeling unevenness at the time of finish rolling is the starting point, and when scale remains as scale peeling unevenness, alloying is promoted only at the scale location, causing alloying unevenness, which occurs as streak defects. There was found. As a result of investigating the cause of this scale peeling unevenness, it is closely related to the surface enrichment degree of S amount affecting the finish rolling temperature condition and descalability and the components in the steel. We found the possibility that conditions to prevent drought exist.

もう一つの筋状欠陥の要因は熱延での粗圧延時の熱間脆性を起点としたスケール残存によるものであり、Sをある閾値以上に添加した場合が特に発生しやすく、その助長要因としては、加熱炉への装入温度やMn量などが関係して疵が発生することをも同時に突き止めた。前者の要因に対しては、Sを高めにすることが有効であり、後者の要因についてはSを低くすることが有効であるというように、この2つの加熱要因は、相反する内容であり、同時に両立させた品位良好な材料を提供する製法は困難と思われた。   Another cause of streak defects is due to the remaining scale starting from hot brittleness during rough rolling in hot rolling, and it is particularly likely to occur when S is added above a certain threshold. At the same time, it was found out that soot was generated due to the charging temperature to the heating furnace, the amount of Mn, and the like. For the former factor, it is effective to increase S, and for the latter factor, it is effective to lower S. These two heating factors are contradictory contents, At the same time, it seemed difficult to produce a material that was compatible and of good quality.

この課題に対し、加熱炉入側温度とMn量、加熱温度、仕上げ圧延入側温度とS量と仕上げ圧延温度について粘り強くその影響関係の調査を実施してきた結果、S量範囲を規制し、Mn量を加熱入側温度にて規制、さらには加熱温度下限を設定することにより、双方の発生を劇的に抑制することが可能な製法を発明するに到った。すなわち、S、Mnと装入温度、加熱温度かつ仕上げ圧延入側温度を規制することにより、表面性状に優れた軟鋼の合金化溶融亜鉛めっき鋼板が得られるという結論を見出したのである。   As a result of persistently investigating the influence of heating furnace entry side temperature and Mn amount, heating temperature, finish rolling entry side temperature, S amount and finish rolling temperature, the S amount range was regulated. The inventors have invented a production method capable of drastically suppressing the occurrence of both by regulating the amount by the heating inlet temperature and further setting the lower limit of the heating temperature. That is, the present inventors have found that a mild steel alloyed hot-dip galvanized steel sheet having excellent surface properties can be obtained by regulating S, Mn, charging temperature, heating temperature and finish rolling entry temperature.

すなわち、質量%で、S量を0.002%以上かつ0.010%以下とし、加熱炉装入温度≦69.3×ln(Mn%)+1075.7に規制し、熱間圧延条件は、加熱炉抽出温度を1150℃以上と仕上げ圧延入側温度を1040℃以下とすること、特に仕上げ圧延機列内最高温度を1000〜1050℃の範囲内にならないようすることで、その他の製鋼や熱延の製造条件によらず安定的にしかも安価に筋状欠陥を同時に抑制できる製法を提案するにいたったのである。   That is, in mass%, the amount of S is 0.002% or more and 0.010% or less, and the heating furnace charging temperature ≦ 69.3 × ln (Mn%) + 1075.7 is regulated. By making the heating furnace extraction temperature 1150 ° C. or higher and the finish rolling entry temperature 1040 ° C. or less, especially by making the maximum temperature in the finish rolling mill row not be in the range of 1000 to 1050 ° C., other steelmaking and heat It came to propose a manufacturing method that can suppress streak defects at the same time stably and inexpensively regardless of the manufacturing conditions.

本発明は、上記の知見に基づいて成されたものであり、その構成は次のとおりである。(1)質量%で、C:0.0005〜0.004%、S:0.002〜0.010%、Al:0.0005〜0.100%、N:0.0005〜0.0050%、P:0.003〜0.030%、Mn:0.03〜0.30%で残部不可避的不純物とFeからなる鋳片を装入温度Tが以下の式(1)を満たした状態で加熱炉に装入し、鋳片の最高温度が1150℃〜1350℃の範囲で加熱し、当該鋳片を粗圧延機で圧延した後に仕上げ圧延機入側温度を1040〜1240℃として仕上げ圧延することを特徴とする表面性状に優れた合金化溶融亜鉛めっき鋼板の製造方法。   The present invention has been made based on the above findings, and the configuration thereof is as follows. (1) By mass%, C: 0.0005 to 0.004%, S: 0.002 to 0.010%, Al: 0.0005 to 0.100%, N: 0.0005 to 0.0050% , P: 0.003 to 0.030%, Mn: 0.03 to 0.30%, with the balance inevitable impurities and Fe in a state where the charging temperature T satisfies the following formula (1) It is charged in a heating furnace, heated in a range where the maximum temperature of the slab is 1150 ° C. to 1350 ° C., the slab is rolled by a roughing mill, and then finish rolling is performed at a finish rolling mill entry side temperature of 1040 to 1240 ° C. A method for producing an alloyed hot-dip galvanized steel sheet having excellent surface properties.

(2)前記(1)の製造方法において、仕上げ圧延機列内での最高温度を880〜1000℃または1050℃超〜1140℃として仕上げ圧延する表面性状に優れた合金化溶融亜鉛めっき鋼板の製造方法。
(3)前記(1)または(2)において成分として、更に質量%で、B:0.0001〜0.0010%、Ti:0.001〜0.070%、Nb:0.001〜0.030%を含む表面性状に優れた合金化溶融亜鉛めっき鋼板の製造方法にある。
(2) Production of an alloyed hot-dip galvanized steel sheet having excellent surface properties for finish rolling at a maximum temperature of 880 to 1000 ° C. or above 1050 ° C. to 1140 ° C. in the production method of (1). Method.
(3) In the above (1) or (2), as a component, B: 0.0001 to 0.0010%, Ti: 0.001 to 0.070%, Nb: 0.001 to 0.00. It exists in the manufacturing method of the galvannealed steel plate excellent in the surface quality containing 030%.

本発明によれば、表面性状に優れた、筋状欠陥の発生を抑制した軟鋼の合金化溶融亜鉛めっき鋼板の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the alloyed hot-dip galvanized steel plate of the mild steel which was excellent in surface property and suppressed generation | occurrence | production of the streak defect can be provided.

以下、本発明の詳細をその限定理由とともに説明する。まず、成分の限定理由を説明する。
C量は、自動車用途等に使用される際の加工性を確保するため、0.004%以下とする。また、S量を0.010%以下とするのは、0.010%超とすると、どのような条件にしても粗圧延時を起点とする筋状欠陥が増加傾向を示すためである。すなわち、加工性を改善するためにFe以外の元素を低下させている軟鋼の合金化溶融亜鉛めっき鋼板においては通常Sとの析出物を形成し、熱間脆性を改善することのできるMn量が少ないため熱間圧延時に脆性温度領域となると割れを引き起こす。この割れが存在した場合、スケールが当該箇所に残存し、めっきの合金化時に筋状欠陥となって顕在化するのである。
Hereinafter, the details of the present invention will be described together with the reasons for limitation. First, the reasons for limiting the components will be described.
The C amount is set to 0.004% or less in order to ensure processability when used for automobile applications. Further, the reason why the S content is 0.010% or less is that, if it exceeds 0.010%, streak defects starting from rough rolling tend to increase under any conditions. That is, in an alloyed hot-dip galvanized steel sheet of mild steel in which elements other than Fe are reduced in order to improve workability, the amount of Mn that usually forms precipitates with S and can improve hot brittleness. Due to the small amount, cracking occurs when the brittle temperature region is reached during hot rolling. When this crack exists, the scale remains in the corresponding portion, and becomes a streak defect at the time of alloying of plating.

また、この影響は、Mn量や装入温度によっても変化するが0.010%以上の場合、今回製法では、その他の条件をどのようにしても非常に疵発生率が高くなるので、上限を規制した。また、Sの0.002%以上とするのは、仕上げ圧延起因の筋状欠陥を抑制するためである。この閾値以下であれば、加熱温度ならびに仕上げ圧延入側温度を工夫しても仕上げ圧延でのデスケ不良が発生しスケールが残存、筋状模様は発生するため、これを下限とする。   In addition, this effect varies depending on the amount of Mn and the charging temperature, but in the case of 0.010% or more, in the present production method, the wrinkle generation rate becomes very high whatever the other conditions, so the upper limit is set. Regulated. The reason why the S content is 0.002% or more is to suppress streak defects caused by finish rolling. If it is below this threshold value, even if the heating temperature and the finish rolling entry temperature are devised, the defect in descaling in finish rolling occurs, scales remain, and streak patterns occur, so this is the lower limit.

次に、Mnについて説明する。
Mnは、スラブ冷却中に硫化物MnSとなり、鋳片内では安定化し加熱温度ならびに加熱時間が300min程度であれば溶体化しない。硫化物となっていた場合は、熱間脆性に影響しないが、スラブ装入温度が高めになる場合では、スラブ装入温度Tが
T≦69.3×ln(Mn%)+1075.7
を満たさない場合、鋳片内の硫化物MnSは安定に析出せず、熱間脆性を引き起こし、筋状欠陥を引き起こす。よって、この関係を満たすことが必要である。また、Mn量の上限は、加工性の観点よりMn:0.30%を上限とすることが望ましい。Mn量の下限を0.03%としたのは、これより下げるには製鋼コストがかかりすぎるためである。
Next, Mn will be described.
Mn becomes sulfide MnS during slab cooling, stabilizes in the slab, and does not form a solution if the heating temperature and heating time are about 300 min. When it is a sulfide, it does not affect the hot brittleness, but when the slab charging temperature is increased, the slab charging temperature T is T ≦ 69.3 × ln (Mn%) + 1075.7.
If the above condition is not satisfied, the sulfide MnS in the slab does not precipitate stably, causing hot brittleness and causing streak defects. Therefore, it is necessary to satisfy this relationship. The upper limit of the amount of Mn is preferably Mn: 0.30% from the viewpoint of workability. The reason why the lower limit of the amount of Mn is set to 0.03% is that it takes too much steelmaking cost to be lower than this.

PならびにBについては、合金化速度に影響を及ぼす元素であるため、添加をしすぎた場合、全体的な鋼板の合金化遅れにより、合金化ムラを引き起こすため、今回の改善効果を十分得ることができない。よって、P:0.030%、B:0.0010%を上限として規制する。下限をP:0.003%、B:0.0001%としたのは、これより下げるには製鋼コストがかかりすぎるためである。   Since P and B are elements that affect the alloying speed, if added too much, alloying unevenness is caused by the overall alloying delay of the steel sheet, so this improvement effect can be sufficiently obtained. I can't. Therefore, the upper limit is regulated to P: 0.030% and B: 0.0010%. The reason why the lower limit is set to P: 0.003% and B: 0.0001% is that it takes too much steelmaking cost to be lower than this.

Tiは、合金化速度を速める元素であるため、添加をしすぎた場合、全体的な鋼板の合金化速度アップにより、合金化ムラを引き起こすため、今回の改善効果を十分得ることができない。よって、Ti:0.070%を上限とする。下限を0.001%としたのは、これより下げるには製鋼コストがかかりすぎるためである。   Since Ti is an element that increases the alloying speed, if it is added too much, the alloying unevenness is caused by increasing the alloying speed of the overall steel sheet, so that the present improvement effect cannot be sufficiently obtained. Therefore, Ti: 0.070% is made the upper limit. The reason why the lower limit is set to 0.001% is that it takes too much steelmaking cost to be lower than this.

Nbについては、添加量が多すぎた場合、目標とする加工性を得ることができなくなるため、上限を0.030%と規制する。下限を0.001%としたのは、これより下げるには製鋼コストがかかりすぎるためである。
これらの条件のみの規制にて製造した場合、仕上げ圧延起因のスケール噛込が多くなるため、表面品位は達成困難である。この抑制には、必ず下記の熱延条件を同時に満たす条件とすることが必要である。
For Nb, if the amount added is too large, the target processability cannot be obtained, so the upper limit is regulated to 0.030%. The reason why the lower limit is set to 0.001% is that it takes too much steelmaking cost to be lower than this.
When manufactured under the regulation of only these conditions, the surface bite is difficult to achieve because the scale bite due to finish rolling increases. In order to suppress this, it is necessary to satisfy the following conditions for hot rolling.

次に、重要である本発明の熱間圧延条件について説明する。
スラブ加熱温度は、本製法のポイントの1つである。通常であれば鋼中に添加されているSがFeS液相を生成しデスケ性を保っているが、今回の製法においてはS量を低下しているためこれが生成しないため、仕上げ圧延のデスケ性悪化が懸念される。この改善には、表層のみS量を最低必要限度確保することが必要となってくる。鋼中のMnSについては、安定化し現行の加熱温度ならびに加熱時間が300min程度であれば溶体化しないが、表層部については、1150℃以上で加熱した場合、MnSが酸化され、MnO化しSが濃化する。これにより、1150℃以上の加熱であれば、表層のS効果により仕上げ圧延でのデスケ性が改善でき、筋状欠陥が防止可能となる。上限を1350℃としたのは、これ以上では、スケールが溶けてスケール疵の発生が多くなるためである。
Next, the important hot rolling conditions of the present invention will be described.
The slab heating temperature is one of the points of this manufacturing method. Normally, S added in steel produces a FeS liquid phase and maintains deskeiness, but since this does not form because the amount of S is reduced in this production method, descalability of finish rolling. There is concern about deterioration. For this improvement, it is necessary to secure the minimum amount of S only on the surface layer. MnS in steel is stabilized and does not form a solution if the current heating temperature and heating time are about 300 min. However, when the surface layer portion is heated at 1150 ° C. or higher, MnS is oxidized and MnO is converted to a concentrated S. Turn into. Thereby, if it is 1150 degreeC or more heating, the deskeability in finish rolling can be improved according to the S effect of a surface layer, and a streak defect can be prevented. The reason why the upper limit is set to 1350 ° C. is that when the temperature is higher than this, the scale melts and the generation of scale wrinkles increases.

次に、仕上げ圧延の条件について説明する。
発明者らは、仕上げ圧延機列内最高温度が1000℃超から1050℃となる範囲においてはスケールが非常に剥離しやすい状況となり、極度に筋状結果が悪化することを見出した。仕上げ圧延でのスケール生成量増に伴うスケール厚の増加、加えてスケールと地鉄との膨張率差などによる剥離性変化が生じることで鋼板表面状態に微細なスケールが押し込まれ、押し込まれた際に粗度差が発生もしくはスケールそのものが合金めっき時に合金化ムラを引き起こし、目視で筋状欠陥と認識されるようになると推定される。高温で圧延するほどスケール厚みが増すが、鋼とスケールの熱膨張差で剥離しやすくなる。1000℃から1050℃で圧延するとスケールは厚く、かつ剥離もしにくくなることが推定される。なかでも特に仕上げ圧延機列内最高温度1020〜1050℃は、特に疵が発生しやすいため、この温度域を必ず避ける必要がある。
Next, finish rolling conditions will be described.
The inventors have found that in the range where the maximum temperature in the finish rolling mill row exceeds 1000 ° C. to 1050 ° C., the scale becomes very easy to peel off, and the streak results are extremely deteriorated. When a fine scale is pushed into the surface state of the steel sheet due to an increase in scale thickness due to an increase in the amount of scale generated in finish rolling, as well as a change in peelability due to a difference in expansion coefficient between the scale and the base steel. It is presumed that the difference in roughness occurs or the scale itself causes uneven alloying at the time of alloy plating and is visually recognized as a streak defect. The scale thickness increases as it is rolled at a higher temperature, but is easily peeled off due to the difference in thermal expansion between the steel and the scale. When rolled at 1000 ° C. to 1050 ° C., it is estimated that the scale is thick and difficult to peel off. In particular, the highest temperature in the finish rolling mill row of 1020 to 1050 ° C. is particularly likely to cause wrinkles, so this temperature range must be avoided.

仕上げ圧延機列内最高温度は、仕上げ圧延入側温度や圧延条件などから計算で求める必要があり、通常の操業では、管理しにくい。そこで、温度・圧延条件を種々変更して試験した結果、概ね仕上げ圧延入側温度で管理できることを見出した。具体的には、仕上げ圧延入側温度が1040℃超〜1090℃未満にならないようにすれば、仕上げ圧延機列内最高温度1020〜1050℃をほぼ避けることができる。   The maximum temperature in the finishing rolling mill row needs to be calculated from the finishing rolling entry temperature and rolling conditions, and is difficult to manage in normal operation. Therefore, as a result of testing with various changes in temperature and rolling conditions, it was found that the temperature can be controlled almost at the finishing rolling entry temperature. Specifically, if the finish rolling entry temperature does not exceed 1040 ° C. and less than 1090 ° C., the maximum temperature in the finish rolling mill row of 1020 to 1050 ° C. can be substantially avoided.

仕上げ圧延機列内最高温度と仕上げ圧延入側温度の上下限決定根拠は以下のとおりである。変態点以下で圧延すると圧延が不安定になるので仕上げ圧延機列内最高温度の下限を880℃とした。相応する仕上げ圧延入側温度は920℃になるので仕上げ圧延入側温度の下限を920℃とした。鋳片温度の最高温度を1350℃としており、相応する仕上げ圧延入側温度の上限を1180℃に、仕上げ圧延機列内最高温度の上限を1140℃とした。   The basis for determining the upper and lower limits of the maximum temperature in the finish rolling mill row and the finish rolling entry side temperature is as follows. Since rolling becomes unstable when rolling below the transformation point, the lower limit of the maximum temperature in the finishing mill row was set to 880 ° C. Since the corresponding finish rolling entry temperature is 920 ° C., the lower limit of the finish rolling entry temperature is 920 ° C. The maximum temperature of the slab temperature was 1350 ° C., the corresponding upper limit of the finish rolling entry temperature was 1180 ° C., and the upper limit of the maximum temperature in the finish rolling mill row was 1140 ° C.

仕上げ圧延の条件だけでなく、S、Mn量が加熱温度、仕上げ圧延温度と深く関係していることを見出すに至った経緯を詳しく説明する。
まず、S含有量を種々に変化した、C:0.004%以下の極低炭素鋼板にZn目付量(片面当り)36〜60g/m2、Znめっき層中のFe%=約10〜11%の条件におけるめっき層の表面性状について調査した。
The details of not only the finish rolling conditions but also the fact that the amounts of S and Mn are closely related to the heating temperature and the finish rolling temperature will be described in detail.
First, C: 0.004% or less ultra-low carbon steel sheet with various changes in S content, Zn basis weight (per one side) 36-60 g / m 2 , Fe% in Zn plating layer = about 10-11 The surface property of the plating layer under the condition of% was investigated.

図1にS量と仕上げ圧延起因の筋状欠陥の発生、図2にS量と粗起因の筋状欠陥の関係を示す。図3には、仕上げ圧延入側温度別のS量の影響を、図4には仕上げ圧延機列内最高温度と筋状欠陥の関係を示す。加えて、図5に加熱温度と筋状欠陥の関係、図6にMn量とスラブ加熱入側温度と筋状模様の関係を示す。ここで発生の定義は、鋼帯の全長全幅を目視観察し、筋状欠陥が認められた部分の合計が観察した鋼板の全長に占める割合を示したものである。この値は、歩留に直結するものである。   FIG. 1 shows the amount of S and the occurrence of streak defects caused by finish rolling, and FIG. 2 shows the relationship between the amount of S and the streak defects caused by rough rolling. FIG. 3 shows the influence of the amount of S for each finish rolling entry temperature, and FIG. 4 shows the relationship between the maximum temperature in the finish rolling mill row and streak defects. In addition, FIG. 5 shows the relationship between the heating temperature and streak defects, and FIG. 6 shows the relationship between the amount of Mn, the slab heating entry temperature, and the streak pattern. Here, the definition of occurrence indicates the ratio of the total length of the steel strip observed by visual observation to the total length of the steel plate observed by the total of the portions where the streak defects are observed. This value is directly related to the yield.

図1に示すように、まずSのみに着目した場合、仕上げ圧延鋼板温度を規制していない場合であれば、Sが0.010%以下となった場合に極度に筋状欠陥は増加傾向を示す。また、図2に示すように、筋状欠陥の発生についてはS量が0.010%以下になると急激に低下している。通常であれば、上述したこの2点の調査の結果、同時に両立する条件がないとの結論に達する。   As shown in FIG. 1, when only S is first focused, if the finish rolled steel sheet temperature is not regulated, the streak defect tends to increase when S becomes 0.010% or less. Show. In addition, as shown in FIG. 2, the occurrence of streak defects is abruptly reduced when the S amount is 0.010% or less. If it is normal, as a result of the above-mentioned two points of investigation, it is concluded that there are no conditions that are compatible at the same time.

しかし、仕上げ圧延入側温度ならびに加熱温度に着目した試験を行った結果、図3、図4に示すように、S量を0.002%以上0.010%以下とし、かつ仕上げ圧延入温度を限定、特に仕上げ圧延機列内最高温度を限定すれば、ともに筋状欠陥を防止可能な製造方法を見出し、劇的に表面品位が改善された鋼板を製造できたのである。
次に、S≦0.010%とした材料について、Mnとスラブ加熱について評価した結果、疵発生限界値がある関係にて整理できること、すなわち、スラブ装入温度Tが、
T≦69.3×ln(Mn%)+1075.7
を満たせば、疵発生がほとんどなくなることも判明した。
However, as a result of performing a test focusing on the finish rolling entry temperature and the heating temperature, as shown in FIGS. 3 and 4, the S amount is 0.002% to 0.010% and the finish rolling entry temperature is By limiting the limit, especially the maximum temperature in the finish rolling mill row, both found a manufacturing method capable of preventing streak defects, and were able to manufacture a steel sheet with dramatically improved surface quality.
Next, as a result of evaluating Mn and slab heating with respect to the material with S ≦ 0.010%, it can be arranged in a relationship having a soot generation limit value, that is, the slab charging temperature T is
T ≦ 69.3 × ln (Mn%) + 1075.7
It was also found that the generation of soot almost disappears if

従って、外観が均質の溶融亜鉛めっき層を有することを特徴とする合金化溶融亜鉛めっき鋼板の製造には、鋼板の純度とS量、Mn量を限定し、かつ仕上げ圧延時の入側温度を1040℃以下、特に仕上げ圧延機列内最高温度を1000℃〜1050℃を避けるように熱間圧延を実施することが重要であるとの結果が判明したのである。この原板を所定の捲取温度で巻き取ったのちに冷間圧延を行った後、常法にしたがって溶融亜鉛めっきを施し、ついで合金化処理を行う。   Therefore, for the production of an alloyed hot-dip galvanized steel sheet characterized by having a hot-dip galvanized layer with a uniform appearance, the purity, S content, and Mn content of the steel sheet are limited, and the inlet temperature during finish rolling is set to be limited. It has been found that it is important to carry out hot rolling so that the maximum temperature in the finish rolling mill row is 1040 ° C. or less, particularly 1000 ° C. to 1050 ° C. is avoided. The original sheet is taken up at a predetermined coiling temperature and then cold-rolled, followed by hot dip galvanizing according to a conventional method, followed by alloying treatment.

表1に示す成分組成を有する種々表面手入れ状況のスラブを、1050〜1300℃まで加熱後4.0mmまで熱間圧延を施し、コイル捲取を実施、ついで0.75mmまで冷間圧延を実施したのちに合金化溶融亜鉛めっきを施した。かくして得られた合金化溶融亜鉛めっき鋼板について、めっき層における筋状欠陥の発生率を調査した。その結果を、製造条件と併せて表2に示す。   Various surface care slabs having the composition shown in Table 1 were heated to 1050-1300 ° C. and then hot-rolled to 4.0 mm, coiled, and then cold-rolled to 0.75 mm. Later, alloying hot dip galvanizing was performed. About the alloyed hot-dip galvanized steel sheet thus obtained, the incidence of streak defects in the plating layer was investigated. The results are shown in Table 2 together with the production conditions.

表2に示すように、No.1〜5、No.9、No.12、No.17、No.19〜20は本発明であり、No.6〜8、No.10〜11、No.13〜16、No.18は比較例である。比較例No.6〜8は仕上げ入側温度および仕上げ圧延温度が本発明の条件外のために、筋状欠陥の発生率が1%を超えて発生し、また、比較例No.10〜11、またはNo.13はスラブ加熱温度が低いか、さらには仕上げ圧延温度が本発明の条件外のために筋状欠陥の発生率が1%を超えて発生している。   As shown in Table 2, no. 1-5, no. 9, no. 12, no. 17, no. Nos. 19 to 20 are the present invention. 6-8, no. 10-11, no. 13-16, no. 18 is a comparative example. Comparative Example No. In Nos. 6 to 8, since the finish entry temperature and the finish rolling temperature are outside the conditions of the present invention, the generation rate of streak defects exceeds 1%. 10-11, or No. In No. 13, the slab heating temperature is low, or the finish rolling temperature is outside the conditions of the present invention, so that the generation rate of streak defects exceeds 1%.

また、比較例No.14〜16は成分組成条件が本発明の条件外のために筋状欠陥の発生率が1%を超えて発生している。比較例No.18は仕上げ入側温度が本発明の条件外のために筋状欠陥の発生率が1%を超えて発生している。これに対し、本発明であるNo.1〜5、No.9、No.12、、No.17、No.19〜20はいずれも本発明の条件を満たしていることから筋状欠陥の発生率が1%以下であることが分かる。   Comparative Example No. In Nos. 14 to 16, since the component composition conditions are outside the conditions of the present invention, the occurrence rate of streak defects exceeds 1%. Comparative Example No. No. 18 has a streak defect generation rate exceeding 1% because the finish entry temperature is outside the conditions of the present invention. On the other hand, No. 1 according to the present invention. 1-5, no. 9, no. 12, no. 17, no. Since 19-20 satisfy | fills the conditions of this invention, it turns out that the incidence rate of a streak defect is 1% or less.

Figure 2007239011
Figure 2007239011

Figure 2007239011
Figure 2007239011

S量と仕上げ圧延起因の筋状欠陥発生率との関係を示す図である。It is a figure which shows the relationship between S amount and the rate of a streak defect resulting from finish rolling. S量と粗起因の筋状欠陥発生率との関係を示す図である。It is a figure which shows the relationship between the amount of S, and the streak-like defect occurrence rate due to rough. 仕上げ圧延入側温度別のS量と筋状欠陥発生率との関係を示す図である。It is a figure which shows the relationship between S amount according to finish rolling entrance temperature, and a stripe defect incidence. 仕上げ圧延機列内最高温度と筋状欠陥発生率との関係を示す図である。It is a figure which shows the relationship between the maximum temperature in a finishing rolling mill row | line | column, and a streak defect incidence. 加熱温度と筋状欠陥発生率との関係を示す図である。It is a figure which shows the relationship between heating temperature and a linear defect incidence. Mn量とスラブ加熱入側温度と筋状模様の関係を示す図である。It is a figure which shows the relationship between Mn amount, slab heating entrance temperature, and a streak pattern.

Claims (3)

質量%で、
C:0.0005〜0.004%、
S:0.002〜0.010%、
Al:0.0005〜0.100%、
N:0.0005〜0.0050%、
P:0.003〜0.030%、
Mn:0.03〜0.30%、
で残部不可避的不純物とFeからなる鋳片を装入温度Tが以下の式(1)を満たした状態で加熱炉に装入し、鋳片温度の最高温度が1150℃〜1350℃の範囲で加熱し、当該鋳片を粗圧延機で圧延した後に仕上げ圧延機入側温度を920〜1040℃または1090〜1180℃として仕上げ圧延することを特徴とする表面性状に優れた合金化溶融亜鉛めっき鋼板の製造方法。
T≦69.3×ln(Mn%)+1075.7・・・・(1)
% By mass
C: 0.0005 to 0.004%,
S: 0.002 to 0.010%,
Al: 0.0005 to 0.100%,
N: 0.0005 to 0.0050%,
P: 0.003-0.030%,
Mn: 0.03 to 0.30%,
Then, the slab composed of the remaining inevitable impurities and Fe is charged into the heating furnace in a state where the charging temperature T satisfies the following formula (1), and the maximum slab temperature is in the range of 1150 ° C to 1350 ° C. An alloyed hot-dip galvanized steel sheet having excellent surface properties, characterized by heating and rolling the cast slab with a roughing mill and then finishing rolling at a finish rolling mill entry temperature of 920 to 1040 ° C or 1090 to 1180 ° C Manufacturing method.
T ≦ 69.3 × ln (Mn%) + 1075.7 (1)
請求項1の製造方法において、仕上げ圧延機列内最高温度を880〜1000℃または1050℃超〜1140℃として仕上げ圧延する表面性状に優れた合金化溶融亜鉛めっき鋼板の製造方法。 The manufacturing method of the alloyed hot-dip galvanized steel plate excellent in the surface property which finish-rolls by making the maximum temperature in a finishing rolling mill row into 880-1000 degreeC or more than 1050 degreeC-1140 degreeC in the manufacturing method of Claim 1. 請求項1または2において成分として、更に質量%で、
B:0.0001〜0.0010%、
Ti:0.001〜0.070%、
Nb:0.001〜0.030%、
を含む表面性状に優れた合金化溶融亜鉛めっき鋼板の製造方法。
As a component in claim 1 or 2, further in mass%,
B: 0.0001 to 0.0010%,
Ti: 0.001 to 0.070%,
Nb: 0.001 to 0.030%,
A method for producing an alloyed hot-dip galvanized steel sheet having excellent surface properties.
JP2006062098A 2006-03-08 2006-03-08 Method for producing alloyed hot-dip galvanized steel sheet with excellent surface properties Active JP4681476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062098A JP4681476B2 (en) 2006-03-08 2006-03-08 Method for producing alloyed hot-dip galvanized steel sheet with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062098A JP4681476B2 (en) 2006-03-08 2006-03-08 Method for producing alloyed hot-dip galvanized steel sheet with excellent surface properties

Publications (2)

Publication Number Publication Date
JP2007239011A true JP2007239011A (en) 2007-09-20
JP4681476B2 JP4681476B2 (en) 2011-05-11

Family

ID=38584835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062098A Active JP4681476B2 (en) 2006-03-08 2006-03-08 Method for producing alloyed hot-dip galvanized steel sheet with excellent surface properties

Country Status (1)

Country Link
JP (1) JP4681476B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244591A1 (en) * 2021-05-21 2022-11-24 日本製鉄株式会社 Alloyed hot-dip galvanized steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726330A (en) * 1993-07-08 1995-01-27 Kawasaki Steel Corp Production of steel sheet excellent in deep drawability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726330A (en) * 1993-07-08 1995-01-27 Kawasaki Steel Corp Production of steel sheet excellent in deep drawability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244591A1 (en) * 2021-05-21 2022-11-24 日本製鉄株式会社 Alloyed hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP4681476B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
CN109536827B (en) Steel sheet having improved resistance to acid dew point corrosion, method for producing same, and exhaust gas flow path component
JP7244720B2 (en) Galvanized steel sheet with excellent spot weldability and its manufacturing method
JP7464649B2 (en) Steel sheet for hot press forming parts with excellent paint adhesion and corrosion resistance after painting, and its manufacturing method
KR20180120210A (en) Thin steel plate and coated steel sheet, method of manufacturing hot-rolled steel sheet, manufacturing method of cold-rolled full-hard steel sheet, manufacturing method of thin steel sheet and manufacturing method of coated steel sheet
KR102504491B1 (en) Steel and enamel products
JP2007277652A (en) Manufacturing method of galvannealed sheet steel having good workability, powdering resistance and sliding property
CN104264041A (en) High-strength low-alloy hot-dip aluminized and galvanized steel strip and production method thereof
JP5531757B2 (en) High strength steel plate
JP6306353B2 (en) Method for producing slab for ferritic stainless steel cold rolled steel sheet and method for producing ferritic stainless steel cold rolled steel sheet
JP5068573B2 (en) Manufacturing method of high grade non-oriented electrical steel sheet
JP2009007659A (en) Hot-rolled steel plate and manufacturing method therefor
JP5245475B2 (en) Steel sheet and manufacturing method thereof
KR20180120715A (en) Thin steel plate and coated steel sheet, method of manufacturing hot-rolled steel sheet, manufacturing method of cold-rolled full-hard steel sheet, manufacturing method of thin steel sheet and manufacturing method of coated steel sheet
JP7167025B2 (en) Aluminum-based alloy plated steel sheet with excellent corrosion resistance in processed parts
US9677148B2 (en) Method for manufacturing galvanized steel sheet
CN107532264A (en) Alloyed zinc hot dip galvanized raw sheet and its manufacture method and alloyed hot-dip galvanized steel sheet
CN108603265B (en) High-strength steel sheet for warm working and method for producing same
JP2006161064A (en) High tensile-strength hot dip galvanized steel sheet and its production method
JP4901693B2 (en) Manufacturing method of cold-rolled steel sheet with excellent deep drawability with extremely small material variation
JP4681476B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent surface properties
JP5470912B2 (en) Annealing method that can prevent temper color
JP2013209727A (en) Cold rolled steel sheet excellent in workability and manufacturing method thereof
JP2013209728A (en) Cold rolled steel sheet excellent in aging resistance and manufacturing method thereof
JP2000087185A (en) Hot rolled steel plate excellent in surface characteristic and scale adhesion, and its manufacture
JP4969954B2 (en) Alloyed hot-dip galvanized steel sheet with excellent appearance quality and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110204

R151 Written notification of patent or utility model registration

Ref document number: 4681476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350