JP2007238997A - Hot dip plated steel sheet, its production method, surface treatment control method, and surface treatment controller - Google Patents

Hot dip plated steel sheet, its production method, surface treatment control method, and surface treatment controller Download PDF

Info

Publication number
JP2007238997A
JP2007238997A JP2006061192A JP2006061192A JP2007238997A JP 2007238997 A JP2007238997 A JP 2007238997A JP 2006061192 A JP2006061192 A JP 2006061192A JP 2006061192 A JP2006061192 A JP 2006061192A JP 2007238997 A JP2007238997 A JP 2007238997A
Authority
JP
Japan
Prior art keywords
steel sheet
amount
treatment
compound
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006061192A
Other languages
Japanese (ja)
Other versions
JP4882432B2 (en
Inventor
Masahiko Tada
雅彦 多田
Yoshiharu Sugimoto
芳春 杉本
Yoshitsugu Suzuki
善継 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006061192A priority Critical patent/JP4882432B2/en
Publication of JP2007238997A publication Critical patent/JP2007238997A/en
Application granted granted Critical
Publication of JP4882432B2 publication Critical patent/JP4882432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a hot dip galvanized steel sheet also having plating quality on high standards which has no surface defects such as unplating and pressing flaws, and can sufficiently withstand even as a steel sheet for an automobile requiring particularly severe plating properties. <P>SOLUTION: When a hot dip galvanized steel sheet is produced, while continuously conveying a steel sheet, at first, a compound comprising at least one kind of specified element selected from the group of specified elements composed of P, Na, K, Cl, S, F, B, C and N is stuck to the surface of the steel sheet, the amount of the specified element stuck to the steel sheet is measured, and the amount of the specified element upon the sticking of the compound is operated in such a manner that the measured value is made coincident with the objective value. Next, the steel sheet to which the compound is stuck is subjected to oxidation treatment, and, after the oxidation treatment, the amount of iron oxide formed on the surface of the steel sheet is measured, and the oxidation treatment conditions are operated in such a manner that the measured value is made coincident with the objective value. Further, reduction treatment and plating treatment are performed so as to obtain a plated steel sheet. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は溶融亜鉛めっき鋼板の製造に関し、特に鋼板を連続的に搬送して溶融亜鉛めっきあるいは合金化溶融亜鉛めっきを製造するに際しての、その溶融亜鉛めっき鋼板およびその製造装置、ならびに表面処理制御方法、表面処理制御装置に関する。   The present invention relates to the manufacture of hot dip galvanized steel sheet, and more particularly to the hot dip galvanized steel sheet, the manufacturing apparatus thereof, and the surface treatment control method in manufacturing hot dip galvanized or alloyed hot dip galvanized steel by continuously conveying the steel sheet. The present invention relates to a surface treatment control device.

近年、自動車、家電および建材等の分野において、素材鋼板に防錆性を付与した表面処理鋼板、中でも安価に製造できかつ防錆性に優れた溶融亜鉛めっき鋼板や、溶融亜鉛めっき層を合金化した合金化溶融亜鉛めっき鋼板が使用されている。   In recent years, in the fields of automobiles, home appliances, building materials, etc., surface-treated steel sheets that have been given rust resistance to steel sheets, especially hot-dip galvanized steel sheets and galvanized layers that can be manufactured at low cost and have excellent rust prevention properties are alloyed. Alloyed hot-dip galvanized steel sheets are used.

一般的に、溶融亜鉛めっき鋼板は、スラブを熱間圧延まま、またはその後冷間圧延あるいは熱処理が施された薄鋼板を下地とし、この下地鋼板の表面を前処理工程にて脱脂および/または酸洗して洗浄するか、あるいは前処理工程を省略して予熱炉内で下地鋼板表面の油分を燃焼除去した後、非酸化性雰囲気中または還元性雰囲気中にて再結晶焼鈍を施し、次いで非酸化性雰囲気中あるいは還元性雰囲気中で鋼板をめっきに適した温度まで冷却してから、大気に触れることなく微量Al(0.1〜0.2mass%程度)を添加した溶融亜鉛浴中に浸漬することによって製造される。また、合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき後の鋼板を引き続いて合金化炉内で熱処理することによって製造される。   In general, a hot dip galvanized steel sheet is prepared by using a thin steel sheet that has been hot-rolled as a slab or subsequently cold-rolled or heat-treated as a base, and the surface of the base steel sheet is degreased and / or acidized in a pretreatment step. Or after removing the oil on the surface of the base steel plate in the preheating furnace by omitting the pretreatment step, and then performing recrystallization annealing in a non-oxidizing atmosphere or reducing atmosphere, By cooling the steel sheet to a temperature suitable for plating in an oxidizing atmosphere or reducing atmosphere, and then immersing it in a molten zinc bath to which a small amount of Al (about 0.1 to 0.2 mass%) is added without exposure to the air Manufactured. The alloyed hot-dip galvanized steel sheet is manufactured by subsequently heat-treating the hot-dip galvanized steel sheet in an alloying furnace.

ところで、近年、下地となる鋼板の高性能化とともに軽量化を推進するために、下地鋼板の高強度化が求められており、かような下地鋼板に溶融亜鉛めっきを施して防錆性を兼備させた高強度溶融亜鉛めっき鋼板の使用量が増加している。   By the way, in recent years, in order to promote the reduction in performance and weight of the steel sheet used as the base, it has been required to increase the strength of the base steel sheet. The amount of high-strength hot-dip galvanized steel sheet used is increasing.

鋼板の機械的特性を悪化させずに鋼板を高強度化する手段としては、SiやMn、P等の固溶強化元素の添加が行われている。   Addition of solid solution strengthening elements such as Si, Mn, and P is performed as means for increasing the strength of the steel sheet without deteriorating the mechanical properties of the steel sheet.

しかしながら、Si、Mn、Pを含有した高強度鋼板を下地とする溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板には、以下のような問題がある。   However, hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets based on high-strength steel sheets containing Si, Mn, and P have the following problems.

上述したように、溶融亜鉛めっき鋼板は、還元性雰囲気中にて600〜900℃程度の温度で焼鈍を行った後に、溶融亜鉛めっき処理に供される。しかしながら、鋼中のSi、Mnは易酸化性元素であるため、溶融亜鉛めっきに先立って行う鋼板の焼鈍において一般的に用いられる還元性雰囲気中でもSi、Mnは選択的に酸化して表面に濃化し、表面で酸化物を形成する。このようなSi、Mnの酸化物は、めっき処理時の溶融亜鉛との濡れ性を低下させて不めっきを生じさせるため、鋼中のSi、Mn濃度を増加させると下地鋼板と溶融亜鉛との濡れ性が急激に低下して不めっきが多発するようになる。また、不めっきに至らなかった場合でも、鋼中Si、Mn濃度が高い鋼板を下地としている場合には、めっき密着性が悪いという問題がある。   As described above, the hot dip galvanized steel sheet is subjected to hot dip galvanizing treatment after annealing at a temperature of about 600 to 900 ° C. in a reducing atmosphere. However, since Si and Mn in steel are easily oxidizable elements, Si and Mn are selectively oxidized and concentrated on the surface even in a reducing atmosphere generally used in annealing of steel sheets prior to hot dip galvanizing. And forms an oxide on the surface. Such Si and Mn oxides reduce the wettability with molten zinc during plating and cause non-plating. Therefore, increasing the Si and Mn concentrations in steel increases the relationship between the base steel plate and molten zinc. The wettability decreases rapidly and non-plating occurs frequently. Further, even when non-plating does not occur, there is a problem that the plating adhesion is poor when a steel plate having a high Si and Mn concentration is used as a base.

さらに、鋼中のSi、Mnが選択的に酸化して表面に濃化すると、Si、Mnの酸化物がZn−Fe合金化反応を阻害するため、溶融亜鉛めっき後の合金化過程において合金化が著しく遅延する。その結果、生産性が著しく阻害される。また、生産性を確保するためにより高温で合金化処理を行うと、耐パウダリング性の劣化という問題が生じ、高い生産性と良好な耐パウダリング性を両立させることは困難である。   Furthermore, when Si and Mn in the steel are selectively oxidized and concentrated on the surface, the oxides of Si and Mn inhibit the Zn-Fe alloying reaction, so alloying is performed in the alloying process after galvanizing. Is significantly delayed. As a result, productivity is significantly inhibited. Further, when alloying is performed at a higher temperature in order to ensure productivity, there is a problem of deterioration of powdering resistance, and it is difficult to achieve both high productivity and good powdering resistance.

また、鋼中のPは焼鈍時に粒界に偏析し、Zn−Fe合金化反応を阻害するため、溶融亜鉛めっき後の合金化過程において合金化が著しく遅延する。その結果、生産性が著しく阻害される。また、生産性を確保するためにより高温で合金化処理を行うと、耐パウダリング性の劣化という問題が生じ、高い生産性と良好な耐パウダリング性を両立させることは困難である。   Further, P in the steel segregates at the grain boundaries during annealing and inhibits the Zn-Fe alloying reaction, so that alloying is significantly delayed in the alloying process after hot dip galvanizing. As a result, productivity is significantly inhibited. Further, when alloying is performed at a higher temperature in order to ensure productivity, there is a problem of deterioration of powdering resistance, and it is difficult to achieve both high productivity and good powdering resistance.

さらに鋼種の違いにより合金化温度、合金化時間(ライン速度)といった合金化処理条件を頻繁に変更することは、処理条件の変更に時間を要し生産性や歩留りが低下する、また、処理条件を短時間に安定化させるためにはかなりの熟練を要するなど、安定した合金化処理を維持するには操業上多くの困難が伴い容易ではない。   Furthermore, frequently changing alloying treatment conditions such as alloying temperature and alloying time (line speed) due to differences in the steel type takes time to change the treatment conditions, resulting in lower productivity and yield. In order to stabilize the steel in a short time, considerable skill is required, and maintaining a stable alloying treatment is not easy with many operational difficulties.

このような問題を解決するためにいくつかの提案がなされている。
例えば、予め酸化性雰囲気中で鋼板を加熱して表面に酸化鉄を形成したのち、還元焼鈍を行うことにより、溶融亜鉛との濡れ性を改善することが提案されている(例えば、特許文献1)。
また、溶融めっきに先立って硫黄または硫黄化合物をS量として0.1〜1000mg/m2付着させた後、予熱工程を弱酸化性雰囲気で行い、その後水素を含む非酸化性雰囲気中で焼鈍する方法が開示されている(例えば、特許文献2)。
特許第2587724号公報 特開平11−50223号公報
Several proposals have been made to solve such problems.
For example, it has been proposed to improve wettability with molten zinc by heating steel sheets in an oxidizing atmosphere in advance to form iron oxide on the surface and then performing reduction annealing (for example, Patent Document 1). ).
In addition, there is a method in which sulfur or a sulfur compound is deposited in an amount of 0.1 to 1000 mg / m 2 prior to hot dipping, followed by a preheating step in a weakly oxidizing atmosphere and then annealing in a non-oxidizing atmosphere containing hydrogen. It is disclosed (for example, Patent Document 2).
Japanese Patent No. 2587724 Japanese Patent Laid-Open No. 11-50223

特許文献1に記載の技術は、予め酸化性雰囲気中で加熱して酸化鉄を形成することによって、還元焼鈍時におけるSiの表面濃化を抑制しようとするものである。しかしながら、一般に知られているように、鋼中のSi濃度の増加に伴い鋼板表面における酸化速度が大きく低下するため、鋼中Si濃度の高い鋼板については、特許文献1に開示の酸化手段だけでは酸化が進行せず、Siの表面濃化を抑制するために必要な量の酸化鉄を得ることは難しい。   The technique described in Patent Document 1 intends to suppress surface concentration of Si during reduction annealing by heating in an oxidizing atmosphere to form iron oxide in advance. However, as is generally known, since the oxidation rate on the steel sheet surface greatly decreases as the Si concentration in the steel increases, the steel sheet having a high Si concentration in the steel can be obtained only by the oxidation means disclosed in Patent Document 1. Oxidation does not proceed, and it is difficult to obtain an amount of iron oxide necessary to suppress Si surface concentration.

その結果、溶融めっき時における不めっきの発生を十分には抑制できず、また合金化する場合には、合金化過程において懸念される合金化の著しい遅延という問題を十分に解決することができない。   As a result, the occurrence of non-plating during hot dipping cannot be sufficiently suppressed, and when alloying, the problem of significant delay in alloying, which is a concern in the alloying process, cannot be sufficiently solved.

さらに鋼中のSi濃度によって酸化速度が異なるため、過度に酸化が進行する場合には鋼板搬送中に酸化鉄が剥離し、搬送ロール等に付着して鋼板に押し疵を発生させる等の外観不良の問題もある。   In addition, because the oxidation rate varies depending on the Si concentration in the steel, if the oxidation proceeds excessively, the iron oxide peels off during conveyance of the steel sheet, adheres to the conveyance roll, etc., and causes an appearance defect such as pushing down on the steel sheet There is also a problem.

さらに、前記のように、鋼中Si濃度によって酸化速度が異なるため、所望の酸化鉄量を得るためには鋼中のSi濃度に応じて酸化処理条件を制御する必要がある。しかし、特許文献1に記載の技術では、酸化処理条件を制御する手段がないため、例えば、めっき処理後の不めっきの発生、あるいは鋼板の押し疵等を目視確認してから酸化鉄量を推定して酸化処理条件を変更するしか手段がない。そのため、鋼中Si濃度が異なる鋼板を連続的に溶融亜鉛めっきする際には応答性が悪く、著しい歩留まり低下を余儀なくされるという問題がある。   Furthermore, as described above, since the oxidation rate varies depending on the Si concentration in the steel, it is necessary to control the oxidation treatment conditions according to the Si concentration in the steel in order to obtain a desired amount of iron oxide. However, in the technique described in Patent Document 1, since there is no means for controlling the oxidation treatment conditions, for example, the amount of iron oxide is estimated after visually confirming the occurrence of non-plating after the plating treatment or the pressing iron of the steel plate. Thus, there is no choice but to change the oxidation treatment conditions. Therefore, when continuously hot galvanizing steel sheets having different Si concentrations in steel, there is a problem that the responsiveness is poor and a remarkable yield reduction is unavoidable.

特許文献2に記載の技術は、鋼板表面に形成させた硫化物層により溶融亜鉛との濡れ性を改善しようとするものである。しかしながら、鋼中Si濃度の高い鋼鈑に適用した場合、硫化物層による効果のみではSiの表面濃化を抑制できず、特許文献1と同様に、めっき層の性能の問題、合金化遅延の問題は解決できない。また、予熱工程を弱酸化性雰囲気で行ったとしても、鋼中のSi濃度の高い鋼板に適用した場合、Siの表面濃化を充分抑制できないので、やはり特許文献1と同様に、めっき層の性能の問題、合金化遅延の問題は解決できない。   The technique described in Patent Document 2 attempts to improve wettability with molten zinc by a sulfide layer formed on the surface of a steel plate. However, when applied to a steel plate having a high Si concentration in steel, the surface concentration of Si cannot be suppressed only by the effect of the sulfide layer. The problem cannot be solved. Further, even if the preheating step is performed in a weakly oxidizing atmosphere, when applied to a steel sheet having a high Si concentration in steel, the surface concentration of Si cannot be sufficiently suppressed. The problems of performance and alloying delay cannot be solved.

さらに、特許文献2に開示された技術は、弱酸化性雰囲気の予熱工程に先立って硫黄または硫黄化合物を鋼板表面に付着させるものであるため、続く焼鈍処理工程において硫黄成分が加熱炉内で二酸化硫黄や硫化水素等の腐食性ガスとして多量に放出され、加熱炉体および炉内設備の腐食損傷が激しくなり頻繁な補修や劣化更新が必要となる。また、炉内ガスを大気中に放出する場合には大気汚染を防止する観点から脱硫装置を設ける必要もある等、工程生産を実現するにはさらなる改良の必要がある。   Furthermore, since the technique disclosed in Patent Document 2 attaches sulfur or a sulfur compound to the steel plate surface prior to the preheating step of the weak oxidizing atmosphere, the sulfur component is oxidized in the heating furnace in the subsequent annealing treatment step. A large amount of corrosive gas such as sulfur and hydrogen sulfide is released, which causes severe damage to the heating furnace and the equipment in the furnace, requiring frequent repairs and deterioration updates. Further, when releasing the in-furnace gas into the atmosphere, it is necessary to provide a desulfurization device from the viewpoint of preventing air pollution, and further improvement is necessary to realize the process production.

本発明はかかる事情に鑑みてなされたものであって、不めっきあるいは押し疵等の表面欠陥がなく、特に厳しいめっき特性が要求される自動車用鋼板としても充分に耐え得る高水準のめっき品質を兼ね備えた溶融亜鉛めっき鋼板およびその製造装置、ならびに表面処理制御方法、表面処理制御装置を提供することを目的とする。   The present invention has been made in view of such circumstances, has no surface defects such as non-plating or pressing iron, and has a high level of plating quality that can sufficiently withstand even steel plates for automobiles that require particularly severe plating characteristics. An object of the present invention is to provide a hot-dip galvanized steel sheet, a manufacturing apparatus thereof, a surface treatment control method, and a surface treatment control apparatus.

前記のように、鋼中Si濃度の高い鋼板の場合、従来技術による酸化手段のみでは酸化が進まず、不めっき改善のために必要な量の酸化鉄を得ることが困難である。従って、鋼中Si濃度が高い鋼板の場合、何らかの方法で酸化を促進することが必要になる。   As described above, in the case of a steel sheet having a high Si concentration in the steel, the oxidation does not proceed only with the oxidation means according to the prior art, and it is difficult to obtain the iron oxide necessary for improving the non-plating. Therefore, in the case of a steel plate having a high Si concentration in steel, it is necessary to promote oxidation by some method.

そこで、発明者らは、鋼中Si濃度の高い鋼板について不めっきを抑制し、併せて、めっき層の合金化の促進を図るための手段について鋭意検討を重ねた。その結果、酸化処理に先立って特定の成分を鋼板表面に付着させるとともに、適正な酸化処理条件を採用することで上記課題が解決可能となることを見出した。
すなわち、鋼板の表面に、P、Na、K、Cl、S、F、B、C、Nからなる特定元素群から選ばれた少なくとも1種の特定元素を含有する化合物を付着させることで鋼中Si濃度の高い鋼板についても容易に酸化を促進することができるという知見を得た。
また、酸化処理条件によって酸化鉄量が変化することは自明であるが、前記鋼板に付着させる特定元素量によっても酸化鉄量が変化するという知見を得た。
さらに、鋼板に付着した化合物付着量、鋼板表面に形成された酸化鉄量を各々測定し、フィードバックすることにより、より適切な量の化合物が鋼板表面に付着し、より適切な量の酸化鉄が鋼板表面に形成する。その結果、高水準の品質を兼ね備えた溶融亜鉛めっき鋼板が得られることになる。
そして、適正な酸化処理条件を採用することで、酸化処理に先立って鋼板表面に付着させた特定の成分は、鋼板中に取り込まれ、加熱炉内の酸化処理雰囲気中および後続する還元処理雰囲気中での放出が抑制される。ゆえに、鋼板表面に付着させる特定成分としてSやCl等の腐食性ガスや環境汚染ガスの成分となる元素を採用した場合であっても、加熱炉の損傷の問題や汚染ガス回収設備の設置といった問題を生じることなく、実用化に非常に有利である。
Therefore, the inventors conducted extensive studies on means for suppressing non-plating of steel sheets having a high Si concentration in the steel and, at the same time, promoting the alloying of the plating layer. As a result, it has been found that the above-mentioned problems can be solved by adhering specific components to the steel sheet surface prior to the oxidation treatment and employing appropriate oxidation treatment conditions.
That is, in the steel by attaching a compound containing at least one specific element selected from a specific element group consisting of P, Na, K, Cl, S, F, B, C, and N to the surface of the steel sheet. It was found that oxidation can be easily promoted even for steel sheets with high Si concentration.
In addition, it is obvious that the amount of iron oxide varies depending on the oxidation treatment conditions, but the inventors have found that the amount of iron oxide varies depending on the amount of the specific element attached to the steel sheet.
Furthermore, by measuring and feeding back the amount of compound adhering to the steel sheet and the amount of iron oxide formed on the steel sheet surface, a more appropriate amount of compound adheres to the steel sheet surface, and a more appropriate amount of iron oxide is produced. It is formed on the steel plate surface. As a result, a hot-dip galvanized steel sheet having a high level of quality can be obtained.
And by adopting appropriate oxidation treatment conditions, the specific components attached to the steel plate surface prior to the oxidation treatment are taken into the steel plate, and in the oxidation treatment atmosphere in the heating furnace and the subsequent reduction treatment atmosphere The release at is suppressed. Therefore, even when elements that are components of corrosive gases such as S and Cl and environmental pollutant gases are used as specific components that adhere to the steel sheet surface, heating furnace damage problems and installation of pollutant gas recovery equipment It is very advantageous for practical use without causing problems.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]P、Na、K、Cl、S、F、B、C、Nからなる特定元素群から選ばれた少なくとも1種の特定元素を含有する化合物を鋼板表面に付着させる化合物付着工程と、酸化処理を施して、化合物が付着した、該鋼板表面に酸化鉄を形成する酸化処理工程と、前記酸化処理工程にて鋼板表面に形成された酸化鉄量を測定する酸化鉄量測定工程と、表面に酸化鉄が形成された鋼板に還元処理を施す還元処理工程と、めっき処理を行うめっき処理工程とを有することを特徴とする溶融亜鉛めっき鋼板の製造装置。
[2]前記[1]において、前記化合物付着工程にて鋼板表面に付着した付着量を測定する付着量測定工程を有することを特徴とする溶融亜鉛めっき鋼板の製造装置。
[3]前記[1]または[2]において、鋼板表面に付着させる前記化合物の付着量が、各特定元素換算で0.1〜1000mg/m2であることを特徴とする溶融亜鉛めっき鋼板の製造装置。
[4]前記[1]〜[3]のいずれかにおいて、前記酸化処理工程における酸化処理の最高到達温度が500℃超であることを特徴とする溶融亜鉛めっき鋼板の製造装置。
[5]前記[1]〜[4]のいずれかにおいて、前記化合物付着工程には乾燥工程が含まれることを特徴とする溶融亜鉛めっき鋼板の製造装置。
[6]前記[1]〜[5]のいずれかにおいて、前記めっき処理工程後、さらに、合金化処理を行うことを特徴とする溶融亜鉛めっき鋼板の製造装置。
[7]鋼板を連続的に搬送しながら、P、Na、K、Cl、S、F、B、C、Nからなる特定元素群から選ばれた少なくとも1種の特定元素を含有する化合物を鋼板表面に付着させ、酸化処理後、還元処理、めっき処理を行う溶融亜鉛めっき鋼板の製造プロセスにおいて、酸化処理後、鋼板表面に形成された酸化鉄量を実測し、その実測値を目標値に一致させるように、酸化処理条件を操作することを特徴とする溶融亜鉛めっき鋼板の表面処理制御方法。
[8]前記[7]において、化合物を鋼板表面に付着後、鋼板に付着した付着量を実測し、その実測値を目標値に一致させるように、化合物付着時の特定元素量を操作することを特徴とする溶融亜鉛めっき鋼板の表面処理制御方法。
[9]前記[7]または[8]において、化合物を鋼板表面に付着後、乾燥させた後、酸化処理を行うことを特徴とする溶融亜鉛めっき鋼板の表面処理制御方法。
[10]前記[7]〜[9]のいずれかにおいて、めっき処理後、さらに合金化処理を行うことを特徴とする溶融亜鉛めっき鋼板の表面処理制御方法。
[11]鋼板表面にP、Na、K、Cl、S、F、B、C、Nからなる特定元素群から選ばれた少なくとも1種の特定元素を含有する化合物を付着させる化合物付着装置と、酸化処理を施して、化合物が付着した、該鋼板表面に酸化鉄を形成させる酸化処理装置と、前記酸化処理装置の後に設けられ、鋼板表面に形成された酸化鉄量を測定する酸化鉄量測定装置と、測定された酸化鉄量を目標値に一致させるように、前記酸化処理装置の条件を操作する酸化鉄量調節装置と、表面に酸化鉄が形成された鋼板に還元処理を施す還元処理装置と、めっき処理を行うめっき処理装置とを有することを特徴とする溶融亜鉛めっき鋼板の表面処理制御装置。
[12]前記[11]において、前記化合物付着装置の後に設けられ、鋼板表面に付着した付着量を測定する化合物付着量測定装置と、測定された付着量を目標値に一致させるように、前記化合物付着装置の条件を操作する付着量調節装置とをさらに有することを特徴とする溶融亜鉛めっき鋼板の表面処理制御装置。
[13]前記[11]または[12]において、前記化合物付着装置に乾燥装置が含まれることを特徴とする溶融亜鉛めっき鋼板の表面処理制御装置。
[14]前記[7]〜[10]のいずれかにおいて、請求項7〜10に記載の溶融亜鉛めっき鋼板の表面処理制御方法により、鋼板表面の酸化鉄量が調整された溶融亜鉛めっき鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A compound attachment step of attaching a compound containing at least one specific element selected from the specific element group consisting of P, Na, K, Cl, S, F, B, C, and N to the steel sheet surface; An oxidation treatment step for forming iron oxide on the surface of the steel sheet to which the compound is attached by performing an oxidation treatment, and an iron oxide amount measurement step for measuring the amount of iron oxide formed on the steel plate surface in the oxidation treatment step, An apparatus for producing a hot dip galvanized steel sheet, comprising: a reduction treatment process for performing reduction treatment on a steel sheet having iron oxide formed on a surface thereof; and a plating treatment process for performing plating treatment.
[2] The apparatus for producing a hot dip galvanized steel sheet according to [1], further including an adhesion amount measurement step of measuring an adhesion amount adhered to the steel sheet surface in the compound adhesion step.
[3] The apparatus for producing a hot dip galvanized steel sheet according to [1] or [2], wherein the amount of the compound attached to the steel sheet surface is 0.1 to 1000 mg / m 2 in terms of each specific element. .
[4] The apparatus for producing a hot dip galvanized steel sheet according to any one of [1] to [3], wherein a maximum temperature of the oxidation treatment in the oxidation treatment step is over 500 ° C.
[5] The apparatus for producing a hot dip galvanized steel sheet according to any one of [1] to [4], wherein the compound attaching step includes a drying step.
[6] The apparatus for producing a hot dip galvanized steel sheet according to any one of [1] to [5], wherein an alloying treatment is further performed after the plating treatment step.
[7] A steel plate containing a compound containing at least one specific element selected from a specific element group consisting of P, Na, K, Cl, S, F, B, C, and N while continuously conveying the steel plate In the manufacturing process of hot-dip galvanized steel sheet, which is attached to the surface and subjected to oxidation treatment, reduction treatment, and plating treatment, after the oxidation treatment, the amount of iron oxide formed on the steel plate surface is measured, and the measured value matches the target value. A method for controlling the surface treatment of a hot dip galvanized steel sheet, wherein the oxidation treatment conditions are manipulated so that
[8] In the above [7], after attaching the compound to the steel plate surface, the amount of adhesion attached to the steel plate is measured, and the specific element amount at the time of compound attachment is adjusted so that the measured value matches the target value. A surface treatment control method for a hot-dip galvanized steel sheet.
[9] A surface treatment control method for a hot-dip galvanized steel sheet according to [7] or [8], wherein the compound is attached to the surface of the steel sheet, dried, and then oxidized.
[10] The surface treatment control method for a hot dip galvanized steel sheet according to any one of the above [7] to [9], wherein an alloying treatment is further performed after the plating treatment.
[11] A compound attachment device for attaching a compound containing at least one specific element selected from the specific element group consisting of P, Na, K, Cl, S, F, B, C, and N to the steel sheet surface; An oxidation treatment apparatus that forms an iron oxide on the surface of the steel sheet to which the compound is attached by performing an oxidation treatment, and an iron oxide amount measurement that is provided after the oxidation treatment apparatus and measures the amount of iron oxide formed on the steel sheet surface An iron oxide amount adjusting device for operating the conditions of the oxidation treatment device so as to match the measured iron oxide amount with a target value, and a reduction treatment for performing a reduction treatment on a steel plate having iron oxide formed on the surface A surface treatment control apparatus for a hot dip galvanized steel sheet, comprising: an apparatus; and a plating apparatus for performing plating.
[12] In the above [11], the compound adhesion amount measuring device that is provided after the compound adhesion device and measures the adhesion amount adhered to the surface of the steel sheet, and the measured adhesion amount is made to coincide with the target value. An apparatus for controlling the surface treatment of a hot-dip galvanized steel sheet, further comprising: an adhesion amount adjusting device for operating conditions of the compound attaching device.
[13] The surface treatment control apparatus for hot-dip galvanized steel sheets according to [11] or [12], wherein the compound adhesion apparatus includes a drying apparatus.
[14] The hot dip galvanized steel sheet according to any one of [7] to [10], wherein the amount of iron oxide on the steel sheet surface is adjusted by the surface treatment control method for a hot dip galvanized steel sheet according to any one of claims 7 to 10.

本発明によれば、不めっきおよび押し疵等の表面欠陥のない美麗な表面外観を有しめっき密着性に優れた溶融亜鉛めっき鋼板、また、不めっきおよび押し疵等の表面欠陥のない美麗な表面外観を有し耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板が得られる。またこれらの鋼板を製造するにあたっては、安価でしかも安定して高い生産性を有して工程生産することが可能となり、産業上格段の効果を有することになる。   According to the present invention, a hot-dip galvanized steel sheet having a beautiful surface appearance free of surface defects such as non-plating and pressing iron and having excellent plating adhesion, and beautiful without surface defects such as non-plating and pressing iron An alloyed hot-dip galvanized steel sheet having a surface appearance and excellent powdering resistance can be obtained. Further, in manufacturing these steel sheets, it is possible to perform process production at a low cost and stably with high productivity, which has a remarkable industrial effect.

以下、本発明について具体的に説明する。
本発明では、鋼板表面に特定元素を含有する化合物を付着させた後、酸化処理、還元処理、めっき処理を施す。まず本発明の実施に好適な溶融亜鉛めっき鋼板の製造装置の構成について説明する。図1は本発明の実施形態の一つである溶融亜鉛めっき鋼板の製造装置を示す図である。
Hereinafter, the present invention will be specifically described.
In this invention, after making the compound containing a specific element adhere to the steel plate surface, an oxidation process, a reduction process, and a plating process are given. First, the structure of the manufacturing apparatus of the hot dip galvanized steel plate suitable for implementation of this invention is demonstrated. FIG. 1 is a diagram showing an apparatus for producing a hot dip galvanized steel sheet, which is one embodiment of the present invention.

鋼板1は通常の前処理工程で洗浄され(図示せず)、化合物付着装置2にて特定元素を含有する化合物を付着し、酸化処理装置3にて鋼板表面に酸化鉄を形成し、還元処理装置4にて前記酸化鉄を還元し、冷却処理装置5にてめっきに適した温度まで鋼板を冷却し、めっき処理装置6にて溶融亜鉛めっきを施す。次いでめっき付着量調整装置7にて所望のめっき厚さに調整した後、必要に応じて合金化処理装置8にて合金化処理を施す。   The steel plate 1 is cleaned in a normal pretreatment process (not shown), a compound containing a specific element is attached by the compound attaching device 2, iron oxide is formed on the steel plate surface by the oxidation treatment device 3, and reduction treatment is performed. The iron oxide is reduced by the apparatus 4, the steel sheet is cooled to a temperature suitable for plating by the cooling processing apparatus 5, and hot dip galvanizing is performed by the plating processing apparatus 6. Next, after adjusting to a desired plating thickness by the plating adhesion amount adjusting device 7, an alloying treatment is performed by the alloying processing device 8 as necessary.

まず、化合物付着工程について説明する。図1において、前記化合物付着装置2にて、P、Na、K、Cl、S、F、B、C、Nからなる特定元素群から選ばれた少なくとも1種の特定元素を含有する化合物を鋼板表面に付着させる。
ここで、特定元素とは、P、Na、K、Cl、S、F、B、CおよびNであり、これらの特定元素群から選ばれた少なくとも1種を含有する化合物、あるいはこれらを元素を単体で(単体で付着させることが可能なものに限る)、鋼板表面に付着させる。このような特定元素を含有する化合物としては、以下のようなものが挙げられる。
First, a compound adhesion process is demonstrated. In FIG. 1, a compound containing at least one specific element selected from a specific element group consisting of P, Na, K, Cl, S, F, B, C, and N is added to the steel sheet in the compound deposition apparatus 2. Adhere to the surface.
Here, the specific element is P, Na, K, Cl, S, F, B, C and N, and a compound containing at least one selected from these specific element groups, or these elements as elements It is attached to the surface of the steel sheet alone (limited to those that can be attached alone). Examples of the compound containing such a specific element include the following.

リン酸(H3PO4)、リン酸カリウム(K3PO4)、リン酸アンモニウム((NH4)3PO4)、リン酸ナトリウム(Na3PO4)、リン酸水素ナトリウム(Na2HPO4)、リン酸鉄(FePO4)、ホスホン酸(H3PO3)およびホスフィン酸(H3PO2)等のP含有化合物、
水酸化ナトリウム(NaOH)、硫酸ナトリウム(Na2SO4)、硫化ナトリウム(Na2S)、チオ硫酸ナトリウム(Na2S2O3)、塩化ナトリウム(NaCl)、炭酸ナトリウム(Na2CO3)、クエン酸ナトリウム(Na3C6H5O7)、シアン酸ナトリウム(NaCNO)、酢酸ナトリウム(CH3COONa)、リン酸水素ナトリウム(Na2HPO4)、リン酸ナトリウム(Na3PO4)、フッ化ナトリウム(NaF)、炭酸水素ナトリウム(NaHCO3)、硝酸ナトリウム(NaNO3)、シュウ酸ナトリウム((COONa)2)、四ほう酸ナトリウム(Na2B4O7)および酸化ナトリウム(Na2O)等のNa含有化合物、
水酸化カリウム(KOH)、酢酸カリウム(CH3COOK)、ほう酸カリウム(K2B4O7)、炭酸カリウム(K2CO3)、塩化カリウム(KCl)、シアン酸カリウム(KCNO)、クエン酸水素カリウム(KH2C6H5O7)、フッ化カリウム(KF)、モリブデン酸カリウム(K2MoO4)、硝酸カリウム(KNO3)、過マンガン酸カリウム(KMnO4)、リン酸カリウム(K3PO4)、硫酸カリウム(K2SO4)、チオシアン酸カリウム(KSCN)およびシュウ酸カリウム((COOK)2)等のK含有化合物、
塩酸(HCl)、塩化ナトリウム(NaCl)、塩化アンモニウム(NH4Cl)、塩化アンチモン(SbCl3)、塩化カリウム(KCl)、塩化鉄(FeCl2、FeCl3)、塩化チタン(TiCl4)、塩化銅(CuCl)、塩化バリウム(BaCl2)、塩化モリブデン(MoCl5)および塩素酸ナトリウム(NaClO3)等のCl含有化合物、
硫酸(H2SO4)、硫酸ナトリウム(Na2SO4)、亜硫酸ナトリウム(Na2SO3)、硫化ナトリウム(Na2S)、硫酸アンモニウム((NH4)2SO4)、硫化アンモニウム((NH4)2S)、チオ硫酸ナトリウム(Na2S2O3)、硫酸水素ナトリウム(NaHSO4)、硫酸水素アンモニウム(NH4HSO4)、硫酸カリウム(K2SO4)、硫酸鉄(FeSO4、Fe2(SO4)3)、硫酸アンモニウム鉄(Fe(NH4)2(SO4)2、FeNH4(SO4)2)、硫酸バリウム(BaSO4)、硫化アンチモン(Sb2S3)、硫化鉄(FeS)、チオ尿素(H2NCSNH2)、二酸化チオ尿素((NH2)2CSO2)、SCH基のチオフェン酸塩類およびSCN基を有するチオシアン酸塩類等のS含有化合物、
フッ化アンチモン(SbF3)、フッ化アンモニウム(NH4F)、フッ化カリウム(KF)、フッ化水素アンモニウム(NH4FHF)、フッ化水素酸(HF)、フッ化ナトリウム(NaF)、フッ化バリウム(BaF)およびフッ化コバルト(CoF3)等のF含有化合物、
ほう酸(H3BO3)、ほう酸カリウム(K2B4O7)、四ほう酸ナトリウム(Na2B4O7)、ほう酸鉛(Pb(BO2)2)およびほう酸マンガン(MnH4(BO3)2)等のB含有化合物、
シュウ酸およびシュウ酸塩類、クエン酸およびクエン酸塩類、そして硝酸および硝酸塩類をはじめとする、CおよびN含有化合物
なお、上記では代表的な例を示したが。これに限定されず、上記以外のP、Na、K、Cl、S、F、B、CおよびNから選ばれた少なくとも1種を含有する化合物を使用しても本発明で所期する効果が得られることは言うまでもない。
Phosphoric acid (H 3 PO 4 ), potassium phosphate (K 3 PO 4 ), ammonium phosphate ((NH 4 ) 3 PO 4 ), sodium phosphate (Na 3 PO 4 ), sodium hydrogen phosphate (Na 2 HPO 4 ), P-containing compounds such as iron phosphate (FePO 4 ), phosphonic acid (H 3 PO 3 ) and phosphinic acid (H 3 PO 2 ),
Sodium hydroxide (NaOH), sodium sulfate (Na 2 SO 4 ), sodium sulfide (Na 2 S), sodium thiosulfate (Na 2 S 2 O 3 ), sodium chloride (NaCl), sodium carbonate (Na 2 CO 3 ) , Sodium citrate (Na 3 C 6 H 5 O 7 ), sodium cyanate (NaCNO), sodium acetate (CH 3 COONa), sodium hydrogen phosphate (Na 2 HPO 4 ), sodium phosphate (Na 3 PO 4 ) , sodium fluoride (NaF), sodium bicarbonate (NaHCO 3), sodium nitrate (NaNO 3), (2 ( COONa)) sodium oxalate, sodium tetraborate (Na 2 B 4 O 7) and sodium oxide (Na 2 Na-containing compounds such as O)
Potassium hydroxide (KOH), potassium acetate (CH 3 COOK), potassium borate (K 2 B 4 O 7 ), potassium carbonate (K 2 CO 3 ), potassium chloride (KCl), potassium cyanate (KCNO), citric acid Potassium hydrogen (KH 2 C 6 H 5 O 7 ), potassium fluoride (KF), potassium molybdate (K 2 MoO 4 ), potassium nitrate (KNO 3 ), potassium permanganate (KMnO 4 ), potassium phosphate (K 3 PO 4 ), potassium sulfate (K 2 SO 4 ), potassium thiocyanate (KSCN) and potassium oxalate ((COOK) 2 ) and other K-containing compounds,
Hydrochloric acid (HCl), sodium chloride (NaCl), ammonium chloride (NH 4 Cl), antimony chloride (SbCl 3 ), potassium chloride (KCl), iron chloride (FeCl 2 , FeCl 3 ), titanium chloride (TiCl 4 ), chloride Cl-containing compounds such as copper (CuCl), barium chloride (BaCl 2 ), molybdenum chloride (MoCl 5 ) and sodium chlorate (NaClO 3 ),
Sulfuric acid (H 2 SO 4 ), sodium sulfate (Na 2 SO 4 ), sodium sulfite (Na 2 SO 3 ), sodium sulfide (Na 2 S), ammonium sulfate ((NH 4 ) 2 SO 4 ), ammonium sulfide ((NH 4) 2 S), sodium thiosulfate (Na 2 S 2 O 3) , sodium bisulfate (NaHSO 4), ammonium hydrogen sulfate (NH 4 HSO 4), potassium sulfate (K 2 SO 4), iron sulfate (FeSO 4 , Fe 2 (SO 4 ) 3 ), ammonium iron sulfate (Fe (NH 4 ) 2 (SO 4 ) 2 , FeNH 4 (SO 4 ) 2 ), barium sulfate (BaSO 4 ), antimony sulfide (Sb 2 S 3 ), S-containing compounds such as iron sulfide (FeS), thiourea (H 2 NCSNH 2 ), thiourea dioxide ((NH 2 ) 2 CSO 2 ), thiophenate of SCH group and thiocyanate having SCN group,
Antimony fluoride (SbF 3 ), ammonium fluoride (NH 4 F), potassium fluoride (KF), ammonium hydrogen fluoride (NH 4 FHF), hydrofluoric acid (HF), sodium fluoride (NaF), fluorine F-containing compounds such as barium fluoride (BaF) and cobalt fluoride (CoF 3 ),
Boric acid (H 3 BO 3 ), potassium borate (K 2 B 4 O 7 ), sodium tetraborate (Na 2 B 4 O 7 ), lead borate (Pb (BO 2 ) 2 ) and manganese borate (MnH 4 (BO 3 2 ) B-containing compounds such as
C and N-containing compounds, including oxalic acid and oxalates, citric acid and citrates, and nitric acid and nitrates. However, the present invention is not limited to this, and even if a compound containing at least one selected from P, Na, K, Cl, S, F, B, C and N other than the above is used, the effect expected in the present invention can be obtained. It goes without saying that it is obtained.

前記した特定元素を含む化合物を鋼板表面に付着させる方法としては特に限定しない。物理的に付着させればよいことから、例えば前記化合物を水または有機溶剤等に溶解またはこれらと混合した溶液を用い、この溶液中に鋼板を浸漬させる方法、溶液をスプレー等で噴霧する方法、溶液をロールコーター等で塗布する方法などを採用できる。その他、化合物を直接塗布しても本発明の効果を同様に得ることができる。なお、図1において、化合物付着装置2は上記方法を達成できる装置構成とする。   It does not specifically limit as a method to adhere the compound containing an above described specific element to the steel plate surface. Since it only has to be physically attached, for example, using a solution in which the compound is dissolved or mixed with water or an organic solvent, a method of immersing a steel plate in this solution, a method of spraying the solution with a spray, etc. The method of apply | coating a solution with a roll coater etc. is employable. In addition, the effects of the present invention can be obtained in the same manner by directly applying the compound. In addition, in FIG. 1, the compound adhesion apparatus 2 is set as the apparatus structure which can achieve the said method.

前記化合物を付着させる前に、必要に応じて電解脱脂や酸洗等の従来から用いられている前処理を施すことも可能である。また、前記化合物を付着させた後に、必要に応じて電解脱脂や酸洗等の従来から用いられている前処理を施すこともできる。ただし、この場合は、処理後も化合物が鋼板表面に付着された状態であることが重要である。さらに、前記化合物を含む圧延油を用いて圧延時に付着させる方法を用いてもよい。いずれの場合においても、鋼板に酸化処理を行う際に、前記特定元素を含む化合物が鋼板表面に付着しているように各処理を行うことが重要である。   Prior to attaching the compound, a pretreatment conventionally used, such as electrolytic degreasing or pickling, may be performed as necessary. Moreover, after making the said compound adhere, pretreatment conventionally used, such as electrolytic degreasing and pickling, can also be given as needed. However, in this case, it is important that the compound remains attached to the steel plate surface even after the treatment. Furthermore, you may use the method of making it adhere at the time of rolling using the rolling oil containing the said compound. In any case, it is important to perform each treatment so that the compound containing the specific element adheres to the steel plate surface when the steel plate is oxidized.

前記特定元素を含む化合物の付着量は、特定元素量として0.1〜1000mg/m2の範囲が好ましい。化合物の付着量が0.1mg/m2未満であると、前述の本発明の効果が得られない場合がある。一方、1000mg/m2を超えると本発明の効果が飽和して経済的に不利になる場合がある。なお、特定元素量を0.1〜1000mg/m2の範囲に制御する方法としては特に限定しない。例えば、所定量の前記化合物を水または有機溶剤等に溶解またはこれらと混合した溶液を用いて、予め溶液中の前記特定元素量を測定し、この溶液中に鋼板を浸漬したり、溶液をスプレー等で噴霧した後にリンガーロール等で鋼板付着溶液量を調整することで鋼板に付着した特定元素量を制御することができる。また、前記溶液をロールコーター等で塗布する場合は、鋼板に付着する溶液量を調整することで鋼板に付着した特定元素量を制御することができる。 The amount of the compound containing the specific element is preferably in the range of 0.1 to 1000 mg / m 2 as the specific element amount. When the adhesion amount of the compound is less than 0.1 mg / m 2 , the above-described effects of the present invention may not be obtained. On the other hand, if it exceeds 1000 mg / m 2 , the effect of the present invention may be saturated and disadvantageous economically. In addition, it does not specifically limit as a method of controlling the amount of specific elements in the range of 0.1-1000 mg / m < 2 >. For example, using a solution in which a predetermined amount of the compound is dissolved or mixed with water or an organic solvent, the amount of the specific element in the solution is measured in advance, and a steel plate is immersed in the solution or the solution is sprayed. The amount of the specific element adhering to the steel sheet can be controlled by adjusting the amount of the steel sheet adhering solution with a ringer roll or the like after spraying. Moreover, when apply | coating the said solution with a roll coater etc., the amount of specific elements adhering to a steel plate can be controlled by adjusting the amount of solutions adhering to a steel plate.

上記付着量に制御するため、本発明では、化合物付着工程にて鋼板表面に付着した付着量を測定する付着量測定工程を有することが好ましい。例えば、図1においては、化合物付着装置2の後に付着量測定装置9が設けられ、化合物付着装置2において鋼板表面に付着した特定元素を含有する化合物の付着量を付着量測定装置9にて測定する。測定するにあたっては、化合物量としては少なくとも鋼板に付着した前記特定元素量を測定できればよく、付着量測定法としては特に限定するものではないが、以下のような方法があげられる。化合物が固体として付着している場合は、例えば蛍光X線法により特定元素強度を測定する方法が可能である。予め特定元素量と特定元素強度の関係について検量線を作成しておき、オンライン蛍光X線法にて測定した特定元素強度から特定元素量を求めることができる。また、化合物が水溶液として付着している場合は、例えば赤外吸収法により水の吸収ピーク強度を測定する方法が可能である。予め水溶液量と水の吸収ピーク強度の関係について検量線を作成しておき、オンライン赤外吸収法にて測定した水のピーク強度から水溶液量を求めることができる。水溶液中の特定元素濃度を予め測定しておけば、水の吸収ピーク強度から特定元素量を求めることができる。なお、鋼板幅方向での測定が必要な場合は、前記測定装置を走査する方法、あるいは複数個の測定装置を鋼板幅方向に配設する方法などが可能である。
上記は代表的な例を示したのであって、上記以外にオンラインにて特定元素量を測定可能な方法であれば本発明の効果が得られることは言うまでもない。
In order to control to the said adhesion amount, in this invention, it is preferable to have the adhesion amount measurement process of measuring the adhesion amount adhering to the steel plate surface in the compound adhesion process. For example, in FIG. 1, the adhesion amount measuring device 9 is provided after the compound adhesion device 2, and the adhesion amount of the compound containing the specific element adhered to the steel sheet surface in the compound adhesion device 2 is measured by the adhesion amount measurement device 9. To do. In the measurement, the amount of the compound is only required to be able to measure at least the amount of the specific element adhering to the steel sheet, and the method for measuring the amount of adhesion is not particularly limited, but examples thereof include the following methods. When the compound is attached as a solid, for example, a method of measuring the specific element intensity by a fluorescent X-ray method is possible. A calibration curve is created in advance for the relationship between the specific element amount and the specific element intensity, and the specific element amount can be obtained from the specific element intensity measured by the online fluorescent X-ray method. When the compound is attached as an aqueous solution, a method for measuring the water absorption peak intensity by, for example, an infrared absorption method is possible. A calibration curve is prepared in advance for the relationship between the amount of aqueous solution and the absorption peak intensity of water, and the amount of aqueous solution can be determined from the peak intensity of water measured by the online infrared absorption method. If the concentration of the specific element in the aqueous solution is measured in advance, the amount of the specific element can be obtained from the absorption peak intensity of water. When measurement in the steel plate width direction is necessary, a method of scanning the measuring device or a method of arranging a plurality of measuring devices in the steel plate width direction is possible.
The above is a representative example, and it goes without saying that the effect of the present invention can be obtained by any method other than the above that can measure the amount of the specific element online.

さらに、本発明では、測定された付着量を目標値に一致させるように、付着時の特定元素量を操作することが好ましい。例えば、図1においては、付着量調整装置11が付着量測定装置9の結果をフィードバックし、化合物付着装置2に反映するように設置されており、付着量調整装置11は、付着量測定装置9の結果を受けて付着量を目標値に一致させるように化合物付着装置2の条件を操作する機能を有する。ここで、鋼板に付着した特定元素量の実測値をもとに付着時の特定元素量を操作する方法としては特に限定するものではないが、例えば前記した特定元素を含む溶液を使用し、この溶液中に鋼板を浸漬したり、溶液をスプレー等で噴霧した後にリンガーロール等で鋼板付着溶液量を調整する場合、リンガーロールの押付け圧等を変化させて鋼板に付着する溶液量を変化させることで付着時の特定元素量を操作することができる。あるいは、前記溶液中の特定元素濃度を変化させることで付着時の特定元素量を操作することができる。
上記は代表的な例を示したのであって、上記以外に付着時の特定元素量を操作可能な方法であれば本発明の効果が得られることは言うまでもない。
Furthermore, in the present invention, it is preferable to manipulate the specific element amount at the time of adhesion so that the measured adhesion amount matches the target value. For example, in FIG. 1, the adhesion amount adjusting device 11 is installed so as to feed back the result of the adhesion amount measuring device 9 and reflect it in the compound attaching device 2. The function of operating the conditions of the compound deposition apparatus 2 so as to match the deposition amount with the target value is received. Here, the method for manipulating the specific element amount at the time of adhesion based on the actual measurement value of the specific element amount adhering to the steel plate is not particularly limited. For example, using a solution containing the specific element described above, When adjusting the amount of steel plate adhesion with a ringer roll after dipping the steel plate in the solution or spraying the solution with a spray etc., change the amount of solution adhering to the steel plate by changing the pressing pressure of the ringer roll etc. The specific element amount at the time of attachment can be manipulated with. Alternatively, the amount of the specific element at the time of attachment can be manipulated by changing the concentration of the specific element in the solution.
The above is a representative example, and it goes without saying that the effect of the present invention can be obtained by any method other than the above which can manipulate the specific element amount at the time of adhesion.

また、本発明では特定元素を含む化合物を鋼板表面に付着させた後、乾燥させることが好ましい。特定元素を含む化合物を水または有機溶剤等に溶解またはこれらと混合した溶液を用いて鋼板表面に化合物を付着させた後、乾燥せずに酸化処理工程、還元処理工程、めっき処理工程を行った場合、前記溶液の塗布ムラが発生する場合があり表面外観上問題となる場合がある。この理由の詳細は不明であるが、前記溶液が乾燥しない状態で鋼板を酸化処理工程に導入し、酸化処理工程で加熱・乾燥される場合、通板条件によっては鋼板上に特定元素量の不均一が生じることが塗布ムラの要因と推定している。鋼板上に特定元素量の不均一が生じた場合、酸化処理工程での酸化鉄量に不均一が生じたり、めっき処理工程での初期Zn-Fe合金化反応あるいはめっき付着量に不均一が生じたりすることがある。その結果、特定元素量の不均一に起因した外観ムラが発生するので、特定元素を含む化合物を鋼板に付着させた後乾燥させることが好ましい。但し、乾燥設備が必要なことから設備費の増大を招くので、前記した塗布ムラが発生しない場合には、乾燥設備を省略してもよい。
ここで、乾燥装置としては特に限定するものではなく、例えば前記の溶液を乾燥できれる装置であればよく、放射加熱、誘導加熱および通電加熱等の従来から使用されている乾燥装置が使用できる。
Moreover, in this invention, it is preferable to make it dry after making the compound containing a specific element adhere to the steel plate surface. After the compound containing the specific element was dissolved in water or an organic solvent or mixed with the solution, the compound was attached to the steel sheet surface, and then the oxidation treatment process, reduction treatment process, and plating treatment process were performed without drying. In this case, uneven application of the solution may occur, which may cause a problem in surface appearance. Although the details of this reason are unclear, when the steel sheet is introduced into the oxidation treatment process in a state where the solution is not dried, and heated and dried in the oxidation treatment process, the specific element amount on the steel sheet may be reduced depending on the sheet passing conditions. It is estimated that the occurrence of uniformity is a cause of coating unevenness. When non-uniformity of specific element amount occurs on the steel plate, non-uniformity occurs in the iron oxide amount in the oxidation treatment process, or non-uniformity in the initial Zn-Fe alloying reaction or plating adhesion amount in the plating treatment process Sometimes. As a result, since unevenness in appearance due to nonuniformity of the specific element amount occurs, it is preferable to dry the compound containing the specific element after adhering it to the steel sheet. However, since a drying facility is required, an increase in facility costs is caused, and therefore the drying facility may be omitted when the above-described coating unevenness does not occur.
Here, the drying device is not particularly limited, and may be any device that can dry the solution, for example, and conventionally used drying devices such as radiant heating, induction heating, and electric heating can be used.

鋼板表面に化合物を付着後、本発明では酸化処理を施して鋼板表面に酸化鉄を形成する。次いで、この酸化処理工程について説明する。例えば、図1においては、付着量測定装置9の後に酸化処理装置3が設けられ、酸化処理装置3により、化合物が付着した鋼板表面に酸化鉄を形成する。鋼板を酸化させる手段としては、例えば酸化性雰囲気中で鋼板を加熱することで容易に達成することができるが、酸化手段の違いが本発明の効果を妨げるものではなく、鋼板を酸化することができる手段であれば特に限定するものではない。
鋼板を加熱する手段としては、バーナー加熱、誘導加熱、放射加熱および通電加熱等の従来使用されている加熱方式でよく、特に限定するものではない。
After the compound is attached to the steel sheet surface, in the present invention, oxidation treatment is performed to form iron oxide on the steel sheet surface. Next, the oxidation treatment process will be described. For example, in FIG. 1, the oxidation treatment device 3 is provided after the adhesion amount measuring device 9, and the oxidation treatment device 3 forms iron oxide on the steel sheet surface to which the compound is adhered. As a means for oxidizing the steel sheet, for example, it can be easily achieved by heating the steel sheet in an oxidizing atmosphere, but the difference in the oxidation means does not hinder the effect of the present invention, and the steel sheet can be oxidized. There is no particular limitation as long as it can be used.
The means for heating the steel plate may be a conventionally used heating method such as burner heating, induction heating, radiant heating, and current heating, and is not particularly limited.

例えば、バーナー加熱方式としては、従来から用いられている酸化炉や無酸化炉等の加熱炉を使用することができる。バーナー加熱方式の場合、例えば直火バーナーの空燃比を1.0超えとすることで容易に鋼板を酸化することができる。   For example, as the burner heating method, a conventionally used heating furnace such as an oxidation furnace or a non-oxidation furnace can be used. In the case of the burner heating method, for example, the steel sheet can be easily oxidized by setting the air-fuel ratio of the direct fire burner to exceed 1.0.

また、誘導加熱方式、放射加熱方式および通電加熱方式の場合は、加熱する鋼板近傍の雰囲気を酸化性雰囲気とすることで容易に鋼板を酸化することができる。酸化性雰囲気としては、酸素、水蒸気および二酸化炭素等の酸化性ガスを1種または2種以上含有するものが一般的であるが、鋼板を酸化することができれば特に限定するものではない。   In addition, in the case of the induction heating method, the radiant heating method, and the energization heating method, the steel plate can be easily oxidized by setting the atmosphere in the vicinity of the steel plate to be heated to an oxidizing atmosphere. The oxidizing atmosphere is generally one containing one or more oxidizing gases such as oxygen, water vapor and carbon dioxide, but is not particularly limited as long as the steel sheet can be oxidized.

さらに、鋼板を酸化させる際の条件として、最高到達温度が500℃超となる加熱処理を酸化性雰囲気にて行うことが肝要である。なぜなら、加熱処理が500℃以下の場合は、酸化鉄の生成量が不充分であり、例えばSi,Mn等の表面濃化抑制、P等の粒界偏析抑制、酸化処理に先立って鋼板表面に付着させた成分のガス放出抑制といった本発明の効果を充分に得られない場合があるからである。一方、上限は特に制限するものではないが、続く還元処理で必要とされる鋼板温度以下であれば実用上経済的なので好ましい。   Further, as a condition for oxidizing the steel sheet, it is important to perform the heat treatment in which the maximum temperature reaches over 500 ° C. in an oxidizing atmosphere. This is because when the heat treatment is 500 ° C. or less, the amount of iron oxide produced is insufficient, for example, suppressing surface enrichment of Si, Mn, etc., suppressing grain boundary segregation such as P, and the like on the steel plate surface prior to oxidation treatment. This is because the effects of the present invention, such as suppression of gas release of the adhered components, may not be sufficiently obtained. On the other hand, the upper limit is not particularly limited, but is preferably less than the steel plate temperature required for the subsequent reduction treatment because it is practically economical.


前記により鋼板表面に形成された酸化鉄の量は、あまりに少ない場合、酸化鉄量が不足してSi等の表面濃化を抑制することが難しくなる場合がある。一方、酸化鉄量が過大であると、Si等の表面濃化抑制効果が飽和する一方で、後続する還元処理工程において、還元を充分に行うことができなくなり、未還元酸化鉄として残存し、めっき後の合金化処理過程で著しい合金化遅延を引き起こすおそれがある。また、酸素鉄量が過大であると、鋼板搬送中に酸化鉄が剥離し、搬送ロール等に付着して鋼板に押し疵を発生させる等の外観不良の問題を引き起こすおそれもある。

If the amount of iron oxide formed on the surface of the steel sheet is too small, the amount of iron oxide may be insufficient and it may be difficult to suppress surface concentration of Si or the like. On the other hand, if the amount of iron oxide is excessive, the effect of suppressing the surface enrichment of Si or the like is saturated, but in the subsequent reduction treatment step, the reduction cannot be sufficiently performed and remains as unreduced iron oxide, There is a possibility of causing a significant delay in alloying in the alloying process after plating. Further, if the amount of oxygen iron is excessive, the iron oxide may be peeled off during conveyance of the steel sheet and may cause problems such as poor appearance such as adhesion to a conveyance roll or the like and generation of pressing iron on the steel sheet.

したがって、本発明では、鋼板表面に形成された酸化鉄量を測定する酸化鉄量測定工程を有する。例えば、図1においては、酸化処理装置3のあとに、酸化鉄測定装置10が設けられ、酸化処理装置3によって形成された酸化鉄の量を酸化鉄測定装置10により測定する。酸化鉄量測定法としては特に限定するものではないが、以下のような方法がある。例えば蛍光X線法により酸素強度を測定する方法が可能である。予め酸化鉄量と酸素強度の関係について検量線を作成しておき、オンライン蛍光X線法にて測定した酸素強度から酸化鉄量を求めることができる。また、光学測定法として例えば鋼板の放射率を測定する方法が可能である。予め表面に酸化鉄を形成した鋼板の放射率、鋼板温度等と酸化鉄量の関係について検量線を作成しておき、オンライン放射率測定法にて測定した鋼板の放射率および鋼板温度から酸化鉄量を求めることができる。なお、鋼板幅方向での測定が必要な場合は、前記測定装置を走査する方法、あるいは複数個の測定装置を鋼板幅方向に配設する方法などが可能である。
上記は代表的な例を示したのであって、上記以外にオンラインにて酸化鉄量を測定可能な方法であれば本発明の効果が得られることは言うまでもない。
Therefore, in this invention, it has the iron oxide amount measurement process which measures the iron oxide amount formed in the steel plate surface. For example, in FIG. 1, an iron oxide measuring device 10 is provided after the oxidation treatment device 3, and the amount of iron oxide formed by the oxidation treatment device 3 is measured by the iron oxide measurement device 10. The method for measuring the amount of iron oxide is not particularly limited, but there are the following methods. For example, a method of measuring the oxygen intensity by a fluorescent X-ray method is possible. A calibration curve is created in advance for the relationship between the amount of iron oxide and oxygen intensity, and the amount of iron oxide can be determined from the oxygen intensity measured by the on-line fluorescent X-ray method. Further, as an optical measurement method, for example, a method of measuring the emissivity of a steel plate is possible. Prepare a calibration curve for the relationship between the emissivity, steel plate temperature, etc. of the steel plate with iron oxide formed on the surface in advance, and the amount of iron oxide. The amount can be determined. When measurement in the steel plate width direction is necessary, a method of scanning the measuring device or a method of arranging a plurality of measuring devices in the steel plate width direction is possible.
The above shows a typical example, and it goes without saying that the effect of the present invention can be obtained by any method other than the above that can measure the amount of iron oxide online.

さらに、本発明では測定された酸化鉄量を目標値に一致させるように、酸化処理条件を操作する。例えば、図1においては酸化鉄量測定装置10の結果をフィードバックし酸化処理装置3に反映するように酸化鉄量調整装置12が設けられており、酸化鉄量調整装置12は、酸化鉄量測定装置10の結果を受けて酸化鉄量が目標値と一致するように酸化処理装置3の条件を操作する機能を有している。これは、前記のように例えば鋼中Si濃度によって酸化速度が異なるため、所望の酸化鉄量を得るためには鋼中Si濃度によって酸化処理条件を調整する必要があるためである。ここで、酸化鉄量の実測値をもとに酸化処理条件を操作する方法としては特に限定するものではないが、例えば加熱炉を使用する場合は鋼板温度を変化させることができる。また、加熱炉として直火バーナー加熱方式を用いた場合、バーナーの空燃比を変化させたり、誘導加熱方式や放射加熱方式および通電加熱方式の場合、例えば酸素や水蒸気等の酸化性雰囲気の濃度を変化させることができる。但し、酸化性雰囲気の濃度を変化させる際に、前記加熱炉の容積が大きい場合は応答性が悪くなるという問題がある。このような場合は鋼板温度を変化させる等で酸化処理条件を操作することができる。すなわち、操業上のコスト、応答性等を考慮して操作するための最適な酸化処理条件を選定すればよい。   Furthermore, in the present invention, the oxidation treatment conditions are manipulated so that the measured iron oxide amount matches the target value. For example, in FIG. 1, an iron oxide amount adjusting device 12 is provided so that the result of the iron oxide amount measuring device 10 is fed back and reflected in the oxidation processing device 3. The iron oxide amount adjusting device 12 measures the iron oxide amount. In response to the result of the apparatus 10, it has a function of operating the conditions of the oxidation treatment apparatus 3 so that the amount of iron oxide matches the target value. This is because, for example, the oxidation rate varies depending on the Si concentration in the steel as described above, and therefore it is necessary to adjust the oxidation treatment conditions depending on the Si concentration in the steel in order to obtain a desired amount of iron oxide. Here, the method of operating the oxidation treatment condition based on the actual measurement value of the iron oxide amount is not particularly limited. For example, when a heating furnace is used, the steel plate temperature can be changed. In addition, when a direct-fired burner heating method is used as a heating furnace, the air-fuel ratio of the burner is changed, or in the case of an induction heating method, a radiant heating method, and an electric heating method, for example, the concentration of an oxidizing atmosphere such as oxygen or water vapor is changed. Can be changed. However, when changing the concentration of the oxidizing atmosphere, there is a problem that the responsiveness deteriorates if the volume of the heating furnace is large. In such a case, the oxidation treatment conditions can be manipulated by changing the steel plate temperature. That is, it is only necessary to select optimum oxidation treatment conditions for operation in consideration of operational costs, responsiveness, and the like.

なお上記は代表的な例を示したのであって、上記以外に実測した酸化鉄量の実測値を目標値に一致させるように酸化処理条件を操作可能な方法であれば本発明の効果が得られることは言うまでもない。   Note that the above shows a representative example, and the effect of the present invention can be obtained if the method can operate the oxidation treatment conditions so that the actually measured value of the iron oxide amount other than the above is matched with the target value. Needless to say.

酸化処理を施して鋼板表面に酸化鉄を形成した後、本発明では、還元処理を行う。次いで、この還元処理工程について説明する。例えば、図1においては、還元処理装置4は酸化鉄量測定装置10の後に設置され、還元処理装置4により、酸化処理装置3にて表面に酸化鉄が形成された鋼板に還元処理を施す。還元処理方法は、従来使用されている方法に準じて行えばよく、特に限定するものではない。例えば、放射加熱方式の焼鈍炉で水素を含む還元性雰囲気中で600〜900℃程度の温度で還元処理するのが一般的ではあるが、鋼板表面の酸化鉄を還元することができれば手段は問わない。   In the present invention, after the oxidation treatment is performed to form iron oxide on the steel sheet surface, the reduction treatment is performed. Next, this reduction process step will be described. For example, in FIG. 1, the reduction treatment device 4 is installed after the iron oxide amount measurement device 10, and the reduction treatment device 4 performs a reduction treatment on a steel plate having iron oxide formed on the surface by the oxidation treatment device 3. The reduction treatment method may be performed according to a conventionally used method, and is not particularly limited. For example, it is common to perform reduction treatment at a temperature of about 600 to 900 ° C. in a reducing atmosphere containing hydrogen in a radiant heating type annealing furnace, but any means can be used if iron oxide on the surface of the steel sheet can be reduced. Absent.

次いで、めっき処理工程について説明する。例えば、図1においては、還元処理装置4にて還元処理が施された鋼板は、冷却処理装置5にて、非酸化性あるいは還元性雰囲気中でめっきに適した温度まで冷却され、次いで、めっき処理装置6にてめっき浴中に浸漬して溶融亜鉛めっきが施される。さらに、めっき付着量調整装置7にて、目的に応じてめっき層の厚さが調整される。この溶融亜鉛めっき処理は、従来から行われている方法に従えばよい。例えば、めっき浴温は440〜520℃程度、鋼板のめっき浴浸漬温度はほぼめっき浴温とほぼ等しくし、また亜鉛めっき浴中のAl濃度は0.1〜0.2%程度とするのが一般的であるが、特に限定するものではない。
なお、製品の用途によってはめっき温度やめっき浴組成等のめっき条件を変更する場合があるが、めっき条件の違いは本発明の効果に何ら影響を与えるものではなく、特に限定されるものではない。例えば、めっき浴中にAl以外に、Pb、Sb、Fe、Mg、Mn、Ni、Ca、Ti、V、Cr、Co、Sn等の元素が混入していても本発明の効果は何ら変わらない。
さらに、めっき後のめっき層の厚さを調整する方法については、特に限定するものではないが、一般的にはガスワイピングが使用され、ガスワイピングのガス圧、ワイピングノズル/鋼板間距離等を調節することによって、めっき層の厚さを調整する。このとき、めっき層の厚さは特に限定されるものではないが、3〜15μm程度とするのが好ましい。というのは3μm未満では十分な防錆性が得られず、一方15μm超えでは防錆性が飽和するだけでなく、加工性や経済性が損なわれる場合がある。但し、めっき層の厚さの違いは本発明の効果を妨げるものではなく、特に限定するものではない。
Next, the plating process will be described. For example, in FIG. 1, a steel sheet that has been subjected to reduction treatment by the reduction treatment device 4 is cooled to a temperature suitable for plating in a non-oxidizing or reducing atmosphere by a cooling treatment device 5, and then plated. The treatment apparatus 6 is immersed in a plating bath to perform hot dip galvanization. Further, the plating adhesion amount adjusting device 7 adjusts the thickness of the plating layer according to the purpose. This hot dip galvanizing treatment may be performed in accordance with a conventional method. For example, the plating bath temperature is about 440 to 520 ° C., the plating bath immersion temperature of the steel sheet is substantially equal to the plating bath temperature, and the Al concentration in the galvanizing bath is generally about 0.1 to 0.2%. However, there is no particular limitation.
Depending on the application of the product, the plating conditions such as the plating temperature and the plating bath composition may be changed. However, the difference in the plating conditions does not affect the effect of the present invention and is not particularly limited. . For example, even if elements such as Pb, Sb, Fe, Mg, Mn, Ni, Ca, Ti, V, Cr, Co, and Sn are mixed in the plating bath, the effect of the present invention is not changed. .
Furthermore, the method for adjusting the thickness of the plated layer after plating is not particularly limited, but generally, gas wiping is used, and the gas pressure of gas wiping, the distance between the wiping nozzle and the steel plate, etc. are adjusted. By adjusting, the thickness of the plating layer is adjusted. At this time, the thickness of the plating layer is not particularly limited, but is preferably about 3 to 15 μm. This is because if the thickness is less than 3 μm, sufficient rust resistance cannot be obtained, while if it exceeds 15 μm, not only the rust resistance is saturated, but also workability and economy may be impaired. However, the difference in the thickness of the plating layer does not hinder the effect of the present invention and is not particularly limited.

また、本発明では、上記した溶融亜鉛めっき後に合金化処理を施すことも可能である。例えば、図1においては、めっき付着量調整装置7にてめっき層の厚さを調整された後、合金化処理装置8にて合金化処理が施され、合金化溶融めっき鋼板が得られる。前述したように、本発明によれば、焼鈍時のSi表面濃化およびP粒界偏析を抑制することができるので、著しい合金化遅延という従来技術での問題を解消することができる。その結果、耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板を生産性を阻害することなく製造することができる。合金化処理方法としては、ガス加熱、インダクション加熱および通電加熱など、従来から用いられているどのような加熱方法を用いてもよく、特に限定するものではない。例えば合金化処理板温は460〜600℃程度、合金化保持時間は5〜60秒程度とするのが一般的ではある。
以上により、本発明の溶融亜鉛めっき鋼板(合金化溶融亜鉛めっき鋼板を含む)が得られる。
Moreover, in this invention, it is also possible to give an alloying process after the above hot dip galvanizing. For example, in FIG. 1, after the thickness of the plating layer is adjusted by the plating adhesion amount adjusting device 7, alloying processing is performed by the alloying processing device 8 to obtain an alloyed hot dip plated steel sheet. As described above, according to the present invention, since Si surface concentration and P grain boundary segregation during annealing can be suppressed, the problem in the prior art of significant alloying delay can be solved. As a result, an alloyed hot-dip galvanized steel sheet having excellent powdering resistance can be produced without impairing productivity. As the alloying treatment method, any conventionally used heating method such as gas heating, induction heating, and current heating may be used, and it is not particularly limited. For example, the alloying plate temperature is generally about 460 to 600 ° C., and the alloying holding time is generally about 5 to 60 seconds.
By the above, the hot-dip galvanized steel sheet (including the alloyed hot-dip galvanized steel sheet) of the present invention is obtained.

なお、上記において、めっき原板(下地鋼板)の成分組成については特に限定せず、従来から公知の組成を利用することができる。但し、本発明を好適に実施するためには、下地鋼板として以下に示す組成とすることが好ましい。なお、以下、本明細書において、鋼の成分を示す%は、すべてmass%である。
Si:0.1〜3.0%
下限0.1%と規定したのは、これ未満の濃度であれば焼鈍時のSi表面濃化はそれほど顕著ではなく、従って不めっきが多発したり、著しい合金化遅延がないためである。上限を3.0%としたのは、Siは鋼の延性を確保しつつ高強度化が可能な元素であるが、3.0%を超えて含有すると鋼板自体が硬くなりすぎるためであり、これ以下が好ましい。
Mn:0.1〜5%以下
下限0.1%と規定したのは、これ未満の濃度であれば焼鈍時のMn表面濃化はそれほど顕著ではなく、従って不めっきが多発することがないからである。Mnは、鋼の高強度化に有用な元素であり、5%以下の範囲で通常鋼中に含有される元素であり、本発明においても下地鋼板中にこの範囲でMnが含有されていてもよい。特に、0.1%以上、好ましくは0.5%以上含有させることによってその効果を発揮することができる。また、溶接性や強度−延性バランスの確保の点からMn含有量は3.0%以下とすることが好ましい。より好ましくは0.5〜3.0%の範囲である。
P:0.005〜0.5%
下限0.005%と規定したのは、これ未満の濃度であれば焼鈍時の粒界偏析はそれほど顕著ではなく、従って著しく合金化遅延することがないからである。Pは、鋼の高強度化に有用な元素であり、0.5%以下の範囲で通常鋼中に含有される元素であり、本発明においても下地鋼板中にこの範囲でPが含有されていてもよい。特に、0.01%以上、好ましくは0.015%以上含有させることによってその効果を発揮することができる。また、溶接性の点からP含有量は0.2%以下とすることが好ましい。より好ましくは0.015〜0.2%の範囲である。
C:0.5%以下
Cは鋼中に含有される元素であり、0.0001〜0.5%の範囲で一般的に含有される。本発明においても下地鋼板中にこの範囲でCが含有されてよい。また、Cは、高強度化に対して有用なだけでなく、強度−延性バランスを向上させるために残留オーステナイトを生成させる等、組織制御を行う場合に有用な元素である。これらの作用を発現させるには、0.05%以上含有されていることが好ましい。しかしながら、含有量が0.25%を超えると、溶接性が劣化するため、0.25%を上限とすることが好ましい。
Al:5.0%以下
Alは、Siと補完的に添加される元素であり、0.01%以上含有させることが好ましい。しかしながら、Al量が5.0%を超えると溶接性や強度−延性バランスの確保にも悪影響を及ぼす。従って、Alは5.0%以下とすることが好ましい。より好ましくは0.01〜3.0%の範囲である。
In addition, in the above, it does not specifically limit about the component composition of a plating original plate (underlying steel plate), A conventionally well-known composition can be utilized. However, in order to suitably carry out the present invention, it is preferable that the base steel plate has the following composition. Hereinafter, in the present specification, “%” indicating the components of steel is all “mass%”.
Si: 0.1-3.0%
The lower limit is defined as 0.1% because, if the concentration is less than this, the Si surface concentration during annealing is not so remarkable, so that non-plating occurs frequently or there is no significant alloying delay. The upper limit is set to 3.0% because Si is an element that can increase the strength while ensuring the ductility of steel, but if it exceeds 3.0%, the steel sheet itself becomes too hard, Less than this is preferable.
Mn: 0.1-5% or less The lower limit is defined as 0.1% because if the concentration is less than this, the Mn surface concentration at the time of annealing is not so remarkable, and therefore non-plating does not occur frequently. . Mn is an element useful for increasing the strength of steel, and is an element normally contained in steel in a range of 5% or less. Even in the present invention, even if Mn is contained in this range in the base steel plate Good. In particular, the effect can be exhibited by containing 0.1% or more, preferably 0.5% or more. Moreover, it is preferable that Mn content shall be 3.0% or less from the point of ensuring weldability and a strength-ductility balance. More preferably, it is 0.5 to 3.0% of range.
P: 0.005-0.5%
The lower limit is defined as 0.005% because the grain boundary segregation at the time of annealing is not so remarkable when the concentration is less than this, and therefore, the alloying is not significantly delayed. P is an element useful for increasing the strength of steel, and is an element that is usually contained in steel in a range of 0.5% or less, and even in the present invention even if P is contained in this range in the base steel plate. Good. In particular, the effect can be exhibited by containing 0.01% or more, preferably 0.015% or more. Further, the P content is preferably 0.2% or less from the viewpoint of weldability. More preferably, it is 0.015 to 0.2% of range.
C: 0.5% or less C is an element contained in steel and is generally contained in the range of 0.0001 to 0.5%. Also in the present invention, C may be contained in this range in the base steel plate. C is not only useful for increasing the strength, but also an element useful for controlling the structure such as generating retained austenite to improve the strength-ductility balance. In order to express these effects, it is preferably contained in an amount of 0.05% or more. However, if the content exceeds 0.25%, weldability deteriorates, so it is preferable to set the upper limit to 0.25%.
Al: 5.0% or less
Al is an element added complementary to Si and is preferably contained in an amount of 0.01% or more. However, if the Al content exceeds 5.0%, it also has an adverse effect on securing weldability and strength-ductility balance. Therefore, Al is preferably 5.0% or less. More preferably, it is 0.01 to 3.0% of range.

以上に例示した元素以外の元素としては、Ti、Nb、V、Cr、S、Mo、Cu、Ni、B、Ca、NおよびSb等が挙げられる。これら、元素の含有量としては、Ti:1%以下、Nb:1%以下、V:1%以下、Cr:3%以下、S:0.1%以下、Mo:1%以下、Cu:3%以下、Ni:3%以下、B:0.1%以下、Ca:0.1%以下、N:0.1%以下、Sb:0.5%以下であれば、本発明を好適に実施可能である。また、これら元素から選ばれる1種または2種以上の合計含有量は5%以下の範囲が好ましい。残部はFeおよび不可避的不純物である。   Examples of elements other than those exemplified above include Ti, Nb, V, Cr, S, Mo, Cu, Ni, B, Ca, N, and Sb. The content of these elements is as follows: Ti: 1% or less, Nb: 1% or less, V: 1% or less, Cr: 3% or less, S: 0.1% or less, Mo: 1% or less, Cu: 3% or less Ni: 3% or less, B: 0.1% or less, Ca: 0.1% or less, N: 0.1% or less, and Sb: 0.5% or less, the present invention can be suitably implemented. The total content of one or more selected from these elements is preferably in the range of 5% or less. The balance is Fe and inevitable impurities.

図1に示す溶融亜鉛めっき鋼板の製造装置を用い、通板速度:80mpmで表1に示す成分からなる鋼板を通板し、下記に示す条件にて操作・調整を行って溶融亜鉛めっきを製造した。
まず、主成分が5%NaOHである脱脂液にて電解脱脂を行い、水溶液のスプレー噴霧装置、リンガーロールおよび放射加熱方式の乾燥装置からなる化合物付着装置2にて特定元素を含有する化合物の水溶液を鋼板1に塗布した。比較として放射加熱方式の乾燥装置を空通しで通板させた。鋼板に付着した特定元素量は付着量測定装置9にて蛍光X線法によって実測し、付着量調整装置11にて所望の特定元素量になるように鋼板付着時の水溶液量を調整することで特定元素量を操作した。酸化処理装置3は直火バーナー式の加熱炉にて加熱昇温し、鋼板の最高到達温度およびバーナー燃焼ガスの空燃比を変化させた。比較として酸化処理を行わないものとして直火バーナーを消火させて通板した。鋼板表面の酸化鉄量は酸化鉄量測定装置10にて蛍光X線法によって実測し、酸化鉄中の酸素量に換算した。還元処理は還元処理装置4を使用し、5vol%水素+残部窒素雰囲気(露点:-30℃)で850℃の焼鈍温度で実施した。なお、上記還元処理条件を条件1とし、比較として1vol%水素+残部窒素雰囲気(露点:+10℃)で還元焼鈍した場合を還元処理条件2とした。還元処理後、冷却処理装置5にて鋼板温度:460℃まで冷却し、めっき処理装置6にて溶融亜鉛めっきを施した。めっき条件はAlを0.14%含む(Fe飽和)460℃の亜鉛めっき浴を用いた。
めっき後、めっき付着量調整装置7で付着量を片面45g/m2に調整し、合金化処理装置8にて合金化処理を行った。
Using the hot-dip galvanized steel plate manufacturing equipment shown in Fig. 1, the steel plate made of the components shown in Table 1 is passed at a plate passing speed of 80 mpm, and the hot dip galvanized plate is manufactured under the following conditions. did.
First, electrolytic degreasing is carried out with a degreasing liquid whose main component is 5% NaOH, and an aqueous solution of a compound containing a specific element in the compound adhering apparatus 2 composed of an aqueous spraying apparatus, a ringer roll and a radiant heating type drying apparatus. Was applied to the steel plate 1. As a comparison, a radiant heating type drying apparatus was passed through by air. The amount of the specific element adhering to the steel sheet is measured by the X-ray fluorescence method with the adhesion amount measuring device 9, and the amount of the aqueous solution at the time of adhering the steel sheet is adjusted with the adhesion amount adjusting device 11 so that the desired specific element amount is obtained. The specific element amount was manipulated. The oxidation treatment apparatus 3 was heated and heated in a direct-fired burner type heating furnace to change the maximum temperature reached by the steel sheet and the air-fuel ratio of the burner combustion gas. As a comparison, an open fire burner was extinguished and passed through without assuming that oxidation treatment was not performed. The amount of iron oxide on the surface of the steel sheet was measured by an X-ray fluorescence method using an iron oxide amount measuring device 10 and converted to the amount of oxygen in the iron oxide. The reduction treatment was carried out using the reduction treatment device 4 at an annealing temperature of 850 ° C. in a 5 vol% hydrogen + balance nitrogen atmosphere (dew point: −30 ° C.). In addition, the said reduction process condition was made into the condition 1, and the case where reduction annealing was carried out in 1 vol% hydrogen + remainder nitrogen atmosphere (dew point: +10 degreeC) as the comparison was made into the reduction process condition 2. After the reduction treatment, the steel sheet was cooled to 460 ° C. by the cooling treatment device 5 and hot dip galvanized by the plating treatment device 6. As the plating conditions, a 460 ° C. galvanizing bath containing 0.14% Al (Fe saturated) was used.
After plating, the adhesion amount was adjusted to 45 g / m 2 on one side with the plating adhesion amount adjusting device 7, and alloying treatment was performed with the alloying processing device 8.

Figure 2007238997
Figure 2007238997

以上により得られためっき鋼板に対して、以下に示す方法および評価基準により、めっき処理後のめっき鋼板に対してはめっき外観、めっき密着性を調査し、合金化処理後の合金化溶融亜鉛めっき鋼板に対しては合金化速度、耐パウダリング性を調査した。また、めっき品質確保可能な歩留まりも調査した。
めっき品質の各評価基準は以下の通りである。
<めっき外観>
目視にて外観観察を行い、不めっきが全くない場合を不めっきなしとし、目視にて不めっきが観察できる場合を不めっきありとした。さらに目視にて外観観察を行い、押し疵の有無を評価した。
○:不めっきなし、押し疵なし
×:不めっきあり、押し疵あり
<めっき密着性>
180°曲げ(0−T曲げ)試験を行い、凸側をテープ剥離した際のめっき剥離状態を評価した。
○:めっき亀裂・剥離あり
×:めっき剥離なし
<合金化速度>
めっき層中Fe含有率が10%±0.5%が得られる合金化温度により、合金化速度を比較した。
○:合金化温度:520℃以下で合金化完了
×:合金化温度:520℃超で合金化完了
<耐パウダリング性>
めっき層中Fe含有率が10%±0.5%となる合金化溶融亜鉛めっき鋼板から幅:25mm、長さ:40mmの試験片を切出し、セロハンテープ(登録商標)(幅:24mm)を長さ:20mmの位置に貼り、テープ面を90°内側に曲げた後、曲げ戻しを行ってセロハンテープ(登録商標)(幅:24mm)を剥がした時に付着したZn量を蛍光X線によりカウント数として測定した。測定したZnカウント数を試験片幅:単位長さ(1m)当りのカウント数に補正して、下記の基準に応じて評価した。
○:良好(カウント数:0〜5000)
×:不良(カウント数:5000以上)
<歩留まり>
めっき品質が確保可能な歩留まりとして、鋼板全長および全幅に対する良好なめっき品質部の面積割合を求め、評価した。
○:歩留まり80%以上
×:歩留まり80%未満
以上から得られた結果を表2に示す。
For the plated steel sheet obtained as described above, the plating appearance and plating adhesion of the plated steel sheet after the plating treatment were investigated by the following methods and evaluation criteria, and the alloyed hot dip galvanized after the alloying treatment. The steel sheet was examined for alloying speed and powdering resistance. We also investigated the yield that could ensure plating quality.
Each evaluation standard of plating quality is as follows.
<Plating appearance>
The appearance was visually observed. The case where there was no unplating was regarded as no plating, and the case where unplating could be observed visually was regarded as unplating. Further, the appearance was visually observed to evaluate the presence or absence of pressing folds.
○: No plating, no pushing bar ×: No plating, pressing bar <Plating adhesion>
A 180 ° bending (0-T bending) test was performed to evaluate the plating peeling state when the convex side was peeled off by tape.
○: Plating crack / peeling ×: No plating peeling <Alloying speed>
The alloying speed was compared according to the alloying temperature at which the Fe content in the plating layer was 10% ± 0.5%.
○: Alloying temperature: Completion of alloying at 520 ° C or less ×: Alloying temperature: Completion of alloying at over 520 ° C <Powdering resistance>
A test piece having a width of 25 mm and a length of 40 mm was cut out from the galvannealed steel sheet in which the Fe content in the plating layer was 10% ± 0.5%, and the cellophane tape (registered trademark) (width: 24 mm) was long. Length: Attached at a position of 20 mm, the tape surface is bent 90 ° inward, then bent back and the cellophane tape (registered trademark) (width: 24 mm) is peeled off to count the amount of Zn attached by fluorescent X-rays. As measured. The measured Zn count number was corrected to the count number per test piece width: unit length (1 m) and evaluated according to the following criteria.
○: Good (Count: 0 to 5000)
X: Defect (count: 5000 or more)
<Yield>
As the yield at which plating quality can be ensured, the ratio of the area of the good plating quality part to the total length and width of the steel sheet was determined and evaluated.
○: Yield 80% or more ×: Yield less than 80% Table 2 shows the results obtained from the above.

Figure 2007238997
Figure 2007238997

表2の結果から、酸化処理前に鋼板表面に付着させる特定元素の種類および付着量、酸化処理時の最高到達温度、空燃比が、めっき品質に影響を及ぼすことがわかる。   From the results in Table 2, it can be seen that the type and amount of the specific element deposited on the surface of the steel plate before the oxidation treatment, the maximum temperature reached during the oxidation treatment, and the air-fuel ratio affect the plating quality.

そこで、図1に示した本発明の溶融亜鉛めっき鋼板の製造装置を用い、表1のC,Fの鋼板それぞれ20tonを、めっき鋼板の製造装置の入側で接続し、この順で連続して通板させるにあたり、化合物付着装置2による付着させる特定元素、付着量は鋼板種によらず一定(硫酸アンモニウム、Sとして120mg/m)とし、これを酸化処理前に乾燥させた。酸化処理を行うにあたっては、酸化鉄量測定装置10にて測定された酸化鉄皮膜酸素量に基いて、酸化鉄量が一定となるようにした。すなわち、酸化鉄量調整装置12では、酸化皮膜中酸素量の目標値として0.9g/mが予め設定されており、酸化鉄量測定装置10にて測定された酸化皮膜中酸素量が目標値より低い場合には、酸化処理装置3における最高加熱温度を上昇させ、逆に、酸化鉄量測定装置10にて測定された酸化皮膜中酸素量が目標値より高い場合には、酸化処理装置3における最高加熱温度を低下させるように制御される。通板速度、めっき条件は、表2の結果を得た場合と同様とした。還元処理条件は、上述の条件1とした。また、C,Fのそれぞれの鋼板についてめっき品質についても、表2の結果を得た場合と同様に評価した。 Therefore, using the hot dip galvanized steel sheet manufacturing apparatus of the present invention shown in FIG. 1, 20 tons of C and F steel sheets in Table 1 are connected at the entry side of the plated steel sheet manufacturing apparatus and continuously in this order. When passing through the plate, the specific elements to be deposited by the compound deposition apparatus 2 and the amount of deposition were constant (ammonium sulfate, 120 mg / m 2 as S) regardless of the type of the steel plate, and were dried before the oxidation treatment. In performing the oxidation treatment, the iron oxide amount was made constant based on the iron oxide film oxygen amount measured by the iron oxide amount measuring apparatus 10. That is, in the iron oxide amount adjusting device 12, 0.9 g / m 2 is preset as a target value of the oxygen amount in the oxide film, and the oxygen amount in the oxide film measured by the iron oxide amount measuring device 10 is the target value. If lower, the maximum heating temperature in the oxidation treatment device 3 is increased, and conversely, if the oxygen amount in the oxide film measured by the iron oxide amount measurement device 10 is higher than the target value, the oxidation treatment device 3. Is controlled to lower the maximum heating temperature. The plate passing speed and plating conditions were the same as in the case of obtaining the results shown in Table 2. The reduction treatment condition was the above condition 1. The plating quality of each of the C and F steel plates was also evaluated in the same manner as when the results shown in Table 2 were obtained.

また、比較として、同様に、表1のC,Fの鋼板それぞれ20tonを、めっき鋼板の製造装置の入側で接続し、この順で連続して通板させるにあたり、酸化鉄量測定装置10を用いることなく、めっき鋼板を製造した。この際、酸化処理装置において、最高到達温度700℃、空燃比1.25の条件を採用した。通板速度、めっき条件は、表2の結果を得た場合と同様とし、還元処理条件は上述の条件1とした。また、C,Fのそれぞれの鋼板についてめっき品質についても、表2の結果を得た場合と同様に評価した。
表3に得られた結果を示す。
For comparison, similarly, when connecting 20 tons of each of the C and F steel plates in Table 1 on the entry side of the plated steel plate manufacturing apparatus and continuously passing them in this order, the iron oxide amount measuring device 10 is A plated steel sheet was produced without using it. At this time, in the oxidation processing apparatus, conditions of a maximum temperature of 700 ° C. and an air-fuel ratio of 1.25 were adopted. The plate passing speed and the plating conditions were the same as in the case of obtaining the results shown in Table 2, and the reduction treatment conditions were the above-mentioned condition 1. The plating quality of each of the C and F steel plates was also evaluated in the same manner as when the results shown in Table 2 were obtained.
Table 3 shows the results obtained.

Figure 2007238997
Figure 2007238997

表3より、本発明例においては、鋼種によらず、酸化鉄量調整装置12により酸化処理装置3で形成させる酸化鉄量を酸化皮膜中酸素量に換算して0.9g/mとすることが可能となっており、酸化処理装置3における酸化鉄形成量が適正範囲となるため、C,Fのいずれの鋼種についても、めっき外観、めっき密着性、合金化速度、耐パウダリング性、歩留まりの全てが良好なものとなった。
一方、比較例において、鋼種Cについては必要な酸化皮膜中酸素量が充分確保できずめっき品質のいずれの評価においても満足な結果は得られなかった。また、鋼種Fについては酸化皮膜中酸素量が多くなりすぎ、このため搬送中に酸化鉄が剥離して搬送ロール等に付着することに起因した疵が発生してしまい、めっき外観が悪かった。さらに鋼種Fについては酸化皮膜中酸素量が多すぎるために、後続する還元処理装置4における酸化鉄の還元が不十分となり、合金化速度の遅延が認められた。
From Table 3, in the example of the present invention, the iron oxide amount formed by the oxidation treatment device 3 by the iron oxide amount adjusting device 12 is 0.9 g / m 2 in terms of the oxygen amount in the oxide film, regardless of the steel type. Since the amount of iron oxide formed in the oxidation treatment apparatus 3 is within the proper range, the appearance of plating, plating adhesion, alloying speed, powdering resistance, and yield can be obtained for all C and F steel types. All of these were good.
On the other hand, in Comparative Example, the necessary amount of oxygen in the oxide film could not be sufficiently secured for steel type C, and satisfactory results were not obtained in any evaluation of plating quality. Further, with respect to steel type F, the amount of oxygen in the oxide film was too large, so that iron oxide was peeled off during transportation and adhered to transportation rolls and the like, resulting in poor plating appearance. Furthermore, for steel type F, since the amount of oxygen in the oxide film was too large, the reduction of iron oxide in the subsequent reduction treatment apparatus 4 was insufficient, and a delay in the alloying rate was observed.

このように、鋼板表面に特定元素を含有する化合物を付着させ、その後、酸化処理して酸化鉄を形成し、さらに、特定元素付着量調整および酸化鉄量調整をすることで不めっきおよび押し疵等の表面欠陥がなく、優れためっき密着性を示し、また著しい合金化遅延も無く、優れた耐パウダリング性を示すことが分かる。さらに本発明によれば良好な歩留まりを確保できることから実用性が高いことが分かる。   In this way, a compound containing a specific element is attached to the surface of the steel sheet, and then oxidized to form iron oxide. Further, by adjusting the specific element adhesion amount and the iron oxide amount, non-plating and pressing It can be seen that there is no surface defect such as excellent plating adhesion, no significant alloying delay, and excellent powdering resistance. Further, according to the present invention, it can be seen that the practicality is high since a good yield can be secured.

本発明のめっき鋼板は、表面性状に優れ、優れためっき密着性を示し、また著しい合金化遅延も無く、優れた耐パウダリング性を示すことから、自動車、家電および建材等の分野を中心に、幅広い用途での使用が見込まれる。   The plated steel sheet of the present invention is excellent in surface properties, exhibits excellent plating adhesion, has no significant alloying delay, and exhibits excellent powdering resistance, so that it is mainly used in the fields of automobiles, home appliances, and building materials. Expected to be used in a wide range of applications.

本発明の実施形態の一つである溶融亜鉛めっき鋼板の製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the hot dip galvanized steel plate which is one of embodiment of this invention.

符号の説明Explanation of symbols

1:鋼板
2:化合物付着装置
3:酸化処理装置
4:還元処理装置
5:冷却処理装置
6:めっき処理装置
7:めっき付着量調整装置
8:合金化処理装置
9:付着量測定装置
10:酸化鉄量測定装置
11:付着量調整装置
12:酸化鉄量調整装置
1: Steel plate 2: Compound adhesion device 3: Oxidation treatment device 4: Reduction treatment device 5: Cooling treatment device 6: Plating treatment device 7: Plating adhesion amount adjustment device 8: Alloying treatment device 9: Adhesion amount measurement device 10: Oxidation Iron amount measuring device 11: adhesion amount adjusting device 12: iron oxide amount adjusting device

Claims (14)

P、Na、K、Cl、S、F、B、C、Nからなる特定元素群から選ばれた少なくとも1種の特定元素を含有する化合物を鋼板表面に付着させる化合物付着工程と、
酸化処理を施して、化合物が付着した、該鋼板表面に酸化鉄を形成する酸化処理工程と、
前記酸化処理工程にて鋼板表面に形成された酸化鉄量を測定する酸化鉄量測定工程と、
表面に酸化鉄が形成された鋼板に還元処理を施す還元処理工程と、
めっき処理を行うめっき処理工程とを有することを特徴とする溶融亜鉛めっき鋼板の製造装置。
A compound adhering step for adhering a compound containing at least one specific element selected from the specific element group consisting of P, Na, K, Cl, S, F, B, C, and N to the steel sheet surface;
An oxidation treatment step of forming iron oxide on the surface of the steel plate, to which the compound is attached by performing an oxidation treatment;
An iron oxide amount measuring step for measuring the amount of iron oxide formed on the steel sheet surface in the oxidation treatment step;
A reduction treatment step for carrying out reduction treatment on a steel plate having iron oxide formed on the surface;
An apparatus for producing a hot dip galvanized steel sheet, comprising: a plating treatment step for performing a plating treatment.
前記化合物付着工程にて鋼板表面に付着した付着量を測定する付着量測定工程を有することを特徴とする請求項1記載の溶融亜鉛めっき鋼板の製造装置。   The apparatus for producing a hot dip galvanized steel sheet according to claim 1, further comprising an adhesion amount measuring step for measuring an adhesion amount adhering to the steel sheet surface in the compound adhesion step. 鋼板表面に付着させる前記化合物の付着量が、各特定元素換算で0.1〜1000mg/m2であることを特徴とする請求項1または2記載の溶融亜鉛めっき鋼板の製造装置。 The apparatus for producing a hot-dip galvanized steel sheet according to claim 1 or 2, wherein the amount of the compound adhered to the steel sheet surface is 0.1 to 1000 mg / m 2 in terms of each specific element. 前記酸化処理工程における酸化処理の最高到達温度が500℃超であることを特徴とする請求項1〜3のいずれかに記載の溶融亜鉛めっき鋼板の製造装置。   The apparatus for producing a hot-dip galvanized steel sheet according to any one of claims 1 to 3, wherein a maximum temperature of the oxidation treatment in the oxidation treatment step is over 500 ° C. 前記化合物付着工程には乾燥工程が含まれることを特徴とする請求項1〜4のいずれかに記載の溶融亜鉛めっき鋼板の製造装置。   The apparatus for producing a hot dip galvanized steel sheet according to any one of claims 1 to 4, wherein the compound attaching step includes a drying step. 前記めっき処理工程後、さらに、合金化処理を行うことを特徴とする請求項1〜5のいずれかに記載の溶融亜鉛めっき鋼板の製造装置。   The apparatus for producing a hot dip galvanized steel sheet according to any one of claims 1 to 5, further comprising an alloying treatment after the plating treatment step. 鋼板を連続的に搬送しながら、P、Na、K、Cl、S、F、B、C、Nからなる特定元素群から選ばれた少なくとも1種の特定元素を含有する化合物を鋼板表面に付着させ、酸化処理後、還元処理、めっき処理を行う溶融亜鉛めっき鋼板の製造プロセスにおいて、
酸化処理後、鋼板表面に形成された酸化鉄量を実測し、その実測値を目標値に一致させるように、酸化処理条件を操作することを特徴とする溶融亜鉛めっき鋼板の表面処理制御方法。
While continuously conveying the steel sheet, a compound containing at least one specific element selected from the specific element group consisting of P, Na, K, Cl, S, F, B, C, and N is adhered to the steel sheet surface. In the manufacturing process of the hot dip galvanized steel sheet that performs oxidation treatment, reduction treatment, and plating treatment,
A surface treatment control method for a hot dip galvanized steel sheet, characterized in that after the oxidation treatment, the amount of iron oxide formed on the steel sheet surface is measured, and the oxidation treatment conditions are manipulated so that the actual measurement value matches the target value.
化合物を鋼板表面に付着後、鋼板に付着した付着量を実測し、その実測値を目標値に一致させるように、化合物付着時の特定元素量を操作することを特徴とする請求項7記載の溶融亜鉛めっき鋼板の表面処理制御方法。   The amount of the specific element at the time of compound adhesion is operated so that the amount of adhesion adhering to a steel plate may be measured after attaching a compound to the steel plate surface, and the actual measurement may be made to correspond with a target value. Surface treatment control method for hot-dip galvanized steel sheet. 化合物を鋼板表面に付着後、乾燥させた後、酸化処理を行うことを特徴とする請求項7または8記載の溶融亜鉛めっき鋼板の表面処理制御方法。   The method for controlling the surface treatment of a hot dip galvanized steel sheet according to claim 7 or 8, wherein the compound is attached to the surface of the steel sheet and then dried and then oxidized. めっき処理後、さらに合金化処理を行うことを特徴とする請求項7〜9のいずれかに記載の溶融亜鉛めっき鋼板の表面処理制御方法。   The method for controlling the surface treatment of a hot dip galvanized steel sheet according to any one of claims 7 to 9, wherein an alloying treatment is further performed after the plating treatment. 鋼板表面にP、Na、K、Cl、S、F、B、C、Nからなる特定元素群から選ばれた少なくとも1種の特定元素を含有する化合物を付着させる化合物付着装置と、
酸化処理を施して、化合物が付着した、該鋼板表面に酸化鉄を形成させる酸化処理装置と、
前記酸化処理装置の後に設けられ、鋼板表面に形成された酸化鉄量を測定する酸化鉄量測定装置と
測定された酸化鉄量を目標値に一致させるように、前記酸化処理装置の条件を操作する酸化鉄量調節装置と、
表面に酸化鉄が形成された鋼板に還元処理を施す還元処理装置と、
めっき処理を行うめっき処理装置
とを有することを特徴とする溶融亜鉛めっき鋼板の表面処理制御装置。
A compound adhering apparatus for adhering a compound containing at least one specific element selected from a specific element group consisting of P, Na, K, Cl, S, F, B, C, and N to the steel sheet surface;
An oxidation treatment apparatus that forms an iron oxide on the surface of the steel sheet, to which an oxidation treatment is applied and the compound adheres;
Operate the conditions of the oxidation treatment apparatus so that the iron oxide amount measurement device provided after the oxidation treatment device and measures the amount of iron oxide formed on the surface of the steel plate matches the target value. An iron oxide amount control device,
A reduction treatment device for carrying out reduction treatment on a steel plate having iron oxide formed on the surface;
A surface treatment control apparatus for a hot dip galvanized steel sheet, comprising: a plating apparatus for performing a plating process.
前記化合物付着装置の後に設けられ、鋼板表面に付着した付着量を測定する化合物付着量測定装置と、
測定された付着量を目標値に一致させるように、前記化合物付着装置の条件を操作する付着量調節装置とをさらに有することを特徴とする請求項11記載の溶融亜鉛めっき鋼板の表面処理制御装置。
A compound adhesion amount measuring device that is provided after the compound adhesion device and measures the adhesion amount adhered to the steel sheet surface;
12. The apparatus for controlling the surface treatment of a hot dip galvanized steel sheet according to claim 11, further comprising an adhesion amount adjusting device for operating conditions of the compound adhesion device so that the measured adhesion amount matches a target value. .
前記化合物付着装置に乾燥装置が含まれることを特徴とする請求項11または12記載の溶融亜鉛めっき鋼板の表面処理制御装置。   The surface treatment control apparatus for hot-dip galvanized steel sheets according to claim 11 or 12, wherein the compound adhesion apparatus includes a drying apparatus. 請求項7〜10のいずれかに記載の溶融亜鉛めっき鋼板の表面処理制御方法により、鋼板表面の酸化鉄量が調整された溶融亜鉛めっき鋼板。   A hot-dip galvanized steel sheet in which the amount of iron oxide on the steel sheet surface is adjusted by the surface treatment control method for a hot-dip galvanized steel sheet according to any one of claims 7 to 10.
JP2006061192A 2006-03-07 2006-03-07 Hot-dip galvanized steel sheet and apparatus for manufacturing the same, surface treatment control method, surface treatment control apparatus Expired - Fee Related JP4882432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061192A JP4882432B2 (en) 2006-03-07 2006-03-07 Hot-dip galvanized steel sheet and apparatus for manufacturing the same, surface treatment control method, surface treatment control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061192A JP4882432B2 (en) 2006-03-07 2006-03-07 Hot-dip galvanized steel sheet and apparatus for manufacturing the same, surface treatment control method, surface treatment control apparatus

Publications (2)

Publication Number Publication Date
JP2007238997A true JP2007238997A (en) 2007-09-20
JP4882432B2 JP4882432B2 (en) 2012-02-22

Family

ID=38584821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061192A Expired - Fee Related JP4882432B2 (en) 2006-03-07 2006-03-07 Hot-dip galvanized steel sheet and apparatus for manufacturing the same, surface treatment control method, surface treatment control apparatus

Country Status (1)

Country Link
JP (1) JP4882432B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838786A (en) * 2010-04-30 2010-09-22 东北大学 Laboratory hot galvanizing analog machine and galvanizing process flow
JP2012149307A (en) * 2011-01-20 2012-08-09 Jfe Steel Corp Method for producing hot dip galvannealed steel sheet having excellent plating adhesion and sliding property
JP2014095134A (en) * 2012-11-12 2014-05-22 Jfe Steel Corp Method of manufacturing cold rolled steel sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565612A (en) * 1991-09-10 1993-03-19 Sumitomo Metal Ind Ltd Hot-dip galvanizing method for si-containing steel sheet
JPH05148604A (en) * 1991-09-30 1993-06-15 Sumitomo Metal Ind Ltd Manufacture of galvanized steel sheet
JPH08170159A (en) * 1994-12-14 1996-07-02 Sumitomo Metal Ind Ltd Hot dip galvanization of silicon added high tensile strength steel material
JPH08291379A (en) * 1995-04-21 1996-11-05 Sumitomo Metal Ind Ltd Method for galvannealing p-added high tensile strength steel
JPH1150223A (en) * 1997-08-05 1999-02-23 Nkk Corp Silicon-containing high strength hot-dip galvanized steel sheet and its production
JPH1192904A (en) * 1997-09-18 1999-04-06 Nippon Steel Corp Production of high tension galvanized steel sheet
JPH11315360A (en) * 1998-05-06 1999-11-16 Nippon Steel Corp Galvannealed steel sheet excellent in plating adhesion, and its manufacture
JP2002047546A (en) * 2000-07-31 2002-02-15 Kawasaki Steel Corp Facility for producing hot dip galvanized steel sheet
JP2003277902A (en) * 2002-03-19 2003-10-02 Jfe Steel Kk Method for producing high strength galvanized steel sheet excellent in plated adhesion
JP2007039780A (en) * 2004-10-07 2007-02-15 Jfe Steel Kk Hot-dip galvanized steel sheet, galvannealed steel sheet and manufacturing method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565612A (en) * 1991-09-10 1993-03-19 Sumitomo Metal Ind Ltd Hot-dip galvanizing method for si-containing steel sheet
JPH05148604A (en) * 1991-09-30 1993-06-15 Sumitomo Metal Ind Ltd Manufacture of galvanized steel sheet
JPH08170159A (en) * 1994-12-14 1996-07-02 Sumitomo Metal Ind Ltd Hot dip galvanization of silicon added high tensile strength steel material
JPH08291379A (en) * 1995-04-21 1996-11-05 Sumitomo Metal Ind Ltd Method for galvannealing p-added high tensile strength steel
JPH1150223A (en) * 1997-08-05 1999-02-23 Nkk Corp Silicon-containing high strength hot-dip galvanized steel sheet and its production
JPH1192904A (en) * 1997-09-18 1999-04-06 Nippon Steel Corp Production of high tension galvanized steel sheet
JPH11315360A (en) * 1998-05-06 1999-11-16 Nippon Steel Corp Galvannealed steel sheet excellent in plating adhesion, and its manufacture
JP2002047546A (en) * 2000-07-31 2002-02-15 Kawasaki Steel Corp Facility for producing hot dip galvanized steel sheet
JP2003277902A (en) * 2002-03-19 2003-10-02 Jfe Steel Kk Method for producing high strength galvanized steel sheet excellent in plated adhesion
JP2007039780A (en) * 2004-10-07 2007-02-15 Jfe Steel Kk Hot-dip galvanized steel sheet, galvannealed steel sheet and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838786A (en) * 2010-04-30 2010-09-22 东北大学 Laboratory hot galvanizing analog machine and galvanizing process flow
JP2012149307A (en) * 2011-01-20 2012-08-09 Jfe Steel Corp Method for producing hot dip galvannealed steel sheet having excellent plating adhesion and sliding property
JP2014095134A (en) * 2012-11-12 2014-05-22 Jfe Steel Corp Method of manufacturing cold rolled steel sheet

Also Published As

Publication number Publication date
JP4882432B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP6025867B2 (en) High-strength hot-dip galvanized steel sheet excellent in plating surface quality and plating adhesion and method for producing the same
US7673485B2 (en) Hot press forming method
JP5040093B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
CA2755389A1 (en) High-strength hot-dip galvanized steel sheet and method for producing same
JP2008144264A (en) High-strength hot-dip galvannealed steel sheet, and method for manufacturing high-strength hot-dip galvannealed steel sheet
JP4882432B2 (en) Hot-dip galvanized steel sheet and apparatus for manufacturing the same, surface treatment control method, surface treatment control apparatus
JP4816068B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating adhesion
KR20150066339A (en) Manufacturing Method of High Strength Zn-Al-Mg Hot-dip Galvanized Steel Sheet Having Excellent Zn Adhesion Property and Steel Sheet by the Same Method
TWI481744B (en) Galvannealed steel sheet with excellent corrosion resistance after coating
JP4810980B2 (en) Method for producing hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JPH1150223A (en) Silicon-containing high strength hot-dip galvanized steel sheet and its production
JP2000290762A (en) Production of hot dip metal coated steel sheet
JP4747656B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet and method for producing high-tensile alloyed hot-dip galvanized steel sheet
KR101500282B1 (en) Method for manufacturing high strength galvanized steel sheet having excellent surface property and coating adhesion
JP2001279410A (en) Manufacturing method for galvanized steel sheet and galvanized steel sheet
JP3966670B2 (en) Method for producing hot-dip galvanized steel sheet
JP2011032498A (en) Surface-treated steel sheet for hot pressing and method for manufacturing hot-pressed member using the same
JP2007262544A (en) Method for manufacturing hot-dip galvanized steel sheet
JP5103759B2 (en) Hot-dip galvanized steel sheet and method for producing galvannealed steel sheet
JPH08170160A (en) Production of silicon-containing high tensile strength hot dip galvanized or galvannealed steel sheet
JP2001262303A (en) Method for producing alloyed galvanized steel sheet and galvannealed steel sheet excellent in hot dip metal coated property
JP5194702B2 (en) Method for producing galvannealed steel sheet
JP3114610B2 (en) Method for producing alloyed hot-dip galvanized steel sheet having Fe-Ni-O-based coating
JP2011032497A (en) Surface-treated steel sheet for hot pressing and method for manufacturing hot-pressed member using the same
JP2002194518A (en) Hot-dip galvanized steel sheet superior in weldability and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees