JP2007238354A - Method for manufacturing optical fiber and wire drawing furnace - Google Patents

Method for manufacturing optical fiber and wire drawing furnace Download PDF

Info

Publication number
JP2007238354A
JP2007238354A JP2006060542A JP2006060542A JP2007238354A JP 2007238354 A JP2007238354 A JP 2007238354A JP 2006060542 A JP2006060542 A JP 2006060542A JP 2006060542 A JP2006060542 A JP 2006060542A JP 2007238354 A JP2007238354 A JP 2007238354A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
slow cooling
drawing furnace
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006060542A
Other languages
Japanese (ja)
Other versions
JP4444926B2 (en
Inventor
Kyozo Tsujikawa
恭三 辻川
Katsusuke Tajima
克介 田嶋
Izumi Mikawa
泉 三川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006060542A priority Critical patent/JP4444926B2/en
Publication of JP2007238354A publication Critical patent/JP2007238354A/en
Application granted granted Critical
Publication of JP4444926B2 publication Critical patent/JP4444926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wire drawing furnace manufacturing an optical fiber having a small Rayleigh scattering loss by simple temperature control performed with a small energy consumption for a wire drawing furnace having an arbitrary length without necessitating a concomitant slow cooling furnace. <P>SOLUTION: The wire drawing furnace 20 has a wire drawing furnace body 10 in which an optical fiber preform 1 is arranged, and a heater 13 which is arranged in the wire drawing furnace body 10 and heats the optical fiber preform 1. In the wire drawing furnace 20, the optical fiber is manufactured by cooling an optical fiber body 2, obtained by heating and drawing the optical fiber preform 1, to room temperature. The wire drawing furnace body 10 has a slow cooling zone 11, where the temperature is continuously lowered from 1,600 °C in accordance with the distance in the longitudinal direction, at a lower part of the heater 13, and can variably regulate the setting temperature Tmin at the lowermost part 10a of the slow cooling zone 11 within a range not higher than 1,600°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光ファイバの製造方法および線引き炉に関し、特に光通信に用いる各種の光ファイバの光損失を低減する光ファイバの製造方法および線引き炉に関する。   The present invention relates to an optical fiber manufacturing method and a drawing furnace, and more particularly to an optical fiber manufacturing method and a drawing furnace that reduce optical loss of various optical fibers used for optical communication.

近年、アクセス系への光ファイバ網の導入展開(FTTH:Fiber To The Home)や、Ethernet(商標登録)に代表される光LAN技術の進展によって、ユーザ自身が構築するユーザ系のネットワークも大きな広がりを見せている。これらの領域では、1.3μm帯零分散単一モード光ファイバ(SMF)、マルチモード光ファイバ(MMF)が、また長距離伝送用には、1.55μm帯分散シフト単一モード光ファイバ(DSF)など石英系ガラスから作製される各種の光ファイバが用いられている。   In recent years, the deployment of optical fiber networks in access systems (FTTH: Fiber To The Home) and the development of optical LAN technologies represented by Ethernet (registered trademark) have greatly expanded the network of user systems built by users themselves. Is showing. In these regions, 1.3 μm band zero-dispersion single mode optical fiber (SMF), multimode optical fiber (MMF), and 1.55 μm band dispersion shifted single mode optical fiber (DSF) for long-distance transmission. Various optical fibers made from quartz glass are used.

また、複数の異なる波長の光信号を1本の光ファイバによって伝送する光波長多重(WDM)技術が進展し、光信号の通信に用いる波長領域が拡大している。今後も光通信の距離と使用波長領域を拡大するためには、信号の伝送媒体である前記光ファイバにおける光損失の低減が不可欠である。   Further, an optical wavelength division multiplexing (WDM) technique for transmitting a plurality of optical signals having different wavelengths through a single optical fiber has been advanced, and a wavelength region used for optical signal communication has been expanded. In the future, in order to expand the distance and wavelength region used for optical communication, it is essential to reduce optical loss in the optical fiber, which is a signal transmission medium.

石英系ガラスからなる光ファイバは、SiO2を主成分として構成され、通常、光を導波する構造を形成するために、GeO2やFなどが少量添加されている。このうち損失が最も低い光ファイバとして、コアに純石英ガラスが用いられた構造の光ファイバが知られている(以下、これらを総称して、石英系光ファイバと呼ぶ)。 An optical fiber made of silica-based glass is composed mainly of SiO 2 and usually contains a small amount of GeO 2 or F to form a structure for guiding light. Among these, optical fibers having a structure in which pure silica glass is used for the core are known as optical fibers having the lowest loss (hereinafter, these are collectively referred to as silica-based optical fibers).

このような石英系光ファイバの損失要因として最も支配的なものは、Rayleigh散乱(以下、レイリー散乱と称する)であり、その強度は波長の−4乗に比例しており、短波長域ほど増加する。このレイリー散乱は密度揺らぎと濃度揺らぎによって生じる。石英系光ファイバでは、密度揺らぎ成分Rdの寄与が大きいことが知られており、前記密度揺らぎ成分Rdは仮想温度Tfに比例して大きくなることが実験的にも明らかにされている(非特許文献1を参照)。また、この非特許文献1には、バルク状態の石英系ガラスでは、最適な熱処理条件にて処理すれば、前記仮想温度Tfを900℃から1000℃付近まで低減することができることについても記載されている。 The most dominant loss factor of such a silica-based optical fiber is Rayleigh scattering (hereinafter referred to as Rayleigh scattering), the intensity of which is proportional to the fourth power of the wavelength, and increases in the shorter wavelength region. To do. This Rayleigh scattering is caused by density fluctuations and density fluctuations. It is known that the contribution of the density fluctuation component Rd is large in the silica-based optical fiber, and it has been experimentally clarified that the density fluctuation component Rd increases in proportion to the virtual temperature T f (non-conversion). (See Patent Document 1). Further, this Non-Patent Document 1 also describes that the fictive temperature T f can be reduced from 900 ° C. to near 1000 ° C. if it is processed under optimum heat treatment conditions in the quartz glass in the bulk state. ing.

なお、ガラスは高温の液体構造が凍結されたものと考えられており、仮想温度Tfは凍結された構造に対応する温度である。この構造の緩和に必要な時間(以下、緩和時間と称する)τは、ガラスの粘度が増加する低温ほど長くなる。したがって、非特許文献2にも記載される通り、石英系光ファイバは、通常、2000℃程度の高温から高速で線引きされるため、仮想温度Tfは石英系ガラスの軟化点温度である1600℃付近で高止まりしている。 The glass is considered to have a frozen high-temperature liquid structure, and the fictive temperature T f is a temperature corresponding to the frozen structure. The time τ necessary for relaxation of this structure (hereinafter referred to as relaxation time) τ becomes longer as the viscosity of the glass increases. Accordingly, as described in Non-Patent Document 2, a silica-based optical fiber is usually drawn at a high speed from a high temperature of about 2000 ° C., so the fictive temperature T f is 1600 ° C., which is the softening point temperature of silica-based glass. It stays high in the vicinity.

上記のような観点から、非特許文献1,2では、線引き炉の下方に、別途、光ファイバを徐冷するための徐冷炉を設け、ガラスの構造の緩和を促進して、仮想温度Tfおよびレイリー散乱による光損失を低減させる方法が提案されている。 In view of the above, in Non-Patent Documents 1 and 2, a slow cooling furnace for gradually cooling the optical fiber is separately provided below the drawing furnace to promote relaxation of the glass structure, and the fictive temperature T f and A method for reducing light loss due to Rayleigh scattering has been proposed.

K.Saito et al., "Limit of the Rayligh scattering loss in silica faiber", Appl.Phys.Lett., vol.83, no.25, pp.5175-5177, 2003K.Saito et al., "Limit of the Rayligh scattering loss in silica faiber", Appl.Phys.Lett., Vol.83, no.25, pp.5175-5177, 2003 坂口 茂樹著、 "シリカコア光ファイバの熱処理によるレイリー散乱の低減",電子情報通信学会論文誌C.,vol.J83-C,No.1,pp.30-36,2000年1月Sakaguchi Shigeki, "Reduction of Rayleigh scattering by heat treatment of silica core optical fiber", IEICE Transactions C.I. , Vol.J83-C, No.1, pp.30-36, January 2000 U.C.Peak et al.,"Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers",Journal of The American Ceramic Society-Paek and Kurkjian., Vol.58,No.7-8,pp.330-335,Jul-Aug.1975UCPeak et al., "Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers", Journal of The American Ceramic Society-Paek and Kurkjian., Vol.58, No.7-8, pp.330-335, Jul -Aug.1975 K.Tsujikawa et al.,"Intrinsic loss of optical fibers",Opt.Fiber.Technol.,Vol.11,pp.319-331,2005K. Tsujikawa et al., "Intrinsic loss of optical fibers", Opt. Fiber. Technol., Vol. 11, pp. 319-331, 2005

しかしながら、上述した非特許文献1,2に記載の技術では、線引き炉と徐冷炉を併用しており、設備コストが増大してしまう、という課題がある。   However, in the techniques described in Non-Patent Documents 1 and 2 described above, there is a problem that the drawing furnace and the slow cooling furnace are used in combination, and the equipment cost increases.

経済性の観点から、線引き速度は速く、徐冷炉は小さい方が良いが、このような方法では、高速線引きに対応させるためには、その速度に応じて徐冷炉の長さを拡大しなければならなかった。   From the economical point of view, the drawing speed is fast and the slow cooling furnace should be small. However, in this method, the length of the slow cooling furnace must be increased according to the speed in order to cope with the high speed drawing. It was.

これらの点に加えて、非特許文献1には、徐冷炉の温度を一定の徐冷温度Taに設定し、光ファイバを冷却し、その温度TがT=Taとなる位置に徐冷炉を設置することが記載されている。しかし、後述するように、光ファイバの温度Tは冷却時間の関数であり、上記方法では、この徐冷炉の設置位置を線引き速度に応じて変化させるか、前記徐冷炉自体を大型化させ、その上で線引き速度に対して徐冷を行う炉内の空間的な領域を変化させるといった煩雑な制御が必要であった。また、徐冷温度Taを原理的に約1000℃以上に設定することが必要なために、徐冷炉内の特定の広い領域を前記徐冷温度Taに保持する加熱用ヒータが別途必要となり、その分電力などのエネルギー消費が増大してしまう。   In addition to these points, in Non-Patent Document 1, the temperature of the slow cooling furnace is set to a constant slow cooling temperature Ta, the optical fiber is cooled, and the slow cooling furnace is installed at a position where the temperature T becomes T = Ta. Is described. However, as will be described later, the temperature T of the optical fiber is a function of the cooling time. In the above method, the installation position of the slow cooling furnace is changed according to the drawing speed, or the slow cooling furnace itself is enlarged, Complicated control such as changing the spatial region in the furnace that performs slow cooling with respect to the drawing speed is required. Further, since it is necessary to set the annealing temperature Ta to about 1000 ° C. or more in principle, a heater for holding a specific wide region in the annealing furnace at the annealing temperature Ta is separately required. Energy consumption such as electric power will increase.

また、非特許文献2に記載の技術では、線引き炉直下に徐冷炉の設置が想定されており、徐冷炉の設置位置の問題は解消されるものの、任意の線引き速度でレイリー散乱を低減するには、様々な線引き速度に対して、どのように線引き炉の長さや炉内温度分布を調整すれば良いのかについて、定量的な指針は示されていない。   In addition, in the technique described in Non-Patent Document 2, it is assumed that a slow cooling furnace is installed immediately below the drawing furnace, and although the problem of the installation position of the slow cooling furnace is solved, in order to reduce Rayleigh scattering at an arbitrary drawing speed, There is no quantitative guideline on how to adjust the length of the drawing furnace or the temperature distribution in the furnace for various drawing speeds.

そこで、本発明者らは、鋭意研究を進め、任意の線引き速度に対して上記線引き炉の長さや炉内温度分布の定量的な指針を見出し、本発明に至ったものである。   Thus, the present inventors have conducted intensive research, found quantitative guidelines for the length of the drawing furnace and the temperature distribution in the furnace for an arbitrary drawing speed, and have reached the present invention.

すなわち、本発明は、上述した課題に鑑み提案されたものであり、製造コストの増加を抑制すると共に、レイリー散乱による光損失を低減させた光ファイバの製造方法および線引き炉、具体的には、付随的な徐冷炉を必要とせず、任意の長さの線引き炉に対して、小さなエネルギー消費で行える簡易な温度制御によってレイリー散乱による光損失を低減した光ファイバを製造可能な光ファイバの製造方法および線引き炉を提供することを目的とする。   That is, the present invention has been proposed in view of the above-described problems, and suppresses an increase in manufacturing cost and reduces an optical loss due to Rayleigh scattering, and a drawing furnace, specifically, An optical fiber manufacturing method capable of manufacturing an optical fiber in which light loss due to Rayleigh scattering is reduced by a simple temperature control that can be performed with a small energy consumption for a drawing furnace of an arbitrary length without requiring an additional slow cooling furnace, and The purpose is to provide a drawing furnace.

上述した課題を解決する第1の発明に係る光ファイバの製造方法は、石英系の光ファイバ母材を線引き炉に配置される加熱手段により1600℃以上の高温で加熱し線引きしてなる光ファイバ本体を室温まで冷却させて光ファイバを製造する光ファイバの製造方法であって、前記光ファイバ本体を室温まで冷却させる冷却過程において、当該光ファイバ本体の温度が1600℃近傍に到達した時間をt=0とした時に、所定の徐冷時間t1後に到達する光ファイバ本体の温度T1を900℃以上の温度に制御し、前記所定の徐冷時間t1を、T1における当該光ファイバ本体の構造の緩和に要する時間τの10-5倍以上10倍以下の範囲としたことを特徴とする。
なお、実用上、t1を決定するには、後述するように、光ファイバの外径(通常125μm)が一定になる位置を原点Z=0として実験的に決定すれば良い。これは、上記の位置(Z=0)が石英系ガラスの粘性流動が起こらなくなる温度(1600℃近傍)と対応する関係にあるからである。
An optical fiber manufacturing method according to a first invention for solving the above-described problem is an optical fiber obtained by drawing a silica-based optical fiber preform at a high temperature of 1600 ° C. or higher by a heating means disposed in a drawing furnace. An optical fiber manufacturing method for manufacturing an optical fiber by cooling a main body to room temperature, wherein the time when the temperature of the optical fiber main body reaches around 1600 ° C. in the cooling process of cooling the optical fiber main body to room temperature is t When T = 0, the temperature T1 of the optical fiber body that reaches after the predetermined slow cooling time t1 is controlled to a temperature of 900 ° C. or more, and the predetermined slow cooling time t1 is relaxed in the structure of the optical fiber body at T1. It is characterized in that it is in the range of 10 −5 times to 10 times the time τ required for.
In practice, t1 may be determined experimentally by setting the position where the outer diameter (usually 125 μm) of the optical fiber is constant as the origin Z = 0, as will be described later. This is because the position (Z = 0) corresponds to the temperature at which the viscous flow of the silica-based glass does not occur (around 1600 ° C.).

上述した課題を解決する第2の発明に係る光ファイバの製造方法は、第1の発明に記載された光ファイバの製造方法であって、前記線引き炉内における前記加熱手段の下方に、当該線引き炉内の温度が長手方向の距離に対して1600℃から連続的に減少する一定長の徐冷区間を設け、線引き速度および前記徐冷区間に前記光ファイバ本体が滞在する時間t1に応じて、当該徐冷区間の最下部の設定温度Tminを変化させることを特徴とする。   An optical fiber manufacturing method according to a second invention for solving the above-described problem is the optical fiber manufacturing method described in the first invention, wherein the drawing is performed below the heating means in the drawing furnace. A constant-length slow cooling section in which the temperature in the furnace continuously decreases from 1600 ° C. with respect to the distance in the longitudinal direction, and according to the drawing speed and the time t1 during which the optical fiber body stays in the slow cooling section, The setting temperature Tmin at the lowermost part of the slow cooling section is changed.

上述した課題を解決する第3の発明に係る光ファイバの製造方法は、石英系の光ファイバ母材を線引き炉に配置される加熱手段により1600℃以上の高温で加熱し線引きしてなる光ファイバ本体を室温まで冷却させて光ファイバを製造する光ファイバの製造方法であって、前記光ファイバ本体を室温まで冷却させる冷却過程において、当該光ファイバ本体の温度が1600℃近傍に到達した時間をt=0とした時に、所定の徐冷時間t1後に到達する光ファイバ本体の温度T1を900℃以上の温度に制御し、前記所定の徐冷時間t1を、T1における当該光ファイバ本体の構造の緩和に要する時間τの10-2倍以上2倍以下の範囲とし、前記線引き炉内における前記加熱手段の下方に、当該線引き炉内の温度が長手方向の距離に対して1600℃から連続的に減少する一定長の徐冷区間を設け、線引き速度および前記徐冷区間に光ファイバ本体が滞在する時間t1に応じて、当該徐冷区間の最下部の設定温度Tminを変化させることを特徴とする。 An optical fiber manufacturing method according to a third aspect of the present invention for solving the above-mentioned problem is an optical fiber formed by heating a silica-based optical fiber preform at a high temperature of 1600 ° C. or higher by heating means disposed in a drawing furnace. An optical fiber manufacturing method for manufacturing an optical fiber by cooling a main body to room temperature, wherein the time when the temperature of the optical fiber main body reaches around 1600 ° C. in the cooling process of cooling the optical fiber main body to room temperature is t When T = 0, the temperature T1 of the optical fiber body that reaches after the predetermined slow cooling time t1 is controlled to a temperature of 900 ° C. or more, and the predetermined slow cooling time t1 is relaxed in the structure of the optical fiber body at T1. and 2 times or less in the range 10 -2 times or more time τ required for, below the heating means in the drawing furnace, 1 temperature of the drawing furnace with respect to longitudinal distance A constant-length slow cooling section that continuously decreases from 00 ° C. is provided, and the set temperature Tmin at the bottom of the slow cooling section changes according to the drawing speed and the time t1 during which the optical fiber body stays in the slow cooling section. It is characterized by making it.

上述した課題を解決する第4の発明に係る線引き炉は、光ファイバ母材が配置される線引き炉本体と、前記線引き炉本体内に配置され、前記光ファイバ母材を加熱する加熱手段とを有し、前記光ファイバ母材を加熱線引きしてなる光ファイバ本体を室温まで冷却させて光ファイバを製造する線引き炉であって、前記線引き炉本体は、その下部に温度が長手方向の距離に対して、1600℃から連続的に減少する一定長の徐冷区間を有し、前記徐冷区間の最下部の設定温度Tminを1600℃以下の範囲で可変に調整できることを特徴とする。   A drawing furnace according to a fourth aspect of the present invention that solves the above-described problem includes a drawing furnace body in which an optical fiber preform is disposed, and a heating unit that is disposed in the drawing furnace body and that heats the optical fiber preform. A drawing furnace for manufacturing an optical fiber by cooling an optical fiber body formed by heating and drawing the optical fiber preform to room temperature, wherein the drawing furnace body has a temperature at a distance in a longitudinal direction at a lower portion thereof. On the other hand, it has a certain length of slow cooling section that continuously decreases from 1600 ° C., and the set temperature Tmin at the bottom of the slow cooling section can be variably adjusted within a range of 1600 ° C. or less.

本発明に係る光ファイバの製造方法によれば、温度の関数である石英系光ファイバの緩和時間τの温度変化から見出される、任意の徐冷時間に対して炉内の最適な温度勾配を与える指針に基づいて、炉内の最下部の温度を制御することによって行われるため、付随的な徐冷炉を用いる必要が無く、小さなエネルギー消費で簡易に光ファイバのレイリー散乱損失の低減を任意の線引き速度において行うことができる。また、一定温度の徐冷炉を用いる場合に比べて、厳密な温度条件の制御が不要になる。   According to the optical fiber manufacturing method of the present invention, an optimum temperature gradient in the furnace is given for an arbitrary slow cooling time found from the temperature change of the relaxation time τ of the silica-based optical fiber as a function of temperature. Based on the guideline, it is done by controlling the temperature at the bottom of the furnace, so there is no need to use an additional annealing furnace, and it is easy to reduce the Rayleigh scattering loss of the optical fiber with a small energy consumption. Can be done. In addition, strict control of temperature conditions is not necessary as compared with the case of using a constant temperature slow cooling furnace.

さらに、一定範囲の速度で線引きを行う場合には、上記の指針に基づいて、最適な炉長を決定することが可能になるので、予め線引き速度に適したサイズの線引き炉を設計・準備することによって、効率的・経済的に低損失な光ファイバを製造することが可能になる。   Furthermore, when drawing at a certain range of speed, it becomes possible to determine the optimum furnace length based on the above guidelines, so design and prepare a drawing furnace of a size suitable for the drawing speed in advance. This makes it possible to manufacture an optical fiber with low loss efficiently and economically.

本発明に係る線引き炉によれば、付随的な徐冷炉を用いる必要が無いため、設備コストの増加を抑制することができ、また、光ファイバの仮想温度Tfを低減させ、そのレイリー散乱を低減させることで、低損失な光ファイバを低コストにて製造することができる。 According to the drawing furnace according to the present invention, it is not necessary to use an accompanying slow cooling furnace, so that an increase in equipment cost can be suppressed, and the virtual temperature T f of the optical fiber can be reduced to reduce its Rayleigh scattering. By doing so, a low-loss optical fiber can be manufactured at low cost.

以下に、本発明の最良の形態に係る光ファイバの製造方法および線引き炉につき、図面を用いて説明する。   Hereinafter, an optical fiber manufacturing method and a drawing furnace according to the best mode of the present invention will be described with reference to the drawings.

図1は、本発明の原理と最良の形態に係る線引き炉を説明するための模式図であり、図1(a)に線引き炉にて光ファイバを線引きした状態を示し、図1(b)にそのときの温度分布を示す。図2は、本発明の最良の形態に係る線引き炉の徐冷区間に光ファイバ本体が滞在する時間とその時の温度との関係の一例を示す図であり、図3は、石英系光ファイバの緩和時間τの温度依存性の一例を示す図である。   FIG. 1 is a schematic diagram for explaining a drawing furnace according to the principle and the best mode of the present invention. FIG. 1A shows a state in which an optical fiber is drawn in the drawing furnace, and FIG. Shows the temperature distribution at that time. FIG. 2 is a diagram showing an example of the relationship between the time during which the optical fiber body stays in the slow cooling section of the drawing furnace according to the best mode of the present invention and the temperature at that time, and FIG. It is a figure which shows an example of the temperature dependence of relaxation time (tau).

本発明の最良の形態に係る光ファイバの製造方法の原理についての説明を理論的なモデルを用いて行う。なお、以下のモデルは、非特許文献2,3でも用いられており、実際の線引き条件との良好な対応関係が期待できるものである。   The principle of the optical fiber manufacturing method according to the best mode of the present invention will be described using a theoretical model. The following models are also used in Non-Patent Documents 2 and 3, and a good correspondence with actual drawing conditions can be expected.

本発明の最良の形態に係る線引き炉20は、図1に示すように、線引き炉本体10と、線引き炉本体10内に配置され、石英系のガラス母材(光ファイバ母材)1を1600℃以上の高温で加熱する加熱手段である加熱用ヒータ13とを有し、線引き炉本体10は、加熱された光ファイバ母材1を線引きさせそのネックダウン1aを終了させてなる光ファイバ本体2を加熱用ヒータ13の下部に温度が長手方向の距離に対して、1600℃から連続的に冷却させる一定長の徐冷区間11を有する。この光ファイバ本体2は、炉外12にて室温に急速に冷却されて光ファイバとなる。   As shown in FIG. 1, a drawing furnace 20 according to the best mode of the present invention is arranged in a drawing furnace main body 10 and the drawing furnace main body 10, and a silica-based glass base material (optical fiber base material) 1 is 1600. And a heating furnace 13 which is a heating means for heating at a high temperature of not less than 0 ° C., and a drawing furnace body 10 draws the heated optical fiber preform 1 and ends the neck down 1a. In the lower part of the heater 13, there is provided a slow cooling section 11 having a fixed length in which the temperature is continuously cooled from 1600 ° C. with respect to the distance in the longitudinal direction. The optical fiber body 2 is rapidly cooled to room temperature outside the furnace 12 to become an optical fiber.

すなわち、上記線引き炉10による光ファイバの製造方法では、線引き炉10内で光ファイバ母材1のネックダウン1aが終了し、その外径dが125μmとなる位置をZ=0とすると共に、ここでの光ファイバ本体2の温度Tを純石英ガラスの軟化点の1600℃とする。炉内温度TzもZ=0の位置でT0=1600℃とし、最下点(Z=L)での温度Tminまで、Tzが直線的に減少する徐冷ゾーン(徐冷区間)11を仮定する。線引き速度をvとすると、徐冷区間11の全長L内に時間tl(=L/v)だけ光ファイバ本体2は滞在し、その後、炉外12にて室温に急冷されて光ファイバとなる。 That is, in the optical fiber manufacturing method using the drawing furnace 10, the position where the neck down 1 a of the optical fiber preform 1 ends in the drawing furnace 10 and the outer diameter d becomes 125 μm is set to Z = 0. The temperature T of the optical fiber body 2 is set to 1600 ° C., the softening point of pure quartz glass. The furnace temperature Tz is also assumed to be T 0 = 1600 ° C. at the position of Z = 0, and a slow cooling zone (slow cooling section) 11 in which Tz linearly decreases until the temperature Tmin at the lowest point (Z = L) is assumed. To do. Assuming that the drawing speed is v, the optical fiber main body 2 stays within the total length L of the slow cooling section 11 for a time tl (= L / v), and then rapidly cooled to room temperature outside the furnace 12 to become an optical fiber.

線引き炉10内の徐冷区間11の温度分布Tzは(1),(2)式で表される。また、線引き炉10内を光ファイバ本体2が通過するとき、この温度は長手方向の熱伝導が光ファイバ本体2の表面における対流熱伝達に比べて小さく、また、熱容量が小さいことから断面内で温度は一様となるため、光ファイバ本体2の温度Tと時間tとの関係を(3)式にて表すことができる。hは熱伝達係数であり、cとρは純石英ガラスの比熱と密度である。ただし、下記式では、c=1.0kJ/kgK、ρ=2200kg/m3として計算した。 The temperature distribution Tz in the slow cooling section 11 in the wire drawing furnace 10 is expressed by equations (1) and (2). Further, when the optical fiber main body 2 passes through the drawing furnace 10, this temperature is smaller in the longitudinal direction than in the convection heat transfer on the surface of the optical fiber main body 2, and the heat capacity is small. Since the temperature is uniform, the relationship between the temperature T of the optical fiber body 2 and the time t can be expressed by equation (3). h is a heat transfer coefficient, and c and ρ are specific heat and density of pure quartz glass. However, in the following formula, it calculated as c = 1.0 kJ / kgK and ρ = 2200 kg / m 3 .

ここで、図1に示すように、加熱用ヒータ13が線引き炉10の上方にのみ設置されている一般的な場合も、(1)式のような長手方向に直線的に変化する温度分布が、一次的な近似として良好に成立する。さらに、線引き炉の最下部や中間部に別途加熱用ヒータを設置し、適切な制御を行えば、徐冷区間の全域にわたって、ほぼ完全に直線的に変化する温度分布を実現することが可能である。Tmin=1000℃の条件で以下の(1)〜(3)式を解き、tl(s)を0.5、1、2としたときのT(t)の計算結果を図2に示す。ただし、上記熱伝達係数hとして、非特許文献2に記載の210W/m2Kを用いた。なお、前記熱伝達係数hは線引き炉内の雰囲気ガスなどの条件によって多少変化するが、光ファイバの温度Tの時間変化から実験的に決定することも可能な定数である。 Here, as shown in FIG. 1, even in a general case where the heater 13 is installed only above the drawing furnace 10, the temperature distribution linearly changing in the longitudinal direction as in the formula (1) is obtained. It is well established as a primary approximation. In addition, if a separate heater is installed at the bottom or middle of the drawing furnace and appropriate control is performed, it is possible to achieve a temperature distribution that changes almost completely linearly over the entire slow cooling zone. is there. FIG. 2 shows the calculation results of T (t) when the following equations (1) to (3) are solved under the condition of Tmin = 1000 ° C. and tl (s) is set to 0.5, 1, and 2. However, 210 W / m 2 K described in Non-Patent Document 2 was used as the heat transfer coefficient h. The heat transfer coefficient h slightly changes depending on the conditions such as the atmospheric gas in the drawing furnace, but is a constant that can be experimentally determined from the time change of the temperature T of the optical fiber.

Tz = T0−rt ・・・・・・・・・・(1)
r = v(T0−Tmin)/L=(T0−Tmin)/tl ・・・・・ (2)
dT/dt = −4h/cρd(T−Tz) ・・・・・・・(3)
Tz = T 0 −rt (1)
r = v (T 0 −Tmin) / L = (T 0 −Tmin) / tl (2)
dT / dt = −4h / cρd (T−Tz) (3)

図2には、線引き炉内のみにおける光ファイバ本体の温度変化を図示しており、この後、光ファイバ本体は炉外にて室温条件で急冷されて光ファイバとなる。線引き炉外にて光ファイバ本体の温度変化が極めて急速に起こるため、ガラス構造の緩和、すなわち仮想温度Tfの減少はほとんど生じない。このことは、10m/s程度の高速で線引きされる市販の石英系光ファイバでは、レイリー散乱による光損失がほぼ一定の値になることからも裏付けられる。そこで、以下では線引き炉内における仮想温度Tfの変化だけに限定する。 FIG. 2 shows the temperature change of the optical fiber main body only in the drawing furnace. Thereafter, the optical fiber main body is rapidly cooled outside the furnace at room temperature to become an optical fiber. Since the temperature change of the optical fiber main body occurs very rapidly outside the drawing furnace, the glass structure is hardly relaxed, that is, the fictive temperature Tf is hardly reduced. This is supported by the fact that the light loss due to Rayleigh scattering becomes a substantially constant value in a commercially available silica-based optical fiber drawn at a high speed of about 10 m / s. Therefore, in the following, it is limited only to the change of the virtual temperature T f in the drawing furnace.

一方、緩和時間τ(T)を用いて、光ファイバ本体の仮想温度Tfと実際の光ファイバ本体の温度Tとの関係は(4)式によって近似的に記述されることが知られている。ここでTf0は仮想温度Tfの初期値の1600℃である。緩和時間τ(T)は赤外吸収スペクトルなどから決定することが可能であり、ここでは非特許文献1で示される結果を引用し、図3に示す。この図では、横軸に光ファイバ本体の温度Tを示し、縦軸に緩和時間τを示す。この図に示すように、光ファイバ本体の温度Tが低くなるほど、緩和時間τ(T)は増大する。 On the other hand, using the relaxation time τ (T), it is known that the relationship between the virtual temperature T f of the optical fiber body and the actual temperature T of the optical fiber body is approximately described by equation (4). . Here, T f0 is the initial value of the fictive temperature T f , 1600 ° C. The relaxation time τ (T) can be determined from an infrared absorption spectrum or the like. Here, the result shown in Non-Patent Document 1 is cited and shown in FIG. In this figure, the horizontal axis represents the temperature T of the optical fiber body, and the vertical axis represents the relaxation time τ. As shown in this figure, the relaxation time τ (T) increases as the temperature T of the optical fiber body decreases.

また、(4)式から、仮に非特許文献1のように、一定温度Tkで光ファイバを時間t保持する場合、保持温度Tkとしては、緩和時間τ(Tk)がtと同程度になるような温度を選ぶ必要がある。 Also, from equation (4), if the optical fiber is held for a time t at a constant temperature T k as in Non-Patent Document 1, the relaxation time τ (T k ) is about the same as t as the holding temperature T k. It is necessary to choose the temperature that becomes.

f = T+(Tf0−T)exp(−t/τ(T)) ・・・・(4) T f = T + (T f0 −T) exp (−t / τ (T)) (4)

一方、本発明においては、一定温度での保持・徐冷は行わず、光ファイバ本体には、概略として図2に示すような温度変化が与えられる。この時、tlが長いほど光ファイバの徐冷が可能となり、その一方で光ファイバ本体の温度TはTminに近づく。しかし、tl(=L/v)は徐冷区間長Lと線引き速度vによって決定されるので、前記徐冷区間長Lが一定の条件で、任意の線引き速度vの値に対して効果的に仮想温度Tfの低減を行うには、tl秒後の光ファイバ本体の温度T(tl)を最適化する必要がある。そのためには、上記の場合と同様に、tlと緩和時間τ(T(tl))とを同程度に設定することが目安になる。実施例1で述べるように、その条件は、一定温度で保持・徐冷する場合よりも大幅に緩和され、その結果、厳密な温度制御が本発明では不要となる。 On the other hand, in the present invention, holding / slow cooling at a constant temperature is not performed, and a temperature change as shown in FIG. At this time, the longer the tl is, the more gradually the optical fiber can be cooled, while the temperature T of the optical fiber body approaches Tmin. However, since tl (= L / v) is determined by the slow cooling section length L and the drawing speed v, it is effective for an arbitrary drawing speed v value when the slow cooling section length L is constant. In order to reduce the fictive temperature Tf , it is necessary to optimize the temperature T (tl) of the optical fiber body after tl seconds. For that purpose, as in the case described above, it is a guideline to set tl and the relaxation time τ (T (tl)) to the same extent. As described in the first embodiment, the conditions are greatly relaxed as compared with the case of holding and slow cooling at a constant temperature, and as a result, strict temperature control becomes unnecessary in the present invention.

本発明において、上記条件を、線引き炉の最下点の温度Tminを適切な値Tpに設定することで実現する。その際にはTpは(3)式のパラメータh,c,ρ,dとτ(T)、さらにtlの値から与えられる。よって、徐冷区間長Lが一定の時は、線引き速度vに応じてTminを変化させることで、最小限の設備で経済的に低損失な光ファイバの製造が可能となる。また、線引き速度vが一定の線引き条件を予め想定している際には、徐冷区間に光ファイバ本体が滞在する時間に応じて、最適な徐冷区間長Lをもつ線引き炉を設計・準備し、Tminを適切な値に設定することが可能となる。   In the present invention, the above condition is realized by setting the temperature Tmin at the lowest point of the drawing furnace to an appropriate value Tp. In this case, Tp is given from the parameters h, c, ρ, d and τ (T) in equation (3) and the value of tl. Therefore, when the slow cooling section length L is constant, by changing Tmin according to the drawing speed v, it becomes possible to manufacture an optical fiber with a low loss economically with minimum equipment. In addition, when a drawing condition with a constant drawing speed v is assumed in advance, a drawing furnace having an optimum slow cooling section length L is designed and prepared according to the time the optical fiber body stays in the slow cooling section. Thus, Tmin can be set to an appropriate value.

したがって、本発明の最良の形態に係る光ファイバの製造方法によれば、温度の関数である石英系光ファイバの緩和時間τの温度変化から見出される、任意の徐冷時間に対して炉内の最適な温度勾配を与える指針に基づいて、炉内の最下部の温度を制御することによって行われるため、付随的な徐冷炉を用いる必要が無く、小さなエネルギー消費で簡易に光ファイバのレイリー散乱損失の低減を任意の線引き速度において行うことができる。また、一定温度の徐冷炉を用いる場合に比べて、厳密な温度条件の制御が不要になる。   Therefore, according to the method of manufacturing an optical fiber according to the best mode of the present invention, the temperature in the furnace is increased with respect to an arbitrary slow cooling time found from the temperature change of the relaxation time τ of the silica-based optical fiber as a function of temperature. Since it is performed by controlling the temperature of the lowest part in the furnace based on the guideline that gives the optimum temperature gradient, there is no need to use an additional annealing furnace, and the Rayleigh scattering loss of the optical fiber can be easily reduced with low energy consumption. Reduction can be done at any drawing speed. In addition, strict control of temperature conditions is not necessary as compared with the case of using a constant temperature slow cooling furnace.

さらに、一定範囲の速度で線引きを行う場合には、上記の指針に基づいて、最適な炉長を決定することが可能になるので、予め線引き速度に適したサイズの線引き炉を設計・準備することによって、効率的・経済的に低損失な光ファイバを製造することが可能になる。   Furthermore, when drawing at a certain range of speed, it becomes possible to determine the optimum furnace length based on the above guidelines, so design and prepare a drawing furnace of a size suitable for the drawing speed in advance. This makes it possible to manufacture an optical fiber with low loss efficiently and economically.

また、上述した線引き炉によれば、付随的な徐冷炉を用いる必要が無いため、設備コストの増加を抑制することができ、光ファイバの仮想温度Tfを低減させ、そのレイリー散乱を低減させることで、低損失な光ファイバを低コストにて製造することができる。 Moreover, according to the drawing furnace mentioned above, since it is not necessary to use an accompanying slow cooling furnace, the increase in equipment cost can be suppressed, the virtual temperature Tf of an optical fiber can be reduced, and the Rayleigh scattering can be reduced. Thus, a low-loss optical fiber can be manufactured at a low cost.

以下に、本発明の第1の実施例に係る光ファイバの製造方法について、図面を用いて説明する。本実施例は、徐冷時間tl後の光ファイバ本体の温度T(tl)の具体的な設定値と設定方法に関するものである。   Below, the manufacturing method of the optical fiber which concerns on the 1st Example of this invention is demonstrated using drawing. The present embodiment relates to a specific setting value and setting method of the temperature T (tl) of the optical fiber body after the slow cooling time tl.

図4は、後述する関係式(5)のパラメータmと徐冷時間t1後の光ファイバ本体の温度T(tl)およびこの時の炉の最下点の温度Tminの設定値Tpの関係を示す図であり、図5は、パラメータmと仮想温度Tfの関係を示す図であり、図6は、線引き炉の最下点の温度Tminの設定値Tpと仮想温度Tfの関係を示す図である。 FIG. 4 shows the relationship between the parameter m in the relational expression (5) described later, the temperature T (tl) of the optical fiber body after the slow cooling time t1, and the set value Tp of the temperature Tmin at the lowest point of the furnace at this time. FIG. 5 is a diagram showing the relationship between the parameter m and the virtual temperature T f , and FIG. 6 is a diagram showing the relationship between the set value Tp of the temperature Tmin at the lowest point of the drawing furnace and the virtual temperature T f . It is.

tlと緩和時間τ(T(tl))を同程度の値に設定した場合のT(t1)とTpを決定するために(5)式を仮定し、mを0.0001〜5の範囲で変化させた。   In order to determine T (t1) and Tp when tl and relaxation time τ (T (tl)) are set to similar values, equation (5) is assumed, and m is in the range of 0.0001 to 5 Changed.

tl=m×τ(T(tl)) ・・・・・・(5)   tl = m × τ (T (tl)) (5)

上記(5)式において、一例としてtl=1(s)とし、パラメータmを変化させた時の、T(tl)と、この時に必要となる最下点の温度Tminの設定値Tpを図4に示し、(4)式から得られるTfを図5に示す。さらに、TpとTfとの関係を図6に示す。なお、緩和時間τの値については、図3(非特許文献1)から見積もった。 In the above equation (5), as an example, when tl = 1 (s) and the parameter m is changed, T (tl) and the setting value Tp of the lowest temperature Tmin required at this time are shown in FIG. Tf obtained from the equation (4) is shown in FIG. Furthermore, the relationship between Tp and Tf is shown in FIG. In addition, about the value of relaxation time (tau), it estimated from FIG. 3 (nonpatent literature 1).

図4に示すように、最下点の温度Tpの値を制御することにより、所望のT(tl)を得ることが可能になる。また、図5に示すように、パラメータmが10-5以上10以下の範囲にて、仮想温度の変化が非常に緩やかであることが分かった。すなわち、図5および(5)式から、t1を光ファイバの緩和時間τ(T)の10-5倍以上10倍以下の範囲とし、好適には10-2倍以上2倍以下の範囲とすることで、適切な仮想温度Tfを得られることができることが分かった。また、図6に示すように、Tpに対する仮想温度Tfの変化は非常に緩やかであり、Tpが500℃変化しても、Tfは極小値から20℃程度しか変化しないことが分かった。よって、Tpの制御の条件は非常に容易なものであることが分かった。 As shown in FIG. 4, by controlling the value of the temperature Tp at the lowest point, it becomes possible to obtain a desired T (tl). Further, as shown in FIG. 5, it has been found that the fictive temperature change is very gradual when the parameter m is in the range of 10 −5 or more and 10 or less. That is, from FIG. 5 and equation (5), t1 is in the range of 10 −5 to 10 times the relaxation time τ (T) of the optical fiber, preferably in the range of 10 −2 to 2 times. Thus, it was found that an appropriate fictive temperature T f can be obtained. Further, as shown in FIG. 6, it has been found that the change of the fictive temperature T f with respect to Tp is very gradual, and even if Tp changes by 500 ° C., T f changes only from the minimum value to about 20 ° C. Therefore, it was found that the conditions for controlling Tp are very easy.

これは、図2と図3から理解できるように、本発明では、緩和時間τの値が非常に小さな高温域から徐冷を開始し、最終的に光ファイバ本体の温度がT(tl)に至るためTpの値の変化がTfへ及ぼす影響が小さくなるからである。非特許文献1に示されるように、光ファイバ本体を一定の温度にて保持する場合、最適な徐冷炉の温度が50℃程度の狭い範囲に限られることと比べると、これは本発明の大きな優位点である。なお、Tpの制御については線引き炉の大きさに応じて、線引き炉の最下部や、さらには徐冷区間の中間部への加熱用ヒータの設置、もしくは線引き炉の外側からの強制的な冷却によって適宜行うことができる。 As can be understood from FIG. 2 and FIG. 3, in the present invention, slow cooling starts from a high temperature range where the value of the relaxation time τ is extremely small, and finally the temperature of the optical fiber body reaches T (tl). This is because the influence of the change in the value of Tp on T f becomes small. As shown in Non-Patent Document 1, when the optical fiber body is held at a constant temperature, this is a significant advantage of the present invention compared to the fact that the optimum annealing furnace temperature is limited to a narrow range of about 50 ° C. Is a point. Regarding the control of Tp, depending on the size of the drawing furnace, a heater for heating is installed at the lowermost part of the drawing furnace or in the middle part of the slow cooling section, or forced cooling from the outside of the drawing furnace. Can be appropriately performed.

したがって、本発明の第1の実施例に係る光ファイバの製造方法によれば、当該光ファイバ本体の温度が1600℃近傍に到達した時間をt=0とした時に、前記所定の徐冷時間t1がT1における当該の光ファイバの構造を緩和に要する時間τの10-5倍以上10倍以下の範囲とし、好適には10-2倍以上2倍以下の範囲とすることにより、付随的な徐冷炉を必要とせず、任意の長さの線引き炉に対して、小さなエネルギー消費で行える簡易な温度制御によってレイリー散乱による光損失を低減した光ファイバを製造することができる。 Therefore, according to the optical fiber manufacturing method of the first embodiment of the present invention, when the time when the temperature of the optical fiber body reaches around 1600 ° C. is t = 0, the predetermined slow cooling time t1 By setting the structure of the optical fiber at T1 within the range of 10 −5 times to 10 times the time τ required for relaxation, preferably within the range of 10 −2 times to 2 times, an accompanying slow cooling furnace Therefore, it is possible to manufacture an optical fiber in which light loss due to Rayleigh scattering is reduced by a simple temperature control that can be performed with a small energy consumption with respect to a drawing furnace having an arbitrary length.

以下に、本発明の第2の実施例に係る光ファイバの製造方法について、図面を用いて具体的に説明する。本実施例は、異なるtlの値に対して最適な温度条件で光ファイバの線引きを行った際の光損失の低減効果に関するものである。   Below, the manufacturing method of the optical fiber which concerns on the 2nd Example of this invention is demonstrated concretely using drawing. This embodiment relates to an effect of reducing optical loss when an optical fiber is drawn under optimum temperature conditions for different values of tl.

図7は、単一モード光ファイバおよびマルチモード光ファイバの徐冷時間とレイリー散乱係数との関係を示す図である。   FIG. 7 is a diagram illustrating the relationship between the slow cooling time and the Rayleigh scattering coefficient of a single mode optical fiber and a multimode optical fiber.

本発明の第2の実施例に係る光ファイバの製造方法では、図5の結果から、パラメータmの最適値として、0.5を用いた。ここで、(5)式でm=0.5とした時の、tlとT(tl)とTpを表1に示す。ただし、Tpの制限条件を室温25℃以上に限定したことにより、tl=0.1の場合についてだけm=2とした。   In the optical fiber manufacturing method according to the second embodiment of the present invention, 0.5 is used as the optimum value of the parameter m from the result of FIG. Here, Table 1 shows tl, T (tl), and Tp when m = 0.5 in the equation (5). However, by limiting the limiting condition of Tp to room temperature 25 ° C. or more, m = 2 was set only for the case of tl = 0.1.

Figure 2007238354
Figure 2007238354

本発明者らは、非特許文献4において、GeO2をドープした石英ガラスをコアに用いた光ファイバのレイリー散乱係数Rが、以下の(6)式によって良好に近似できることを見出している。ここで、Δは純石英ガラスとの比屈折率差(%)である。 In the non-patent document 4, the present inventors have found that the Rayleigh scattering coefficient R of an optical fiber using quartz glass doped with GeO 2 as a core can be satisfactorily approximated by the following equation (6). Here, Δ is a relative refractive index difference (%) with respect to pure quartz glass.

R(dB/km/μm4) = 4.1 × 10-4( Tf + 273.1 )( 1 + 0.62Δ ) ・・・・(6) R (dB / km / μm 4 ) = 4.1 × 10 -4 (T f + 273.1) (1 + 0.62Δ) (6)

表1の温度条件で、(6)式を用いてGeO2ドープ石英コアの単一モード光ファイバSMF(Δ=0.35%)とマルチモード光ファイバMMF(Δ=1.0%)のレイリー散乱係数Rをそれぞれ計算し、その結果を図7に示す。なお、市販の光ファイバは、一般に10m/s程度の高速で線引きされ、線引き炉の最下部の温度制御も行われていないので、徐冷されない時(tl=0,Tf=1600℃)の値にほぼ対応していると考えられる。実際に、SMFのtl=0の時のレイリー散乱係数Rの計算値0.93は、市販のSMFのレイリー散乱係数Rの平均的な値とほとんど一致する。また、MMFのt1=0の時のレイリー散乱係数Rの計算値は、1.24であった。また、図7に示すように、SMFおよびMMFのレイリー散乱係数Rはlog(tl)に対して直線的に減少する。各光ファイバでは、図中の点線で示した徐冷されない(t1=0)時の値からの減少量は8〜18%程度である。 Rayleigh of single mode optical fiber SMF (Δ = 0.35%) and multimode optical fiber MMF (Δ = 1.0%) with a GeO 2 doped quartz core using the equation (6) under the temperature conditions in Table 1. The scattering coefficient R is calculated, and the result is shown in FIG. Note that commercially available optical fibers are generally drawn at a high speed of about 10 m / s, and the temperature control at the bottom of the drawing furnace is not performed, so when not slowly cooled (tl = 0, T f = 1600 ° C.). It seems that it corresponds to the value. Actually, the calculated value 0.93 of the Rayleigh scattering coefficient R when tl = 0 of the SMF almost coincides with the average value of the Rayleigh scattering coefficient R of the commercially available SMF. The calculated value of the Rayleigh scattering coefficient R when MMF t1 = 0 was 1.24. Also, as shown in FIG. 7, the Rayleigh scattering coefficient R of SMF and MMF decreases linearly with respect to log (tl). In each optical fiber, the amount of decrease from the value when not slowly cooled (t1 = 0) indicated by the dotted line in the figure is about 8 to 18%.

既に述べたように、本発明では、Tpを制御することで、各種の石英系光ファイバに対して、任意の線引き速度で損失の低減効果を得ることができる。   As described above, in the present invention, by controlling Tp, it is possible to obtain a loss reduction effect at an arbitrary drawing speed for various types of silica-based optical fibers.

例えば、徐冷区間長Lが50cmの場合を想定し、レイリー散乱係数Rの値から短波長側でのレイリー散乱損失(=R/λ4,λ:波長)に換算すると、v=5m/sの時はtl=0.1sとなり、tl=0の時の値と比較して、SMFでは波長1.3μmで約0.03dB/kmの損失低減効果を得ることができ、v=0.5m/sの時はtl=1sとなり、同様にMMFでは波長0.8μmで約0.4dB/kmの損失低減効果を得ることができる。 For example, assuming that the slow cooling section length L is 50 cm, v = 5 m / s when converted from the value of the Rayleigh scattering coefficient R to the Rayleigh scattering loss (= R / λ 4 , λ: wavelength) on the short wavelength side. When tl = 0.1 s, the loss reduction effect of about 0.03 dB / km at a wavelength of 1.3 μm can be obtained with SMF, compared with the value when tl = 0, and v = 0.5 m In the case of / s, tl = 1s. Similarly, with MMF, a loss reduction effect of about 0.4 dB / km can be obtained at a wavelength of 0.8 μm.

また逆に、線引き速度vの範囲が決まっている時は、目標とするレイリー散乱係数Rおよび損失の値からtlが決定できるので、予め最適な徐冷区間長Lを算出することが可能になり、線引き炉の設計準備・製造に役立てることができる。   On the contrary, when the range of the drawing speed v is determined, tl can be determined from the target Rayleigh scattering coefficient R and the loss value, so that it is possible to calculate the optimal slow cooling section length L in advance. It can be used for the design preparation and manufacture of a drawing furnace.

以下に、本発明の第3の実施例に係る光ファイバの製造方法について、図面を用いて具体的に説明する。本実施例は、徐冷ゾーン長Lと徐冷時間t1の値に対する仮想温度Tfの変化とレイリー散乱係数Rの低減効果に関するものである。 The optical fiber manufacturing method according to the third embodiment of the present invention will be specifically described below with reference to the drawings. The present embodiment relates to a change in the fictive temperature Tf with respect to the values of the slow cooling zone length L and the slow cooling time t1, and the effect of reducing the Rayleigh scattering coefficient R.

図8は、炉内での徐冷時間tに対する光ファイバ本体の温度Tおよび仮想温度Tfの関係を示す図である。 FIG. 8 is a diagram showing the relationship between the temperature T of the optical fiber body and the fictive temperature Tf with respect to the slow cooling time t in the furnace.

実際に徐冷区間長L=30cm、線引き速度v=1m/s、t1=0.3sの条件を満たす線引き炉で、比屈折率差Δ=0.33%のGeO2ドープ石英コアのSMFを線引きし、その損失波長特性からレイリー散乱係数Rを計算したところ、0.8dB/km/μm4であった。一方、線引き炉内の温度分布を測定したところ、高温領域では、長手方向に約100℃/cmの割合で温度が低下していた。 The SMF of a GeO 2 doped quartz core having a relative refractive index difference Δ = 0.33% in a drawing furnace that actually satisfies the conditions of the slow cooling section length L = 30 cm, the drawing speed v = 1 m / s, and t1 = 0.3 s. As a result of drawing and calculating the Rayleigh scattering coefficient R from the loss wavelength characteristic, it was 0.8 dB / km / μm 4 . On the other hand, when the temperature distribution in the drawing furnace was measured, in the high temperature region, the temperature decreased at a rate of about 100 ° C./cm in the longitudinal direction.

そこで、図8に示すように、線引き炉内温度分布Tzを仮定して、光ファイバ本体の徐冷時間t(位置Z)に対する光ファイバの温度Tと仮想温度Tfをそれぞれ計算した。この図に示すように、Tfの値は約1400℃となった。このとき、(6)式から得られるレイリー散乱係数Rの値は0.83となり、実際に得られた値は0.8とほとんど一致した。 Therefore, as shown in FIG. 8, the temperature T of the optical fiber and the fictive temperature T f with respect to the slow cooling time t (position Z) of the optical fiber main body were calculated assuming a drawing furnace temperature distribution Tz. As shown in this figure, the value of T f was about 1400 ° C. At this time, the value of the Rayleigh scattering coefficient R obtained from the equation (6) was 0.83, and the actually obtained value almost coincided with 0.8.

本発明は、光ファイバの製造方法および線引き炉に利用可能であり、特に光通信に用いる各種の光ファイバの光損失を低減する光ファイバの製造方法および線引き炉に利用することが可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for an optical fiber manufacturing method and a drawing furnace, and in particular, can be used for an optical fiber manufacturing method and a drawing furnace for reducing optical loss of various optical fibers used for optical communication.

本発明の原理と最良の形態に係る線引き炉を説明するための模式図である。It is a schematic diagram for demonstrating the drawing furnace which concerns on the principle and best form of this invention. 本発明の最良の形態に係る線引き炉の徐冷区間に光ファイバ本体が滞在する時間とその時の温度との関係の一例を示す図である。It is a figure which shows an example of the relationship between the time which an optical fiber main body stays in the slow cooling area of the drawing furnace which concerns on the best form of this invention, and the temperature at that time. 石英系光ファイバの緩和時間τの温度依存性の一例を示す図である。It is a figure which shows an example of the temperature dependence of relaxation time (tau) of a silica type optical fiber. 光ファイバ本体の徐冷時間t1とそのときの緩和時間τとの関係式のパラメータmと徐冷時間t1後の光ファイバ本体の温度T(tl)およびこの時の最下点の温度Tminの設定値Tpの関係を示す図である。Setting of the parameter m in the relational expression between the slow cooling time t1 of the optical fiber body and the relaxation time τ at that time, the temperature T (tl) of the optical fiber body after the slow cooling time t1, and the temperature Tmin at the lowest point at this time It is a figure which shows the relationship of value Tp. 光ファイバ本体の徐冷時間t1とそのときの緩和時間τとの関係式のパラメータmと仮想温度Tfの関係を示す図である。It is a figure which shows the relationship between the parameter m of the relational expression of the slow cooling time t1 of the optical fiber main body, and the relaxation time τ at that time, and the fictive temperature Tf . 線引き炉の最下点の温度Tminの設定値Tpと仮想温度Tfの関係を示す図である。It is a figure which shows the relationship between the setting value Tp of temperature Tmin of the lowest point of a drawing furnace, and virtual temperature Tf . 単一モード光ファイバSMFおよびマルチモード光ファイバMMFの徐冷時間とレイリー散乱係数との関係を示す図である。It is a figure which shows the relationship between the slow cooling time and the Rayleigh scattering coefficient of single mode optical fiber SMF and multimode optical fiber MMF. 光ファイバの徐冷時間tに対する光ファイバ本体の温度Tおよび仮想温度Tfの関係を示す図である。It is a figure which shows the relationship between the temperature T of the optical fiber main body with respect to the slow cooling time t of an optical fiber, and the virtual temperature Tf .

符号の説明Explanation of symbols

1 光ファイバ母材
2 光ファイバ
10 線引き炉本体
11 徐冷区間
12 炉外
13 加熱用ヒータ
20 線引き炉
DESCRIPTION OF SYMBOLS 1 Optical fiber base material 2 Optical fiber 10 Drawing furnace main body 11 Slow cooling section 12 Out-of-furnace 13 Heating heater 20 Drawing furnace

Claims (4)

石英系の光ファイバ母材を線引き炉に配置される加熱手段により1600℃以上の高温で加熱し線引きしてなる光ファイバ本体を室温まで冷却させて光ファイバを製造する光ファイバの製造方法であって、
前記光ファイバ本体を室温まで冷却させる冷却過程において、当該光ファイバ本体の温度が1600℃近傍に到達した時間をt=0とした時に、所定の徐冷時間t1後に到達する光ファイバ本体の温度T1を900℃以上の温度に制御し、前記所定の徐冷時間t1を、T1における当該光ファイバ本体の構造の緩和に要する時間τの10-5倍以上10倍以下の範囲とした
ことを特徴とする光ファイバの製造方法。
An optical fiber manufacturing method for manufacturing an optical fiber by cooling an optical fiber main body formed by heating a silica-based optical fiber preform at a high temperature of 1600 ° C. or higher by a heating means disposed in a drawing furnace to room temperature. And
In the cooling process of cooling the optical fiber body to room temperature, when the time when the temperature of the optical fiber body reaches around 1600 ° C. is t = 0, the temperature T1 of the optical fiber body reached after a predetermined slow cooling time t1 Is controlled to a temperature of 900 ° C. or higher, and the predetermined slow cooling time t1 is in the range of 10 −5 times to 10 times the time τ required for relaxation of the structure of the optical fiber body at T1. An optical fiber manufacturing method.
請求項1に記載された光ファイバの製造方法であって、
前記線引き炉内における前記加熱手段の下方に、当該線引き炉内の温度が長手方向の距離に対して1600℃から連続的に減少する一定長の徐冷区間を設け、線引き速度および前記徐冷区間に前記光ファイバ本体が滞在する時間t1に応じて、当該徐冷区間の最下部の設定温度Tminを変化させる
ことを特徴とする光ファイバの製造方法。
An optical fiber manufacturing method according to claim 1,
Below the heating means in the drawing furnace, there is provided a slow cooling section having a constant length in which the temperature in the drawing furnace continuously decreases from 1600 ° C. with respect to the longitudinal distance, and the drawing speed and the slow cooling section are provided. The method of manufacturing an optical fiber, wherein the set temperature Tmin at the bottom of the slow cooling section is changed according to the time t1 during which the optical fiber main body stays.
石英系の光ファイバ母材を線引き炉に配置される加熱手段により1600℃以上の高温で加熱し線引きしてなる光ファイバ本体を室温まで冷却させて光ファイバを製造する光ファイバの製造方法であって、
前記光ファイバ本体を室温まで冷却させる冷却過程において、当該光ファイバ本体の温度が1600℃近傍に到達した時間をt=0とした時に、所定の徐冷時間t1後に到達する光ファイバ本体の温度T1を900℃以上の温度に制御し、前記所定の徐冷時間t1を、T1における当該光ファイバ本体の構造の緩和に要する時間τの10-2倍以上2倍以下の範囲とし、
前記線引き炉内における前記加熱手段の下方に、当該線引き炉内の温度が長手方向の距離に対して1600℃から連続的に減少する一定長の徐冷区間を設け、線引き速度および前記徐冷区間に光ファイバ本体が滞在する時間t1に応じて、当該徐冷区間の最下部の設定温度Tminを変化させる
ことを特徴とする光ファイバの製造方法。
An optical fiber manufacturing method for manufacturing an optical fiber by cooling an optical fiber main body formed by heating a silica-based optical fiber preform at a high temperature of 1600 ° C. or higher by a heating means disposed in a drawing furnace to room temperature. And
In the cooling process of cooling the optical fiber body to room temperature, when the time when the temperature of the optical fiber body reaches around 1600 ° C. is t = 0, the temperature T1 of the optical fiber body reached after a predetermined slow cooling time t1 Is controlled to a temperature of 900 ° C. or higher, and the predetermined slow cooling time t1 is in a range of 10 −2 times to 2 times the time τ required for relaxation of the structure of the optical fiber body at T1,
Below the heating means in the drawing furnace, there is provided a slow cooling section having a constant length in which the temperature in the drawing furnace continuously decreases from 1600 ° C. with respect to the longitudinal distance, and the drawing speed and the slow cooling section are provided. A method of manufacturing an optical fiber, wherein the set temperature Tmin at the bottom of the slow cooling section is changed according to the time t1 during which the optical fiber main body stays at the bottom.
光ファイバ母材が配置される線引き炉本体と、前記線引き炉本体内に配置され、前記光ファイバ母材を加熱する加熱手段とを有し、前記光ファイバ母材を加熱線引きしてなる光ファイバ本体を室温まで冷却させて光ファイバを製造する線引き炉であって、
前記線引き炉本体は、その下部に温度が長手方向の距離に対して、1600℃から連続的に減少する一定長の徐冷区間を有し、
前記徐冷区間の最下部の設定温度Tminを1600℃以下の範囲で可変に調整できる
ことを特徴とする線引き炉。
An optical fiber comprising: a drawing furnace main body on which an optical fiber preform is disposed; and heating means disposed in the drawing furnace main body for heating the optical fiber preform, wherein the optical fiber preform is heated and drawn. A drawing furnace for producing an optical fiber by cooling the main body to room temperature,
The draw furnace body has a constant length slow cooling section in which the temperature continuously decreases from 1600 ° C. with respect to the distance in the longitudinal direction at the lower part thereof,
A drawing furnace characterized in that the lowermost set temperature Tmin of the slow cooling section can be variably adjusted within a range of 1600 ° C. or less.
JP2006060542A 2006-03-07 2006-03-07 Method for determining annealing time in optical fiber manufacturing. Expired - Fee Related JP4444926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060542A JP4444926B2 (en) 2006-03-07 2006-03-07 Method for determining annealing time in optical fiber manufacturing.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060542A JP4444926B2 (en) 2006-03-07 2006-03-07 Method for determining annealing time in optical fiber manufacturing.

Publications (2)

Publication Number Publication Date
JP2007238354A true JP2007238354A (en) 2007-09-20
JP4444926B2 JP4444926B2 (en) 2010-03-31

Family

ID=38584252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060542A Expired - Fee Related JP4444926B2 (en) 2006-03-07 2006-03-07 Method for determining annealing time in optical fiber manufacturing.

Country Status (1)

Country Link
JP (1) JP4444926B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073203A1 (en) * 2015-10-29 2017-05-04 株式会社フジクラ Optical fiber production method
WO2017073204A1 (en) * 2015-10-29 2017-05-04 株式会社フジクラ Optical fiber production method
JP2017165614A (en) * 2016-03-16 2017-09-21 株式会社フジクラ Method for manufacturing optical fiber
JP2018035030A (en) * 2016-08-30 2018-03-08 株式会社フジクラ Method for manufacturing optical fiber
WO2024116283A1 (en) * 2022-11-29 2024-06-06 日本電信電話株式会社 Device and method for producing optical fiber

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10710924B2 (en) 2015-10-29 2020-07-14 Fujikura Ltd. Optical fiber production method
WO2017073204A1 (en) * 2015-10-29 2017-05-04 株式会社フジクラ Optical fiber production method
JP2017081795A (en) * 2015-10-29 2017-05-18 株式会社フジクラ Method for manufacturing optical fiber
JP2017081796A (en) * 2015-10-29 2017-05-18 株式会社フジクラ Method for manufacturing optical fiber
WO2017073203A1 (en) * 2015-10-29 2017-05-04 株式会社フジクラ Optical fiber production method
CN110845135B (en) * 2015-10-29 2022-07-22 株式会社藤仓 Method for manufacturing optical fiber
CN107428592A (en) * 2015-10-29 2017-12-01 株式会社藤仓 The manufacture method of optical fiber
US11008245B2 (en) 2015-10-29 2021-05-18 Fujikura Ltd. Optical fiber production method
CN107428592B (en) * 2015-10-29 2020-07-31 株式会社藤仓 Method for manufacturing optical fiber
US20180290914A1 (en) * 2015-10-29 2018-10-11 Fujikura Ltd. Optical fiber production method
CN110845135A (en) * 2015-10-29 2020-02-28 株式会社藤仓 Method for manufacturing optical fiber
JP2017165614A (en) * 2016-03-16 2017-09-21 株式会社フジクラ Method for manufacturing optical fiber
US10927033B2 (en) 2016-03-16 2021-02-23 Fujikura Ltd. Optical fiber production method
WO2017158940A1 (en) * 2016-03-16 2017-09-21 株式会社フジクラ Optical fiber production method
WO2018042758A1 (en) * 2016-08-30 2018-03-08 株式会社フジクラ Method for manufacturing optical fiber
JP2018035030A (en) * 2016-08-30 2018-03-08 株式会社フジクラ Method for manufacturing optical fiber
US11091385B2 (en) 2016-08-30 2021-08-17 Fujikura Ltd. Method for manufacturing optical fiber
WO2024116283A1 (en) * 2022-11-29 2024-06-06 日本電信電話株式会社 Device and method for producing optical fiber

Also Published As

Publication number Publication date
JP4444926B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP6048031B2 (en) Optical fiber manufacturing method
US7677060B2 (en) Method for manufacturing optical fiber and the cooling of the optical fiber
CN109641777B (en) Method for manufacturing optical fiber
JP4444926B2 (en) Method for determining annealing time in optical fiber manufacturing.
JP2007197273A (en) Optical fiber strand and production method therefor
CN115872614A (en) Method of manufacturing optical fiber and optical fiber
WO2000073224A1 (en) Production device and method for optical fiber
JP5949016B2 (en) Optical fiber manufacturing method
CN107428592B (en) Method for manufacturing optical fiber
JP4482954B2 (en) Optical fiber manufacturing method
EP3305735B1 (en) Optical fiber production method
JP6295234B2 (en) Optical fiber manufacturing method
EP3584226B1 (en) Optical fiber production method
US20020078715A1 (en) Methods and apparatus for drawing optical fiber
JP2005343703A (en) Method of manufacturing optical fiber strand, and optical fiber
CN104876435B (en) A kind of preparation method of chalcogenide glass fiber
JPH10206669A (en) Optical fiber and its manufacture
JP3952734B2 (en) Optical fiber manufacturing method
JP6175467B2 (en) Optical fiber preform manufacturing method, optical fiber preform and optical fiber
WO2024116283A1 (en) Device and method for producing optical fiber
JP6402471B2 (en) Optical fiber manufacturing method
JP2003176149A (en) Method and apparatus for manufacturing optical fiber
JP2006027991A (en) Method for heating glass body
Wurier ALPD technology from PCS to single-mode
JP2003040638A (en) Production method for optical fiber raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100114

R150 Certificate of patent or registration of utility model

Ref document number: 4444926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees