JP2007235079A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2007235079A
JP2007235079A JP2006092273A JP2006092273A JP2007235079A JP 2007235079 A JP2007235079 A JP 2007235079A JP 2006092273 A JP2006092273 A JP 2006092273A JP 2006092273 A JP2006092273 A JP 2006092273A JP 2007235079 A JP2007235079 A JP 2007235079A
Authority
JP
Japan
Prior art keywords
light
led
reflector
light source
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006092273A
Other languages
Japanese (ja)
Inventor
Ikuo Iwai
郁夫 祝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006092273A priority Critical patent/JP2007235079A/en
Publication of JP2007235079A publication Critical patent/JP2007235079A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which condenses emissive light from an LED element 1 at high efficiency. <P>SOLUTION: A lighting of high condensing efficiency is materialized: by allotting a surface light source comprising an LED element 1 in a rear part opening 4 of a reflector 3; and by emitting light from a front part opening 5. The reflector is a revolving surface reflector approximated to the shape of a basic form, wherein the ridge line is a part of parabola of the shape of the basic form or a link of cones approximated to the shape of the basic form. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発光ダイオード(以下、LED)の放射光を適切に偏向、制御して、集光するための発光装置に関する。  The present invention relates to a light emitting device for appropriately deflecting, controlling, and condensing light emitted from a light emitting diode (hereinafter, LED).

LEDを照明用として使用する場合、レンズまたは反射鏡を用いて、LEDの放射光を偏向、制御し、集光する必要がある。LED素子の配光(光度分布)は図2のAのようなランバーチアン型に近似でき、ビーム角(光度が最大光度の半分以上である、放射光の放射角度範囲)で表現するならば約120°であるけれども、これに対して、通常の照明用途が要求する配光は、目的照射面を効率良く照明するために、例えば図2のBのようなビーム角30°の広角配光、或いは図2のCのようなビーム角10°の狭角配光のようにずっと狭いからである。When the LED is used for illumination, it is necessary to deflect, control, and collect the emitted light of the LED using a lens or a reflecting mirror. The light distribution (luminance distribution) of the LED element can be approximated to a Lambertian type as shown in FIG. In contrast to this, although the light distribution required by a normal illumination application is 120 °, a wide-angle light distribution with a beam angle of 30 ° as shown in FIG. Alternatively, it is much narrower like a narrow-angle light distribution with a beam angle of 10 ° as shown in FIG.

LED発光装置として、従来もっとも一般的であったものは、図3のように、LED素子1の発光面前方に凸レンズ12を配置して構成する光学系であり、LEDを発した光線は球面状の凸レンズにより屈折、偏向して集光する。(例えば、特許文献1参照。)LEDの設置位置を前方にすればビーム角は広がり、後方に下げれば狭くなる。
特開2001−36148公報
As the LED light emitting device, the most common one is an optical system in which a convex lens 12 is arranged in front of the light emitting surface of the LED element 1 as shown in FIG. The light is refracted and deflected by a convex lens. (For example, refer to Patent Document 1.) The beam angle widens when the LED is placed forward, and narrows when lowered backward.
JP 2001-36148 A

一方、図4のように放物面鏡などの凹面鏡13を用いて集光するものもある。(例えば、特許文献2参照。)この場合、LED素子1は凹面鏡13の焦点近傍に、凹面鏡13に対向して設置される。
特開平6−260684公報
On the other hand, as shown in FIG. (For example, refer to Patent Document 2.) In this case, the LED element 1 is installed in the vicinity of the focal point of the concave mirror 13 so as to face the concave mirror 13.
JP-A-6-260684

然るに、この凸レンズ集光系から成る、従来のLED発光装置は、低い集光効率および配光形状不適切という、二つの問題点を抱えている。
この凸レンズ集光系にあっては、図3からわかるように、LED素子1からレンズを見込む角度範囲への放射光のみが照射面に向かうので、例えば1mm□のLED素子と直径5mmφの半球凸レンズの組合せの場合、ビーム角30°の広角配光で60%、ビーム角10°の狭角配光で20%という集光効率の低さである。
また、レンズ集光系の性格上、配光の中心方向の光度が高くなり過ぎ、照射面の中央部が明る過ぎる照度分布不均一を生ずるという欠点もある。
However, the conventional LED light-emitting device composed of this convex lens condensing system has two problems of low condensing efficiency and inappropriate light distribution shape.
In this convex lens condensing system, as can be seen from FIG. 3, only the radiated light from the LED element 1 to the angle range where the lens is expected is directed to the irradiation surface. In the case of this combination, the light collection efficiency is as low as 60% for a wide-angle light distribution with a beam angle of 30 ° and 20% for a narrow-angle light distribution with a beam angle of 10 °.
In addition, due to the nature of the lens condensing system, the luminous intensity in the center direction of the light distribution becomes too high, and there is a drawback that the illuminance distribution non-uniformity is too bright at the center of the irradiated surface.

これに対して、凹面鏡による従来の集光系はLED放射光の角度範囲の略全域を反射するので、集光効率は高い。しかしながら、LED素子自身が反射光を遮る構造であり、あまり大きい面積のLEDを用い難い、或いはあまり放熱面積の広い放熱板を付設し難いという欠点がある。On the other hand, since the conventional condensing system by the concave mirror reflects substantially the entire angular range of the LED radiation light, the condensing efficiency is high. However, the LED element itself has a structure in which the reflected light is blocked, and there is a drawback that it is difficult to use an LED having a very large area or to attach a heat radiating plate having a large heat radiating area.

本発明によるLED発光装置の典型例を図1に示す。
コーン(円錐筒)の連鎖から成る、前後に開口4と開口5を持つ回転面反射鏡3と、放熱板2に密接された多数のLED素子1より成る面光源を組み合わせて成る発光装置である。後部開口4の側に設置されたLED素子から前方に(図1右側)発した放射光は、反射鏡内面で反射された後、前部開口5より、或いはダイレクトに前部開口5より射出される。反射鏡3は、曲線弧または折れ線弧を光軸6(照射面中心と発光装置を結ぶ線)の周りに回転して成る回転面反射鏡である。回転させるべき線弧を、以下、回転面の稜線と呼ぶこととするが、本発明によるLED発光装置の反射鏡稜線は、下記の反射鏡基本形状の稜線に近似した、或いは近傍に存する曲線弧または折れ線弧であることを特徴とする。
曲線弧の光軸周り回転は回転曲面を、折れ線弧の回転はコーンの連鎖を与える。
A typical example of an LED light emitting device according to the present invention is shown in FIG.
It is a light emitting device comprising a rotating surface reflecting mirror 3 having an opening 4 and an opening 5 in the front and rear, and a surface light source composed of a large number of LED elements 1 in close contact with the heat radiating plate 2. . Radiant light emitted forward (right side in FIG. 1) from the LED element installed on the rear opening 4 side is reflected by the inner surface of the reflecting mirror and then emitted from the front opening 5 or directly from the front opening 5. The The reflecting mirror 3 is a rotating surface reflecting mirror formed by rotating a curved arc or a polygonal arc around an optical axis 6 (a line connecting the center of the irradiation surface and the light emitting device). The line arc to be rotated is hereinafter referred to as the ridgeline of the rotating surface, but the reflector ridgeline of the LED light emitting device according to the present invention is a curved arc that approximates or is close to the ridgeline of the following reflector basic shape. Or it is a broken line arc.
The rotation of the curved arc around the optical axis gives a rotating curved surface, and the rotation of the polygonal arc gives a chain of cones.

即ち、反射鏡3の基本形状は、図5の反射鏡のみの断面図を参照して、以下の通りである。この基本形状は、放物線の一部を稜線とし、この稜線を光軸6の周りに回転させて成るものである。
先ず、円形の後部開口4の大きさは、要求される光出力のLED発光面積に見合うように設定する。
次に、円形の前部開口5の大きさは、後部開口4よりも大きくし、後部開口4の両端AおよびBと前部開口5の反対側の端DおよびEを結ぶ直線9aおよび9bが成す角度θ(反射鏡の開き角と呼ぶ。)が、発光装置から所望照射範囲を見込む角度と略一致するように設定する。そして、前部開口の位置は、下記の方法で発生させた放物線10と、開き角を指示する直線9aが交差する位置の近傍とする。ここで、この放物線10は、所望ビーム角(所望光度分布の半値角度幅)の半分をθiとして、後部開口の一端Aに焦点を置き、この焦点を通り、光軸6を含む面内にあって、光軸6に対して角度θiほど傾いた直線7を中心軸とし、そして後部開口の焦点位置と反対側の一端Bを通過するものとする。
That is, the basic shape of the reflecting mirror 3 is as follows with reference to the sectional view of only the reflecting mirror of FIG. This basic shape is formed by rotating a part of the parabola around the optical axis 6 as a ridge line.
First, the size of the circular rear opening 4 is set so as to meet the required LED light emitting area of light output.
Next, the size of the circular front opening 5 is larger than that of the rear opening 4, and straight lines 9 a and 9 b connecting both ends A and B of the rear opening 4 and opposite ends D and E of the front opening 5 are provided. The formed angle θ (referred to as the opening angle of the reflecting mirror) is set so as to substantially match the angle at which the desired irradiation range is expected from the light emitting device. The position of the front opening is set in the vicinity of the position where the parabola 10 generated by the following method and the straight line 9a indicating the opening angle intersect. Here, the parabola 10 is focused on one end A of the rear opening with θi being a half of the desired beam angle (half-value angle width of the desired luminous intensity distribution), passes through this focal point, and is in a plane including the optical axis 6. Thus, it is assumed that a straight line 7 inclined by an angle θi with respect to the optical axis 6 is a central axis and passes through one end B on the opposite side to the focal position of the rear opening.

本発明によるLED発光装置においては、後部開口4の全域が、略一定一様の輝度分布で発光することが望ましく、少なくとも後部開口面積の30%以上のLED素子表面積総和である必要がある。ここで、LED素子表面積とは、LED素子の「発光部面積+発光部を囲んで露出している基板の表面積」と定義する。集光系の光源にあっては、LED素子の間に多少の間隙があっても、一様に光っていると見做して差支えないからである。
単一のLED素子、或いは蛍光体付きのLEDで光源を形成する場合は、その形状を後部開口の形状に合わせて、円形または六角形などの円形近似とするのが望ましい。そして複数のLED素子を設置する場合は、LED素子を後部開口全域に、格子状などに敷き詰めるのが望ましい。また、赤色、緑色、青色のLED素子を組合せて白色光源とする場合は、各色それぞれで、一定一様な輝度分布とする必要がある。
また、敷き詰めたLED素子間の隙間は、LED発光装置を照明用として使用する場合は小さい方が良く、表示用、ディスプレー用として使う場合は大きい方が良い。なお、後者の場合、LED素子間の隙間の放熱板表面は黒色に加工し、光線の反射をなるべく抑える必要がある。
In the LED light emitting device according to the present invention, it is desirable that the entire area of the rear opening 4 emits light with a substantially uniform luminance distribution, and it is necessary that the total surface area of the LED elements is at least 30% or more of the rear opening area. Here, the LED element surface area is defined as “light emitting part area + surface area of the substrate exposed surrounding the light emitting part” of the LED element. This is because a light source of a condensing system can be regarded as shining uniformly even if there are some gaps between the LED elements.
In the case where the light source is formed by a single LED element or an LED with a phosphor, it is desirable to match the shape of the rear opening with a circular approximation such as a circle or a hexagon. When a plurality of LED elements are installed, it is desirable to spread the LED elements over the entire rear opening in a grid pattern or the like. Further, when a white light source is formed by combining red, green, and blue LED elements, it is necessary to obtain a constant and uniform luminance distribution for each color.
Further, the gap between the spread LED elements is preferably smaller when the LED light emitting device is used for illumination, and larger when it is used for display and display. In the latter case, it is necessary to process the surface of the heat sink in the gap between the LED elements to be black and suppress reflection of light as much as possible.

図5においてθ=2θiとしたときの反射鏡をCPC(Compound Parabolic Concentrator)という。(例えば非特許文献1参照)図6は、このCPC11における、光線入射孔である後部開口4の中央Cおよび端部Aから各方向に発した光線の追跡結果である。この図より、殆どの光線が反射鏡の開き角(直線8a、8bの成す角)の内側に放射されていることがわかる。後部開口面4のいろいろの位置から発する光線、或いは光軸を含む面と交差するいろいろの光線(いわゆるスキューレイ)についても光線追跡を行った結果、殆どの光線が開き角θを見込む円錐内の方向に放射されることがわかった。
図7は、後部開口全面に一定一様の輝度分布の面光源を配した、図6に示したCPCによる、光度分布および遠隔域の(発光装置から十分に離れた位置での)照度分布である。この図からも、大部分の出射光束が、反射鏡の開き角、即ち所望照射角の内側に放射されていることがわかる。
反射鏡を用いた集光系の場合、反射面における光吸収による集光効率の減少が避けられないが、図7の集光系では、反射面の反射率が90%でも、集光効率85%という、凸レンズ集光系の従来例よりは大幅に高い集光効率を示している。
W.T.Welford,R.Winston“High Collection Nonimaging Optics”p53(Academic Press,Inc.1989)
In FIG. 5, the reflecting mirror when θ = 2θi is referred to as a CPC (Compound Parabolic Concentrator). (For example, refer nonpatent literature 1) FIG. 6: is the tracking result of the light ray emitted in each direction from the center C and the edge part A of the rear opening 4 which is a light ray incident hole in this CPC11. From this figure, it can be seen that most of the light rays are emitted inside the opening angle of the reflecting mirror (the angle formed by the straight lines 8a and 8b). As a result of ray tracing for rays emitted from various positions of the rear opening surface 4 or various rays (so-called skew ray) intersecting with the plane including the optical axis, most of the rays are within the cone where the opening angle θ is expected. It was found that it was emitted in the direction.
FIG. 7 shows the luminous intensity distribution and the illuminance distribution in a remote area (at a position sufficiently away from the light emitting device) by the CPC shown in FIG. 6 in which a surface light source having a uniform luminance distribution is arranged on the entire rear opening. is there. Also from this figure, it can be seen that most of the emitted light beam is radiated inside the opening angle of the reflecting mirror, that is, the desired irradiation angle.
In the case of a condensing system using a reflecting mirror, a reduction in condensing efficiency due to light absorption on the reflecting surface is unavoidable, but in the condensing system of FIG. 7, even if the reflectance of the reflecting surface is 90%, the condensing efficiency is 85. %, The light collection efficiency is significantly higher than the conventional example of the convex lens condensing system.
W. T.A. Welford, R.A. Winston “High Collection Nonimaging Optics” p53 (Academic Press, Inc. 1989)

CPCが示す図7のように、照射面境界が際立っている照度分布は、照明用途分野では一般に歓迎されない。多くの場合、図8のような、照射面境界の照度が外側に向ってフェードアウトする照度分布、即ちビーム角が照射面見込み角より狭い配光が要望される。
この図8は、後部開口全面に一定一様の輝度分布の面光源を配した、図1に示したコーン連鎖反射鏡による、光度分布および照度分布である。大部分の出射光束が、反射鏡の開き角、即ち所望照射角の内側に放射されており、また、光度分布の半値角度幅が、設定したビーム角に略等しくなっている。集光効率(光源放射光束に対する照射範囲入射光束の割合)は、反射鏡反射率が90%のとき、87%であった。
凸レンズによる従来の集光系では、山型の照度分布とならざるを得ず、図8のような、ビーム角範囲内の、比較的一様な照度分布を実現できない。
As shown in FIG. 7 indicated by CPC, the illuminance distribution where the irradiation surface boundary stands out is not generally welcomed in the lighting application field. In many cases, as shown in FIG. 8, an illuminance distribution in which the illuminance at the boundary of the irradiation surface fades out toward the outside, that is, a light distribution whose beam angle is narrower than the expected angle of the irradiation surface is desired.
FIG. 8 shows the luminous intensity distribution and the illuminance distribution by the cone chain reflecting mirror shown in FIG. 1 in which a surface light source having a constant and uniform luminance distribution is arranged on the entire rear opening. Most of the emitted light beam is emitted inside the opening angle of the reflecting mirror, that is, the desired irradiation angle, and the half-value angle width of the luminous intensity distribution is substantially equal to the set beam angle. The light collection efficiency (the ratio of the incident range incident light beam to the light source emitted light beam) was 87% when the reflector reflectance was 90%.
In a conventional condensing system using a convex lens, the illuminance distribution has a mountain shape, and a relatively uniform illuminance distribution within the beam angle range as shown in FIG. 8 cannot be realized.

本発明の構成による場合、上記のように、反射鏡の後部開口に配した面光源が開口全域で略一定一様の輝度分布で光っていることが原則である。しかし、面光源の一様発光面積(LED素子を並べた場合、LED素子の占有面積、即ちLED素子表面積の総和)が、反射鏡の後部開口面積の30%以上であれば、一応、滑らかな光度分布ないし照度分布を得ることができる。
例えば、図9は、図8と同じ光学系において、一様輝度発光部面積の反射鏡後部開口面積に占める占有率を25%としたときの照度分布であるが、図9左側の後部開口中央の円形部のみ発光、図9右側の後部開口周縁の円環部のみ発光、の両ケースとも約20%の照度ムラを示している。この20%の照度ムラは、実用上、許容される限界と判断されることから、本発明を構成する光源としては、反射鏡後部開口面積の30%以上の表面積の、単一のLED素子、または敷き詰められた複数のLED素子から成る面光源を採用する。
In the case of the configuration of the present invention, as described above, in principle, the surface light source arranged in the rear opening of the reflecting mirror shines with a substantially uniform luminance distribution over the entire opening. However, if the uniform light emitting area of the surface light source (when LED elements are arranged, the total occupied area of the LED elements, that is, the total surface area of the LED elements) is 30% or more of the rear opening area of the reflector, it is smooth. A luminous intensity distribution or illuminance distribution can be obtained.
For example, FIG. 9 shows the illuminance distribution when the occupancy ratio of the uniform luminance light emitting area in the rear opening area of the reflector is 25% in the same optical system as in FIG. Illumination unevenness of about 20% is shown in both cases, in which only the circular part of the case emits light and only the ring part around the periphery of the rear opening on the right side of FIG. This 20% illuminance unevenness is judged to be a practically allowable limit. Therefore, as a light source constituting the present invention, a single LED element having a surface area of 30% or more of the rear opening area of the reflector, Alternatively, a surface light source composed of a plurality of LED elements laid down is adopted.

一般のハロゲンランプや蛍光灯などの非面光源を、反射板と拡散透過板で挟んで、一様輝度分布の面光源とすることができるが、しかしこのような構成では、ランプ放射光の50%近くが中にこもって、拡散透過板を出射する光線が少なく、光学系全体として非常に低い集光効率の発光装置となる。本発明を構成する光源として、高効率の裸のLED素子または蛍光体付きLEDを推奨する所以である。A non-surface light source such as a general halogen lamp or a fluorescent lamp can be sandwiched between a reflection plate and a diffuse transmission plate to form a surface light source having a uniform luminance distribution. As a whole, the optical system as a whole has a very low light collection efficiency. This is why a highly efficient bare LED element or LED with phosphor is recommended as the light source constituting the present invention.

LEDの照明用途分野への適用においては、光束が大きく、且つ寸法の小さい光源とするのが望ましく、そのためには、LED発光効率が極大となるLED動作温度を保ちつつ、できるだけ大きい単位発光面積当り入力電力とする必要がある。照明用のLED素子の場合、LED素子が発光面の後背面で密着、付設される放熱板を、できるだけ大きい表面積にして、大きい電力を注入する。
本発明の構成では、先述の凸レンズの従来例と同じで、反射鏡の従来例に比べ、LED後背部に放熱板取り付けの余裕があるが、更には反射鏡を金属製とし、図1に示したように、LED後背部の平面放熱板にこの反射鏡を密着接合することによって、大面積の放熱板が得られる。このようにして、従来例よりもずっと大きい電力、大きい光束の光源を作れる。
In application to the field of LED lighting, it is desirable to use a light source having a large luminous flux and a small size. For this purpose, the LED light emitting efficiency is maximized per unit light emitting area while maintaining the LED operating temperature at which the LED luminous efficiency is maximized. It is necessary to use input power. In the case of an LED element for illumination, the LED element is in close contact with the rear surface of the light emitting surface, and a heat sink attached is provided with a surface area as large as possible to inject a large amount of power.
In the configuration of the present invention, it is the same as the conventional example of the convex lens described above. Compared to the conventional example of the reflector, there is a margin for mounting the heat sink on the back of the LED, but the reflector is made of metal and is shown in FIG. As described above, a large-area heat radiating plate can be obtained by closely bonding the reflecting mirror to the flat heat radiating plate behind the LED. In this way, a light source with much higher power and larger luminous flux than the conventional example can be made.

本発明の構成に成る発光装置は、照明用途以外に、信号灯や、屋外用大型ディスプレーなどに適用される表示素子としても有用である。前側射出面全域で一様な輝度分布だからである。また、本装置を表示素子に使用する場合、ビーム角が視野角ということになるが、請求項1に従う反射鏡にすれば、視野角内のどの角度から見ても略一定の輝度となるという、優位性もある。このことは、図8において、ビーム角の範囲内で光度が略一定であることから推定できる。
しかし欠点もある。LED素子自体の反射率が結構高いために、外光を反射し易いということである。このため、この表示素子のコントラストは低下する。
反射鏡の後部開口に配置された、後部開口と同じ形状の放熱板の上に並べた、複数のLED素子から成る面光源において、充填率(LED素子の発光面積の総和/後部開口の面積)が30%から70%の間となるよう、隙間を持って均等にLED素子を並べ、このLED素子間の隙間の放熱板表面を黒色に加工すれば、この面光源の反射率は減少し、コントラストの低下を防止できる。
The light-emitting device having the configuration of the present invention is useful as a display element applied to a signal lamp, a large outdoor display, and the like in addition to the illumination application. This is because the luminance distribution is uniform over the entire front exit surface. In addition, when this apparatus is used as a display element, the beam angle is the viewing angle. However, if the reflecting mirror according to claim 1 is used, the luminance is substantially constant when viewed from any angle within the viewing angle. There is also an advantage. This can be estimated from the fact that the light intensity is substantially constant within the range of the beam angle in FIG.
But there are drawbacks. Since the reflectance of the LED element itself is quite high, it is easy to reflect external light. For this reason, the contrast of the display element is lowered.
In a surface light source composed of a plurality of LED elements arranged on a heat sink having the same shape as that of the rear opening, arranged at the rear opening of the reflector, the filling factor (the sum of the light emitting areas of the LED elements / the area of the rear opening) If the LED elements are arranged evenly with a gap so as to be between 30% and 70%, and the heat sink surface in the gap between the LED elements is processed into black, the reflectance of the surface light source decreases, A reduction in contrast can be prevented.

以下、本発明の実施の形態について図面を参照して説明する。
図1のLED光源1は、図10に拡大して示すように、円形放熱板2の全面に、赤色発光(r)、緑色発光(g)、青色発光(b)それぞれのLED素子1を多数、配置して成る白色光源である。各色の多数のLED素子が円形放熱板1の全面に均等に分散配置されているので、各色それぞれについて、一定一様の輝度分布が得られる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The LED light source 1 in FIG. 1 has a large number of LED elements 1 for red light emission (r), green light emission (g), and blue light emission (b) on the entire surface of the circular heat sink 2 as shown in an enlarged view in FIG. , A white light source arranged. Since a large number of LED elements of each color are uniformly distributed over the entire surface of the circular heat sink 1, a uniform and uniform luminance distribution is obtained for each color.

この反射鏡の反射面形状の設計方法、設計ステップは、図5及び図1を参照して次の如くである。
1.円形面光源の直径と同一の後部開口直径d1を設定する。
2.所望ビーム角を2θiとして、後部開口の一端Aを通り、光軸6から角度θiほど傾いた直線7を中心軸とし、このA点に焦点を置く、後部開口のA点に対向する一端Bを通る放物線10を描く。なお、この放物線10の焦点距離fは、次式で計算できる。
f=d1・(1+ sinθi)
3.この放物線10を光軸6の周りに回転して成る回転面を反射鏡の基本形状と設定する。
4.所望照射範囲を見込む頂角をθとして、上記A点を通り、光軸に対してθ/2ほど傾いた直線9aが、上記放物線10と交差する点Dの光軸方向位置に前部開口を設定し、点Dの光軸からの垂直距離の2倍を、前部開口の直径d2とする。
5.以上のステップで生成した、図5の反射鏡11について、後部開口4に、一定一様輝度の、直径d1の円形面光源を配したときの光度分布を計算し、これが所望の光度分布と一致すれば、ここで設計を終了する。
6.ステップ5で所望の光度分布が得られない場合、図5の反射鏡11を光軸方向に適当に分割し(稜線の勾配に反比例する間隔で、10分割程度)、図1のような、前記反射鏡11に近似した、コーンの連鎖から成る反射鏡を生成する。このコーンの連鎖の稜線は折れ線を成しており、この折れ線の屈曲点は、図5の反射鏡11の稜線上にある。
7.ステップ6で得られた、コーンの連鎖から成る反射鏡3について光度分布を計算し、これが所望の光度分布と一致しないならば、折れ線の屈曲点を多少移動して、即ちコンの直径を微調整して、再度、光度分布を計算する。
8.ステップ7を繰返し、所望の光度分布が達成されたならば、ここで設計を終了する。
The reflecting surface shape design method and design steps of the reflecting mirror are as follows with reference to FIGS.
1. A rear opening diameter d1 that is the same as the diameter of the circular surface light source is set.
2. A desired beam angle is set to 2θi, and a straight line 7 passing through one end A of the rear opening and inclined by an angle θi from the optical axis 6 is set as a central axis, and one end B facing the A point of the rear opening is focused on this A point. Draw a parabola 10 through. The focal length f of the parabola 10 can be calculated by the following equation.
f = d1 · (1 + sin θi)
3. A rotating surface formed by rotating the parabola 10 around the optical axis 6 is set as a basic shape of the reflecting mirror.
4). A straight line 9a that passes through the point A and is inclined by θ / 2 with respect to the optical axis has a front opening at a position in the optical axis direction at a point D that intersects the parabola 10 with an apex angle that anticipates a desired irradiation range as θ. Set, and double the vertical distance of the point D from the optical axis is the diameter d2 of the front opening.
5). With respect to the reflecting mirror 11 of FIG. 5 generated in the above steps, the light intensity distribution when a circular surface light source having a constant uniform luminance and a diameter d1 is arranged in the rear opening 4 is calculated, and this coincides with the desired light intensity distribution. Then, the design is finished here.
6). If the desired luminous intensity distribution cannot be obtained in step 5, the reflecting mirror 11 of FIG. 5 is appropriately divided in the optical axis direction (at an interval that is inversely proportional to the gradient of the ridge line, about 10 divisions), as shown in FIG. A reflecting mirror composed of a chain of cones, which is similar to the reflecting mirror 11, is generated. The ridge line of the cone chain forms a broken line, and the bending point of the broken line is on the ridge line of the reflecting mirror 11 in FIG.
7). The luminous intensity distribution is calculated for the reflector 3 made of a chain of cones obtained in Step 6, and if this does not match the desired luminous intensity distribution, the bending point of the broken line is moved slightly, that is, the diameter of the cone is finely adjusted. Then, the light intensity distribution is calculated again.
8). Step 7 is repeated, and when the desired light intensity distribution is achieved, the design is finished here.

図1は、ビーム角30°の広角配光で、且つ開き角40°までフェードアウトする光度分布の、高効率の照明を目的として設計された発光装置の実施例である。
平面光源は、直径4mmの放熱板の上に、赤色発光(r)、緑色発光(g)、青色発光(b)それぞれ60個のLED素子1を敷き詰めている。各LED素子の基板は0.25mm□で、即ちLED素子表面積の総和は11.25mmであり、この面積の反射鏡後部開口面積に占める割合(占有率)は、90%である。なお、各LED素子の発光部は0.2mm□、総発光面積は7.2mmとなっている。
円形発熱板2はアルミなどの熱伝導性の材質であり、各LED素子がこの放熱板に密着して付設してあるので、放熱板1によってLED素子は冷却される。かくして、LED素子全体の電気入力は7W〜15Wにできる。
LEDの発光効率は、80lm/Wであるので、本実施例の面光源の全光束は560lm〜1200lmである。
FIG. 1 shows an embodiment of a light-emitting device designed for high-efficiency illumination with a wide-angle light distribution with a beam angle of 30 ° and a luminous intensity distribution that fades out to an opening angle of 40 °.
In the planar light source, 60 LED elements 1 are laid on a heat radiating plate having a diameter of 4 mm for each of red light emission (r), green light emission (g), and blue light emission (b). The substrate of each LED element is 0.25 mm □, that is, the total LED element surface area is 11.25 mm 2 , and the ratio (occupancy ratio) of this area to the rear opening area of the reflector is 90%. In addition, the light emission part of each LED element is 0.2 mm □, and the total light emission area is 7.2 mm 2 .
The circular heat generating plate 2 is made of a heat conductive material such as aluminum, and each LED element is attached in close contact with the heat radiating plate, so that the LED element is cooled by the heat radiating plate 1. Thus, the electrical input of the entire LED element can be 7 W to 15 W.
Since the luminous efficiency of the LED is 80 lm / W, the total luminous flux of the surface light source of this embodiment is 560 lm to 1200 lm.

図1の反射鏡3は、例えばアルミ板のプレス加工などにて作れる。内面を研磨すれば、約90%の反射率を実現できる。
本実施例では、上記ステップ5の段階で、十分になだらかにフェードアウトする光度分布が得られなかったために、ステップ8まで進んだ。最終的に、後部開口側の5点の屈曲点の位置を外側に0.1〜0.3mm移動した。
この最終設計結果が図1のコーン連鎖の反射鏡3であり、d1=4mm、d2=14.45mm、L=21.06mmである。
The reflecting mirror 3 in FIG. 1 can be made, for example, by pressing an aluminum plate. If the inner surface is polished, a reflectance of about 90% can be realized.
In this example, since the luminous intensity distribution that fades out sufficiently smoothly was not obtained in the step 5 described above, the process proceeds to step 8. Finally, the positions of the five bending points on the rear opening side were moved 0.1 to 0.3 mm outward.
The final design result is the cone-chain reflecting mirror 3 of FIG. 1, d1 = 4 mm, d2 = 14.45 mm, and L = 21.06 mm.

この実施例の発光装置が示す光度分布、照度分布が図8である。反射鏡の反射率を90%として、集光効率は87%であり、従来のものに比し相当に高い。ピーク光度は、電気入力を7W〜15Wとして、2150cd〜4600cdと計算される。FIG. 8 shows the luminous intensity distribution and the illuminance distribution shown by the light emitting device of this example. When the reflectance of the reflector is 90%, the light collection efficiency is 87%, which is considerably higher than that of the conventional one. The peak luminous intensity is calculated to be 2150 cd to 4600 cd, assuming that the electric input is 7 W to 15 W.

なお、図1の実施例において、アルミ製反射鏡3は、放熱板2と一体となっている。このように放熱面積を広大にすれば、大きい電気入力とすることができ、先述の電気入力の上限15Wは、この処置の結果である。In the embodiment of FIG. 1, the aluminum reflecting mirror 3 is integrated with the radiator plate 2. Thus, if the heat radiation area is increased, a large electric input can be obtained, and the above-described upper limit 15 W of the electric input is a result of this treatment.

本発明によるLED発光装置の実施形態を示す断面図。Sectional drawing which shows embodiment of the LED light-emitting device by this invention. LED素子の配光および発光装置の目標配光を示すグラフ。The graph which shows the light distribution of a LED element, and the target light distribution of a light-emitting device. LED発光装置の従来例を示す断面図および光路図。Sectional drawing and optical path figure which show the prior art example of LED light-emitting device. LED発光装置の従来例を示す断面図および光路図。Sectional drawing and optical path figure which show the prior art example of LED light-emitting device. 本発明に関わる反射鏡の基本形状を説明する図。The figure explaining the basic shape of the reflective mirror in connection with this invention. CPCの断面図および光路図。Sectional drawing and optical path diagram of CPC. CPCによる光度分布および照度分布を示すグラフ。The graph which shows the light intensity distribution and illumination intensity distribution by CPC. 本発明のLED発光装置による光度分布および照度分布を示すグラフ。The graph which shows the luminous intensity distribution by the LED light-emitting device of this invention, and illumination intensity distribution. 本発明のLED発光装置における、光源形状と照度分布の関係を示すグラフ。The graph which shows the relationship between the light source shape and illuminance distribution in the LED light-emitting device of this invention. 本発明のLED発光装置に使用されるLED製面光源の一実施例を示す図。The figure which shows one Example of the LED surface light source used for the LED light-emitting device of this invention.

符号の説明Explanation of symbols

1、1r、1g、1b LED素子
2 放熱板
3 反射鏡
4 反射鏡の後部開口
5 反射鏡の前部開口
6 光軸
7 放物線の中心軸
8a、8b ビーム角を示す直線
9a、9b 開き角を示す直線
10 放物線
11 回転面反射鏡の基本形状
12 凸レンズ
13 凹面反射鏡
1, 1r, 1g, 1b LED element 2 Radiator 3 Reflector 4 Reflector rear aperture 5 Reflector front aperture 6 Optical axis 7 Parabolic center axis 8a, 8b Beam angle straight lines 9a, 9b Open angle Straight line 10 shown Parabola 11 Basic shape of rotating surface reflector 12 Convex lens 13 Concave reflector

Claims (1)

単一の発光ダイオード素子から成る面光源、または複数の発光ダイオード素子を並べて成る面光源と、前後に開口を有する回転面形状の反射鏡とより構成されており、(1)前記面光源が前記反射鏡の後部開口の位置に、そして前記面光源の発光部が後部開口の内側となるように配置されていること、(2)前記発光ダイード素子の表面積の合計が、前記反射鏡の後部開口の面積の30%以上であること、(3)前記反射鏡の前部開口の直径が、後部開口の直径よりも大きいこと、そして、(4)前記反射鏡の稜線が、前部開口周縁上の、前記稜線とは対向する位置に焦点を置く放物線の近傍に存するところの、曲線弧または折れ線弧であること、を特徴とする発光装置。A surface light source composed of a single light-emitting diode element, or a surface light source formed by arranging a plurality of light-emitting diode elements; and a rotating surface-shaped reflecting mirror having openings on the front and rear sides; (1) (2) the total surface area of the light emitting diode elements is the rear opening of the reflecting mirror, and the light emitting portion of the surface light source is disposed inside the rear opening. (3) the diameter of the front opening of the reflector is larger than the diameter of the rear opening, and (4) the ridgeline of the reflector is on the periphery of the front opening. A light-emitting device characterized by being a curved arc or a polygonal arc in the vicinity of a parabola focused on a position opposite to the ridgeline.
JP2006092273A 2006-03-01 2006-03-01 Light emitting device Pending JP2007235079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092273A JP2007235079A (en) 2006-03-01 2006-03-01 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092273A JP2007235079A (en) 2006-03-01 2006-03-01 Light emitting device

Publications (1)

Publication Number Publication Date
JP2007235079A true JP2007235079A (en) 2007-09-13

Family

ID=38555313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092273A Pending JP2007235079A (en) 2006-03-01 2006-03-01 Light emitting device

Country Status (1)

Country Link
JP (1) JP2007235079A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031240A1 (en) * 2007-09-07 2009-03-12 Phoenix Electric Co., Ltd. Self-luminous light-emitting device
WO2011086969A1 (en) 2010-01-12 2011-07-21 株式会社小糸製作所 Vehicle headlamp
JP2012504342A (en) * 2008-09-29 2012-02-16 ブリッジラックス インコーポレイテッド Efficient LED array
JP2012507115A (en) * 2008-10-24 2012-03-22 クリー インコーポレイテッド Lighting device, heat transfer structure, and heat transfer element
CN102650381A (en) * 2011-02-24 2012-08-29 凤凰电机公司 Light emitting device
CN102759056A (en) * 2011-04-26 2012-10-31 株式会社小糸制作所 Vehicular lamp
JP2012222304A (en) * 2011-04-13 2012-11-12 Asahi Glass Co Ltd Led module and led lamp
JP2015191998A (en) * 2014-03-28 2015-11-02 キヤノン株式会社 Solid light source, illumination optical system, and exposure device
CN105090780A (en) * 2015-07-12 2015-11-25 李�远 Large-area collimated light source
CN108302485A (en) * 2017-09-13 2018-07-20 上海小糸车灯有限公司 Car light intelligent illuminating system, vehicle lamp assembly and automobile

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031240A1 (en) * 2007-09-07 2009-03-12 Phoenix Electric Co., Ltd. Self-luminous light-emitting device
JP2012504342A (en) * 2008-09-29 2012-02-16 ブリッジラックス インコーポレイテッド Efficient LED array
US8858032B2 (en) 2008-10-24 2014-10-14 Cree, Inc. Lighting device, heat transfer structure and heat transfer element
JP2012507115A (en) * 2008-10-24 2012-03-22 クリー インコーポレイテッド Lighting device, heat transfer structure, and heat transfer element
US10495295B2 (en) 2008-10-24 2019-12-03 Ideal Industries Lighting Llc Lighting device, heat transfer structure and heat transfer element
WO2011086969A1 (en) 2010-01-12 2011-07-21 株式会社小糸製作所 Vehicle headlamp
US8864343B2 (en) 2011-02-24 2014-10-21 Phoenix Electric Co., Ltd. Light emitting device
CN102650381A (en) * 2011-02-24 2012-08-29 凤凰电机公司 Light emitting device
JP2012222304A (en) * 2011-04-13 2012-11-12 Asahi Glass Co Ltd Led module and led lamp
CN102759056B (en) * 2011-04-26 2014-08-27 株式会社小糸制作所 Vehicular lamp
CN102759056A (en) * 2011-04-26 2012-10-31 株式会社小糸制作所 Vehicular lamp
JP2015191998A (en) * 2014-03-28 2015-11-02 キヤノン株式会社 Solid light source, illumination optical system, and exposure device
CN105090780A (en) * 2015-07-12 2015-11-25 李�远 Large-area collimated light source
CN108302485A (en) * 2017-09-13 2018-07-20 上海小糸车灯有限公司 Car light intelligent illuminating system, vehicle lamp assembly and automobile

Similar Documents

Publication Publication Date Title
JP2007235079A (en) Light emitting device
JP5438766B2 (en) Lighting fixture and lighting system
US8789969B2 (en) Compact LED light engine with reflector cups and highly directional lamps using same
JP4792486B2 (en) Optical system for Fresnel lens light, especially spotlight or floodlight
WO2010001604A1 (en) Illumination device
US8106568B2 (en) Lighting device capable of suppressing occurrence of ovelap of multiple shades
JP3152234U (en) LED bulb and its lamp cover
WO2013190979A1 (en) Lighting device
US9939121B2 (en) Light distributing device for vehicle
JP2012160666A (en) Light source module and lighting device
JPWO2009028090A1 (en) Light emitting device for lighting
US20170212292A1 (en) Lighting device for coupling light from a light source into a light guide plate
CN107143756B (en) Lamp fitting
JP2013045530A (en) Light emitting device and lighting fixture
US10161598B2 (en) Light fixture comprising light sources, lenslets and a retro-reflector
JP5473966B2 (en) Light source unit and lighting device
JP2013521606A (en) Lighting equipment and louvers
JP4331077B2 (en) LED light source device and spotlight
JP2018045847A (en) Spotlight using led
WO2010146664A1 (en) Led illuminator, and thin, surface light-emitting device
JP2007311731A (en) Light emitting device employing led
JP2004186124A (en) Plane lighting apparatus using boundary face
JP2005327660A (en) Led light source
JP2006228716A (en) Back light module of flat panel display
US11268668B2 (en) LED-based lighting fixture providing a selectable chromaticity