JP2007234988A - Substrate and method for mounting semiconductor device - Google Patents

Substrate and method for mounting semiconductor device Download PDF

Info

Publication number
JP2007234988A
JP2007234988A JP2006056774A JP2006056774A JP2007234988A JP 2007234988 A JP2007234988 A JP 2007234988A JP 2006056774 A JP2006056774 A JP 2006056774A JP 2006056774 A JP2006056774 A JP 2006056774A JP 2007234988 A JP2007234988 A JP 2007234988A
Authority
JP
Japan
Prior art keywords
mounting
semiconductor element
substrate
opening
resist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006056774A
Other languages
Japanese (ja)
Inventor
Kozo Shibata
孝三 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006056774A priority Critical patent/JP2007234988A/en
Publication of JP2007234988A publication Critical patent/JP2007234988A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate and method for mounting a semiconductor device in which under-fillers can be prevented, for uniform filling, from being leaked out around an IC. <P>SOLUTION: There are provided a mounting pad 16 for mounting an IC 20, a substrate body 12 in which the mounting pad 16 is disposed, and a solder resist film 14 which is applied to a surface of the substrate body 12 and comprises an opening 15 larger than a die size of the IC 20 mounted onto the mounting pad 16. Furthermore, in a mounting substrate 10 in such a configuration, the IC 20 is mounted onto the mounting pad 16 through a bump 22, the opening 15 provided in the solder resist film 14 has a shape similar to an outer circumferential shape of the IC 20 and when a diameter of the bump 22 is defined as D and a width of a pair of sides in the IC 20 is defined as L, a width L<SB>0</SB>of a side of the opening 15 corresponding to a pair of sides constituting the IC 20 may be determined within a range of L+(2/3)D≤L<SB>0</SB><L+D. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体素子の実装基板、及び実装基板に対する半導体素子の実装方法に係り、特に実装基板に対してバンプを介して半導体素子を実装する際に用いられる実装基板、及び実装方法に関する。   The present invention relates to a mounting board for a semiconductor element and a mounting method for the semiconductor element on the mounting board, and more particularly to a mounting board and a mounting method used when mounting the semiconductor element on the mounting board via bumps.

半導体素子(IC)を実装基板に実装する際、図6に示すように、実装基板に対してバンプを介して実装されることがある。いわゆるフリップチップボンディングといわれる実装方法である。ここで、図6において、図6(A)は実装基板の平面図、図6(B)は半導体素子を実装した実装基板の側断面図を示す。   When a semiconductor element (IC) is mounted on a mounting board, it may be mounted on the mounting board via bumps as shown in FIG. This is a so-called flip chip bonding mounting method. Here, in FIG. 6, FIG. 6A is a plan view of the mounting substrate, and FIG. 6B is a side sectional view of the mounting substrate on which the semiconductor element is mounted.

このような実装方法では、実装基板1とIC2との接続がバンプ3の配置部分のみとなることから、実装強度に不安が持たれる。特に、実装基板1が可撓性のものである場合には、接続部分であるバンプ3には過度の応力が負荷されることとなる。このため上記のような実装を行う場合には、IC2と実装基板1との間に硬化性の樹脂(アンダーフィル材)4を注入し、実装強度の向上が図られている。   In such a mounting method, since the connection between the mounting substrate 1 and the IC 2 is only the portion where the bumps 3 are arranged, the mounting strength is uneasy. In particular, when the mounting substrate 1 is flexible, an excessive stress is applied to the bumps 3 that are connection portions. Therefore, when mounting as described above, a curable resin (underfill material) 4 is injected between the IC 2 and the mounting substrate 1 to improve the mounting strength.

IC2と実装基板1との間に対するアンダーフィル材4の注入は、微小な隙間に対する毛細管現象を利用して行われるが、単純に注入するだけではIC2の下部に均一にアンダーフィル材4を行き渡らせることは困難であり、IC2の下部に注入しきれないアンダーフィル材4がIC2の周囲に漏れ出すといった事態が生じていた。   Injection of the underfill material 4 between the IC 2 and the mounting substrate 1 is performed by utilizing a capillary phenomenon with respect to a minute gap, but the underfill material 4 is uniformly distributed under the IC 2 by simple injection. This is difficult, and the underfill material 4 that cannot be injected into the lower part of the IC 2 leaks around the IC 2.

このような実状を鑑み、特許文献1に開示されているような技術が開発されている。特許文献1に開示されている技術は図7に示すようなものである。なお、図7において、図7(A)は実装基板の平面図、図7(B)は半導体素子を実装した実装基板の側断面図を示す。一般的に実装基板1には、種々の配線パターンを保護するために、ソルダーレジスト膜5と呼ばれる保護膜が付されており、IC2を実装するための実装パッド6が配置された部分等、外部との接続に使用される部分においては、このソルダーレジスト膜5に開口部が設けられ、そのパターンが外部に晒される構成が取られている。特許文献1に開示されている実装基板1は、前記ソルダーレジスト膜5のうち、IC2を実装する部分の周囲に、枠状の溝7あるいは凸部を形成し、注入時に余ったアンダーフィル材4(不図示)が、この溝7、あるいは凸部を越えて外部へ漏れ出ることを防止する構成を採っている。このような構成とすることによりアンダーフィル材4はIC2の下部に均等に行き渡るというのである。
特開平11−150206号公報
In view of such a situation, a technique as disclosed in Patent Document 1 has been developed. The technique disclosed in Patent Document 1 is as shown in FIG. 7A is a plan view of the mounting substrate, and FIG. 7B is a side sectional view of the mounting substrate on which a semiconductor element is mounted. In general, the mounting substrate 1 is provided with a protective film called a solder resist film 5 in order to protect various wiring patterns, such as a portion where a mounting pad 6 for mounting the IC 2 is disposed, etc. The solder resist film 5 is provided with an opening in the portion used for connection to the pattern, and the pattern is exposed to the outside. In the mounting substrate 1 disclosed in Patent Document 1, a frame-shaped groove 7 or a convex portion is formed around a portion of the solder resist film 5 on which the IC 2 is mounted, and an underfill material 4 remaining at the time of injection is formed. (Not shown) employs a configuration that prevents the groove 7 or the convex portion from leaking outside. With such a configuration, the underfill material 4 spreads evenly under the IC 2.
JP-A-11-150206

しかし、上記特許文献1に開示されているような基板の構造において、ICと実装基板との間と、溝あるいは凸部とでは、注入されたアンダーフィル材が流動する速度が異なることとなる。このため、余剰なアンダーフィル材が溝から溢れ出たり、溝を流動したアンダーフィル材がICと実装基板との間を流動するアンダーフィル材の先に回りこみ、この結果としてアンダーフィル材の間に空気を噛み込むこととなる可能性がある。このような原因によるボイドの発生や、アンダーフィル材の漏れ出しは、不良品の発生に大きく起因するため、避けることが望ましい。また、ICの周囲に凸部を形成する場合には、凸部の形成という余分な工程を経ることとなると共に、高集積化が進む実装基板上にて余計なスペースを取ることは得策では無い。   However, in the substrate structure as disclosed in Patent Document 1, the flow rate of the injected underfill material differs between the IC and the mounting substrate and between the groove or the convex portion. For this reason, excess underfill material overflows from the groove, or the underfill material that has flowed through the groove wraps around the tip of the underfill material that flows between the IC and the mounting substrate. There is a possibility that air will be caught in the air. The generation of voids due to such a cause and the leakage of the underfill material are largely due to the occurrence of defective products, and therefore it is desirable to avoid them. In addition, when forming the convex portion around the IC, it is not a good idea to go through an extra step of forming the convex portion and to take extra space on the mounting substrate where high integration is progressing. .

そこで本発明では、充填したアンダーフィル材がICの周囲に漏れ出す虞が無く、ICと実装基板との間に均一に充填することができる半導体素子の実装基板及び実装方法を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a mounting board and a mounting method for a semiconductor element that can be uniformly filled between the IC and the mounting board without the possibility that the filled underfill material leaks around the IC. And

上記目的を達成するための本発明に係る半導体素子の実装基板は、半導体素子を実装するための実装パッドと、前記実装パッドが配置された基板本体と、前記基板本体の表面に被覆され、前記実装パッド配置部に前記実装パッドに対して実装される半導体素子のダイサイズよりも大きな開口部を備えたソルダーレジスト膜と、を有することを特徴とする。このような構成の実装基板であれば、半導体素子実装後にアンダーフィル材を充填する際、アンダーフィル材が半導体素子の下部に行き渡る前に、半導体素子の周囲に漏れ出す虞が無い。また、ソルダーレジスト膜に形成された開口部が、プール状の堰となるため、充填されたアンダーフィル材は半導体素子と実装基板との間に均一に広がることとなる。   A semiconductor device mounting substrate according to the present invention for achieving the above object is provided with a mounting pad for mounting a semiconductor device, a substrate body on which the mounting pad is disposed, and a surface of the substrate body, And a solder resist film having an opening larger than a die size of a semiconductor element mounted on the mounting pad. With the mounting substrate having such a configuration, when the underfill material is filled after the semiconductor element is mounted, there is no possibility that the underfill material leaks around the semiconductor element before reaching the lower part of the semiconductor element. Further, since the opening formed in the solder resist film becomes a pool-like weir, the filled underfill material spreads uniformly between the semiconductor element and the mounting substrate.

また、上記構成の半導体素子の実装基板では、前記実装パッドに対する前記半導体素子の実装はバンプを介して行うこととし、前記ソルダーレジスト膜に備えられる前記開口部は前記半導体素子の外周形状と相似な形状とし、前記半導体素子を構成する辺に対応した前記開口部の幅Lは前記バンプの直径をD、前記半導体素子における一対の辺の幅をLとした場合に、L+(2/3)D≦L<L+Dの範囲で定めるようにすると良い。形成する開口部の幅を上記のように定めることにより、半導体素子と開口部の辺との垂直方向の重なり具合を見ることで、半導体素子の実装状態の良否を判定することが可能となる。 Further, in the semiconductor element mounting substrate having the above configuration, the semiconductor element is mounted on the mounting pad through a bump, and the opening provided in the solder resist film is similar to the outer peripheral shape of the semiconductor element. The width L 0 of the opening corresponding to the side constituting the semiconductor element is L + (2/3) when the diameter of the bump is D and the width of a pair of sides in the semiconductor element is L. ) may be as defined in the range of D ≦ L 0 <L + D . By determining the width of the opening to be formed as described above, it is possible to determine whether the semiconductor element is mounted or not by checking the vertical overlap between the semiconductor element and the side of the opening.

また、上記構成の半導体素子の実装基板では、前記開口部の外周の一部にソルダーレジスト膜に切欠きを設けて形成したポケットを備えるようにすると良い。開口部の外周部にポケットを形成することにより、アンダーフィル材の充填に使用するニードルの直径が半導体素子の外周と開口部の外周との間の隙間よりも太い場合であっても、アンダーフィル材の充填を実施することができる。   The semiconductor element mounting substrate having the above-described structure may be provided with a pocket formed by providing a notch in the solder resist film at a part of the outer periphery of the opening. By forming a pocket in the outer periphery of the opening, even if the diameter of the needle used for filling the underfill material is larger than the gap between the outer periphery of the semiconductor element and the outer periphery of the opening, Material filling can be carried out.

また、上記構成の半導体素子の実装基板では、前記基板本体の表面に、前記実装パッドに接続されるパターン配線を配置し、前記開口部に配置された前記パターン配線をソルダーレジスト膜で被覆する構成とすると良い。このような構成とすることにより、基板本体を単層基板とした場合であっても、パターン配線間にブリッジ等が生じることを防止することができる。   Moreover, in the mounting substrate of the semiconductor element having the above configuration, the pattern wiring connected to the mounting pad is disposed on the surface of the substrate body, and the pattern wiring disposed in the opening is covered with a solder resist film. And good. With such a configuration, it is possible to prevent a bridge or the like from being generated between the pattern wirings even when the substrate body is a single layer substrate.

また、上記構成の半導体素子の実装基板では、前記基板本体をフレキシブル基板としても良い。基板本体をフレキシブル基板とした場合であっても、半導体素子実装後にアンダーフィル材を充填する際、アンダーフィル材が半導体素子の下部に行き渡る前に、半導体素子の周囲に漏れ出す虞が無い。また、ソルダーレジスト膜に形成された開口部が、プール状の堰となるため、充填されたアンダーフィル材は半導体素子と実装基板との間に均一に広がることとなる。また、アンダーフィル材を充填して半導体素子を固定した場合には、半導体素子の実装強度が向上すると共に実装状態が安定し、基板本体に撓みが生じた場合であってもその撓みによる応力が半導体素子に伝達され難くなる。   In the semiconductor element mounting substrate having the above-described configuration, the substrate body may be a flexible substrate. Even when the substrate body is a flexible substrate, when the underfill material is filled after the semiconductor element is mounted, there is no possibility that the underfill material leaks out around the semiconductor element before reaching the lower part of the semiconductor element. Further, since the opening formed in the solder resist film becomes a pool-like weir, the filled underfill material spreads uniformly between the semiconductor element and the mounting substrate. In addition, when the semiconductor element is fixed by filling the underfill material, the mounting strength of the semiconductor element is improved and the mounting state is stabilized, and even when the substrate body is bent, the stress due to the bending is generated. It becomes difficult to be transmitted to the semiconductor element.

また、上記目的を達成するための本発明に係る半導体素子の実装方法は、上記いずれかに記載の半導体素子の実装基板に対して半導体素子を実装する方法であって、前記実装パッドに対して、バンプを介して前記半導体素子を実装し、前記ソルダーレジスト膜の開口部に対してアンダーフィル材を注入して硬化させ、前記半導体素子の実装強度の向上を図ることを特徴とする。上記のような実装基板に対してこのような実装方法を実施すれば、アンダーフィル材が半導体素子と実装基板との間に充填される前に、半導体素子の周囲に漏れ出る虞が無い。また、アンダーフィル材は半導体素子と実装基板との間に均一に広がることとなるため、半導体素子の実装強度の向上を図ることができると共に、実装状態が安定する。   Further, a semiconductor element mounting method according to the present invention for achieving the above object is a method for mounting a semiconductor element on any of the semiconductor element mounting substrates described above, wherein The semiconductor element is mounted through bumps, and an underfill material is injected into the opening of the solder resist film and cured to improve the mounting strength of the semiconductor element. When such a mounting method is performed on the mounting board as described above, there is no possibility that the underfill material leaks around the semiconductor element before it is filled between the semiconductor element and the mounting board. Further, since the underfill material spreads uniformly between the semiconductor element and the mounting substrate, the mounting strength of the semiconductor element can be improved and the mounting state is stabilized.

また、上記実装方法を実施するにあたり、前記ソルダーレジスト膜に設けられる前記開口部の幅LをL+(2/3)D≦L<L+Dの範囲で定めた場合において、半導体素子を実装する際、前記半導体素子は、外周が前記開口部の外周より内側に位置するように前記開口部内に配置すると良い。このような位置関係で半導体素子を開口部内に配置すれば、半導体素子の実装状態を適正なものに保つことができることとなる。 In carrying out the above mounting method, when the width L 0 of the opening provided in the solder resist film is determined in the range of L + (2/3) D ≦ L 0 <L + D, the semiconductor element When mounting the semiconductor element, the semiconductor element is preferably arranged in the opening so that the outer periphery is located inside the outer periphery of the opening. If the semiconductor element is arranged in the opening with such a positional relationship, the mounting state of the semiconductor element can be kept appropriate.

以下、本発明の半導体素子の実装基板、および半導体素子の実装方法に係る実施の形態について、図面を参照しつつ説明する。なお、以下に示す実施の形態は、本発明に係る一部の実施形態に過ぎず、本発明はその主要部を変えない限度において種々の形態を採るものとする。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a semiconductor device mounting substrate and a semiconductor device mounting method according to the present invention will be described with reference to the drawings. Note that the embodiments described below are only some of the embodiments according to the present invention, and the present invention takes various forms as long as the main parts thereof are not changed.

まず、図1を参照して本発明の半導体素子の実装基板に係る第1の実施形態について説明する。なお、図1において図1(A)は実装基板の平面図、図1(B)は半導体素子を実装した実装基板の側断面図、図1(C)は、実装した半導体素子をアンダーフィル材によって固定した状態における実装基板の側断面図をそれぞれ示す。   First, with reference to FIG. 1, a first embodiment according to a semiconductor element mounting substrate of the present invention will be described. 1A is a plan view of the mounting substrate, FIG. 1B is a side sectional view of the mounting substrate on which the semiconductor element is mounted, and FIG. 1C is an underfill material for the mounted semiconductor element. The side sectional view of the mounting substrate in the state fixed by is shown, respectively.

本実施形態における半導体素子の実装基板(以下単に、実装基板という)10は、基板本体12と、この基板本体12の少なくとも1主面に配置された実装パッド16と、基板本体12の主面に被覆されたソルダーレジスト膜14とから構成されることを基本とする。   A semiconductor element mounting substrate (hereinafter simply referred to as a mounting substrate) 10 according to the present embodiment includes a substrate body 12, a mounting pad 16 disposed on at least one principal surface of the substrate body 12, and a principal surface of the substrate body 12. It is basically composed of a coated solder resist film 14.

前記基板本体12は、一般的なプリント基板に用いられるガラス−エポキシ、フッ化樹脂(4フッ化エチレン樹脂)等によって構成されるいわゆるリジッド基板であれば良い。また、本実施形態における基板本体12は、多層基板として構成されることが望ましい。例えば基板本体12が、図1(B)、(C)に示すように、第1層基板12aと第2層基板12bとから構成される場合には、第1層基板12aの一主面(表面)に実装パッド16を配置し、第1層基板12aの裏面と第2層基板12bとの間に導通を図るためのパターン配線(不図示)を配置し、前記実装パッド16と前記パターン配線とをスルーホール18によって接続するというような構成とすると良い。このような構成とすることにより、実装パッド16以外のパターン配線が外部に晒されることが無くなり、ハンダブリッジ等によってパターン配線間に短絡が生じるといった事態を避けることが可能となる。   The substrate body 12 may be a so-called rigid substrate constituted by glass-epoxy, fluorinated resin (tetrafluoroethylene resin) or the like used for a general printed circuit board. In addition, the substrate body 12 in the present embodiment is preferably configured as a multilayer substrate. For example, when the substrate body 12 is composed of a first layer substrate 12a and a second layer substrate 12b as shown in FIGS. 1B and 1C, one main surface of the first layer substrate 12a ( A mounting pad 16 is disposed on the front surface, and a pattern wiring (not shown) is provided between the back surface of the first layer substrate 12a and the second layer substrate 12b, and the mounting pad 16 and the pattern wiring are disposed. Are preferably connected through the through hole 18. With such a configuration, the pattern wiring other than the mounting pad 16 is not exposed to the outside, and it is possible to avoid a situation in which a short circuit occurs between the pattern wirings due to a solder bridge or the like.

基板本体12の主面(第1層基板12aの表面)に被覆されるソルダーレジスト膜14は、前記実装パッド16の配置範囲、及びその周囲にかけて形成された開口部15を有する。半導体素子(IC)20を前記実装パッド16へ実装する際には、ハンダボール等のバンプ22を介したフリップチップボンディングが成される。フリップチップボンディングによってIC20を実装パッド16へ実装した後、IC20と基板本体12の主面との間には、非導電性のアンダーフィル材30が充填される。そして充填されたアンダーフィル材30がIC20と基板本体12との間で固着することにより、IC20の実装強度が確保されると共に、実装パッド16間における短絡をも防止することが可能となる。   The solder resist film 14 covered on the main surface of the substrate body 12 (the surface of the first layer substrate 12a) has an arrangement range of the mounting pads 16 and an opening 15 formed around the periphery. When the semiconductor element (IC) 20 is mounted on the mounting pad 16, flip chip bonding is performed via bumps 22 such as solder balls. After the IC 20 is mounted on the mounting pad 16 by flip chip bonding, a non-conductive underfill material 30 is filled between the IC 20 and the main surface of the substrate body 12. The filled underfill material 30 is fixed between the IC 20 and the substrate body 12, so that the mounting strength of the IC 20 is ensured and a short circuit between the mounting pads 16 can be prevented.

前記ソルダーレジスト膜14に形成した開口部15は、前記アンダーフィル材30を前記IC20と前記基板本体12との間に充填しやすくするためのプール(堰)の役割を担う。開口部15中にはアンダーフィル材30の進行を妨げるものが殆ど無いため、開口部15へ注入したアンダーフィル材30が、開口部15全域に広がる前に当該開口部15の外部へ漏れ出すといった虞が無い。また、アンダーフィル材30が漏れ出すことなく開口部15内に広がって行くことより、効率的にIC20と基板本体12との間にアンダーフィル材30が充填されることとなる。また、開口部15に充填されたアンダーフィル材30は、規定の方向に向かって徐々にIC20と基板本体12との間に広がって行くこととなるため、進行速度の遅い箇所に進行速度の速い箇所のアンダーフィル材30が回り込むという事態が生じる虞も無い。このため、充填されたアンダーフィル材30の中にボイドが生じる確率が低くなり、リフロー時等加熱工程における不具合の発生を防止することができる。   The opening 15 formed in the solder resist film 14 serves as a pool (weir) for easily filling the underfill material 30 between the IC 20 and the substrate body 12. Since there is almost nothing in the opening 15 that obstructs the progress of the underfill material 30, the underfill material 30 injected into the opening 15 leaks out of the opening 15 before spreading over the entire area of the opening 15. There is no fear. Moreover, the underfill material 30 is efficiently filled between the IC 20 and the substrate body 12 because the underfill material 30 spreads into the opening 15 without leaking. In addition, the underfill material 30 filled in the opening 15 gradually spreads between the IC 20 and the substrate body 12 in a prescribed direction, so that the traveling speed is high at a place where the traveling speed is slow. There is no possibility that the underfill material 30 at the location will wrap around. For this reason, the probability that voids are generated in the filled underfill material 30 is reduced, and the occurrence of problems in the heating process such as reflow can be prevented.

ソルダーレジスト膜14に設ける開口部15は、基板本体12に実装するIC20のダイサイズよりも僅かに大きな相似形状とすることが望ましい。ソルダーレジスト膜14は基板本体12の表面に配置されたパターン配線等を保護する役割を担うものであるため、無用に開口部15を大型化することは望ましくないからである。   It is desirable that the opening 15 provided in the solder resist film 14 has a similar shape slightly larger than the die size of the IC 20 mounted on the substrate body 12. This is because it is not desirable to unnecessarily enlarge the size of the opening 15 because the solder resist film 14 plays a role of protecting the pattern wiring and the like disposed on the surface of the substrate body 12.

実装パッドに対してIC20を実装する際、実装許容値の範囲内であれば実装パッド16に対してバンプ22の接触位置がずれていた場合であっても、リフロー時に溶融したハンダが実装パッド16の配置範囲を外れることが無い。この実装位置の実装許容値は、図2(B)に示すように、ハンダボール(バンプ)22の直径をDとした場合にD/3〜D/2程度となる。そして、矩形状のIC20における一対の辺の間の幅(ダイサイズの幅)をLとすると、ソルダーレジスト膜14の開口部15における前記一対の辺に対応する各辺間の幅Lは、
と表すことができる。ソルダーレジスト膜14の開口部15の開口幅Lをこの程度の範囲に規定しておくことにより、IC20を実装する際、目視によりIC20の実装位置が実装許容差の範囲内にあるか否かを判断することが可能となる。具体的には、図2(B)に示すように、IC20の実装ズレが実装許容差dに達すると、IC20の一側端部とソルダーレジスト膜14における開口部15の一側端部とが垂直方向に重なるように位置することとなる。このように、IC20の実装状態がソルダーレジスト膜14の一部と重なる状態となった場合には、IC20の実装状態は良好なものでないということができるのである。したがって、IC20がこのような実装状態であった場合には、目視、あるいは機械的な自動検査により、不良と判定することができ、IC20の実装のやりなおし等の措置を講ずることができるようになる。なお、図2において、図2(A)はIC20の理想的な実装状態を示す側断面図であり、実装パッド16の中心とバンプ22の中心とが重なるようにIC20が実装されている状態を示す。
When the IC 20 is mounted on the mounting pad, if the contact position of the bump 22 is shifted with respect to the mounting pad 16 within the allowable mounting range, the solder melted at the time of reflow is mounted on the mounting pad 16. The arrangement range is not deviated. As shown in FIG. 2B, the allowable mounting value at this mounting position is about D / 3 to D / 2, where D is the diameter of the solder ball (bump) 22. Then, assuming that the width between the pair of sides (die size width) in the rectangular IC 20 is L, the width L 0 between the sides corresponding to the pair of sides in the opening 15 of the solder resist film 14 is:
It can be expressed as. By defining the opening width L 0 of the opening 15 of the solder resist film 14 within this range, whether or not the mounting position of the IC 20 is visually within the mounting tolerance range when mounting the IC 20. Can be determined. Specifically, as shown in FIG. 2B, when the mounting deviation of the IC 20 reaches the mounting tolerance d, one side end of the IC 20 and one side end of the opening 15 in the solder resist film 14 are It will be positioned so as to overlap in the vertical direction. As described above, when the mounting state of the IC 20 overlaps with a part of the solder resist film 14, it can be said that the mounting state of the IC 20 is not good. Therefore, when the IC 20 is in such a mounted state, it can be determined as defective by visual inspection or mechanical automatic inspection, and measures such as re-mounting of the IC 20 can be taken. . 2A is a side sectional view showing an ideal mounting state of the IC 20, and shows a state where the IC 20 is mounted such that the center of the mounting pad 16 and the center of the bump 22 overlap. Show.

実装基板10に対してIC20が適正に実装された後、アンダーフィル材30の充填が行われる。ここで、例えば図2(A)に示すように実装基板10に対して理想的な状態でIC20が実装された場合、IC20とソルダーレジスト膜14における開口部15の辺との間には僅かな隙間が形成される。上述したアンダーフィル材30はニードルという針状の冶具を介して前記隙間からIC20と基板本体12との間に注入、充填されるのである。   After the IC 20 is properly mounted on the mounting substrate 10, the underfill material 30 is filled. Here, for example, as shown in FIG. 2A, when the IC 20 is mounted on the mounting substrate 10 in an ideal state, there is a slight gap between the IC 20 and the side of the opening 15 in the solder resist film 14. A gap is formed. The above-described underfill material 30 is injected and filled between the IC 20 and the substrate body 12 from the gap through a needle-like jig called a needle.

上記のような実装基板10は例えば、銅箔等のパターン配線材料により、基板本体12に実装パッド16を含むパターン配線を形成する。パターン配線の形成は、基板本体12の主面に被覆した銅箔(パターン配線材料薄膜)上にレジスト膜を形成し、パターン配線の形状に合ったマスクを用いて前記レジスト膜を露光・現像し、前記銅箔をエッチングすることによって行う。その後、パターン配線上に残留するレジスト膜を除去し、基板本体の主面にソルダーレジスト膜14を被覆する。ソルダーレジスト膜14の被覆には、スクリーン印刷、カーテンコート、スプレーコート、ロールコート、及びドライフィルムを使ったラミネート等が一般的である。スクリーン印刷等によってソルダーレジスト膜14を形成する場合、ソルダーレジスト膜14を形成するためのソルダーレジストインキは感光性のものが良い。例えばポジ型のインキの場合、前述した開口部、及び実装に使用する部分を被覆するソルダーレジスト膜14を露光・現像することによって除去し、前記開口部15を形成する。このように、開口部15を形成する工程は、従来の実装基板を製造する工程と同一な工程の中で行うことができるため、スループットが低下することは無い。   The mounting substrate 10 as described above forms a pattern wiring including the mounting pads 16 on the substrate body 12 by using a pattern wiring material such as copper foil. The pattern wiring is formed by forming a resist film on a copper foil (pattern wiring material thin film) coated on the main surface of the substrate body 12, and exposing and developing the resist film using a mask suitable for the shape of the pattern wiring. , By etching the copper foil. Thereafter, the resist film remaining on the pattern wiring is removed, and the main surface of the substrate body is covered with a solder resist film 14. Generally, the solder resist film 14 is coated by screen printing, curtain coating, spray coating, roll coating, laminating using a dry film, or the like. When the solder resist film 14 is formed by screen printing or the like, the solder resist ink for forming the solder resist film 14 is preferably photosensitive. For example, in the case of positive ink, the opening 15 and the solder resist film 14 covering the portion used for mounting are removed by exposure and development to form the opening 15. Thus, since the process of forming the opening 15 can be performed in the same process as the process of manufacturing the conventional mounting substrate, the throughput does not decrease.

上記のような実装基板10によれば、IC20と基板本体12との間に均一にアンダーフィル材30を充填することができる。また、ソルダーレジスト膜14がプール状に抜かれているため、充填されるアンダーフィル材30の進行速度に大差が生じることが無く、アンダーフィル材30がIC20の下面に充填される前に開口部15からアンダーフィル材30が溢れるという事態が生じ無い。また、IC20の下面とIC20の周囲との間においてアンダーフィル材30の進行速度に大差が無いため、アンダーフィル材30の回り込みによるボイドの発生を防止することができる。なお、上記構成の実装基板10では、実装パッド16以外のパターン配線は第1層基板12aと第2層基板12bとの間に配置する旨を記載したが、基板本体12として単層の基板を採用する場合には、実装パッド16と同一表面にパターン配線を配置するようにしても良い。   According to the mounting substrate 10 as described above, the underfill material 30 can be uniformly filled between the IC 20 and the substrate body 12. Further, since the solder resist film 14 is extracted in a pool shape, there is no great difference in the traveling speed of the underfill material 30 to be filled, and the opening 15 is formed before the underfill material 30 is filled on the lower surface of the IC 20. The underfill material 30 will not overflow. In addition, since there is no great difference in the traveling speed of the underfill material 30 between the lower surface of the IC 20 and the periphery of the IC 20, it is possible to prevent generation of voids due to the wraparound of the underfill material 30. In the mounting substrate 10 configured as described above, it has been described that the pattern wiring other than the mounting pad 16 is disposed between the first layer substrate 12a and the second layer substrate 12b. However, a single layer substrate is used as the substrate body 12. When employed, the pattern wiring may be arranged on the same surface as the mounting pad 16.

次に、図3を参照して本発明の半導体素子の実装基板に係る第2の実施形態について説明する。本実施形態の実装基板における殆どの構成は、上述した第1の実施形態に係る実装基板と同様である。したがって、その機能を同様とする箇所には図1と同様の符号を附してその詳細な説明は省略することとする。   Next, a second embodiment of the semiconductor device mounting substrate of the present invention will be described with reference to FIG. Most of the configuration of the mounting substrate of this embodiment is the same as that of the mounting substrate according to the first embodiment described above. Therefore, parts having the same functions are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof is omitted.

本実施形態の実装基板の特徴は、ソルダーレジスト膜14の開口部15にポケット15aを形成したことである。前記ポケット15aは、前記開口部15の周囲に位置するソルダーレジスト膜14に切欠きを形成することによって構成される。   A feature of the mounting substrate of this embodiment is that a pocket 15 a is formed in the opening 15 of the solder resist film 14. The pocket 15 a is configured by forming a notch in the solder resist film 14 located around the opening 15.

IC20(不図示)を基板本体12に実装した後には、上述したようにIC20と基板本体12との間にアンダーフィル材30(不図示)が充填される。アンダーフィル材30の充填は、ニードルと呼ばれる針状の冶具を用いて行われるが、アンダーフィル材30を短時間で充填する場合には、前記ニードルとして径の太いものを用いることもできる。この際、図3中、2点鎖線で示すIC20のダイサイズと、ソルダーレジスト膜14の開口部15の各辺との間の間隔(隙間)が、前記ニードルの径よりも狭くなってしまうことがある。前記ポケット15aは、このようにニードルの直径がIC20のダイサイズとソルダーレジスト膜14の開口部15の各辺との間の隙間よりも太い場合に用いられる。   After the IC 20 (not shown) is mounted on the substrate body 12, the underfill material 30 (not shown) is filled between the IC 20 and the substrate body 12 as described above. The filling of the underfill material 30 is performed using a needle-like jig called a needle. However, when filling the underfill material 30 in a short time, a needle having a large diameter can be used. At this time, the interval (gap) between the die size of the IC 20 indicated by a two-dot chain line in FIG. 3 and each side of the opening 15 of the solder resist film 14 is smaller than the diameter of the needle. There is. The pocket 15a is used when the diameter of the needle is larger than the gap between the die size of the IC 20 and each side of the opening 15 of the solder resist film 14 as described above.

このようなポケット15aを利用したアンダーフィル材30の充填は、前記ポケット15aにニードルをあてがい、アンダーフィル材30をポケット15aへ注入し、注入したアンダーフィル材30をポケット15aから開口部15側へ流動させ、IC20と基板本体12との間に流し込むことによって行う。   The filling of the underfill material 30 using the pocket 15a is performed by applying a needle to the pocket 15a, injecting the underfill material 30 into the pocket 15a, and introducing the injected underfill material 30 from the pocket 15a to the opening 15 side. This is performed by flowing between the IC 20 and the substrate body 12.

他の構成作用、効果については、上述した第1の実施形態に係る実装基板と同様である。なお、図3においては、ポケット15aの形成位置を開口部15の角部としているが、ポケット15aの形成位置はこれに限定されるものでは無い。例えばポケット15aを開口部15を構成する矩形のいずれかの辺の中央に形成した場合であっても同様の作用を担うことができる。   Other components and effects are the same as those of the mounting board according to the first embodiment described above. In FIG. 3, the pocket 15a is formed at the corner of the opening 15, but the pocket 15a is not limited to this position. For example, even when the pocket 15a is formed at the center of one of the sides of the rectangle constituting the opening 15, the same action can be performed.

次に、図4を参照して、本発明の半導体素子の実装基板に係る第3の実施形態について説明する。なお、本実施形態の実装基板における殆どの構成は、上述した第1の実施形態に係る実装基板と同様である。したがって、その機能を同様とする箇所には図1と同様の符号を附してその詳細な説明は省略することとする。また、本実施形態の実装基板を示す図4では、説明を簡単化するために、上述した第1、第2の実施形態に比べて実装パッド16の数を減らして記載しているが、実装パッド16の多寡は本実施形態に係る実装基板10を形成する上で大きな問題では無い。   Next, with reference to FIG. 4, a third embodiment of the semiconductor element mounting substrate of the present invention will be described. Note that most of the configuration of the mounting substrate of the present embodiment is the same as that of the mounting substrate according to the first embodiment described above. Therefore, parts having the same functions are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof is omitted. Further, in FIG. 4 showing the mounting substrate of the present embodiment, the number of mounting pads 16 is reduced as compared with the first and second embodiments described above for the sake of simplicity. The number of pads 16 is not a big problem in forming the mounting substrate 10 according to the present embodiment.

本実施形態の実装基板10は、基板本体12の主面に実装パッド16及び前記実装パッド16に接続されたパターン配線(不図示)を配置する構成とした。そして、本実施形態の実装基板10では、配線間のブリッジや酸化等を防止するため、実装パッド16から矩形状に形成された開口部15の各辺までの間に配置されたパターン配線の形状に沿ってソルダーレジスト膜14aを形成する(残す)構成とした。このような構成とすることにより、開口部15中におけるソルダーレジスト膜の被覆範囲はパターン配線の配置位置のみとなるため、アンダーフィル材30(不図示)の充填時における抵抗差を小さく抑えることができる。このため、IC20(不図示)と基板本体12との間にアンダーフィル材30を均一に充填することができる。   The mounting substrate 10 of the present embodiment has a configuration in which a mounting pad 16 and a pattern wiring (not shown) connected to the mounting pad 16 are arranged on the main surface of the substrate body 12. In the mounting substrate 10 of the present embodiment, the shape of the pattern wiring arranged between the mounting pad 16 and each side of the opening 15 formed in a rectangular shape in order to prevent bridging and oxidation between the wirings. The solder resist film 14a is formed (leaved) along With this configuration, the solder resist film is covered only in the pattern wiring arrangement position in the opening 15, so that the resistance difference during filling of the underfill material 30 (not shown) can be kept small. it can. For this reason, the underfill material 30 can be uniformly filled between the IC 20 (not shown) and the substrate body 12.

また、パターン配線形状に沿ってソルダーレジスト膜14aが配置されているものの、IC20の下面ではソルダーレジスト膜14aの無い部分(開口部)の割合の方が大きいことにより、アンダーフィル材30を充填する際、当該アンダーフィル材30が開口部15に十分に広がる前に、前記開口部15から漏れ出すという虞も少ない。   Further, although the solder resist film 14a is arranged along the pattern wiring shape, the underfill material 30 is filled because the lower portion of the IC 20 has a larger proportion of the portion without the solder resist film 14a (opening). At this time, the underfill material 30 is less likely to leak from the opening 15 before it sufficiently spreads into the opening 15.

また、実装パッド16から開口部15の各辺にかけて配置されたパターン配線を基板本体12の表面に配置する構成としているため、基板本体12として単層の基板を採用する場合であっても実施することができる。またこのような実施を行ったとしても、パターン配線間に短絡が生じる虞は無い。その他の構成、作用、効果については、上述した第1の実施形態に係る実装基板と同様である。   In addition, since the pattern wiring arranged from the mounting pad 16 to each side of the opening 15 is arranged on the surface of the substrate body 12, it is carried out even when a single layer substrate is adopted as the substrate body 12. be able to. Even if such an implementation is performed, there is no possibility that a short circuit will occur between the pattern wirings. About another structure, an effect | action, and an effect, it is the same as that of the mounting substrate which concerns on 1st Embodiment mentioned above.

次に、図5を参照して本発明のICの実装基板に係る第4の実施形態について説明する。なお、図5において図5(A)は実装基板の平面図、図5(B)はICを実装した状態における実装基板の側断面図をそれぞれ示す。   Next, a fourth embodiment of the IC mounting board of the present invention will be described with reference to FIG. 5A is a plan view of the mounting board, and FIG. 5B is a side sectional view of the mounting board in a state where an IC is mounted.

本実施形態に係る実装基板110における基板本体112は、可撓性を有するフレキシブル基板(Flexible Printed Circuit Board)である。フレキシブル基板は一般的に、ポリエステルやポリイミドによって構成されたフィルムにパターン配線の材料となる銅箔を接着させて構成される基板である。   The board body 112 in the mounting board 110 according to the present embodiment is a flexible printed circuit board having flexibility. A flexible substrate is generally a substrate configured by bonding a copper foil, which is a material for pattern wiring, to a film made of polyester or polyimide.

このようにして構成される基板本体112の表面には、上述した第1〜第3の実施形態に係る実装基板10と同様に、ソルダーレジスト膜114が被覆されている。そして、IC20の実装部位には、ソルダーレジスト膜114に開口部115が形成され、実装パッド116が外部に晒される構成とされている。開口部115の形成範囲は、上述した第1の実施形態に係る実装基板10に準ずる。なお、図5(A)において2点鎖線で示す範囲がICを理想的に実装した場合におけるダイサイズである。   The surface of the substrate body 112 configured as described above is covered with a solder resist film 114 in the same manner as the mounting substrate 10 according to the first to third embodiments described above. An opening 115 is formed in the solder resist film 114 at the mounting portion of the IC 20, and the mounting pad 116 is exposed to the outside. The formation range of the opening 115 conforms to the mounting substrate 10 according to the first embodiment described above. Note that a range indicated by a two-dot chain line in FIG. 5A is a die size when an IC is ideally mounted.

実装基板に対するIC20の実装は、バンプ22を介したフリップチップボンディングで行う。本実施形態のように基板本体112にフレキシブル基板を採用する場合、一般にバンプ22を金(Au)によって構成し、超音波接合によって実装が成される。   The IC 20 is mounted on the mounting substrate by flip chip bonding via the bumps 22. When a flexible substrate is adopted as the substrate body 112 as in the present embodiment, the bumps 22 are generally made of gold (Au) and mounted by ultrasonic bonding.

IC20を実装基板110に実装した後、IC20とソルダーレジスト膜114に形成した開口部115のいずれかの辺との間に形成された隙間から前記開口部115内にアンダーフィル材30を注入し、IC20と基板本体112との間に充填する。充填したアンダーフィル材30が硬化することによりIC20の実装強度が増加される。また、アンダーフィル材30は硬化性の樹脂によって構成されるため、硬化後はフレキシブル基板である基板本体112に比べて剛性が高くなる。このため、IC20の実装状態が安定し、基板本体112に撓みが生じた場合であっても、その応力がIC20に伝達され難くなる。   After mounting the IC 20 on the mounting substrate 110, the underfill material 30 is injected into the opening 115 from a gap formed between the IC 20 and any side of the opening 115 formed in the solder resist film 114. Filling is performed between the IC 20 and the substrate body 112. When the filled underfill material 30 is cured, the mounting strength of the IC 20 is increased. Further, since the underfill material 30 is made of a curable resin, the rigidity becomes higher after the curing than the substrate body 112 which is a flexible substrate. For this reason, even when the mounting state of the IC 20 is stable and the substrate main body 112 is bent, the stress is hardly transmitted to the IC 20.

なお、実施形態中にてソルダーレジスト膜に形成する開口部のサイズについて規定しているが、この大きさの規定は数式1からも解るようにバンプの大きさなど設定条件によっても変化する値であり、好適な設定範囲の1つであると考えることができる。   In the embodiment, the size of the opening formed in the solder resist film is specified. However, the size specification is a value that also changes depending on the setting condition such as the size of the bump as can be understood from Equation 1. Yes, it can be considered as one of the preferable setting ranges.

半導体素子の実装基板に係る第1の実施形態を示す図である。It is a figure which shows 1st Embodiment which concerns on the mounting board | substrate of a semiconductor element. 実装基板に対する半導体素子の実装状態を示す説明図である。It is explanatory drawing which shows the mounting state of the semiconductor element with respect to a mounting board | substrate. 半導体素子の実装基板に係る第2の実施形態を示す図である。It is a figure which shows 2nd Embodiment which concerns on the mounting board | substrate of a semiconductor element. 半導体素子の実装基板に係る第3の実施形態を示す図である。It is a figure which shows 3rd Embodiment which concerns on the mounting board | substrate of a semiconductor element. 半導体素子の実装基板に係る第4の実施形態を示す図である。It is a figure which shows 4th Embodiment which concerns on the mounting board | substrate of a semiconductor element. 従来の半導体素子の実装基板を示す図である。It is a figure which shows the mounting board | substrate of the conventional semiconductor element. 従来の半導体素子の実装基板を示す図である。It is a figure which shows the mounting board | substrate of the conventional semiconductor element.

符号の説明Explanation of symbols

10………実装基板、12………基板本体、12a………第1層基板、12b………第2層基板、14………ソルダーレジスト膜、15………開口部、16………実装パッド、18………スルーホール、20………半導体素子、22………バンプ、30………アンダーフィル材。   DESCRIPTION OF SYMBOLS 10 ..... Mounting board | substrate, 12 ..... Board | substrate main body, 12a .... 1st layer board | substrate, 12b .......... 2nd layer board | substrate, 14 ....... ... Mounting pad, 18 ......... Through hole, 20 ...... Semiconductor element, 22 ...... Bump, 30 ...... Underfill material.

Claims (7)

半導体素子を実装するための実装パッドと、
前記実装パッドが配置された基板本体と、
前記基板本体の表面に被覆され、前記実装パッド配置部に前記実装パッドに対して実装される半導体素子のダイサイズよりも大きな開口部を備えたソルダーレジスト膜と、
を有することを特徴とする半導体素子の実装基板。
A mounting pad for mounting a semiconductor element;
A substrate body on which the mounting pads are disposed;
A solder resist film that covers the surface of the substrate body and has an opening larger than the die size of a semiconductor element mounted on the mounting pad in the mounting pad placement portion;
A semiconductor device mounting board comprising:
前記実装パッドに対する前記半導体素子の実装はバンプを介して行うこととし、
前記ソルダーレジスト膜に備えられる前記開口部は前記半導体素子の外周形状と相似な形状とし、前記半導体素子を構成する辺に対応した前記開口部の幅Lは前記バンプの直径をD、前記半導体素子における一対の辺の幅をLとした場合に、



の範囲で定めることを特徴とする請求項1に記載の半導体素子の実装基板。
The mounting of the semiconductor element on the mounting pad is performed via a bump,
The opening provided in the solder resist film has a shape similar to the outer peripheral shape of the semiconductor element, the width L 0 of the opening corresponding to the side constituting the semiconductor element is D, the diameter of the bump, and the semiconductor When the width of a pair of sides in the element is L,



The semiconductor device mounting board according to claim 1, wherein the semiconductor element mounting board is defined by the following range.
前記開口部の外周の一部にソルダーレジスト膜に切欠きを設けて形成したポケットを備えることを特徴とする請求項1又は請求項2に記載の半導体素子の実装基板。   The semiconductor element mounting substrate according to claim 1, further comprising a pocket formed by forming a notch in the solder resist film in a part of the outer periphery of the opening. 前記基板本体の表面に、前記実装パッドに接続されるパターン配線を配置し、前記開口部に配置された前記パターン配線をソルダーレジスト膜で被覆したことを特徴とする請求項1乃至請求項3のいずれかに記載の半導体素子の実装基板。   The pattern wiring connected to the said mounting pad is arrange | positioned on the surface of the said board | substrate body, The said pattern wiring arrange | positioned at the said opening part was coat | covered with the soldering resist film | membrane. A semiconductor device mounting board according to any one of the above. 前記基板本体をフレキシブル基板としたことを特徴とする請求項1乃至請求項4のいずれかに記載の半導体素子の実装基板。   5. The semiconductor element mounting substrate according to claim 1, wherein the substrate body is a flexible substrate. 請求項1乃至請求項5のいずれかに記載の半導体素子の実装基板に対して半導体素子を実装する方法であって、
前記実装パッドに対して、バンプを介して前記半導体素子を実装し、
前記ソルダーレジスト膜の開口部に対してアンダーフィル材を注入して硬化させ、前記半導体素子の実装強度の向上を図ることを特徴とする半導体素子の実装方法。
A method for mounting a semiconductor element on a semiconductor element mounting substrate according to any one of claims 1 to 5,
The semiconductor element is mounted on the mounting pad via a bump,
A method of mounting a semiconductor element, wherein an underfill material is injected into the opening of the solder resist film and cured to improve the mounting strength of the semiconductor element.
前記ソルダーレジスト膜に設けられる前記開口部の幅L



の範囲で定めた場合において、
半導体素子を実装する際、前記半導体素子は、外周が前記開口部の外周より内側に位置するように前記開口部内に配置することを特徴とする請求項6に記載の半導体素子の実装方法。
Width L 0 of the opening provided in the solder resist film



In the case where it is determined within the scope of
The method for mounting a semiconductor element according to claim 6, wherein when mounting the semiconductor element, the semiconductor element is disposed in the opening so that an outer periphery is located inside an outer periphery of the opening.
JP2006056774A 2006-03-02 2006-03-02 Substrate and method for mounting semiconductor device Pending JP2007234988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056774A JP2007234988A (en) 2006-03-02 2006-03-02 Substrate and method for mounting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056774A JP2007234988A (en) 2006-03-02 2006-03-02 Substrate and method for mounting semiconductor device

Publications (1)

Publication Number Publication Date
JP2007234988A true JP2007234988A (en) 2007-09-13

Family

ID=38555244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056774A Pending JP2007234988A (en) 2006-03-02 2006-03-02 Substrate and method for mounting semiconductor device

Country Status (1)

Country Link
JP (1) JP2007234988A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245280A (en) * 2009-04-06 2010-10-28 Shinko Electric Ind Co Ltd Method of manufacturing wiring board and wiring board
JP2012186385A (en) * 2011-03-07 2012-09-27 Fujitsu Component Ltd Production method of wiring board coated with underfill, and wiring board produced by this production method
JP2013537365A (en) * 2010-09-09 2013-09-30 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor chip device having a polymer filler groove
JP2014150213A (en) * 2013-02-04 2014-08-21 Fujitsu Semiconductor Ltd Semiconductor device and semiconductor device manufacturing method
CN104134651A (en) * 2013-05-01 2014-11-05 瑞萨电子株式会社 Semiconductor device
JP2016149517A (en) * 2015-02-10 2016-08-18 新光電気工業株式会社 Wiring board and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245280A (en) * 2009-04-06 2010-10-28 Shinko Electric Ind Co Ltd Method of manufacturing wiring board and wiring board
JP2013537365A (en) * 2010-09-09 2013-09-30 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor chip device having a polymer filler groove
JP2012186385A (en) * 2011-03-07 2012-09-27 Fujitsu Component Ltd Production method of wiring board coated with underfill, and wiring board produced by this production method
JP2014150213A (en) * 2013-02-04 2014-08-21 Fujitsu Semiconductor Ltd Semiconductor device and semiconductor device manufacturing method
CN104134651A (en) * 2013-05-01 2014-11-05 瑞萨电子株式会社 Semiconductor device
JP2014220278A (en) * 2013-05-01 2014-11-20 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2016149517A (en) * 2015-02-10 2016-08-18 新光電気工業株式会社 Wiring board and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6368895B1 (en) Method of producing an electronic circuit device
JP5113114B2 (en) Wiring board manufacturing method and wiring board
US8039761B2 (en) Printed circuit board with solder bump on solder pad and flow preventing dam
JP4536603B2 (en) Manufacturing method of semiconductor device, mounting substrate for semiconductor device, and semiconductor device
TWI520664B (en) Wiring substrate and manufacturing method thereof
US20080135279A1 (en) Printed wiring board having plural solder resist layers and method for production thereof
KR20090063117A (en) Wiring substrate and semiconductor device
JP2012156257A (en) Circuit board, and electronic device
JP2007234988A (en) Substrate and method for mounting semiconductor device
TWI501369B (en) Solder-mounted board, production method therefor, and semiconductor device
JP2006140327A (en) Wiring board and method for mounting electronic component using the same
JP2001230513A (en) Printed board and its manufacturing method
JP4416776B2 (en) Package substrate, semiconductor package, and semiconductor package manufacturing method
JP2009164435A (en) Manufacturing method of semiconductor device, and semiconductor device
JP2012164934A (en) Circuit module, electronic component mounting board and circuit module manufacturing method
JP2002151833A (en) Manufacturing method of substrate for packaging electronic component
JPH10163608A (en) Printed wiring board and its manufacture
KR20160140174A (en) Electrical apparatus having electrical pattern capable of preventing solder bridge
JP2009099929A (en) Printed circuit board
JPH11191673A (en) Solder pre-coating method
JP2006237367A (en) Printed wiring board
JP6467797B2 (en) WIRING BOARD, SEMICONDUCTOR DEVICE USING WIRING BOARD AND METHOD FOR MANUFACTURING THE SAME
JP3821426B2 (en) Electronic component mounting board
JP2012134318A (en) Wiring board, semiconductor device, and method for manufacturing semiconductor device
JP2011061035A (en) Method of manufacturing semiconductor device, and mask