JP2007234302A - Manufacturing method of diaphragm for direct liquid type fuel cell - Google Patents

Manufacturing method of diaphragm for direct liquid type fuel cell Download PDF

Info

Publication number
JP2007234302A
JP2007234302A JP2006052227A JP2006052227A JP2007234302A JP 2007234302 A JP2007234302 A JP 2007234302A JP 2006052227 A JP2006052227 A JP 2006052227A JP 2006052227 A JP2006052227 A JP 2006052227A JP 2007234302 A JP2007234302 A JP 2007234302A
Authority
JP
Japan
Prior art keywords
polymerizable
group
fuel cell
diaphragm
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006052227A
Other languages
Japanese (ja)
Other versions
JP4993923B2 (en
Inventor
Takenori Isomura
武範 磯村
Takayuki Kishino
剛之 岸野
Kenji Fukuda
憲二 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2006052227A priority Critical patent/JP4993923B2/en
Priority to EP12169372.5A priority patent/EP2506357B1/en
Priority to EP07737441A priority patent/EP1990854A4/en
Priority to PCT/JP2007/053639 priority patent/WO2007099954A1/en
Priority to KR1020087015904A priority patent/KR101367597B1/en
Priority to US12/224,427 priority patent/US8232325B2/en
Publication of JP2007234302A publication Critical patent/JP2007234302A/en
Application granted granted Critical
Publication of JP4993923B2 publication Critical patent/JP4993923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direct liquid type fuel cell diaphragm having both high proton conductivity and high alcohol impermeability. <P>SOLUTION: A polymerizable composition containing at least (a) a monocyclic aromatic polymerizable monomer prepared by bonding one polymerizable group, one or more methyl groups and one or more hydrogen atoms to a benzene ring and by bonding one of the methyl groups to the polymerizable group at a para position, (b) a cross-linking polymerizable monomer and (c) a polymerization initiator is brought into contact with a porous film to fill the polymerizable composition in void parts of the porous film, thereafter the polymerizable composition is polymerized and hardened, and thereafter a cation exchange group is introduced into the benzene ring originated from the monocyclic aromatic polymerizable monomer, whereby this direct liquid type fuel cell diaphragm is manufactured. For the monocyclic aromatic polymerizable monomer, p-methylstyrene is preferable. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、直接液体型燃料電池用隔膜の製造方法に関する。該隔膜は、多孔質膜の空隙部にカチオン交換樹脂が充填されてなり、メタノール等の液体燃料の透過性が少ない。   The present invention relates to a method for producing a diaphragm for a direct liquid fuel cell. The diaphragm is formed by filling a void portion of a porous membrane with a cation exchange resin, and has low permeability of liquid fuel such as methanol.

イオン交換膜は、固体高分子型燃料電池、レドックス・フロー電池、亜鉛−臭素電池等の電池用隔膜や、透析用隔膜等として汎用的に使用されている。イオン交換膜を電解質隔膜として用いる固体高分子型燃料電池は、燃料電池に燃料と酸化剤とを連続的に供給し、これらが反応した時の化学エネルギーを電力として取り出すクリーンで高効率な発電システムの一つである。近年、固体高分子型燃料電池は低温作動や小型化を期待できることから、自動車用途、家庭用途、携帯用途としてその重要性を増している。   Ion exchange membranes are widely used as battery membranes such as polymer electrolyte fuel cells, redox flow cells, zinc-bromine cells, and dialysis membranes. A polymer electrolyte fuel cell that uses an ion exchange membrane as an electrolyte membrane is a clean and highly efficient power generation system that continuously supplies fuel and oxidant to the fuel cell and extracts the chemical energy when they react as power. one of. In recent years, polymer electrolyte fuel cells can be expected to operate at low temperatures and can be miniaturized, and thus are becoming increasingly important for automobiles, households, and portable applications.

固体高分子型燃料電池は、一般的に電解質として作用する固体高分子の隔膜の両面に、触媒が坦持されたガス拡散電極がそれぞれ接合された構造を有する。そして、一方のガス拡散電極が存在する側の室(燃料室)に水素ガスあるいはメタノール等の液体燃料からなる燃料を供給し、他方のガス拡散電極が存在する側の室に酸化剤である酸素や空気等の酸素含有ガスをそれぞれ供給する。この状態で、両ガス拡散電極間に外部負荷回路を接続することにより、燃料電池として作用し、外部負荷回路に電力が供給される。   A polymer electrolyte fuel cell generally has a structure in which a gas diffusion electrode carrying a catalyst is bonded to both sides of a solid polymer diaphragm that acts as an electrolyte. Then, a fuel made of liquid fuel such as hydrogen gas or methanol is supplied to the chamber (fuel chamber) on the side where one gas diffusion electrode exists, and oxygen as an oxidant is supplied to the chamber on the side where the other gas diffusion electrode exists. And oxygen-containing gas such as air. In this state, by connecting an external load circuit between both gas diffusion electrodes, it acts as a fuel cell and power is supplied to the external load circuit.

固体高分子型燃料電池の中でも、直接メタノール等を燃料として用いる直接液体型燃料電池は、燃料が液体であることから取り扱いやすいこと、燃料が安価であることが評価され、特に携帯機器用の比較的小出力規模の電源として期待されている。   Among solid polymer fuel cells, direct liquid fuel cells that use direct methanol or the like as fuel are evaluated because they are easy to handle because the fuel is liquid, and the fuel is inexpensive, especially for portable devices. It is expected to be a power source with a small output scale.

直接液体型燃料電池の基本構造を図1に示す。図中、1a、1bは隔膜として用いる固体高分子電解質膜6を挟んで該固体高分子電解質膜6の両側にそれぞれ形成された電池隔壁、2は一方の電池隔壁1aの内壁に形成された燃料流通孔、3は他方の電池隔壁1bの内壁に形成された酸化剤ガス流通孔である。4は燃料室側拡散電極、5は酸化剤室側ガス拡散電極である。   The basic structure of a direct liquid fuel cell is shown in FIG. In the figure, 1a and 1b are battery partition walls formed on both sides of the solid polymer electrolyte membrane 6 with a solid polymer electrolyte membrane 6 used as a diaphragm interposed therebetween, and 2 is a fuel formed on the inner wall of one battery partition wall 1a. The flow holes 3 are oxidant gas flow holes formed in the inner wall of the other battery partition wall 1b. 4 is a fuel chamber side diffusion electrode, and 5 is an oxidant chamber side gas diffusion electrode.

この直接液体型燃料電池において、燃料室7にアルコール等の液体燃料が供給されると、燃料室側拡散電極4においてプロトン(水素イオン)と電子が生成する。生成したプロトンは固体高分子電解質膜6内を伝導し、他方の酸化剤室8に移動し、ここで空気又は酸素ガス中の酸素と反応して水が生成される。この時、燃料室側拡散電極4で生成される電子は、不図示の外部負荷回路を通じて酸化剤室側ガス拡散電極5へと送られることにより電気エネルギーが得られる。   In this direct liquid fuel cell, when liquid fuel such as alcohol is supplied to the fuel chamber 7, protons (hydrogen ions) and electrons are generated in the fuel chamber side diffusion electrode 4. The produced protons conduct in the solid polymer electrolyte membrane 6 and move to the other oxidant chamber 8 where they react with oxygen in the air or oxygen gas to produce water. At this time, the electrons generated in the fuel chamber side diffusion electrode 4 are sent to the oxidant chamber side gas diffusion electrode 5 through an external load circuit (not shown) to obtain electric energy.

上記構造の直接液体型燃料電池において、上記固体高分子電解質膜6には、通常、カチオン交換膜が使用される。該カチオン交換膜には、電気抵抗が小さく、物理的な強度が強く、更に燃料として使用される液体燃料の透過性が低い特性が要求される。カチオン交換膜に対する液体燃料の透過性が高い場合には、燃料室に供給する液体燃料が酸化室側に拡散移動し、その結果電池出力が低下する。   In the direct liquid fuel cell having the above structure, a cation exchange membrane is usually used for the solid polymer electrolyte membrane 6. The cation exchange membrane is required to have low electrical resistance, high physical strength, and low permeability for liquid fuel used as fuel. When the permeability of the liquid fuel to the cation exchange membrane is high, the liquid fuel supplied to the fuel chamber diffuses and moves toward the oxidation chamber, and as a result, the battery output decreases.

従来、燃料電池用隔膜として使用されるカチオン交換膜としては、例えば、ポリオレフィン系やフッ素系樹脂製の多孔質膜の空隙部に、カチオン交換基を導入可能な官能基を有する重合性単量体および架橋性重合性単量体からなる重合性組成物を充填して重合し、次いで得られる樹脂の有する該カチオン交換基を導入可能な官能基にカチオン交換基を導入する方法により得た隔膜が知られている(例えば、特許文献1、2)。この方法によれば、燃料電池用隔膜は比較的安価に製造され、得られる隔膜は電気抵抗が小さく、水素ガスの透過性も小さく、膨潤、変形も少ない。
特開2001−135328号公報 特開平11−310649号公報
Conventionally, as a cation exchange membrane used as a fuel cell membrane, for example, a polymerizable monomer having a functional group capable of introducing a cation exchange group into a void of a porous membrane made of polyolefin or fluorine resin And a membrane obtained by a method of introducing a cation exchange group into a functional group capable of introducing the cation exchange group of the resin obtained by filling and polymerizing a polymerizable composition comprising a crosslinkable polymerizable monomer. Known (for example, Patent Documents 1 and 2). According to this method, the diaphragm for a fuel cell is manufactured at a relatively low cost, and the obtained diaphragm has a low electrical resistance, a low hydrogen gas permeability, and a small swelling and deformation.
JP 2001-135328 A Japanese Patent Laid-Open No. 11-310649

しかしながら、これらのカチオン交換膜を直接液体型燃料電池用隔膜として用いる場合は、アルコール等の液体燃料がカチオン交換膜内を透過することを完全に抑制することができない。その結果、燃料室側から酸化剤室側へ液体燃料の拡散が生じ、電池性能が低下している。   However, when these cation exchange membranes are directly used as a diaphragm for a liquid fuel cell, it is not possible to completely prevent liquid fuel such as alcohol from permeating through the cation exchange membrane. As a result, liquid fuel is diffused from the fuel chamber side to the oxidant chamber side, and the cell performance is degraded.

この問題を改善するために、多孔質膜の空隙部に充填する重合性組成物中の架橋性重合性単量体の含有量を高めることにより、親水性のカチオン交換基の導入量を相対的に低下させることを本発明者らは検討した。この方法によれば、得られるカチオン交換膜の疎水性が高められ、且つ膜の架橋度も高められ、その結果緻密なイオン交換膜が得られ、液体燃料の透過抑制に関してある程度有効であった。しかし一方で、カチオン交換膜の電気抵抗が増大して電池出力が低下する問題が起き、この点で実用上満足できる燃料電池用隔膜は得られていない。   In order to improve this problem, the amount of hydrophilic cation exchange groups introduced is relatively increased by increasing the content of the crosslinkable polymerizable monomer in the polymerizable composition filled in the voids of the porous membrane. The present inventors have studied to reduce it to a low level. According to this method, the hydrophobicity of the resulting cation exchange membrane is increased, and the degree of crosslinking of the membrane is also increased. As a result, a dense ion exchange membrane is obtained, which is effective to some extent for suppressing the permeation of liquid fuel. On the other hand, however, there is a problem that the electric resistance of the cation exchange membrane increases and the battery output decreases, and a fuel cell membrane that is practically satisfactory in this respect has not been obtained.

なお、前記従来技術として引用した燃料電池に使用するカチオン交換膜の製造方法においては、多孔質膜の空隙部に充填する重合性組成物中の単量体成分として、前記カチオン交換基を導入可能な官能基を有する重合性単量体や架橋性重合性単量体の他に、アクリロニトリル、アクロレイン、メチルビニルケトン等のカチオン交換基を導入可能な官能基を有しない重合性単量体を第三共重合成分として含有させることも示されている。しかし、これらの第三共重合成分として記載されている重合性単量体は、いずれも親水性の強い単量体である。従って、これら第三共重合成分を共重合させて得られるカチオン交換膜は親水性が高く、このため親水性の高いアルコール等の液体燃料の透過抑制効果は向上していないことが認められた。即ち、この第三共重合成分が共重合されているカチオン交換膜は燃料電池用隔膜として使用する場合、アルコール等の液体燃料の透過抑制効果の点で不十分である。   In the method for producing a cation exchange membrane used in the fuel cell cited as the prior art, the cation exchange group can be introduced as a monomer component in the polymerizable composition filled in the voids of the porous membrane. In addition to polymerizable monomers and crosslinkable polymerizable monomers having various functional groups, polymerizable monomers having no functional group capable of introducing a cation exchange group such as acrylonitrile, acrolein, methyl vinyl ketone, etc. It has also been shown to be included as a tricopolymerization component. However, any of the polymerizable monomers described as these third copolymerization components is a highly hydrophilic monomer. Therefore, it was recognized that the cation exchange membrane obtained by copolymerizing these third copolymerization components has high hydrophilicity, and thus the permeation suppression effect of liquid fuel such as alcohol having high hydrophilicity has not been improved. That is, the cation exchange membrane in which this third copolymer component is copolymerized is insufficient in terms of the permeation suppressing effect of liquid fuel such as alcohol when used as a fuel cell membrane.

以上の背景にあって、本発明は、アルコール等の液体燃料の透過性、特にメタノール透過性が低く、隔膜の電気抵抗が低く、安定した高い電池出力を示し、膨潤等の変形の起き難い、カチオン交換膜からなる燃料電池用隔膜の製造方法を提供することを目的とする。   In the above background, the present invention has low permeability of liquid fuel such as alcohol, particularly methanol permeability, low electrical resistance of the diaphragm, stable high battery output, hardly deformed such as swelling, It aims at providing the manufacturing method of the diaphragm for fuel cells which consists of a cation exchange membrane.

本発明者等は、上記課題に鑑み鋭意研究を行ってきた。その結果、多孔質膜の空隙部に充填される重合性組成物の主成分として、重合性基に対してパラ位にメチル基を有する芳香族系重合性単量体を用いると、オルト位やメタ位にメチル基を有する芳香族系重合性単量体を用いる場合と比較して、膜抵抗を増大させること無く、特異的に液体燃料の透過性を低減できることを見出し、本発明を完成させるに至った。   The present inventors have conducted extensive research in view of the above problems. As a result, when an aromatic polymerizable monomer having a methyl group at the para position with respect to the polymerizable group is used as the main component of the polymerizable composition filled in the voids of the porous membrane, the ortho position or As compared with the case of using an aromatic polymerizable monomer having a methyl group at the meta position, it has been found that the permeability of liquid fuel can be specifically reduced without increasing the membrane resistance, and the present invention is completed. It came to.

従って、本発明は、
a)1個の重合性基、少なくとも1個のメチル基、及び少なくとも1個の水素原子がベンゼン環に結合してなり、且つ上記メチル基のうち1個は前記重合性基に対してパラ位に結合してなる単環式芳香族系重合性単量体、
b)架橋性重合性単量体、及び
c)重合開始剤、
を少なくとも含む重合性組成物を多孔質膜と接触させて前記重合性組成物を多孔質膜の有する空隙部に充填させた後、前記重合性組成物を重合硬化させ、次いで前記単環式芳香族系重合性単量体に由来するベンゼン環にカチオン交換基を導入することを特徴とする直接液体型燃料電池用隔膜の製造方法である。
Therefore, the present invention
a) one polymerizable group, at least one methyl group, and at least one hydrogen atom bonded to the benzene ring, and one of the methyl groups is para-positioned relative to the polymerizable group A monocyclic aromatic polymerizable monomer formed by bonding to
b) a crosslinkable polymerizable monomer, and c) a polymerization initiator,
The polymerizable composition containing at least a porous film is brought into contact with the porous film to fill the voids of the porous film, and then the polymerizable composition is polymerized and cured, and then the monocyclic aroma A method for producing a diaphragm for a direct liquid fuel cell, wherein a cation exchange group is introduced into a benzene ring derived from a group-based polymerizable monomer.

また本発明は、単環式芳香族系重合性単量体がp-メチルスチレンである場合を含む。   The present invention also includes the case where the monocyclic aromatic polymerizable monomer is p-methylstyrene.

本発明の隔膜の製造方法によれば、カチオン交換樹脂を形成させる重合性組成物中に、カチオン交換基を導入するための重合性単量体として、重合性基に対してパラ位にメチル基を有する重合性単量体を使用しているので、得られる隔膜を構成するカチオン交換樹脂は、適度に疎水性が高まり、液体燃料の透過性を低減させる。更に、その理由は不明であるが、重合性基に対してパラ位にメチル基を有する重合性単量体を使用しているので、オルト位やメタ位にメチル基を有する単量体を用いる場合と比較し、液体燃料の透過抑制効果が高い。   According to the method for producing a diaphragm of the present invention, as a polymerizable monomer for introducing a cation exchange group into a polymerizable composition for forming a cation exchange resin, a methyl group at a para position with respect to the polymerizable group. Therefore, the cation exchange resin constituting the obtained diaphragm is moderately increased in hydrophobicity and reduces the permeability of the liquid fuel. Furthermore, the reason is unknown, but since a polymerizable monomer having a methyl group at the para position relative to the polymerizable group is used, a monomer having a methyl group at the ortho position or the meta position is used. Compared to the case, the permeation suppression effect of liquid fuel is high.

このカチオン交換膜は、一定のイオン交換容量と膜の膨潤等の変形を抑制するための適度な架橋を維持しつつ、膜の疎水性状が大きく高められている。その結果、本方法により得られるカチオン交換膜は、直接液体型燃料電池用隔膜として使用した場合、膜の電気抵抗を過度に高めることなく、液体燃料、特に、メタノールの透過性を大きく低減させる。すなわち、本発明に係る隔膜は、従来達成困難であった、高い液体燃料の非透過性と高いプロトン伝導性を両立した直接液体型燃料電池隔膜である。   In this cation exchange membrane, the hydrophobicity of the membrane is greatly enhanced while maintaining a certain ion exchange capacity and appropriate crosslinking for suppressing deformation such as membrane swelling. As a result, when the cation exchange membrane obtained by this method is used directly as a diaphragm for a liquid fuel cell, the permeability of liquid fuel, particularly methanol, is greatly reduced without excessively increasing the electrical resistance of the membrane. In other words, the diaphragm according to the present invention is a direct liquid fuel cell diaphragm that has been difficult to achieve in the past and has both high liquid fuel impermeability and high proton conductivity.

本発明製造方法により得られる隔膜を使用して製造する直接液体型燃料電池は、電池の内部抵抗が低く、且つメタノール等の液体燃料のクロスオーバーが抑制されるため、高い電池出力が得られる。   The direct liquid fuel cell manufactured using the diaphragm obtained by the manufacturing method of the present invention has a low internal resistance of the cell and suppresses the crossover of liquid fuel such as methanol, so that a high battery output can be obtained.

本発明の直接液体型燃料電池用隔膜(以下本隔膜と略記する場合がある。)の製造方法においては、所定の重合性組成物を多孔質膜に形成された空隙部に充填させた後、前記充填した重合性組成物を重合硬化させ、次いで重合硬化させて得られる樹脂にカチオン交換基を導入することにより、本隔膜を製造する。   In the method for producing a diaphragm for a direct liquid fuel cell according to the present invention (hereinafter sometimes abbreviated as the present diaphragm), after filling a predetermined polymerizable composition into a void formed in the porous film, The diaphragm is produced by introducing a cation exchange group into a resin obtained by polymerizing and curing the filled polymerizable composition and then polymerizing and curing.

(重合性組成物)
本隔膜を製造する際の出発原料である重合性組成物は、a)単環式芳香族系重合性単量体、b)架橋性重合性単量体、c)重合開始剤を必須成分とする。
(Polymerizable composition)
The polymerizable composition, which is a starting material for producing the diaphragm, comprises a) a monocyclic aromatic polymerizable monomer, b) a crosslinkable polymerizable monomer, and c) a polymerization initiator as essential components. To do.

a)単環式芳香族系重合性単量体
単環式芳香族系重合性単量体は、1個の重合性基、少なくとも1個のメチル基、及び少なくとも1個の水素原子がベンゼン環に結合した、下記化学式(1)で示される化合物である。
a) Monocyclic aromatic polymerizable monomer The monocyclic aromatic polymerizable monomer has one polymerizable group, at least one methyl group, and at least one hydrogen atom as a benzene ring. Is a compound represented by the following chemical formula (1).

Figure 2007234302
Figure 2007234302

上記化学式(1)において、Rは炭素数1〜5のアルキル基、ハロゲン原子、ニトロ基、シアノ基等 を示す。アルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、ter−ブチル基、ペンチル基等が例示される。これらのアルキル基の中でもメチル基が好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらのハロゲン原子の中でも塩素原子が入手の容易さの点で好ましい。 In the chemical formula (1), R 1 represents an alkyl group having 1 to 5 carbon atoms, a halogen atom, a nitro group, a cyano group, or the like. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a ter-butyl group, and a pentyl group. Of these alkyl groups, a methyl group is preferred. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these halogen atoms, a chlorine atom is preferable in view of availability.

nは1〜4の整数である。液体燃料の透過抑制効果が高く、且つ得られる隔膜の電気抵抗が低くなる点で、nは3又は4が好ましく、特にnは4が好ましい。また、nが4の重合性単量体は入手が容易である点でも好ましい単量体である。Rがアルキル基である場合においては、nは3が好ましい。 n is an integer of 1-4. N is preferably 3 or 4, and n is particularly preferably 4 in that the permeation suppressing effect of the liquid fuel is high and the electric resistance of the obtained diaphragm is low. Moreover, the polymerizable monomer whose n is 4 is a preferable monomer also at the point which is easy to acquire. In the case where R 1 is an alkyl group, n is preferably 3.

Aは重合性基である。重合性基としては、不飽和結合を有する炭素数2〜5の炭化水素基が好ましい。ビニル基、プロペニル基、ブチレン基等が例示される。入手の容易さの点で、ビニル基が特に好ましい。   A is a polymerizable group. As the polymerizable group, a hydrocarbon group having 2 to 5 carbon atoms having an unsaturated bond is preferable. Examples include a vinyl group, a propenyl group, a butylene group, and the like. A vinyl group is particularly preferred from the viewpoint of availability.

上記化学式(1)で示される単環式芳香族系重合性単量体は、水素原子が芳香族環に少なくとも1個結合されている。後述するように、この水素原子がカチオン交換基と交換される。   In the monocyclic aromatic polymerizable monomer represented by the chemical formula (1), at least one hydrogen atom is bonded to the aromatic ring. As will be described later, this hydrogen atom is exchanged for a cation exchange group.

上記化学式(1)で示される単環式芳香族系重合性単量体は、ベンゼン環に結合されている前記メチル基の少なくとも1個が、重合性基Aに対してパラ位に結合されている。   In the monocyclic aromatic polymerizable monomer represented by the chemical formula (1), at least one of the methyl groups bonded to the benzene ring is bonded to the polymerizable group A in the para position. Yes.

後述する実施例、比較例のデータから明らかなように、ベンゼン環に結合されている重合性基Aとメチル基とが互いにパラ位の関係にある単環式芳香族系重合性単量体を出発原料として使用することにより、液体燃料の透過抑制が高く、且つ得られる隔膜の電気抵抗が低い本隔膜が得られる。重合性基Aと、メチル基とがパラ位の関係を持たない単環式芳香族系重合性単量体を用いる場合は、液体燃料の透過抑制、隔膜の電気抵抗の何れもが良好な隔膜は得られない。   As is clear from the data of Examples and Comparative Examples described later, a monocyclic aromatic polymerizable monomer in which a polymerizable group A and a methyl group bonded to a benzene ring are in a para-position to each other By using it as a starting material, it is possible to obtain the present diaphragm with high permeation suppression of liquid fuel and low electrical resistance of the obtained diaphragm. When a monocyclic aromatic polymerizable monomer in which the polymerizable group A and the methyl group do not have a para-position is used, the diaphragm is excellent in both suppression of permeation of liquid fuel and electrical resistance of the diaphragm Cannot be obtained.

単環式芳香族系重合性単量体としては、p-メチルスチレン、2 ,4-ジメチルスチレン、1,2,4-トリメチルスチレン、1,3,4-トリメチルスチレン、2-エチル-4-メチルスチレン、2-プロピル-4-メチルスチレン、2-ブチル-4-メチルスチレン、2-クロロ-4-メチルスチレン、p-メチル-α-メチルスチレン等が例示される。   Monocyclic aromatic polymerizable monomers include p-methylstyrene, 2,4-dimethylstyrene, 1,2,4-trimethylstyrene, 1,3,4-trimethylstyrene, 2-ethyl-4- Examples include methylstyrene, 2-propyl-4-methylstyrene, 2-butyl-4-methylstyrene, 2-chloro-4-methylstyrene, p-methyl-α-methylstyrene, and the like.

これらの内でも、得られる隔膜に対する液体燃料の透過抑制力が高く、且つ電気抵抗が低くなる点で、p-メチルスチレンが特に好ましい。   Among these, p-methylstyrene is particularly preferable in that the permeation suppressing power of the liquid fuel to the obtained diaphragm is high and the electric resistance is low.

重合性組成物中の上記単環式芳香族系重合性単量体の含有量は、特に制限されるものではないが、重合性組成物中に含まれる重合性単量体合計量の10〜99質量%であるのが好ましく、特に、30〜98質量%であるのが好ましい。単環式芳香族系重合性単量体の含有量がこの範囲に含有されることにより、得られるカチオン交換樹脂は、液体燃料の非透過性の向上効果がより顕著に発揮される。   The content of the monocyclic aromatic polymerizable monomer in the polymerizable composition is not particularly limited, but is 10 to 10 of the total amount of polymerizable monomers contained in the polymerizable composition. It is preferable that it is 99 mass%, and it is especially preferable that it is 30-98 mass%. When the content of the monocyclic aromatic polymerizable monomer is within this range, the resulting cation exchange resin exhibits the effect of improving the impermeability of the liquid fuel more remarkably.

b)架橋性重合性単量体
重合性組成物に配合する架橋性重合性単量体としては、従来公知のイオン交換膜の製造において用いられる単量体が制限無く使用できる。架橋性重合性単量体を重合性組成物に配合することにより、得られるカチオン交換樹脂は架橋型になる。架橋型のイオン交換樹脂は本質的に溶媒不溶性である。このため、水やアルコールに対する溶解性は無く、膨潤も最小限になり、樹脂にカチオン交換基を多量に導入できる。その結果、本隔膜は電気抵抗が極めて小さくなる。
b) Crosslinkable polymerizable monomer As the crosslinkable polymerizable monomer to be blended in the polymerizable composition, a monomer used in the production of a conventionally known ion exchange membrane can be used without limitation. By blending the crosslinkable polymerizable monomer into the polymerizable composition, the resulting cation exchange resin becomes a crosslinkable type. Cross-linked ion exchange resins are essentially solvent insoluble. Therefore, there is no solubility in water or alcohol, swelling is minimized, and a large amount of cation exchange groups can be introduced into the resin. As a result, the diaphragm has an extremely low electrical resistance.

架橋性重合性単量体としては、具体的には、例えばm−、p−、o−ジビニルベンゼン、ジビニルスルホン、ブタジエン、クロロプレン、イソプレン、トリビニルベンゼン類、ジビニルナフタリン、ジアリルアミン、トリアリルアミン、ジビニルピリジン類などのジビニル化合物が挙げられる。   Specific examples of the crosslinkable polymerizable monomer include m-, p-, o-divinylbenzene, divinylsulfone, butadiene, chloroprene, isoprene, trivinylbenzenes, divinylnaphthalene, diallylamine, triallylamine, divinyl. And divinyl compounds such as pyridines.

重合性組成物中の架橋性重合性単量体の含有量は、特に制限されるものではないが、重合性組成物中に含まれる重合性単量体合計量の1〜40質量%であるのが好ましい、特に、2〜30質量%であるのが好ましい。架橋性重合性単量体の含有量がこの範囲に制御されることにより、得られるカチオン交換樹脂は、液体燃料の非透過性や、膨潤等を防止効果に一層に優れ、電気抵抗も特に低いものが得られ好ましい。   The content of the crosslinkable polymerizable monomer in the polymerizable composition is not particularly limited, but is 1 to 40% by mass of the total amount of polymerizable monomers contained in the polymerizable composition. It is preferable that it is 2-30 mass% especially. By controlling the content of the crosslinkable polymerizable monomer within this range, the resulting cation exchange resin is further excellent in the effect of preventing liquid fuel impermeability and swelling, and the electrical resistance is particularly low. That is obtained and preferred.

c)重合開始剤
上記重合性組成物には、重合開始剤が含有される。重合開始剤としては、上記単環式芳香族系重合性単量体、架橋性重合性単量体の重合を開始させる化合物であれば特に限定されない。
c) Polymerization initiator The polymerizable composition contains a polymerization initiator. The polymerization initiator is not particularly limited as long as it is a compound that initiates the polymerization of the monocyclic aromatic polymerizable monomer and the crosslinkable polymerizable monomer.

重合開始剤としては、有機過酸化物が好ましい。例えば、オクタノイルパーオキシド、ラウロイルパーオキシド、t−ブチルパーオキシ−2−エチルヘキサノエート、ベンゾイルパーオキシド、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシラウレート、t−ヘキシルパーオキシベンゾエート、ジ−t−ブチルパーオキシド等のラジカル重合開始剤が挙げられる。   As the polymerization initiator, an organic peroxide is preferable. For example, octanoyl peroxide, lauroyl peroxide, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, t-butylperoxyisobutyrate, t-butylperoxylaurate, t-hexylperoxy Examples thereof include radical polymerization initiators such as benzoate and di-t-butyl peroxide.

重合開始剤の含有量は、使用する重合性単量体の組成や該重合開始剤の種類に応じて常法に準じて適宜採択される。通常は、前記重合性単量体成分合計(後述するその他の重合性単量体を使用する場合は、その含有量も含む)100質量部に対して、0.1〜20質量部配合されることが好ましく、0.5〜10質量部がより好ましい。   The content of the polymerization initiator is appropriately selected according to a conventional method depending on the composition of the polymerizable monomer to be used and the kind of the polymerization initiator. Usually, 0.1-20 mass parts is mix | blended with respect to 100 mass parts of the said polymerizable monomer component sum total (When using the other polymerizable monomer mentioned later also including the content). It is preferably 0.5 to 10 parts by mass.

なお、重合性組成物には、前記a)メチル基のうちの1個が重合性基に対してパラ位に結合している単環式芳香族系重合性単量体とは別に、カチオン交換基を導入し得る他の芳香族系重合性単量体を含有させても良い。こうした他の芳香族系重合性単量体としては、例えば、スチレン、ビニルキシレン、α−メチルスチレン、ビニルナフタレン、α−ハロゲン化スチレン類、アセナフチレン類等が挙げられる。その含有量は、重合性組成物中に含まれる重合性単量体合計量の89質量%以下であるのが好ましく、特に、68質量%以下であるのが好ましい。   In addition, in the polymerizable composition, in addition to the monocyclic aromatic polymerizable monomer in which one of the a) methyl groups is bonded to the polymerizable group in the para position, Another aromatic polymerizable monomer capable of introducing a group may be contained. Examples of such other aromatic polymerizable monomers include styrene, vinyl xylene, α-methyl styrene, vinyl naphthalene, α-halogenated styrenes, acenaphthylenes, and the like. The content is preferably 89% by mass or less, and particularly preferably 68% by mass or less, based on the total amount of polymerizable monomers contained in the polymerizable composition.

さらに、重合性組成物には、上記各必須成分の他に、機械的強度等の物性や重合性等の反応性を調節するために、本発明の目的に反しない限度内で、必要に応じてその他の成分が少量配合されてもよい。このような任意の成分としては、例えば、アクリロニトリル、アクロレイン、メチルビニルケトン等の他の重合性単量体や、ジブチルフタレート、ジオクチルフタレート、ジメチルイソフタレート、ジブチルアジペート、トリエチルシトレート、アセチルトリブチルシトレート、ジブチルセバケート等の可塑剤類が挙げられる。   Furthermore, in addition to each of the above essential components, the polymerizable composition may be adjusted as necessary within the limits that do not contradict the purpose of the present invention in order to adjust the physical properties such as mechanical strength and the reactivity such as polymerizability. Other components may be blended in a small amount. Examples of such optional components include other polymerizable monomers such as acrylonitrile, acrolein, and methyl vinyl ketone, dibutyl phthalate, dioctyl phthalate, dimethyl isophthalate, dibutyl adipate, triethyl citrate, and acetyl tributyl citrate. And plasticizers such as dibutyl sebacate.

その他の成分の重合性単量体を重合性組成物中に含有させる場合、その含有量は、全重合性単量体成分合計量の20質量%以下、特に、10質量%以下とすることが好ましい。可塑剤類の使用量は上記全重合性単量体成分合計100質量部に対して50質量部以下が好ましい。   When the polymerizable monomer of other components is contained in the polymerizable composition, the content thereof may be 20% by mass or less, particularly 10% by mass or less of the total amount of all polymerizable monomer components. preferable. The amount of the plasticizer used is preferably 50 parts by mass or less based on 100 parts by mass of the total polymerizable monomer components.

(多孔質膜)
本発明の製造方法においては、上記重合性組成物は、多孔質膜と接触させられる。これにより、重合性組成物は多孔質膜の有する空隙部に充填される。その後、空隙部に充填された重合性組成物は重合硬化される。
(Porous membrane)
In the production method of the present invention, the polymerizable composition is brought into contact with a porous membrane. Thereby, the polymerizable composition is filled in the voids of the porous film. Thereafter, the polymerizable composition filled in the gap is polymerized and cured.

このように多孔質膜を基材として製造されるカチオン交換膜からなる燃料電池用隔膜は、該多孔質膜が補強部分として働くため電気抵抗の増加などを起すことなく物理的強度を高めることができる。   As described above, the fuel cell membrane comprising a cation exchange membrane manufactured using a porous membrane as a base material can increase the physical strength without causing an increase in electrical resistance because the porous membrane functions as a reinforcing portion. it can.

基材として用いる上記多孔質膜としては、その内部に細孔等による空隙部を有する多孔質基材であって、空隙部を介して、少なくとも空隙部の一部により基材の表裏が連通されているものであれば公知の多孔質基材が制限なく使用できる。   The porous membrane used as a substrate is a porous substrate having voids due to pores or the like inside thereof, and the front and back of the substrate communicate with each other through at least part of the voids through the voids. Any known porous substrate can be used without limitation.

多孔質基材の空隙部の平均孔径は、0.01〜2μmが好ましく、0.015〜0.4μmが特に好ましい。細孔が0.01μm未満の場合は、カチオン交換樹脂の充填量が低下する。細孔径が2μmを超える場合はアルコールの透過性が大きくなる。   The average pore diameter of the voids of the porous substrate is preferably 0.01 to 2 μm, particularly preferably 0.015 to 0.4 μm. When the pore is less than 0.01 μm, the filling amount of the cation exchange resin is lowered. When the pore diameter exceeds 2 μm, the alcohol permeability increases.

多孔質膜の空隙率(気孔率とも呼ばれる)は、20〜95%が好ましく、30〜90%がより好ましい。   The porosity (also referred to as porosity) of the porous membrane is preferably 20 to 95%, more preferably 30 to 90%.

透気度(JIS P−8117)は1500秒以下が好ましく、1000秒以下がより好ましい。この範囲の透気度とすることにより、得られる燃料電池用隔膜の電気抵抗が低くなり、しかも高い物理的強度が保たれる。   The air permeability (JIS P-8117) is preferably 1500 seconds or less, and more preferably 1000 seconds or less. By setting the air permeability within this range, the electric resistance of the obtained fuel cell membrane is lowered, and high physical strength is maintained.

厚みは5〜150μmが好ましく、10〜120μmがより好ましく、10〜70μmが特に好ましい。   The thickness is preferably 5 to 150 μm, more preferably 10 to 120 μm, and particularly preferably 10 to 70 μm.

表面平滑性は、粗さ指数で表して10μm以下、さらには5μm以下が好ましい。この範囲の平滑性とすることにより、得られる燃料電池用隔膜のアルコールに対する高い非透過性が達成される。   The surface smoothness is preferably 10 μm or less, more preferably 5 μm or less in terms of roughness index. By setting the smoothness within this range, high impermeability to alcohol of the obtained fuel cell membrane is achieved.

当該多孔質膜の形態は特に限定されず、多孔質フィルム、織布、不織布、紙、無機膜等の任意の形態のものが使用される。多孔質膜の材質としては、熱可塑性樹脂、熱硬化性樹脂、無機物、それらの混合物が例示される。しかし、その製造が容易であるばかりでなく、後述するカチオン交換樹脂との密着強度が高いという観点から、熱可塑性樹脂であることが好ましい。   The form of the said porous membrane is not specifically limited, The thing of arbitrary forms, such as a porous film, a woven fabric, a nonwoven fabric, paper, an inorganic membrane, is used. Examples of the material for the porous film include thermoplastic resins, thermosetting resins, inorganic substances, and mixtures thereof. However, a thermoplastic resin is preferable from the viewpoint of not only easy production but also high adhesion strength with a cation exchange resin described later.

当該熱可塑性樹脂としては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、3−メチル−1−ブテン、4−メチル−1−ペンテン、5−メチル−1−ヘプテン等のα−オレフィンの単独重合体または共重合体等のポリオレフィン樹脂;ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−オレフィン共重合体等の塩化ビニル系樹脂;ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフロオロエチレン−ペルフロオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−エチレン共重合体等のフッ素系樹脂;ナイロン6、ナイロン66等のポリアミド樹脂等が例示される。   Examples of the thermoplastic resin include α- such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 4-methyl-1-pentene, and 5-methyl-1-heptene. Polyolefin resins such as olefin homopolymers or copolymers; vinyl chloride resins such as polyvinyl chloride, vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, vinyl chloride-olefin copolymers; Such as polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer, etc. Fluorine resin; Polyamide such as nylon 6 and nylon 66 Resins.

これらのなかでも特に、機械的強度、化学的安定性、耐薬品性に優れ、炭化水素系イオン交換樹脂との親和性が良いことから、ポリオレフィン樹脂が好ましい。   Among these, a polyolefin resin is particularly preferable because it is excellent in mechanical strength, chemical stability, and chemical resistance and has a good affinity with a hydrocarbon ion exchange resin.

ポリオレフィン樹脂としては、ポリエチレン又はポリプロピレン樹脂が特に好ましく、ポリエチレン樹脂が最も好ましい。   As the polyolefin resin, polyethylene or polypropylene resin is particularly preferable, and polyethylene resin is most preferable.

上記多孔質膜は、例えば特開平9−216964号公報、特開2002−338721号公報等に記載の方法によって得ることもできる。あるいは、市販品(例えば、旭化成「ハイポア」、宇部興産「ユーポア」、東燃タピルス「セテラ」、日東電工「エクセポール」、三井化学「ハイレット」等)として入手することも可能である。   The porous membrane can also be obtained by the method described in JP-A-9-216964, JP-A 2002-338721, and the like. Alternatively, it can be obtained as a commercial product (for example, Asahi Kasei “Hypore”, Ube Industries “Yupor”, Tonen Tapils “Setera”, Nitto Denko “Exepor”, Mitsui Chemicals “Hylet”, etc.).

(重合性組成物と多孔質膜の接触)
重合性組成物と多孔質膜との接触は、重合性組成物が多孔質膜の有する空隙部に浸入できる方法で接触されるのであれば特に限定されない。例えば、重合性組成物を多孔質膜に塗布し、またはスプレーしたり、あるいは、多孔質膜を重合性組成物中に浸漬する方法などが例示される。多孔質膜が重合性組成物に浸漬されて接触させられる場合、その浸漬時間は多孔質膜の種類や重合性組成物の組成により相違するが、一般的には0.1秒〜十数分である。
(Contact between the polymerizable composition and the porous membrane)
The contact between the polymerizable composition and the porous membrane is not particularly limited as long as the polymerizable composition is brought into contact with the porous membrane by a method that can enter the voids. Examples thereof include a method in which the polymerizable composition is applied to or sprayed on the porous film, or a method in which the porous film is immersed in the polymerizable composition. When the porous film is immersed in and contacted with the polymerizable composition, the immersion time varies depending on the type of the porous film and the composition of the polymerizable composition, but is generally 0.1 second to over ten minutes. It is.

(重合)
多孔質膜の空隙部に充填された重合性組成物は、次いで重合させられる。重合方法は特に限定されず、用いた重合性単量体の組成及び重合開始剤の種類に応じて適宜公知の方法を採用すればよい。重合開始剤として前記したような有機過酸化物を用いる場合は、加熱による重合方法(熱重合)が一般的である。この方法は、操作が容易で、また比較的均一に重合させることができるので、他の方法よりも好ましい。重合に際しては、酸素による重合阻害を防止し、また表面の平滑性を得るため、重合性組成物が充填されている多孔質膜をポリエステル等のフィルムで覆った後、重合させることが好ましい。フィルムで多孔質膜を覆うことにより、過剰の重合性組成物が多孔質膜から排除され、薄く均一な燃料電池隔膜が製造される。
(polymerization)
The polymerizable composition filled in the voids of the porous membrane is then polymerized. The polymerization method is not particularly limited, and a known method may be appropriately employed depending on the composition of the polymerizable monomer used and the kind of the polymerization initiator. When using an organic peroxide as described above as a polymerization initiator, a polymerization method by heating (thermal polymerization) is common. This method is preferable to other methods because it is easy to operate and can be polymerized relatively uniformly. In the polymerization, in order to prevent polymerization inhibition due to oxygen and to obtain smoothness of the surface, it is preferable that the porous film filled with the polymerizable composition is covered with a film such as polyester and then polymerized. By covering the porous membrane with a film, excess polymerizable composition is eliminated from the porous membrane, and a thin and uniform fuel cell membrane is produced.

熱重合させる場合、重合温度は特に制限されず、公知の温度条件を適宜選択すればよいが、一般的には50〜150℃、好ましくは60〜120℃である。重合時間は、10分〜10時間が好ましい。   In the case of thermal polymerization, the polymerization temperature is not particularly limited, and a known temperature condition may be appropriately selected, but is generally 50 to 150 ° C, preferably 60 to 120 ° C. The polymerization time is preferably 10 minutes to 10 hours.

(カチオン交換基の導入)
上記のようにして製造された、多孔質膜の空隙部に重合性組成物の重合体からなる樹脂が充填されてなる膜状高分子体には、次いでカチオン交換基が導入される。
(Introduction of cation exchange group)
A cation exchange group is then introduced into the membrane-like polymer produced by filling the voids of the porous membrane with a resin made of the polymer of the polymerizable composition as described above.

カチオン交換基は、多孔質膜の空隙部に充填されてなる上記樹脂のベンゼン環に導入される。なお、このベンゼン環は、重合性組成物中に配合されている単環式芳香族系重合性単量体のベンゼン環に由来している。   The cation exchange group is introduced into the benzene ring of the resin filled in the voids of the porous membrane. In addition, this benzene ring is derived from the benzene ring of the monocyclic aromatic polymerizable monomer blended in the polymerizable composition.

ベンゼン環に導入されるカチオン交換基としては、従来公知のものが特に制限無く採用される。具体的には、スルホン酸基、カルボン酸基、ホスホン酸基等が挙げられる。得られる隔膜の電気抵抗が低くなる点で強酸性基であるスルホン酸基が特に好ましい。   As the cation exchange group introduced into the benzene ring, conventionally known cation exchange groups are employed without any particular limitation. Specific examples include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group. A sulfonic acid group which is a strongly acidic group is particularly preferable in that the electric resistance of the obtained diaphragm is lowered.

ベンゼン環にスルホン酸基を導入する方法としては、例えば、濃硫酸、発煙硫酸、二酸化硫黄、クロロスルホン酸などのスルホン化剤を、前記製造した膜状高分子体に反応させる方法が挙げられる。   Examples of the method for introducing a sulfonic acid group into the benzene ring include a method in which a sulfonating agent such as concentrated sulfuric acid, fuming sulfuric acid, sulfur dioxide, and chlorosulfonic acid is reacted with the produced film polymer.

ベンゼン環にホスホン基を導入させる方法としては、ハロゲン化アルキル基を有する膜状高分子体に無水塩化アルミニウムの存在下、三塩化リンを反応させた後、続いてアルカリ性水溶液中で加水分解反応する方法等が挙げられる。   As a method for introducing a phosphonic group into a benzene ring, a film-like polymer having an alkyl halide group is reacted with phosphorus trichloride in the presence of anhydrous aluminum chloride, followed by a hydrolysis reaction in an alkaline aqueous solution. Methods and the like.

ベンゼン環にカルボン酸基を導入させる方法としては、ハロゲン化鉄などの触媒の存在下、ハロゲンガスと接触させることによりハロゲン化し、更にアルキルリチウムと反応させた後、二酸化炭素と反応させる方法等が挙げられる。   As a method of introducing a carboxylic acid group into the benzene ring, there is a method of halogenation by contacting with a halogen gas in the presence of a catalyst such as iron halide, further reacting with alkyllithium, and then reacting with carbon dioxide. Can be mentioned.

これらのカチオン交換基を導入する方法自体は、公知の方法である。   The method for introducing these cation exchange groups is a known method.

(直接液体型燃料電池用隔膜)
このようにして得られる、多孔質膜の空隙部にカチオン交換樹脂が充填されてなるカチオン交換膜は、必要に応じて洗浄、裁断などが行われ、定法に従って直接液体型燃料電池用の隔膜として用いられる。
(Diaphragm for direct liquid fuel cell)
The cation exchange membrane obtained by filling the void portion of the porous membrane with the cation exchange resin is washed and cut as necessary, and used as a diaphragm for a direct liquid fuel cell according to a conventional method. Used.

本発明の方法により製造される直接液体型燃料電池用隔膜は、カチオン交換容量が、定法による測定で、通常0.1〜3mmol/g、特に0.1〜2mmol/gの高い値を有している。そのため、高い電池出力を有し、燃料液体透過性、膜の電気抵抗も充分に低いものになっている。また、本発明の隔膜は、前記組成の重合性組成物を使用する結果、含水率が、通常5〜90%、より好適には10〜80%であり、乾燥による電気抵抗の増加、即ちプロトンの伝導性の低下が生じ難いものになっている。さらに、燃料液体に対して不溶性であり、電気抵抗が通常、3mol/L−硫酸水溶液中の電気抵抗で表して0.45Ω・cm以下、更には0.25Ω・cm以下と非常に小さい。しかも、燃料液体の透過性が極めて小さく、例えば、25℃において100%のメタノール接触している場合の隔膜中のメタノールの透過率は通常1000g/m・hr以下、特に10〜700g/m・hrの範囲である。 The diaphragm for a direct liquid fuel cell produced by the method of the present invention has a high cation exchange capacity of 0.1 to 3 mmol / g, particularly 0.1 to 2 mmol / g, as measured by a conventional method. ing. Therefore, it has high battery output, fuel liquid permeability, and membrane electric resistance is sufficiently low. In addition, as a result of using the polymerizable composition having the above composition, the diaphragm of the present invention has a moisture content of usually 5 to 90%, more preferably 10 to 80%, and an increase in electrical resistance due to drying, that is, proton. It is difficult for a decrease in conductivity to occur. Furthermore, it is insoluble in the fuel liquid, and its electric resistance is usually very small as 0.45 Ω · cm 2 or less, more preferably 0.25 Ω · cm 2 or less in terms of electric resistance in a 3 mol / L-sulfuric acid aqueous solution. . In addition, the permeability of the fuel liquid is extremely small. For example, when 100% methanol contacts at 25 ° C., the methanol permeability in the diaphragm is usually 1000 g / m 2 · hr or less, particularly 10 to 700 g / m 2. -It is the range of hr.

本発明の方法により得られる燃料電池用隔膜は、このように電気抵抗が低く、かつ燃料液体の透過率も小さいため、直接液体型燃料電池用隔膜として使用する場合に、燃料室に供給する燃料液体が該隔膜を透過して反対の室に拡散することを有効に防止でき、高い出力の電池が得られる。この本発明の方法により得られる隔膜が採用される直接液体型燃料電池としては、前記した図1の基本構造を有するものが一般的であるが、その他の公知の構造を有する直接液体型燃料電池にも勿論適用することができる。燃料の液体としては、メタノールが最も一般的であり、本発明の効果が最も顕著に発揮されるものであるが、その他、エタノール、エチレングリコール、ジメチルエーテル、ヒドラジン等においても同様の優れた効果が発揮される。また更に、燃料は液体に限られず、気体の水素ガス等を用いることもできる。   The fuel cell membrane obtained by the method of the present invention has such a low electrical resistance and a low fuel liquid permeability. Therefore, the fuel supplied to the fuel chamber when used directly as a diaphragm for a liquid fuel cell. It is possible to effectively prevent liquid from passing through the diaphragm and diffusing into the opposite chamber, and a high output battery can be obtained. The direct liquid fuel cell employing the diaphragm obtained by the method of the present invention is generally the one having the basic structure shown in FIG. 1, but the direct liquid fuel cell having another known structure. Of course, it can also be applied. As the fuel liquid, methanol is the most common, and the effect of the present invention is most prominent. In addition, ethanol, ethylene glycol, dimethyl ether, hydrazine, and the like have the same excellent effect. Is done. Furthermore, the fuel is not limited to liquid, and gaseous hydrogen gas or the like can be used.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

なお、実施例、比較例においては、隔膜(カチオン交換膜)のカチオン交換容量、含水率、膜抵抗、メタノール透過率、燃料電池出力電圧を測定して燃料電池用隔膜の特性を評価した。これらの測定方法を以下に説明する。   In Examples and Comparative Examples, the cation exchange capacity, water content, membrane resistance, methanol permeability, and fuel cell output voltage of the membrane (cation exchange membrane) were measured to evaluate the characteristics of the fuel cell membrane. These measurement methods will be described below.

1)カチオン交換容量および含水率
カチオン交換膜を1mol/L−HCl水溶液に10時間以上浸漬し、水素イオン型とした後、このカチオン交換膜を1mol/L−NaCl水溶液に浸漬して水素イオン型をナトリウムイオン型に置換させた。遊離した水素イオンを水酸化ナトリウム水溶液を用いて電位差滴定装置(COMTITE−900、平沼産業株式会社製)で定量した(Amol)。
1) Cation exchange capacity and water content After immersing the cation exchange membrane in a 1 mol / L-HCl aqueous solution for 10 hours or more to obtain a hydrogen ion type, the cation exchange membrane is immersed in a 1 mol / L-NaCl aqueous solution to obtain a hydrogen ion type. Was replaced with the sodium ion form. The liberated hydrogen ions were quantified with a potentiometric titrator (COMMITE-900, manufactured by Hiranuma Sangyo Co., Ltd.) using an aqueous sodium hydroxide solution (Amol).

次に、同じカチオン交換膜を1mol/L−HCl水溶液に4時間以上浸漬した後、膜を取り出し、イオン交換水で十分水洗した。その後ティッシュペーパーで表面の水分を拭き取り、湿潤時の膜の質量(Wg)を測定した。さらに膜を60℃で5時間減圧乾燥させた後、その質量を測定した(Dg)。上記測定値に基づいて、カチオン交換容量および含水率を次式により求めた。   Next, after immersing the same cation exchange membrane in 1 mol / L-HCl aqueous solution for 4 hours or more, the membrane was taken out and sufficiently washed with ion exchange water. Thereafter, the moisture on the surface was wiped off with a tissue paper, and the mass (Wg) of the film when wet was measured. The membrane was further dried under reduced pressure at 60 ° C. for 5 hours, and then its mass was measured (Dg). Based on the above measured values, the cation exchange capacity and water content were determined by the following equations.

カチオン交換容量=A×1000/D[mmol/g−乾燥質量]
含水率=100×(W−D)/D[%]
2)膜抵抗
線幅0.3mmの白金線5本を互いに離して平行に配置した絶縁基板を用い、前記白金線に純水に湿潤した2.0cm幅の短冊状サンプル隔膜を押し当てた。40℃、90%RHの恒温恒湿槽中に試料を保持し、白金線間に1kHzの交流を印加したときの交流インピーダンスを測定した。白金線間距離を0.5〜2.0cmに変化させたときのそれぞれの交流インピーダンスを測定した。
Cation exchange capacity = A × 1000 / D [mmol / g-dry mass]
Moisture content = 100 × (WD) / D [%]
2) Membrane resistance A strip-shaped sample diaphragm having a width of 2.0 cm wetted with pure water was pressed against the platinum wire using an insulating substrate in which five platinum wires having a line width of 0.3 mm were arranged apart from each other in parallel. The sample was held in a constant temperature and humidity chamber of 40 ° C. and 90% RH, and the alternating current impedance was measured when an alternating current of 1 kHz was applied between the platinum wires. Each AC impedance when the distance between platinum wires was changed to 0.5 to 2.0 cm was measured.

白金線と隔膜との間には接触による抵抗が生じるが、白金線間距離と抵抗の勾配から隔膜の比抵抗を算出することでこの影響を除外した。白金線間距離と抵抗測定値との間には良い直線関係が得られた。抵抗勾配と膜厚から下式により膜抵抗を算出した。   Although resistance due to contact occurs between the platinum wire and the diaphragm, this effect was excluded by calculating the specific resistance of the diaphragm from the distance between the platinum wires and the gradient of resistance. A good linear relationship was obtained between the distance between the platinum wires and the resistance measurement. The film resistance was calculated from the resistance gradient and film thickness by the following formula.

R=2.0×L×S
R :膜抵抗[Ω・cm
L :膜厚[cm]
S :抵抗極間勾配[Ω/cm]
3)メタノール透過率
隔膜を中央に取付けた燃料電池セル(隔膜面積5cm)の一方の室に、メタノール濃度30が質量%の水溶液を液体クロマトグラフ用ポンプで供給し、隔膜の反対側の室にアルゴンガスを300ml/minで供給した。測定は25℃の恒温槽内で行った。隔膜の反対側の室から流出するアルゴンガスをガス捕集容器に導き、ガス捕集容器で捕集したアルゴンガス中のメタノール濃度をガスクロマトグラフィーで測定し、隔膜を透過したメタノール量を求めた。
R = 2.0 × L 2 × S
R: membrane resistance [Ω · cm 2 ]
L: Film thickness [cm]
S: resistance-to-resistance gradient [Ω / cm]
3) Methanol permeability The one side of the fuel cell (diaphragm area 5 cm 2 ) with the diaphragm attached in the center is supplied with an aqueous solution with a methanol concentration of 30% by mass using a liquid chromatograph pump, and the chamber on the opposite side of the diaphragm Argon gas was supplied at 300 ml / min. The measurement was performed in a constant temperature bath at 25 ° C. Argon gas flowing out from the chamber on the opposite side of the diaphragm was introduced into a gas collection container, and the methanol concentration in the argon gas collected in the gas collection container was measured by gas chromatography to determine the amount of methanol that permeated through the diaphragm. .

4)燃料電池出力電圧
ポリテトラフルオロエチレンで撥水化処理した厚さ100μm、空孔率80%のカーボンペーパー上に、触媒が2mg/cmとなるように塗布し、80℃で4時間減圧乾燥してガス拡散電極を得た。塗布した触媒は、白金とルテニウムとの合金触媒(ルテニウム50mol%)を50質量%担持したカーボンブラックと、アルコールと水とにパーフルオロカーボンスルホン酸を5%溶解(デュポン社製、商品名ナフィオン)したものとを混合して調製した。
4) Fuel cell output voltage The catalyst was applied to a carbon paper having a thickness of 100 μm and a porosity of 80% that had been made water-repellent with polytetrafluoroethylene so that the catalyst was 2 mg / cm 2, and the pressure was reduced at 80 ° C. for 4 hours A gas diffusion electrode was obtained by drying. The applied catalyst was 5% perfluorocarbon sulfonic acid dissolved in carbon black carrying 50% by mass of an alloy catalyst of platinum and ruthenium (ruthenium 50 mol%), alcohol and water (trade name Nafion, manufactured by DuPont). It was prepared by mixing with the one.

次に、測定する燃料電池隔膜の両面に上記のガス拡散電極をセットし、100℃、圧力5MPaの加圧下で100秒間熱プレスした後、室温で2分間放置した。これを図1に示す構造の燃料電池セルに組み込んだ。燃料電池セル温度を25℃に設定し、燃料室側に20質量%のメタノール水溶液を、酸化剤室側に大気圧の酸素を200ml/min.で供給して発電試験を行ない、電流密度0A/cm、0.1A/cmにおけるセルの端子電圧を測定した。 Next, the above gas diffusion electrodes were set on both surfaces of the fuel cell diaphragm to be measured, and hot pressed for 100 seconds under a pressure of 100 ° C. and a pressure of 5 MPa, and then allowed to stand at room temperature for 2 minutes. This was incorporated into a fuel cell having the structure shown in FIG. The fuel cell temperature was set to 25 ° C., a 20 mass% methanol aqueous solution was added to the fuel chamber side, and atmospheric oxygen was supplied to the oxidizer chamber side at 200 ml / min. A power generation test was carried out and cell terminal voltages at current densities of 0 A / cm 2 and 0.1 A / cm 2 were measured.

実施例1、2、3
表1に示した組成表に従って、各種単量体等を混合して単量体組成物を得た。得られた単量体組成物400gを500mlのガラス容器に入れ、これに多孔質膜(重量平均分子量25万のポリエチレン製、膜厚25μm、平均孔径0.03μm、空隙率37%)を浸漬した。
Examples 1, 2, 3
According to the composition table shown in Table 1, various monomers were mixed to obtain a monomer composition. 400 g of the obtained monomer composition was placed in a 500 ml glass container, and a porous film (made of polyethylene having a weight average molecular weight of 250,000, a film thickness of 25 μm, an average pore diameter of 0.03 μm, and a porosity of 37%) was immersed therein. .

続いて、これらの多孔質膜を単量体組成物中から取り出し、100μmのポリエステルフィルムを剥離材として多孔質膜の両側を被覆した後、0.3MPaの窒素加圧下、80℃で5時間加熱重合した。   Subsequently, these porous membranes were taken out from the monomer composition, coated on both sides of the porous membrane using a 100 μm polyester film as a release material, and then heated at 80 ° C. for 5 hours under nitrogen pressure of 0.3 MPa. Polymerized.

得られた膜状物を98%濃硫酸と純度90%以上のクロロスルホン酸の1:1の混合物中に40℃で60分間浸漬してベンゼン環をスルホン化し、燃料電池用隔膜を得た。   The obtained membrane was immersed in a 1: 1 mixture of 98% concentrated sulfuric acid and chlorosulfonic acid having a purity of 90% or more at 40 ° C. for 60 minutes to sulfonate the benzene ring to obtain a fuel cell membrane.

この燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過率、燃料電池出力電圧を測定した。結果を表2に示す。   The cation exchange capacity, water content, membrane resistance, film thickness, methanol permeability, and fuel cell output voltage of this fuel cell membrane were measured. The results are shown in Table 2.

実施例4
表1に示した組成表に従って、各種単量体等を混合して単量体組成物を得た。得られた単量体組成物400gを500mlのガラス容器に入れ、これに表1に示した多孔質膜(A、B各20cm×20cm)を浸漬した。
Example 4
According to the composition table shown in Table 1, various monomers were mixed to obtain a monomer composition. 400 g of the obtained monomer composition was placed in a 500 ml glass container, and the porous membranes (A and B, 20 cm × 20 cm) shown in Table 1 were immersed therein.

続いて、これらの多孔質膜を単量体組成物中から取り出し、100μmのポリエステルフィルムを剥離材として多孔質膜の両側を被覆した後、0.3MPaの窒素加圧下、80℃で5時間加熱重合した。更に、実施例1と同じ操作を行い、燃料電池用隔膜を得た。   Subsequently, these porous membranes were taken out from the monomer composition, coated on both sides of the porous membrane using a 100 μm polyester film as a release material, and then heated at 80 ° C. for 5 hours under nitrogen pressure of 0.3 MPa. Polymerized. Further, the same operation as in Example 1 was performed to obtain a fuel cell membrane.

これらの燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過率、燃料電池出力電圧を測定した。結果を表2に示す。   The cation exchange capacity, water content, membrane resistance, film thickness, methanol permeability, and fuel cell output voltage of these fuel cell membranes were measured. The results are shown in Table 2.

比較例1、2、3
表1に示した単量体組成物と多孔質膜を用いた以外は実施例1と同じ操作を行い、燃料電池用隔膜を得た。
Comparative Examples 1, 2, 3
The same operation as in Example 1 was performed except that the monomer composition and the porous membrane shown in Table 1 were used to obtain a fuel cell membrane.

この燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過率、燃料電池出力電圧を測定した。結果を表2に示す。   The cation exchange capacity, water content, membrane resistance, film thickness, methanol permeability, and fuel cell output voltage of this fuel cell membrane were measured. The results are shown in Table 2.

比較例4
パーフルオロカーボンスルホン酸膜(市販品A)を用い、カチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過率、燃料電池出力電圧を測定した。これらの結果を表2に示した。
Comparative Example 4
Using a perfluorocarbon sulfonic acid membrane (commercial product A), cation exchange capacity, water content, membrane resistance, film thickness, methanol permeability, and fuel cell output voltage were measured. These results are shown in Table 2.

Figure 2007234302
Figure 2007234302

Figure 2007234302
Figure 2007234302

固体高分子形燃料電池の基本構造を示す概念図である。It is a conceptual diagram which shows the basic structure of a polymer electrolyte fuel cell.

符号の説明Explanation of symbols

1 電池隔壁
2 燃料ガス流通孔
3 酸化剤ガス流通孔
4 燃料室側ガス拡散電極
5 酸化剤室側ガス拡散電極
6 固体高分子電解質膜(カチオンイオン交換膜)
7 燃料室
8 酸化剤室
DESCRIPTION OF SYMBOLS 1 Battery partition 2 Fuel gas flow hole 3 Oxidant gas flow hole 4 Fuel chamber side gas diffusion electrode 5 Oxidant chamber side gas diffusion electrode 6 Solid polymer electrolyte membrane (cation ion exchange membrane)
7 Fuel chamber 8 Oxidant chamber

Claims (2)

a)1個の重合性基、少なくとも1個のメチル基、及び少なくとも1個の水素原子がベンゼン環に結合してなり、且つ上記メチル基のうち1個は前記重合性基に対してパラ位に結合してなる単環式芳香族系重合性単量体、
b)架橋性重合性単量体、及び
c)重合開始剤、
を少なくとも含む重合性組成物を多孔質膜と接触させて前記重合性組成物を多孔質膜の有する空隙部に充填させた後、前記重合性組成物を重合硬化させ、次いで前記単環式芳香族系重合性単量体に由来するベンゼン環にカチオン交換基を導入することを特徴とする直接液体型燃料電池用隔膜の製造方法。
a) one polymerizable group, at least one methyl group, and at least one hydrogen atom bonded to the benzene ring, and one of the methyl groups is para-positioned relative to the polymerizable group A monocyclic aromatic polymerizable monomer formed by bonding to
b) a crosslinkable polymerizable monomer, and c) a polymerization initiator,
The polymerizable composition containing at least a porous film is brought into contact with the porous film to fill the voids of the porous film, and then the polymerizable composition is polymerized and cured, and then the monocyclic aroma A method for producing a diaphragm for a direct liquid fuel cell, wherein a cation exchange group is introduced into a benzene ring derived from an aromatic polymerizable monomer.
単環式芳香族系重合性単量体がp-メチルスチレンである請求項1に記載の直接液体型燃料電池用隔膜の製造方法。 The method for producing a diaphragm for a direct liquid fuel cell according to claim 1, wherein the monocyclic aromatic polymerizable monomer is p-methylstyrene.
JP2006052227A 2006-02-28 2006-02-28 Method for manufacturing diaphragm for direct liquid fuel cell Expired - Fee Related JP4993923B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006052227A JP4993923B2 (en) 2006-02-28 2006-02-28 Method for manufacturing diaphragm for direct liquid fuel cell
EP12169372.5A EP2506357B1 (en) 2006-02-28 2007-02-27 Separation membrane for direct liquid fuel cell and method for producing same
EP07737441A EP1990854A4 (en) 2006-02-28 2007-02-27 Separation membrane for direct liquid fuel cell and method for producing same
PCT/JP2007/053639 WO2007099954A1 (en) 2006-02-28 2007-02-27 Separation membrane for direct liquid fuel cell and method for producing same
KR1020087015904A KR101367597B1 (en) 2006-02-28 2007-02-27 Separation membrane for direct liquid fuel cell and method for producing same
US12/224,427 US8232325B2 (en) 2006-02-28 2007-02-27 Separation membrane for direct liquid fuel cell and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052227A JP4993923B2 (en) 2006-02-28 2006-02-28 Method for manufacturing diaphragm for direct liquid fuel cell

Publications (2)

Publication Number Publication Date
JP2007234302A true JP2007234302A (en) 2007-09-13
JP4993923B2 JP4993923B2 (en) 2012-08-08

Family

ID=38554701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052227A Expired - Fee Related JP4993923B2 (en) 2006-02-28 2006-02-28 Method for manufacturing diaphragm for direct liquid fuel cell

Country Status (1)

Country Link
JP (1) JP4993923B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041641A1 (en) 2008-10-06 2010-04-15 株式会社トクヤマ Method for producing anion exchange membrane for solid polymer electrolyte-type fuel cell
JP2010102987A (en) * 2008-10-24 2010-05-06 Kaneka Corp Polymer electrolyte membrane, and utilization of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262993A (en) * 1992-03-19 1993-10-12 Sumitomo Metal Ind Ltd Polymer conductor and its production
JP2000090945A (en) * 1998-09-11 2000-03-31 Aisin Seiki Co Ltd Solid polymer electrolyte film, manufacture thereof and solid polymer electrolyte fuel cell
JP2000119420A (en) * 1998-10-19 2000-04-25 Nissan Motor Co Ltd Ion exchange membrane and its preparation
JP2002102717A (en) * 2000-07-24 2002-04-09 Asahi Glass Co Ltd Heterogeneous anion exchanger and heterogeneous anion exchange membrane
JP2002114854A (en) * 2000-07-24 2002-04-16 Asahi Glass Co Ltd Anion exchange membrane, method for producing the same and apparatus for treating solution
JP2002175838A (en) * 2000-12-08 2002-06-21 Nissan Motor Co Ltd Ion conductor and its manufacturing method, and polymer electrolyte battery using the ion conductor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262993A (en) * 1992-03-19 1993-10-12 Sumitomo Metal Ind Ltd Polymer conductor and its production
JP2000090945A (en) * 1998-09-11 2000-03-31 Aisin Seiki Co Ltd Solid polymer electrolyte film, manufacture thereof and solid polymer electrolyte fuel cell
JP2000119420A (en) * 1998-10-19 2000-04-25 Nissan Motor Co Ltd Ion exchange membrane and its preparation
JP2002102717A (en) * 2000-07-24 2002-04-09 Asahi Glass Co Ltd Heterogeneous anion exchanger and heterogeneous anion exchange membrane
JP2002114854A (en) * 2000-07-24 2002-04-16 Asahi Glass Co Ltd Anion exchange membrane, method for producing the same and apparatus for treating solution
JP2002175838A (en) * 2000-12-08 2002-06-21 Nissan Motor Co Ltd Ion conductor and its manufacturing method, and polymer electrolyte battery using the ion conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041641A1 (en) 2008-10-06 2010-04-15 株式会社トクヤマ Method for producing anion exchange membrane for solid polymer electrolyte-type fuel cell
JP2010102987A (en) * 2008-10-24 2010-05-06 Kaneka Corp Polymer electrolyte membrane, and utilization of the same

Also Published As

Publication number Publication date
JP4993923B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
KR101217947B1 (en) Separation Membrane for Fuel Battery and Process for Producing the Same
JP4719796B2 (en) Diaphragm for direct liquid fuel cell
JP2009203455A (en) Anion exchange membrane and its use
JPH11310649A (en) Cation exchange membrane and its use
JP2001135328A (en) Diaphragm for solid high molecular electrolyte fuel cell
KR101367597B1 (en) Separation membrane for direct liquid fuel cell and method for producing same
JP5059341B2 (en) Diaphragm for direct liquid fuel cell
JP4993923B2 (en) Method for manufacturing diaphragm for direct liquid fuel cell
JP4950539B2 (en) Diaphragm for direct liquid fuel cell
JP5048321B2 (en) Diaphragm for direct liquid fuel cell and method for producing the same
JP5010857B2 (en) Method for manufacturing diaphragm for direct liquid fuel cell
JP5159135B2 (en) Diaphragm for direct liquid fuel cell and method for producing the same
JP5059256B2 (en) Method for producing membrane for polymer electrolyte fuel cell and membrane for polymer electrolyte fuel cell
JP5090007B2 (en) Diaphragm for direct liquid fuel cell and method for producing the same
JP5349313B2 (en) Diaphragm for direct liquid fuel cell and manufacturing method thereof
JP4906366B2 (en) Method for manufacturing diaphragm for direct liquid fuel cell
JP4849892B2 (en) Method for manufacturing diaphragm for direct liquid fuel cell
JP2009093998A (en) Diaphragm for direct liquid fuel cell and its manufacturing method
JP2009104810A (en) Electrolyte membrane, membrane electrode assembly, fuel cell, and method of manufacturing electrolyte membrane
JP2009104809A (en) Electrolyte membrane, membrane electrode assembly, fuel cell, and method of manufacturing electrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees