JP2007233423A - Photographic lens - Google Patents

Photographic lens Download PDF

Info

Publication number
JP2007233423A
JP2007233423A JP2007162276A JP2007162276A JP2007233423A JP 2007233423 A JP2007233423 A JP 2007233423A JP 2007162276 A JP2007162276 A JP 2007162276A JP 2007162276 A JP2007162276 A JP 2007162276A JP 2007233423 A JP2007233423 A JP 2007233423A
Authority
JP
Japan
Prior art keywords
lens
object side
image
photographic
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007162276A
Other languages
Japanese (ja)
Other versions
JP4722087B2 (en
Inventor
Hodaka Takeuchi
穂高 竹内
Yoichi Ishikawa
洋一 石川
Yasuhiko Abe
泰彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2007162276A priority Critical patent/JP4722087B2/en
Publication of JP2007233423A publication Critical patent/JP2007233423A/en
Application granted granted Critical
Publication of JP4722087B2 publication Critical patent/JP4722087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To thin a photographic lens applied to a mobile camera or the like. <P>SOLUTION: The photographic lens is constituted of an aperture diaphragm 1 having a predetermined aperture; a first lens 2 turning its convex surfaces to an object side and an image surface side and having positive refractive power; a second lens 3 turning its concave surface to the object side and having positive refractive power; and a third lens 4 turning its convex surface to the object side, having an aspherical surface on the image surface side, formed to have an inflection point midway and having negative refractive power, which are arranged, in order starting from the object side to the image surface side. By constituting the photographic lens of three lenses in three groups, the thin photographic lens with appropriate back focus being secured, whose aberrations are satisfactorily corrected, whose entire length is shortened, and which is adapted to a high-density imaging element, having 1,000,000 or more pixels, is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、CCD等の撮像素子を備えた携帯電話機、携帯情報端末機(PDA)、携帯型パーソナルコンピュータ等のモバイルカメラ、デジタルスチルカメラ、ビデオカメラ等に適用される撮影レンズに関する。   The present invention relates to a photographic lens applied to a mobile phone, a personal digital assistant (PDA), a mobile personal computer such as a portable personal computer, a digital camera, a video camera, and the like equipped with an image sensor such as a CCD.

CCD等の撮像素子に適用される撮影レンズとしては、例えば監視用カメラ等の如く動画を撮影するために適用されるものが知られている。この監視用カメラは、主として動画の撮影に供され、その撮像素子の画素数も比較的少ないことから、レンズそのものに高い光学性能は必要とされていなかった。
従来の監視用カメラ、ビデオカメラ等に用いられていた撮像素子では、銀塩フィルム式のカメラに比べて撮影画像の画質の悪さが指摘されていたが、近年における撮像素子の著しい技術進歩により、銀塩フィルム式のカメラによる画像に近い画質のものが得られるようになってきている。と同時に、撮像素子の小型化、高密度化等が達成され、デジタルスチルカメラ等に適用される撮影レンズとしては、高性能であると同時に、小型、薄型、安価であることが強く望まれている。
As a photographing lens applied to an image pickup device such as a CCD, there is known a lens that is used for photographing a moving image such as a surveillance camera. This surveillance camera is mainly used for shooting moving images, and since the number of pixels of the image sensor is relatively small, the lens itself does not require high optical performance.
In image sensors used in conventional surveillance cameras, video cameras, etc., it has been pointed out that the image quality of captured images is worse than that of a silver salt film type camera, but due to remarkable technological progress of image sensors in recent years, An image with a quality close to that obtained by a silver salt film camera has been obtained. At the same time, downsizing and high density of the image sensor have been achieved, and as a photographic lens applied to a digital still camera or the like, it is strongly desired that it is high performance and at the same time small, thin and inexpensive. Yes.

一方、携帯電話機、携帯情報端末機(PDA)等に用いられる撮影レンズは、レンズの構成枚数が1〜2枚程度と非常に小型で薄型になっているものの、10万画素〜35万画素程度の比較的低密度の撮像素子に対応するものであって、得られる画像としては十分満足されるものではなかった。
また、CCD等の撮像素子には、従来から光を効率良く使う為に撮像素子の表面にマイクロレンズが設けられている。それ故に、撮像素子に入射する光線角度が大き過ぎると、ケラレ現象を生じて光が撮像素子に入っていかない。そこで、これらに適用される撮影レンズとしては、射出瞳が像面から十分離れており、光線が撮像素子に入射する角度、すなわち射出角度を小さくしてテレセントリック性を良くしたものが一般的であった(例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7参照)。
On the other hand, a photographing lens used for a cellular phone, a personal digital assistant (PDA), etc. is a very small and thin lens having about 1 to 2 lenses, but is about 100,000 to 350,000 pixels. Therefore, the obtained image was not fully satisfactory.
In addition, in an image sensor such as a CCD, a microlens is conventionally provided on the surface of the image sensor in order to use light efficiently. Therefore, if the angle of light incident on the image sensor is too large, vignetting occurs and light does not enter the image sensor. Therefore, as a photographic lens applied to these, a lens in which the exit pupil is sufficiently away from the image plane and the angle at which the light beam enters the image sensor, that is, the exit angle is reduced to improve the telecentricity is generally used. (For example, see Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Literature 5, Patent Literature 6, and Patent Literature 7).

特開平2000−171697号公報Japanese Patent Laid-Open No. 2000-171697 特開平2001−133684号公報Japanese Patent Laid-Open No. 2001-133684 特開平2002−98888号公報Japanese Patent Laid-Open No. 2002-98888 特開平2002−162561号公報Japanese Patent Laid-Open No. 2002-162561 特開平05−40220号公報Japanese Patent Laid-Open No. 05-40220 特開平05−157962号公報Japanese Patent Laid-Open No. 05-157862 特開平05−188284号公報JP 05-188284 A

ところで、近年における撮像素子の著しい技術進歩により、より小型で、より薄型で、より高解像で、より安価な撮影レンズが要望されているものの、従来の撮影レンズではテレセントリック性を良くするが故にレンズ全長が比較的長くなり、より薄型化という点では適していなかった。
一方、従来の撮像素子では光線の射出角度の限界により制約を受けて、撮影レンズをそれ程薄く(レンズ系全長をそれ程短く)はできなかったが、マイクロレンズを工夫することにより、光線の射出角度が20度位までのものでも使用できるようになってきた。したがって、このようなマイクロレンズをもつ撮像素子に適した、より薄型の撮影レンズが要望されている。
By the way, the recent technological advances in image sensors have led to demands for smaller, thinner, higher resolution, and cheaper imaging lenses, but conventional imaging lenses have improved telecentricity. The overall length of the lens is relatively long, which is not suitable for further thinning.
On the other hand, the conventional imaging device was limited by the limit of the light emission angle, and the photographic lens could not be made so thin (the total length of the lens system was so short). Can be used up to about 20 degrees. Therefore, there is a demand for a thinner photographic lens suitable for an image sensor having such a microlens.

本発明は、上記の点に鑑みて成されたものであり、その目的とするところは、
ケラレ現象等を解消しつつ、非常に簡略なレンズ構成で、小型化、薄型化、軽量化、低コスト化等が図れ、非球面を施す位置を適切に選定することにより、携帯電話機、携帯情報端末機等のモバイルカメラ、デジタルスチルカメラ、デジタルビデオカメラ等に搭載される100万画素以上の高密度な撮像素子に対応できる高性能な撮影レンズを提供することにある。
The present invention has been made in view of the above points.
While eliminating the vignetting phenomenon, it is possible to reduce the size, thickness, weight, cost, etc. with a very simple lens configuration. An object of the present invention is to provide a high-performance photographic lens that can be used for a high-density imaging device having 1 million pixels or more mounted in a mobile camera such as a terminal, a digital still camera, a digital video camera, or the like.

本発明の撮影レンズは、物体側から像面側に向けて順に配列された、所定の口径をもつ開口絞りと、物体側および像面側の両面に凸面を向けた1枚の正の屈折力を有する第1レンズと、物体側に凹面を向けた正の屈折力を有する第2レンズと、物体側に凸面を向け,像面側に非球面を有しかつ途中に変曲点をもつように形成された負の屈折力を有する第3レンズと、からなることを特徴としている。
この構成によれば、先端に開口絞りを配置し、両凸形状の第1レンズ及び物体側が凹面をなす第2レンズが共に正の屈折力を有し、第3レンズが負の屈折力を有する3群3枚のレンズ構成とすることにより、適切なバックフォーカスが確保され、レンズ全長が短い薄型の撮影レンズを得ることができる。また、第3レンズは像面側に非球面を有しかつ途中に変曲点をもつように形成され、すなわち、非球面の有効範囲内において、径方向の外側に向かう途中の位置に凹状から凸状に変化する変曲点を設けることで、諸収差、特に非点収差、歪曲収差を良好に補正しつつ、射出角度を小さくすることができる。
The photographic lens of the present invention includes an aperture stop having a predetermined aperture, which is arranged in order from the object side to the image plane side, and a single positive refractive power with convex surfaces facing both the object side and the image plane side. A first lens having a positive refractive power with a concave surface facing the object side, a convex surface facing the object side, an aspheric surface on the image side, and an inflection point in the middle And a third lens having negative refractive power formed in the above.
According to this configuration, an aperture stop is disposed at the tip, and the first lens having a biconvex shape and the second lens having a concave surface on the object side both have a positive refractive power, and the third lens has a negative refractive power. By adopting a three-group, three-lens configuration, it is possible to obtain a thin photographic lens with an appropriate back focus and a short overall lens length. The third lens has an aspheric surface on the image surface side and is formed so as to have an inflection point in the middle. That is, the third lens has a concave shape at a position on the way to the outside in the radial direction within the effective range of the aspheric surface. By providing an inflection point that changes in a convex shape, the exit angle can be reduced while satisfactorily correcting various aberrations, particularly astigmatism and distortion.

上記構成において、第2レンズ及び第3レンズは、物体側及び像面側の両面に非球面を有する、構成を採用できる。
この構成によれば、レンズ系の全長が短くされ、小型化されるに連れて各収差の補正が困難になり又射出角度も大きくなる点を有効に改善しつつ、高密度撮像素子に適応し、光線の射出角度が24度以下で、諸収差が良好に補正された撮影レンズを得ることができる。
In the above configuration, the second lens and the third lens may have aspheric surfaces on both the object side and the image side.
According to this configuration, the overall length of the lens system is shortened, and it becomes difficult to correct each aberration as the lens system is miniaturized. It is possible to obtain a photographic lens in which the light emission angle is 24 degrees or less and various aberrations are favorably corrected.

上記構成において、第2レンズは、物体側に非球面を有しかつ周辺部に向かうに連れて屈折力が小さくなるように形成されている、構成を採用できる。
この構成によれば、諸収差、特に非点収差、コマ収差の補正が容易になり、かつ、良好に補正することができる。
In the above-described configuration, the second lens may be configured to have an aspheric surface on the object side and to have a refractive power that decreases toward the periphery.
According to this configuration, various aberrations, in particular astigmatism and coma aberration, can be easily corrected and corrected satisfactorily.

上記構成において、第2レンズ及び第3レンズは、樹脂材料により形成されている、構成を採用できる。
この構成によれば、樹脂材料とすることで生産コストを低減でき、軽量化も行える。また、樹脂材料で形成する場合射出成形にて行われるため、変曲点を有する湾曲面等の複雑な形状も容易に形成することができる。
The said structure WHEREIN: The structure currently formed with the resin material can be employ | adopted for the 2nd lens and the 3rd lens.
According to this configuration, the production cost can be reduced and the weight can be reduced by using the resin material. In addition, since the resin material is formed by injection molding, a complicated shape such as a curved surface having an inflection point can be easily formed.

上記構成において、レンズ全系の焦点距離をf、開口絞りの物体側前面から被写体が結像される像面までのレンズ系の全長をTLとするとき、
(1) TL/f<1.6
を満足する、構成を採用できる。
この構成によれば、レンズ全系の焦点距離とレンズ系の全長との関係を(1)式の如く定めることにより、撮影レンズの小型化、薄型化を容易に達成することができる。
In the above configuration, when the focal length of the entire lens system is f and the total length of the lens system from the object side front surface of the aperture stop to the image plane on which the subject is imaged is TL,
(1) TL / f <1.6
Can be adopted.
According to this configuration, by defining the relationship between the focal length of the entire lens system and the total length of the lens system as shown in equation (1), it is possible to easily achieve a reduction in size and thickness of the photographing lens.

上記構成において、第1レンズのアッベ数をν1とするとき、
(2) ν1>45
を満足する、構成を採用できる。
この構成によれば、第1レンズのアッベ数を(2)式の如く定めることにより、特に軸上色収差、倍率色収差を良好に補正することができる。
In the above configuration, when the Abbe number of the first lens is ν1,
(2) ν1> 45
Can be adopted.
According to this configuration, the axial chromatic aberration and the lateral chromatic aberration can be particularly favorably corrected by determining the Abbe number of the first lens as shown in equation (2).

上記構成において、第2レンズの物体側の面の曲率半径をR4、第2レンズの像面側の面の曲率半径をR5、第3レンズの物体側の面の曲率半径をR6、第3レンズの像面側の面の曲率半径をR7とするとき、
(3) 0.7<│R4│/│R5│<2
(4) 1<R6/R7<4
を満足する、構成を採用できる。
この構成によれば、第2レンズの曲率半径が(3)式を満たすように形成し、第3レンズの曲率半径が(4)式を満たすように形成することにより、適切なバックフォーカスを確保しつつ、諸収差、特に非点収差、歪曲収差を良好に補正することができ、良好な光学特性が得られる。
In the above configuration, the radius of curvature of the object side surface of the second lens is R4, the radius of curvature of the image side surface of the second lens is R5, the radius of curvature of the object side surface of the third lens is R6, and the third lens. When the radius of curvature of the surface on the image plane side is R7,
(3) 0.7 <| R4 | / | R5 | <2
(4) 1 <R6 / R7 <4
Can be adopted.
According to this configuration, the second lens is formed so that the radius of curvature satisfies the expression (3), and the curvature radius of the third lens is formed so as to satisfy the expression (4), thereby ensuring an appropriate back focus. However, various aberrations, particularly astigmatism and distortion can be corrected well, and good optical characteristics can be obtained.

上記構成において、第2レンズと前記第3レンズとの光軸方向における間隔をD5、レンズ全系の焦点距離をfとするとき、
(5) D5/f<0.15
を満足する、構成を採用できる。
この構成によれば、第2レンズと第3レンズとの間隔が(5)式を満たすように形成することにより、諸収差、特に非点収差、歪曲収差を良好に補正することができる。
In the above configuration, when the distance between the second lens and the third lens in the optical axis direction is D5, and the focal length of the entire lens system is f,
(5) D5 / f <0.15
Can be adopted.
According to this configuration, by forming the distance between the second lens and the third lens so as to satisfy the expression (5), various aberrations, particularly astigmatism and distortion can be corrected well.

上記構成において、第2レンズの光軸方向における肉厚をD4、第3レンズの光軸方向における肉厚をD6とするとき、
(6) 0.8<D4/D6<1.3
を満足する、構成を採用できる。
この構成によれば、第2レンズ及び第3レンズの肉厚が(6)式を満たすように形成することにより、適切なバックフォーカスを確保しつつ、諸収差、特に非点収差を良好に補正することができ、良好な光学特性が得られる。
In the above configuration, when the thickness of the second lens in the optical axis direction is D4 and the thickness of the third lens in the optical axis direction is D6,
(6) 0.8 <D4 / D6 <1.3
Can be adopted.
According to this configuration, the thickness of the second lens and the third lens is formed so as to satisfy the expression (6), so that various aberrations, particularly astigmatism, can be corrected satisfactorily while ensuring an appropriate back focus. And good optical properties can be obtained.

上記構成をなす本発明の撮影レンズによれば、撮像素子におけるケラレ現象等を解消し、小型化、軽量化、低コスト化等を達成しつつ、3群3枚の簡略な構成で、諸収差が良好に補正された薄型の撮影レンズを得ることができる。
特に、光線の射出角度が20度以下で、レンズ全長が(バックフォーカスを含まない状態で)4.5mm以下と短く、しかも適切なバックフォーカスを確保でき、諸収差が良好に補正され、100万画素以上の高密度撮像素子に好適な小型で薄型の撮影レンズを得ることができる。
According to the photographic lens of the present invention having the above configuration, various aberrations can be achieved with a simple configuration of three elements in three groups while eliminating the vignetting phenomenon in the image sensor and achieving downsizing, weight reduction, cost reduction, and the like. It is possible to obtain a thin photographic lens in which is corrected well.
In particular, the light emission angle is 20 degrees or less, the total lens length is as short as 4.5 mm or less (in a state where the back focus is not included), an appropriate back focus can be secured, various aberrations are corrected, and 1 million A small and thin photographic lens suitable for a high-density imaging device having pixels or more can be obtained.

以下、本発明の実施の形態について、添付図面を参照しつつ説明する。
図1は、本発明に係る撮影レンズの一実施形態を示す基本構成図である。この実施形態に係る撮影レンズは、図1に示すように、物体側から像面側に向けて、所定の口径をもつ開口絞り1と、第1レンズ群(I)と、第2レンズ群(II)と、第3レンズ群(III)とが順次に配列されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a basic configuration diagram showing an embodiment of a photographic lens according to the present invention. As shown in FIG. 1, the photographic lens according to this embodiment includes an aperture stop 1 having a predetermined aperture, a first lens group (I), and a second lens group (from the object side to the image plane side). II) and the third lens group (III) are sequentially arranged.

第1レンズ群(I)は、物体側に凸面を向けた正の屈折力を有する第1レンズ2により形成されている。
第2レンズ群(II)は、物体側に凹面を向けた正の屈折力を有する第2レンズ3により形成されている。
第3レンズ群(III)は、物体側に凸面を向けた負の屈折力を有する第3レンズ4により形成されている。
この配列構成において、第3レンズ4よりも像面側寄りには、赤外線カットフィルタ、ローパスフィルタ等としての平行平板からなるガラスフィルタ5が配置され、さらに後方にはCCD等の像面Sが配置されることになる。
The first lens group (I) is formed by a first lens 2 having a positive refractive power with a convex surface facing the object side.
The second lens group (II) is formed by the second lens 3 having a positive refractive power with the concave surface facing the object side.
The third lens group (III) is formed by a third lens 4 having a negative refractive power with a convex surface facing the object side.
In this arrangement, a glass filter 5 made of a parallel plate as an infrared cut filter, a low-pass filter or the like is arranged closer to the image plane side than the third lens 4, and an image plane S such as a CCD is arranged behind the third lens 4. Will be.

尚、開口絞り1、第1レンズ2、第2レンズ3、第3レンズ4、ガラスフィルタ5からなる配列構成においては、図1に示すように、開口絞り1、レンズ2〜4、ガラスフィルタ5のそれぞれの面をSi(i=1〜9)、それぞれの面Siの曲率半径をRi(i=1〜9)、d線に対する第1レンズ2〜第3レンズ4の屈折率をNi(i=1〜3)及びアッベ数をνi(i=1〜3)、ガラスフィルタ5のd線に対する屈折率をN4及びアッベ数をν4で表す。さらに、開口絞り1からガラスフィルタ5までのそれぞれの光軸方向Lにおける間隔(厚さ、空気間隔)をDi(i=1〜8)、バックフォーカスをBFで表す。   In the arrangement configuration including the aperture stop 1, the first lens 2, the second lens 3, the third lens 4, and the glass filter 5, as shown in FIG. 1, the aperture stop 1, the lenses 2 to 4, and the glass filter 5. Each surface of Si is i (i = 1 to 9), the radius of curvature of each surface Si is Ri (i = 1 to 9), and the refractive index of the first lens 2 to the third lens 4 with respect to the d-line is Ni (i = 1 to 3) and Abbe number are represented by νi (i = 1 to 3), and the refractive index of the glass filter 5 with respect to the d-line is represented by N4 and Abbe number by ν4. Further, the distance (thickness, air distance) in the optical axis direction L from the aperture stop 1 to the glass filter 5 is represented by Di (i = 1 to 8), and the back focus is represented by BF.

ここで、レンズ全系の焦点距離をf、開口絞り1の物体側前面S1から被写体が結像される像面Sまで(バックフォーカスは空気換算距離)の距離をTLとするとき、下記条件式(1)、
(1)TL/f<1.6
を満足するように構成されている。
条件式(1)は、レンズ全系の光軸方向の寸法とレンズ全系の焦点距離との適切な比を定めたものであり、レンズの薄型化に関する条件である。このTL/fの値が1.6未満となるように形成することにより、小型化、薄型化が容易に達成される。
Here, when the focal length of the entire lens system is f and the distance from the object-side front surface S1 of the aperture stop 1 to the image plane S on which the subject is imaged (back focus is an air conversion distance) is TL, the following conditional expression (1),
(1) TL / f <1.6
It is configured to satisfy.
Conditional expression (1) defines an appropriate ratio between the dimension of the entire lens system in the optical axis direction and the focal length of the entire lens system, and is a condition relating to thinning of the lens. By forming so that the value of TL / f is less than 1.6, size reduction and thickness reduction can be easily achieved.

第1レンズ2は、物体側に凸面を向けた正の屈折力を有するレンズ、特に、物体側および像面側の両面に凸面を向けた正の屈折力を有するレンズであり、ガラス材料により形成されており、そのアッベ数ν1が、下記条件式(2)、
(2) ν1>45
を満足するように構成されている。
条件式(2)は、第1レンズ2の適切なアッベ数を定めたものであり、この条件式を満たさないと、特に軸上色収差、倍率色収差が大きくなってしまう。したがって、この条件式を満足することにより、軸上色収差、倍率色収差を良好に補正することができる。
The first lens 2 is a lens having a positive refractive power with a convex surface facing the object side, particularly a lens having a positive refractive power with a convex surface facing both the object side and the image surface side, and is formed of a glass material. The Abbe number ν1 is expressed by the following conditional expression (2),
(2) ν1> 45
It is configured to satisfy.
Conditional expression (2) defines an appropriate Abbe number of the first lens 2, and unless this conditional expression is satisfied, axial chromatic aberration and lateral chromatic aberration are particularly increased. Therefore, by satisfying this conditional expression, axial chromatic aberration and lateral chromatic aberration can be corrected well.

第2レンズ3は、物体側に凹面を像面側に凸面を向けたレンズであり、ここでは樹脂材料により形成されている。また、第2レンズ3は、物体側及び像面側の両面S4,S5が非球面に形成されている。さらに、第2レンズ3の物体側の面S4に形成された非球面は、周辺部に向かうに連れて屈折力が小さくなるように形成されている。
レンズ全長が短くなり、小型化されるに連れて、各収差の補正が非常に困難になり、射出角度も非常に大きくなってしまう傾向にあるが、第2レンズ3の両面S4,S5を非球面とすることにより、適切なバックフォーカスを確保しつつ、諸収差を良好に補正することができる。特に、周辺部の屈折力を小さくすることにより、非点収差、コマ収差を容易に補正することができる。
The second lens 3 is a lens having a concave surface on the object side and a convex surface on the image surface side, and is formed of a resin material here. Further, the second lens 3 is formed such that both the object side and the image surface side S4 and S5 are aspherical. Furthermore, the aspherical surface formed on the object-side surface S4 of the second lens 3 is formed such that its refractive power decreases toward the periphery.
As the overall length of the lens becomes shorter and smaller, correction of each aberration becomes very difficult, and the exit angle tends to become very large. However, both surfaces S4 and S5 of the second lens 3 are not used. By using a spherical surface, various aberrations can be corrected satisfactorily while ensuring an appropriate back focus. In particular, astigmatism and coma can be easily corrected by reducing the refractive power of the peripheral portion.

第3レンズ4は、物体側に凸面を像面側に凹面を向けた負の屈折力を有するレンズ、特に、物体側に凸面を向け,像面側に非球面を有しかつ途中に変曲点をもつように形成された負の屈折力を有するレンズであり、ここでは樹脂材料により形成されている。
ここでは、第3レンズ4は、物体側及び像面側の両面S6,S7が非球面に形成されている。そして、第3レンズ4の像面側に形成された非球面は、中心から径方向外側に向かう途中に凹状から凸状に変化する変曲点をもつように形成されている。
この場合も前述同様に、レンズ全長が短くなり、小型化されるに連れて、各収差の補正が非常に困難になり、射出角度も非常に大きくなってしまう傾向にあるが、第3レンズ4の両面S6,S7を非球面とすることにより、適切なバックフォーカスを確保しつつ、諸収差を良好に補正することができる。
特に、変曲点を設けた形状とすることにより、非点収差、歪曲収差を良好に補正しつつ、射出角度を小さくすることができ、中心と周辺の像面を容易に一致させることができる。
The third lens 4 has a negative refractive power with a convex surface on the object side and a concave surface on the image surface side, and in particular, has a convex surface on the object side, an aspheric surface on the image surface side, and an inflection in the middle. It is a lens having negative refractive power formed so as to have a point, and here is formed of a resin material.
Here, in the third lens 4, both the object side and the image surface side S 6 and S 7 are formed as aspherical surfaces. The aspherical surface formed on the image plane side of the third lens 4 is formed so as to have an inflection point that changes from a concave shape to a convex shape on the way from the center toward the radially outer side.
In this case as well, as described above, as the overall length of the lens becomes shorter and the size is reduced, correction of each aberration becomes very difficult and the exit angle tends to become very large. By making the both surfaces S6 and S7 aspherical, various aberrations can be favorably corrected while ensuring an appropriate back focus.
In particular, by providing a shape with an inflection point, the exit angle can be reduced while satisfactorily correcting astigmatism and distortion, and the center and peripheral image planes can be easily matched. .

ここで、第2レンズ3及び第3レンズ4に形成する非球面を表す式は、次式で規定される。
Z=Cy/[1+(1−εC1/2]+Dy+Ey+Fy+Gy10+Hy12、ただし、Z:非球面の頂点における接平面から、光軸Lからの高さがyの非球面上の点までの距離、y:光軸Lからの高さ、C:非球面の頂点における曲率(1/R)、ε:円錐定数、D,E,F,G,H:非球面係数である。
Here, a formula representing an aspheric surface formed on the second lens 3 and the third lens 4 is defined by the following formula.
Z = Cy 2 / [1+ (1-εC 2 y 2 ) 1/2 ] + Dy 4 + Ey 6 + Fy 8 + Gy 10 + Hy 12 , where Z: height from the optical axis L from the tangential plane at the apex of the aspheric surface Is the distance to the point on the aspheric surface of y, y: height from the optical axis L, C: curvature (1 / R) at the apex of the aspheric surface, ε: conic constant, D, E, F, G, H : Aspheric coefficient.

また、上記構成において、第2レンズ3と第3レンズ4とは、第2レンズ3の曲率半径R4,R5、第3レンズ4の曲率半径R6,R7が、下記条件式(3),(4)、
(3) 0.7<│R4│/│R5│<2
(4) 1<R6/R7<4
を満足するように構成されている。
条件式(3),(4)は、第2レンズ3及び第3レンズ4において良好な光学特性を達成するべく、レンズの適切な曲率半径の比を定めたものである。これらの条件式を満たさないと、適切なバックフォーカスを確保するのが困難になり、又、諸収差、特に非点収差、歪曲収差の補正が困難になる。したがって、これらの条件式を満足することにより、適切なバックフォーカスを確保することができ、又、諸収差を良好に補正することができ十分な光学特性を得ることができる。
In the above configuration, the second lens 3 and the third lens 4 have the following curvatures R4 and R5 of the second lens 3 and radii R6 and R7 of the third lens 4 in the following conditional expressions (3) and (4 ),
(3) 0.7 <| R4 | / | R5 | <2
(4) 1 <R6 / R7 <4
It is configured to satisfy.
Conditional expressions (3) and (4) define appropriate ratios of the curvature radii of the lenses in order to achieve good optical characteristics in the second lens 3 and the third lens 4. If these conditional expressions are not satisfied, it is difficult to secure an appropriate back focus, and it is difficult to correct various aberrations, particularly astigmatism and distortion. Therefore, by satisfying these conditional expressions, an appropriate back focus can be ensured, various aberrations can be corrected well, and sufficient optical characteristics can be obtained.

また、第2レンズ3と第3レンズ4とは、光軸方向における両者の間隔D5、レンズ全系の焦点距離fが、下記条件式(5)、
(5) D5/f<0.15
を満足するように構成されている。
条件式(5)は、第2レンズ3と第3レンズ4との光軸方向における適切なレンズ間隔を定めたものである。この条件式を満たさないと、射出瞳までの距離が長くなり、撮像素子に入射する光線の角度が小さくなるため有利ではあるが、レンズ系の全長が長くなると同時に、第3レンズ4の外径も大きくなってしまうため好ましくなく、又、特に、非点収差、歪曲収差の補正が困難になる。したがって、この条件式を満足することにより、薄型化、小型化を達成しつつ、諸収差、特に非点収差、歪曲収差を良好に補正することができる。
Further, the second lens 3 and the third lens 4 have a distance D5 between them in the optical axis direction and a focal length f of the entire lens system in the following conditional expression (5):
(5) D5 / f <0.15
It is configured to satisfy.
Conditional expression (5) defines an appropriate lens interval between the second lens 3 and the third lens 4 in the optical axis direction. If this conditional expression is not satisfied, it is advantageous because the distance to the exit pupil is increased and the angle of the light ray incident on the image sensor is reduced. However, the overall length of the lens system is increased and the outer diameter of the third lens 4 is increased. Is also undesirable, and correction of astigmatism and distortion is particularly difficult. Therefore, by satisfying this conditional expression, it is possible to satisfactorily correct various aberrations, particularly astigmatism and distortion, while achieving a reduction in thickness and size.

さらに、第2レンズ3と第3レンズ4とは、第2レンズ3の肉厚D4及び第3レンズ4の肉厚D6が、下記条件式(6)、
(6) 0.8<D4/D6<1.3
を満足するように構成されている。
条件式(6)は、第2レンズ3と第3レンズ4との光軸上にける適切な肉厚比を定めたものである。この条件式を満たさないと、適切なバックフォーカスの確保が困難になり、又、諸収差、特に非点収差の補正が困難になる。したがって、この条件式を満足することにより、適切なバックフォーカスが確保され、諸収差、特に非点収差を良好に補正することができ、良好な光学特性が得られる。
Further, the second lens 3 and the third lens 4 have a thickness D4 of the second lens 3 and a thickness D6 of the third lens 4 satisfying the following conditional expression (6),
(6) 0.8 <D4 / D6 <1.3
It is configured to satisfy.
Conditional expression (6) defines an appropriate thickness ratio on the optical axis of the second lens 3 and the third lens 4. If this conditional expression is not satisfied, it is difficult to secure an appropriate back focus, and it is difficult to correct various aberrations, particularly astigmatism. Therefore, by satisfying this conditional expression, an appropriate back focus is ensured, various aberrations, particularly astigmatism, can be favorably corrected, and good optical characteristics can be obtained.

上記構成からなる実施形態の具体的な数値による実施例を、実施例1として以下に示す。実施例1における主な仕様諸元、種々の数値データ(設定値)、非球面に関する数値データは以下に示す通りである。また、この実施例1における球面収差、非点収差、歪曲収差(ディスト−ション)、倍率色収差に関する収差線図は、図2に示されるような結果となる。尚、図2において、Hは入射高さ、Y´は像高さ、dはd線による収差、FはF線による収差、cはc線による収差をそれぞれ示し、又、SCは正弦条件の不満足量を示し、さらに、DSはサジタル平面での収差、DTはメリジオナル平面での収差を示す。   An example with specific numerical values of the embodiment configured as described above will be shown as Example 1 below. The main specification specifications, various numerical data (setting values), and numerical data related to the aspherical surface in Example 1 are as follows. In addition, the aberration diagrams regarding the spherical aberration, astigmatism, distortion (distortion), and lateral chromatic aberration in Example 1 are as shown in FIG. In FIG. 2, H represents the incident height, Y ′ represents the image height, d represents the aberration due to the d line, F represents the aberration due to the F line, c represents the aberration due to the c line, and SC represents the sine condition. It indicates an unsatisfactory amount, DS further indicates an aberration on the sagittal plane, and DT indicates an aberration on the meridional plane.

<仕様諸元>
物体距離=無限、レンズ全系の焦点距離f=4.35mm、FNo.=3.95、射出瞳位置=−4.41mm、最外角光線の射出角度=−18.9°、レンズ系全長(開口絞り前面〜第3レンズ後端)=4.14mm、バックフォーカス(空気換算)=1.58mm、レンズ系全長(開口絞り前面〜像面;ガラスフィルタ5を含む)=5.97mm、レンズ系全長(開口絞り前面〜像面;ガラスフィルタ5無し)TL=5.72mm、画角(2ω)=60.4°
<Specification specifications>
Object distance = infinity, focal length f of the entire lens system = 4.35 mm, FNo. = 3.95, exit pupil position = −4.41 mm, exit angle of outermost ray = −18.9 °, total lens system length (front of aperture stop to third lens rear end) = 4.14 mm, back focus (air (Converted) = 1.58 mm, total lens system length (front of aperture stop to image plane; including glass filter 5) = 5.97 mm, total length of lens system (front of aperture stop to image plane; no glass filter 5) TL = 5.72 mm , Angle of view (2ω) = 60.4 °

<曲率半径>
R1=∞(開口絞り)、R2=2.100mm、R3=−31.041mm、R4=−1.307mm(非球面)、R5=−1.415mm(非球面)、R6=2.620mm(非球面)、R7=1.573mm(非球面)、R8=∞、R9=∞
<光軸上の間隔>
D1=0.050mm、D2=1.013mm、D3=0.840mm、D4=1.090mm、D5=0.100mm、D6=1.045mm、D7=0.783mm、D8=0.750mm、BF=0.30mm
<屈折率(Nd)>
N1=1.49700、N2=1.50914、N3=1.50914、N4=1.51680
<アッベ数>
ν1=81.6、ν2=56.4、ν3=56.4、ν4=64.2
<Curvature radius>
R1 = ∞ (aperture stop), R2 = 2.100 mm, R3 = -31.041 mm, R4 = −1.307 mm (aspherical), R5 = −1.415 mm (aspherical), R6 = 2.620 mm (non-aspheric) Spherical surface), R7 = 1.573 mm (aspherical surface), R8 = ∞, R9 = ∞
<Spacing on the optical axis>
D1 = 0.050 mm, D2 = 1.013 mm, D3 = 0.840 mm, D4 = 1.090 mm, D5 = 0.100 mm, D6 = 1.045 mm, D7 = 0.783 mm, D8 = 0.750 mm, BF = 0.30mm
<Refractive index (Nd)>
N1 = 1.49700, N2 = 1.50914, N3 = 1.50914, N4 = 1.51680
<Abbe number>
ν1 = 81.6, ν2 = 56.4, ν3 = 56.4, ν4 = 64.2

<非球面係数>
<S4>
ε=−1.6013550、D=−0.1373080、E=0.9609190×10−1、F=0.2122470×10−1、G=−0.4222570×10−1、H=0.1276420×10−1
<S5>
ε=0.4005340、D=−0.7267790×10−1、E=0.6589860×10−1、F=0.7947910×10−2、G=−0.4892700×10−2、H=0.3645610×10−3
<S6>
ε=−2.8115860、D=−0.1355510、E=0.4805600×10−1、F=−0.6459320×10−2、G=−0.1636780×10−3、H=0.5901350×10−4
<S7>
ε=−0.3867960、D=−0.1251790、E=0.2677310×10−1、F=−0.4085650×10−2、G=0.4376590×10−3、H=−0.2920160×10−4
<Aspheric coefficient>
<S4>
ε = −1.6013550, D = −0.1373080, E = 0.609909190 × 10 −1 , F = 0.12222470 × 10 −1 , G = −0.4222570 × 10 −1 , H = 0.127620 × 10 -1
<S5>
ε = 0.4005340, D = −0.7267790 × 10 −1 , E = 0.6589860 × 10 −1 , F = 0.79947910 × 10 −2 , G = −0.4892700 × 10 −2 , H = 0.3645610 × 10 −3
<S6>
ε = -2.8115860, D = -0.1355510, E = 0.4805600 x 10 -1 , F = -0.6459320 x 10 -2 , G = -0.1636780 x 10 -3 , H = 0. 5901350 × 10 -4
<S7>
ε = −0.3867960, D = −0.1251790, E = 0.26777310 × 10 −1 , F = −0.40885650 × 10 −2 , G = 0.4376590 × 10 −3 , H = −0. 2920160 × 10 −4

ここで、条件式(1)〜(6)の値は、
(1) TL/f=1.31(<1.6)
(2) ν1=81.6(>45)
(3) │R4│/│R5│=0.92(0.7<0.92<2)
(4) R6/R7=1.67(1<1.67<4)
(5) D5/f=0.02(<0.15)
(6) D4/D6=1.04(0.8<1.04<1.3)
となり、全て満足している。
Here, the values of the conditional expressions (1) to (6) are
(1) TL / f = 1.31 (<1.6)
(2) ν1 = 81.6 (> 45)
(3) | R4 | / | R5 | = 0.92 (0.7 <0.92 <2)
(4) R6 / R7 = 1.67 (1 <1.67 <4)
(5) D5 / f = 0.02 (<0.15)
(6) D4 / D6 = 1.04 (0.8 <1.04 <1.3)
And all are satisfied.

上記実施例1においては、バックフォーカスを含まない状態でレンズ全長が4.14mm、バックフォーカス(空気換算)が1.58mm、最外角光線の射出角度が│−18.9°│、Fナンバーが3.95、画角が60.4°となり、薄型(光軸方向の寸法が短い)で、諸収差が良好に補正され、高密度画素の撮像素子に好適な光学性能の高い撮影レンズが得られる。   In Example 1 described above, the total length of the lens is 4.14 mm, the back focus (air conversion) is 1.58 mm, the emission angle of the outermost ray is │−18.9 ° │, and the F-number is not including the back focus. 3.95, angle of view becomes 60.4 °, a thin lens (short dimension in the optical axis direction), various aberrations are corrected well, and a photographing lens with high optical performance suitable for an image sensor with high density pixels is obtained. It is done.

図3は、本発明に係る撮影レンズの他の実施形態を示す基本構成図である。この撮影レンズでは、それぞれのレンズの仕様を変更した以外は、前述の実施形態と同様の構成をなすものである。   FIG. 3 is a basic configuration diagram showing another embodiment of the taking lens according to the present invention. This photographing lens has the same configuration as that of the above-described embodiment except that the specification of each lens is changed.

この実施形態の具体的な数値による実施例を、実施例2として以下に示す。実施例2における主な仕様諸元、種々の数値データ(設定値)、非球面に関する数値データは以下に示す通りである。また、この実施例2における球面収差、非点収差、歪曲収差(ディスト−ション)、倍率色収差に関する収差線図は、図4に示されるような結果となる。尚、図4において、Hは入射高さ、Y´は像高さ、dはd線による収差、FはF線による収差、cはc線による収差をそれぞれ示し、又、SCは正弦条件の不満足量を示し、さらに、DSはサジタル平面での収差、DTはメリジオナル平面での収差を示す。   An example with specific numerical values of this embodiment is shown as Example 2 below. Main specification specifications, various numerical data (setting values), and numerical data related to the aspherical surface in Example 2 are as follows. In addition, the aberration diagrams regarding the spherical aberration, astigmatism, distortion (distortion), and lateral chromatic aberration in Example 2 are as shown in FIG. In FIG. 4, H represents the incident height, Y ′ represents the image height, d represents the aberration due to the d line, F represents the aberration due to the F line, c represents the aberration due to the c line, and SC represents the sine condition. It indicates an unsatisfactory amount, DS further indicates an aberration on the sagittal plane, and DT indicates an aberration on the meridional plane.

<仕様諸元>
物体距離=無限、レンズ全系の焦点距離f=4.32mm、FNo.=4.00、射出瞳位置=−5.30mm、最外角光線の射出角度=−17.8°、レンズ系全長(開口絞り前面〜第3レンズ後端)=4.40mm、バックフォーカス(空気換算)=1.79mm、レンズ系全長(開口絞り前面〜像面;ガラスフィルタ5を含む)=6.36mm、レンズ系全長(開口絞り前面〜像面;ガラスフィルタ5無し)TL=6.19mm、画角(2ω)=60.6°
<Specification specifications>
Object distance = infinity, focal length f of the entire lens system = 4.32 mm, FNo. = 4.00, exit pupil position = -5.30 mm, exit angle of outermost light ray = -17.8 °, total lens system length (front of aperture stop to third lens rear end) = 4.40 mm, back focus (air (Converted) = 1.79 mm, lens system total length (front of aperture stop to image surface; including glass filter 5) = 6.36 mm, lens system total length (front of aperture stop to image surface; no glass filter 5) TL = 6.19 mm , Angle of view (2ω) = 60.6 °

<曲率半径>
R1=∞(開口絞り)、R2=3.146mm、R3=12.111mm、R4=−1.550mm(非球面)、R5=−1.345mm(非球面)、R6=2.182mm(非球面)、R7=1.450mm(非球面)、R8=∞、R9=∞
<光軸上の間隔>
D1=0.000mm、D2=1.000mm、D3=1.100mm、D4=1.100mm、D5=0.200mm、D6=1.000mm、D7=1.158mm、D8=0.500mm、BF=0.30mm
<屈折率(Nd)>
N1=1.71300、N2=1.50914、N3=1.50914、N4=1.51680
<アッベ数>
ν1=53.9、ν2=56.4、ν3=56.4、ν4=64.2
<Curvature radius>
R1 = ∞ (aperture stop), R2 = 3.146 mm, R3 = 12.111 mm, R4 = −1.550 mm (aspherical), R5 = −1.345 mm (aspherical), R6 = 2.182 mm (aspherical) ), R7 = 1.450 mm (aspherical surface), R8 = ∞, R9 = ∞
<Spacing on the optical axis>
D1 = 0.000 mm, D2 = 1.000 mm, D3 = 1.100 mm, D4 = 1.100 mm, D5 = 0.200 mm, D6 = 1.000 mm, D7 = 1.158 mm, D8 = 0.500 mm, BF = 0.30mm
<Refractive index (Nd)>
N1 = 1.71300, N2 = 1.50914, N3 = 1.50914, N4 = 1.51680
<Abbe number>
ν1 = 53.9, ν2 = 56.4, ν3 = 56.4, ν4 = 64.2

<非球面係数>
<S4>
ε=−5.2121236、D=−0.1421075、E=0.4925830×10−1、F=−0.1896358×10−2、G=−0.1048479×10−2、H=0.1270435×10−4
<S5>
ε=0.3880839、D=−0.9013852×10−2、E=0.9477626×10−2、F=0.4045367×10−2、G=−0.4583173×10−3、H=0.1708697×10−4
<S6>
ε=−7.1022434、D=−0.5224621×10−1、E=0.2471356×10−1、F=−0.5362617×10−2、G=0.3412775×10−3、H=0.1368477×10−4
<S7>
ε=−3.9418225、D=−0.4667482×10−1、E=0.1469927×10−1、F=−0.2858500×10−2、G=0.2157729×10−3、H=−0.2586001×10−5
<Aspheric coefficient>
<S4>
ε = −5.2212236, D = −0.14211075, E = 0.4925830 × 10 −1 , F = −0.1896358 × 10 −2 , G = −0.1048479 × 10 −2 , H = 0. 1270435 × 10 -4
<S5>
ε = 0.38888039, D = −0.9013852 × 10 −2 , E = 0.9477626 × 10 −2 , F = 0.0.44367 × 10 −2 , G = −0.4583173 × 10 −3 , H = 0.1708697 × 10 −4
<S6>
ε = −7.102434, D = −0.5224621 × 10 −1 , E = 0.247356 × 10 −1 , F = −0.5362617 × 10 −2 , G = 0.41312775 × 10 −3 , H = 0.1368477 × 10 −4
<S7>
ε = −3.9418225, D = −0.4667482 × 10 −1 , E = 0.14969927 × 10 −1 , F = −0.2858500 × 10 −2 , G = 0.15772929 × 10 −3 , H = −0.2558601 × 10 −5

ここで、条件式(1)〜(6)の値は、
(1) TL/f=1.43(<1.6)
(2) ν1=53.9(>45)
(3) │R4│/│R5│=1.15(0.7<1.15<2)
(4) R6/R7=1.50(1<1.50<4)
(5) D5/f=0.05(<0.15)
(6) D4/D6=1.1(0.8<1.1<1.3)
となり、全て満足している。
Here, the values of the conditional expressions (1) to (6) are
(1) TL / f = 1.43 (<1.6)
(2) ν1 = 53.9 (> 45)
(3) | R4 | / | R5 | = 1.15 (0.7 <1.15 <2)
(4) R6 / R7 = 1.50 (1 <1.50 <4)
(5) D5 / f = 0.05 (<0.15)
(6) D4 / D6 = 1.1 (0.8 <1.1 <1.3)
And all are satisfied.

上記実施例2においては、バックフォーカスを含まない状態でレンズ全長が4.40mm、バックフォーカス(空気換算)が1.79mm、最外角光線の射出角度が│−17.8°│、Fナンバーが4.00、画角が60.6°となり、薄型(光軸方向の寸法が短い)で、諸収差が良好に補正され、高密度画素の撮像素子に好適な光学性能の高い撮影レンズが得られる。   In Example 2 described above, the total length of the lens is 4.40 mm, the back focus (air equivalent) is 1.79 mm, the emission angle of the outermost ray is │−17.8 ° │, and the F-number is not including the back focus. It is 4.00 and the angle of view is 60.6 °. It is thin (short in the optical axis direction), has various aberrations corrected, and has a high optical performance suitable for high-density pixel image sensors. It is done.

図5は、本発明に係る撮影レンズのさらに他の実施形態を示す基本構成図である。この撮影レンズでは、それぞれのレンズの仕様を変更した以外は、前述の実施形態と同様の構成をなすものである。   FIG. 5 is a basic configuration diagram showing still another embodiment of the photographing lens according to the present invention. This photographing lens has the same configuration as that of the above-described embodiment except that the specification of each lens is changed.

この実施形態の具体的な数値による実施例を、実施例3として以下に示す。実施例3における主な仕様諸元、種々の数値データ(設定値)、非球面に関する数値データは以下に示す通りである。また、この実施例3における球面収差、非点収差、歪曲収差(ディスト−ション)、倍率色収差に関する収差線図は、図6に示されるような結果となる。尚、図6において、Hは入射高さ、Y´は像高さ、dはd線による収差、FはF線による収差、cはc線による収差をそれぞれ示し、又、SCは正弦条件の不満足量を示し、さらに、DSはサジタル平面での収差、DTはメリジオナル平面での収差を示す。   An example with specific numerical values of this embodiment is shown as Example 3 below. Main specification specifications, various numerical data (setting values), and numerical data related to the aspherical surface in Example 3 are as follows. In addition, the aberration diagrams regarding the spherical aberration, astigmatism, distortion (distortion), and lateral chromatic aberration in Example 3 are as shown in FIG. In FIG. 6, H represents the incident height, Y ′ represents the image height, d represents the aberration due to the d line, F represents the aberration due to the F line, c represents the aberration due to the c line, and SC represents the sine condition. It indicates an unsatisfactory amount, DS further indicates an aberration on the sagittal plane, and DT indicates an aberration on the meridional plane.

<仕様諸元>
物体距離=無限、レンズ全系の焦点距離f=4.35mm、FNo.=3.96、射出瞳位置=−4.35mm、最外角光線の射出角度=−18.9°、レンズ系全長(開口絞り前面〜第3レンズ後端)=4.15mm、バックフォーカス(空気換算)=1.56mm、レンズ系全長(開口絞り前面〜像面;ガラスフィルタ5を含む)=5.97mm、レンズ系全長(開口絞り前面〜像面;ガラスフィルタ5無し)TL=5.71mm、画角(2ω)=60.8°
<Specification specifications>
Object distance = infinity, focal length f of the entire lens system = 4.35 mm, FNo. = 3.96, exit pupil position = −4.35 mm, exit angle of outermost ray = −18.9 °, total length of lens system (front of aperture stop to third lens rear end) = 4.15 mm, back focus (air (Converted) = 1.56 mm, lens system total length (aperture stop front surface to image surface; including glass filter 5) = 5.97 mm, lens system total length (aperture stop front surface to image surface; no glass filter 5) TL = 5.71 mm , Angle of view (2ω) = 60.8 °

<曲率半径>
R1=∞(開口絞り)、R2=2.100mm、R3=−22.790mm、R4=−1.318mm(非球面)、R5=−1.155mm(非球面)、R6=4.766mm(非球面)、R7=1.546mm(非球面)、R8=∞、R9=∞
<光軸上の間隔>
D1=0.100mm、D2=1.032mm、D3=0.821mm、D4=1.097mm、D5=0.100mm、D6=1.000mm、D7=0.769mm、D8=0.750mm、BF=0.30mm
<屈折率(Nd)>
N1=1.49700、N2=1.50914、N3=1.50914、N4=1.51680
<アッベ数>
ν1=81.6、ν2=56.4、ν3=56.4、ν4=64.2
<Curvature radius>
R1 = ∞ (aperture stop), R2 = 2.100 mm, R3 = −22.790 mm, R4 = −1.318 mm (aspheric surface), R5 = −1.155 mm (aspheric surface), R6 = 4.766 mm (non-surface) Spherical surface), R7 = 1.546 mm (aspherical surface), R8 = ∞, R9 = ∞
<Spacing on the optical axis>
D1 = 0.100 mm, D2 = 1.032 mm, D3 = 0.821 mm, D4 = 1.097 mm, D5 = 0.100 mm, D6 = 1.000 mm, D7 = 0.769 mm, D8 = 0.750 mm, BF = 0.30mm
<Refractive index (Nd)>
N1 = 1.49700, N2 = 1.50914, N3 = 1.50914, N4 = 1.51680
<Abbe number>
ν1 = 81.6, ν2 = 56.4, ν3 = 56.4, ν4 = 64.2

<非球面係数>
<S4>
ε=−0.670092、D=−0.1125650、E=0.1230170、F=0.1566500×10−1、G=−0.5996650×10−1、H=0.1961910×10−1
<S5>
ε=0.1765880、D=−0.2461630×10−1、E=0.5475240×10−1、F=0.8936770×10−2、G=−0.3604610×10−2、H=−0.2623760×10−3
<S6>
ε=−17.319785、D=−0.9529140×10−1、E=0.3618380×10−1、F=−0.5356020×10−2、G=−0.7287330×10−4、H=0.4659120×10−4
<S7>
ε=−1.1226510、D=−0.1108290、E=0.2459010×10−1、F=−0.3897190×10−2、G=0.4121550×10−3、H=−0.2685440×10−4
<Aspheric coefficient>
<S4>
ε = −0.670092, D = −0.1125650, E = 0.1230170, F = 0.156666 × 10 −1 , G = −0.5996650 × 10 −1 , H = 0.1961910 × 10 −1
<S5>
ε = 0.175880, D = −0.2461630 × 10 −1 , E = 0.5475240 × 10 −1 , F = 0.8936770 × 10 −2 , G = −0.3604610 × 10 −2 , H = −0.26233760 × 10 −3
<S6>
ε = −17.3319785, D = −0.9529140 × 10 −1 , E = 0.3618380 × 10 −1 , F = −0.5356020 × 10 −2 , G = −0.7287330 × 10 −4 , H = 0.4659120 × 10 −4
<S7>
ε = −1.1226510, D = −0.1108290, E = 0.24959010 × 10 −1 , F = −0.3897190 × 10 −2 , G = 0.4121550 × 10 −3 , H = −0. 2865440 × 10 −4

ここで、条件式(1)〜(6)の値は、
(1) TL/f=1.31(<1.6)
(2) ν1=81.6(>45)
(3) │R4│/│R5│=1.14(0.7<1.14<2)
(4) R6/R7=3.08(1<3.08<4)
(5) D5/f=0.02(<0.15)
(6) D4/D6=1.097(0.8<1.097<1.3)
となり、全て満足している。
Here, the values of the conditional expressions (1) to (6) are
(1) TL / f = 1.31 (<1.6)
(2) ν1 = 81.6 (> 45)
(3) | R4 | / | R5 | = 1.14 (0.7 <1.14 <2)
(4) R6 / R7 = 3.08 (1 <3.08 <4)
(5) D5 / f = 0.02 (<0.15)
(6) D4 / D6 = 1.097 (0.8 <1.097 <1.3)
And all are satisfied.

上記実施例3においては、バックフォーカスを含まない状態でレンズ全長が4.15mm、バックフォーカス(空気換算)が1.56mm、最外角光線の射出角度が│−18.9°│、Fナンバーが3.96、画角が60.8°となり、薄型(光軸方向の寸法が短い)で、諸収差が良好に補正され、高密度画素の撮像素子に好適な光学性能の高い撮影レンズが得られる。   In Example 3 above, the total lens length is 4.15 mm without back focus, the back focus (air equivalent) is 1.56 mm, the emission angle of the outermost ray is │−18.9 ° │, and the F number is 3.96, a field angle of 60.8 °, a thin lens (short dimension in the optical axis direction), various aberrations are corrected well, and a high-performance imaging lens suitable for a high-density pixel imaging device is obtained. It is done.

本発明に係る撮影レンズの一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the imaging lens which concerns on this invention. 実施例1に係る撮影レンズの球面収差、非点収差、歪曲収差、倍率色収差の各収差図を示す。FIG. 4 shows aberration diagrams of spherical aberration, astigmatism, distortion, and lateral chromatic aberration of the photographing lens according to Example 1. 本発明に係る撮影レンズの他の実施形態を示す構成図である。It is a block diagram which shows other embodiment of the imaging lens which concerns on this invention. 実施例2に係る撮影レンズの球面収差、非点収差、歪曲収差、倍率色収差の各収差図を示す。FIG. 4 shows aberration diagrams of spherical aberration, astigmatism, distortion, and lateral chromatic aberration of the photographing lens according to Example 2. 本発明に係る撮影レンズのさらに他の実施形態を示す構成図である。It is a block diagram which shows other embodiment of the imaging lens which concerns on this invention. 実施例3に係る撮影レンズの球面収差、非点収差、歪曲収差、倍率色収差の各収差図を示す。FIG. 5 shows aberration diagrams of spherical aberration, astigmatism, distortion, and lateral chromatic aberration of the photographing lens according to Example 3.

符号の説明Explanation of symbols

1 開口絞り
2 第1レンズ
3 第2レンズ
4 第3レンズ
5 ガラスフィルタ
D1〜D8 光軸上の間隔
BF バックフォーカス
R1〜R9 曲率半径
S1〜S9 面
L 光軸
DESCRIPTION OF SYMBOLS 1 Aperture stop 2 1st lens 3 2nd lens 4 3rd lens 5 Glass filter D1-D8 Space | interval BF on optical axis Back focus R1-R9 Radius of curvature S1-S9 Surface L Optical axis

Claims (9)

物体側から像面側に向けて順に配列された、
所定の口径をもつ開口絞りと、
物体側および像面側の両面に凸面を向けた1枚の正の屈折力を有する第1レンズと、
物体側に凹面を向けた正の屈折力を有する第2レンズと、
物体側に凸面を向け,像面側に非球面を有しかつ途中に変曲点をもつように形成された負の屈折力を有する第3レンズと、
からなることを特徴とする撮影レンズ。
Arranged in order from the object side to the image plane side,
An aperture stop having a predetermined aperture;
A first lens having a positive refractive power and having convex surfaces facing both the object side and the image side;
A second lens having a positive refractive power with a concave surface facing the object side;
A third lens having a negative refractive power and having a convex surface on the object side, an aspheric surface on the image surface side, and an inflection point in the middle;
A photographic lens characterized by comprising:
前記第2レンズ及び第3レンズは、物体側及び像面側の両面に非球面を有する、
ことを特徴とする請求項1記載の撮影レンズ。
The second lens and the third lens have aspheric surfaces on both the object side and the image side.
The photographic lens according to claim 1.
前記第2レンズは、物体側に非球面を有しかつ周辺部に向かうに連れて屈折力が小さくなるように形成されている、
ことを特徴とする請求項1又は2に記載の撮影レンズ。
The second lens has an aspherical surface on the object side and is formed such that its refractive power decreases as it goes toward the periphery.
The photographic lens according to claim 1, wherein the photographic lens is provided.
前記第2レンズ及び第3レンズは、樹脂材料により形成されている、
ことを特徴とする請求項1ないし3いずれかに記載の撮影レンズ。
The second lens and the third lens are formed of a resin material,
The photographic lens according to claim 1, wherein:
レンズ全系の焦点距離をf、前記開口絞りの物体側前面から被写体が結像される像面までのレンズ系の全長をTLとするとき、
(1) TL/f<1.6
を満足することを特徴とする請求項1ないし4いずれかに記載の撮影レンズ。
When the focal length of the entire lens system is f, and the total length of the lens system from the object side front surface of the aperture stop to the image plane on which the subject is imaged is TL,
(1) TL / f <1.6
The photographic lens according to claim 1, wherein:
前記第1レンズのアッベ数をν1とするとき、
(2) ν1>45
を満足することを特徴とする請求項1ないし5いずれかに記載の撮影レンズ。
When the Abbe number of the first lens is ν1,
(2) ν1> 45
The photographic lens according to claim 1, wherein:
前記第2レンズの物体側の面の曲率半径をR4、前記第2レンズの像面側の面の曲率半径をR5、前記第3レンズの物体側の面の曲率半径をR6、前記第3レンズの像面側の面の曲率半径をR7とするとき、
(3) 0.7<│R4│/│R5│<2
(4) 1<R6/R7<4
を満足することを特徴とする請求項1ないし6いずれかに記載の撮影レンズ。
The radius of curvature of the object side surface of the second lens is R4, the radius of curvature of the image side surface of the second lens is R5, the radius of curvature of the object side surface of the third lens is R6, and the third lens. When the radius of curvature of the surface on the image plane side is R7,
(3) 0.7 <| R4 | / | R5 | <2
(4) 1 <R6 / R7 <4
The photographic lens according to claim 1, wherein:
前記第2レンズと前記第3レンズとの光軸方向における間隔をD5、レンズ全系の焦点距離をfとするとき、
(5) D5/f<0.15
を満足することを特徴とする請求項1ないし7いずれかに記載の撮影レンズ。
When the distance in the optical axis direction between the second lens and the third lens is D5, and the focal length of the entire lens system is f,
(5) D5 / f <0.15
The photographic lens according to claim 1, wherein:
前記第2レンズの光軸方向における肉厚をD4、前記第3レンズの光軸方向における肉厚をD6とするとき、
(6) 0.8<D4/D6<1.3
を満足することを特徴とする請求項1ないし8いずれかに記載の撮影レンズ。
When the thickness of the second lens in the optical axis direction is D4, and the thickness of the third lens in the optical axis direction is D6,
(6) 0.8 <D4 / D6 <1.3
The photographic lens according to claim 1, wherein:
JP2007162276A 2007-06-20 2007-06-20 Shooting lens Expired - Fee Related JP4722087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162276A JP4722087B2 (en) 2007-06-20 2007-06-20 Shooting lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162276A JP4722087B2 (en) 2007-06-20 2007-06-20 Shooting lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002379401A Division JP2004212467A (en) 2002-12-27 2002-12-27 Photographic lens

Publications (2)

Publication Number Publication Date
JP2007233423A true JP2007233423A (en) 2007-09-13
JP4722087B2 JP4722087B2 (en) 2011-07-13

Family

ID=38554002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162276A Expired - Fee Related JP4722087B2 (en) 2007-06-20 2007-06-20 Shooting lens

Country Status (1)

Country Link
JP (1) JP4722087B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346290A (en) * 2010-07-29 2012-02-08 比亚迪股份有限公司 Optical lens assembly
CN102401982A (en) * 2010-09-16 2012-04-04 大立光电股份有限公司 Optical image capturing lens
JP2014167497A (en) * 2013-01-31 2014-09-11 Hitachi Maxell Ltd Infrared lens device
JP5630505B2 (en) * 2010-09-17 2014-11-26 コニカミノルタ株式会社 Imaging lens

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228922A (en) * 2001-01-31 2002-08-14 Casio Comput Co Ltd Photographic lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228922A (en) * 2001-01-31 2002-08-14 Casio Comput Co Ltd Photographic lens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346290A (en) * 2010-07-29 2012-02-08 比亚迪股份有限公司 Optical lens assembly
CN102401982A (en) * 2010-09-16 2012-04-04 大立光电股份有限公司 Optical image capturing lens
CN102401982B (en) * 2010-09-16 2013-07-24 大立光电股份有限公司 Optical image capturing lens
JP5630505B2 (en) * 2010-09-17 2014-11-26 コニカミノルタ株式会社 Imaging lens
JP2014167497A (en) * 2013-01-31 2014-09-11 Hitachi Maxell Ltd Infrared lens device

Also Published As

Publication number Publication date
JP4722087B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP5735712B2 (en) Imaging lens and imaging device provided with imaging lens
JP4744184B2 (en) Super wide angle lens
US9229194B2 (en) Imaging lens and imaging apparatus including the imaging lens
US9128267B2 (en) Imaging lens and imaging apparatus including the imaging lens
JP5752856B2 (en) Imaging lens and imaging device provided with imaging lens
JP5687390B2 (en) Imaging lens and imaging device provided with imaging lens
WO2013114812A1 (en) Image pickup lens and image pickup apparatus provided with image pickup lens
JP5513641B1 (en) Imaging lens
WO2013175783A1 (en) Imaging lens and imaging device equipped with imaging lens
JP6150317B2 (en) Imaging lens and imaging device provided with imaging lens
JP4334216B2 (en) Shooting lens
JP2005284153A (en) Imaging lens
JP2004212467A (en) Photographic lens
JP5513648B1 (en) Imaging lens
JP5727679B2 (en) Imaging lens and imaging device provided with imaging lens
JP2019045665A (en) Image capturing lens
JP2007322561A (en) Imaging lens
JP2007322844A (en) Imaging lens
JP5946790B2 (en) Imaging lens and imaging device provided with imaging lens
JP2010217506A (en) Imaging optical system, camera, and personal digital assistant
JP2005316010A (en) Imaging lens
JP2006301221A (en) Imaging lens
JP5946789B2 (en) Imaging lens and imaging device provided with imaging lens
JP2006309043A (en) Imaging lens
JP2008096621A (en) Imaging lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees