JP2007232674A - Centrifugal separation device and centrifugal separation method - Google Patents

Centrifugal separation device and centrifugal separation method Download PDF

Info

Publication number
JP2007232674A
JP2007232674A JP2006057420A JP2006057420A JP2007232674A JP 2007232674 A JP2007232674 A JP 2007232674A JP 2006057420 A JP2006057420 A JP 2006057420A JP 2006057420 A JP2006057420 A JP 2006057420A JP 2007232674 A JP2007232674 A JP 2007232674A
Authority
JP
Japan
Prior art keywords
sample liquid
sample
separation
storage part
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006057420A
Other languages
Japanese (ja)
Other versions
JP4752546B2 (en
Inventor
Kozo Tagashira
幸造 田頭
Hiroshi Saeki
博司 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006057420A priority Critical patent/JP4752546B2/en
Publication of JP2007232674A publication Critical patent/JP2007232674A/en
Application granted granted Critical
Publication of JP4752546B2 publication Critical patent/JP4752546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Centrifugal Separators (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a centrifugal separation device capable of separating completely a component different in a specific gravity in a sample liquid, and capable of collecting quantitatively the sample liquid required for analysis. <P>SOLUTION: A rotational speed of a disk is reduced stepwisely by a centrifugal separation means, using constitution that a relation between a length h1 from a liquid face of the sample liquid inserted into a sample liquid separation storage part to a turning curved part in the first flow passage connected to the sample liquid separation storage part, and a length h2 from the liquid face of the sample liquid inserted into the sample liquid separation storage part to a turning curved part in the second flow passage connected to the sample liquid separation storage part satisfies h1<h2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、比重の異なる成分を含む試料液を分離して定量採取し分析する為の回転分析装置の遠心分離デバイス及び遠心分離方法に関する。   The present invention relates to a centrifuge device and a centrifuge method of a rotational analyzer for separating, quantitatively collecting and analyzing sample liquids containing components having different specific gravities.

従来、生物学的流体を光学的に分析する方法として液体流路を形成したマイクロデバイスを用いて分析する方法が知られている。マイクロデバイスは回転分析装置を使って流体を制御することが可能であり、遠心力を利用して試料の計量、細胞質材料の分離、分離された流体の移送分配等を行うことができるため、種々の生物化学的な分析を行うことが可能である。   2. Description of the Related Art Conventionally, as a method for optically analyzing a biological fluid, a method for analyzing using a microdevice having a liquid flow path is known. Microdevices can control fluids using a rotational analyzer, and can measure samples, separate cytoplasmic materials, transfer and distribute separated fluids using centrifugal force. It is possible to perform biochemical analysis.

遠心力を利用して試料を計量する方法としては、図11に示すように中心から周縁に向けて分析前に希釈すべき液体を収容する中央収容部111と、計量室112及び溢流室113と、混合室114と、測定セル115とを備え、計量室112が溢流室113とほぼ平行に配置され、且つ供給口116及び溢流口117以外に供給口116と対向する計量室壁面に設けられる開口118を有し、この開口が常時開放されると共に、供給口116及び溢流口117より遥かに小さい断面を有することを特徴とする回転分析デバイスがあり、このような構成にすることで計量室112の充填が高速で実施され、且つその溢流が即刻除去される。液体は計量室112が液体で満たされ始めるとすぐにこの室から流出し始める。そのため、流入口断面積対流出口断面積の比の関数たる供給時間対流出口からの流出時間の比を好きなだけ小さくすることができることから、測定に正確さが与えられる(特許文献1)。   As a method for measuring a sample using centrifugal force, as shown in FIG. 11, a central storage unit 111 for storing a liquid to be diluted before analysis from the center to the periphery, a measurement chamber 112 and an overflow chamber 113. And a mixing chamber 114 and a measurement cell 115, the measuring chamber 112 is arranged substantially parallel to the overflow chamber 113, and is provided on the wall of the measuring chamber facing the supply port 116 in addition to the supply port 116 and the overflow port 117. There is a rotational analysis device characterized in that it has an opening 118 provided, this opening is always open and has a cross section much smaller than the supply port 116 and the overflow port 117, and this configuration Thus, the filling of the measuring chamber 112 is performed at high speed, and the overflow is immediately removed. Liquid begins to flow out of this chamber as soon as the metering chamber 112 begins to fill with liquid. Therefore, since the ratio of the supply time to the outflow time from the outflow outlet as a function of the ratio of the inflow cross-sectional area to the outflow outlet cross-sectional area can be reduced as much as desired, accuracy is given to the measurement (Patent Document 1).

また、図12に示すように大型流体室121と、大型流体室121に連結されると共に大型流体室121に対して半径方向外方に配置された計量室122と、計量室122に連結された溢流室123と、計量室122に対して半径方向外方に配置された受容室124と、計量室122から受容室124に液体を供給するための毛細管連結手段125とを有する回転分析デバイスがあり、毛細管連結手段125は毛細管構造を有するサイフォン126を含み、サイフォン126の肘状屈曲部分が、回転分析デバイスの中心から、計量室122の半径方向再内方点と実質的に同じ距離になるように位置付けられることで、回転分析デバイスの回転中は毛細管力が遠心力に比べて小さいため、液体/空気の界面は回転分析デバイスの軸線と同じ軸線を有し、且つ回転分析デバイスの中心から計量室122の半径方向再内方点までの距離に等しい長さの半径を持つ回転円筒体の形状と合致して計量室122は充填され、過剰な液は溢流室123に流れ込む。回転分析デバイスを止めると、計量室122内に充填された液が、毛細管力で毛細管連結手段125に流入し、再度回転させることでサイフォン126が始動し、計量室122内に存在する液は受容室124に排出される(特許文献2)。   As shown in FIG. 12, the large fluid chamber 121 is connected to the large fluid chamber 121, and the measurement chamber 122 is arranged radially outward with respect to the large fluid chamber 121, and is connected to the measurement chamber 122. A rotational analysis device having an overflow chamber 123, a receiving chamber 124 disposed radially outward with respect to the measuring chamber 122, and capillary connection means 125 for supplying liquid from the measuring chamber 122 to the receiving chamber 124. Yes, the capillary coupling means 125 includes a siphon 126 having a capillary structure, and the elbow bend of the siphon 126 is at substantially the same distance from the center of the rotational analysis device as the radial re-inward point of the metering chamber 122. So that the capillary force is smaller than the centrifugal force during rotation of the rotational analysis device, so that the liquid / air interface is the same axis as the rotational analysis device axis. Having a radius equal to the distance from the center of the rotational analysis device to the radial re-inward point of the metering chamber 122, the metering chamber 122 is filled with excess liquid Flows into the overflow chamber 123. When the rotation analysis device is stopped, the liquid filled in the measuring chamber 122 flows into the capillary connection means 125 by capillary force, and rotates again to start the siphon 126, and the liquid existing in the measuring chamber 122 is received. It is discharged into the chamber 124 (Patent Document 2).

さらに、図13に示すように内周から外周方向に向かって、外周側が扇状に形成された貯留部131、血球収容部132を備え、血球収容部132と貯留部131を接続する部分133は、凸形状になっており、遠心分離によって流入した血球成分が貯留部131に逆流しないようになっている。さらに、貯留部131の側面には、サイフォン形状の出力流路134が連結され、出力流路134から先は、次の操作領域へ、操作後の試料液を供給できる構成である。供給流路135を介して、原血液を貯留部131に供給し、供給された血液は遠心力によって比重の重い血球成分が血球収容部132に収容される。おおよそ分離完了の状態で、回転数を下げることにより、貯留部131に連結された出力流路135内の溶液にかかる毛細管力と遠心力のバランスが逆転し、遠心分離によって貯留部131に残留した血漿・血清成分が出力流路135を介して次の操作領域へと排出される。(特許文献3)
特開昭61−167469号公報 特表平5−508709号公報 特開2005−345160号公報
Furthermore, as shown in FIG. 13, from the inner periphery toward the outer periphery, the outer peripheral side is provided with a storage part 131 and a blood cell storage part 132 formed in a fan shape, and a portion 133 connecting the blood cell storage part 132 and the storage part 131 is: It has a convex shape so that blood cell components that have flowed in by centrifugation do not flow back to the reservoir 131. Furthermore, a siphon-shaped output flow path 134 is connected to the side surface of the storage portion 131, and the sample liquid after the operation can be supplied from the output flow path 134 to the next operation region. The raw blood is supplied to the storage unit 131 via the supply channel 135, and a blood cell component having a high specific gravity is stored in the blood cell storage unit 132 by centrifugal force. The balance between the capillary force and the centrifugal force applied to the solution in the output flow path 135 connected to the reservoir 131 is reversed by lowering the number of revolutions in a state where the separation is almost completed, and remains in the reservoir 131 by centrifugation. Plasma / serum components are discharged to the next operation area via the output flow path 135. (Patent Document 3)
JP 61-167469 A Japanese National Patent Publication No. 5-508709 JP-A-2005-345160

しかしながら、前記図11や図12に示した従来技術の構成では、回転分析デバイスが回転中は、遠心力が液体と計量室壁面との間に働く表面張力より大きいため、溢流口の開口位置で液面が釣り合って所定の量を計量できているが、次工程に移るために回転を減速あるいは停止させた場合に、液体は遠心力から開放されると同時に液体と溢流口壁面の界面で表面張力が働き出し、その表面張力によって液体は溢流口の壁面を伝って溢流室に流出してしまい、精密な計量ができていなかった。また、液体の物性値の違いによって流出する量がばらつくため、分析する液体ごとに計量室の大きさを変える必要があった。   However, in the configuration of the prior art shown in FIG. 11 and FIG. 12, when the rotational analysis device is rotating, the centrifugal force is greater than the surface tension acting between the liquid and the wall surface of the measuring chamber. However, when the rotation is decelerated or stopped to move to the next process, the liquid is released from the centrifugal force and at the same time the interface between the liquid and the overflow wall. The surface tension started to work, and the surface tension caused the liquid to flow along the wall of the overflow port into the overflow chamber, so that precise measurement was not possible. In addition, since the amount of liquid flowing out varies depending on the physical property values of the liquid, it is necessary to change the size of the measuring chamber for each liquid to be analyzed.

さらに、図13の様な従来技術の構成では、比重の違いによる遠心分離は可能であるが、血液の導入される貯留部に直接毛細管が連結される構造をとっているため、分離前の毛細管内に入ってしまった血球がそのまま毛細管内に残留し採取したい血清・血漿の中に血球が混入する可能性があった。   Furthermore, in the configuration of the prior art as shown in FIG. 13, the centrifugal separation based on the difference in specific gravity is possible. However, since the capillary tube is directly connected to the reservoir into which blood is introduced, the capillary tube before separation is used. The blood cells that had entered inside remained in the capillaries as they were, and there was a possibility that blood cells would be mixed into the serum / plasma to be collected.

分析を目的とした操作領域を含む各種構成において、検体の選択的な分離と必要量の定量は欠くことのできない要素である。検体の定量法は種々考案されているが、血液分析の場合、検体として使用される血液は、その内容成分が大きく血球と血漿または血清成分に分けられる。このうち測定対象となるのは血漿または血清成分が使用されることがほとんどである。したがって、検体を選択的に定量する場合、血球分離工程、血漿または血清の定量工程の2種の工程を踏む必要がある。   In various configurations including an operation area for the purpose of analysis, selective separation of a specimen and quantification of a necessary amount are indispensable elements. Various methods for quantifying specimens have been devised. In the case of blood analysis, blood used as a specimen has a large content component and is divided into blood cells and plasma or serum components. Of these, plasma or serum components are mostly used for measurement. Therefore, when the sample is selectively quantified, it is necessary to take two steps: a blood cell separation step and a plasma or serum quantification step.

前記従来の課題を解決するために、本発明の遠心分離デバイスは、分析すべき試料液を回転して発生する遠心力と毛細管力により遠心分離するための遠心分離デバイスにおいて、
試料液を注入及び収容するための試料液貯留部と、前記試料液貯留部と流路で連結され当該試料液貯留部に対して半径方向外側に位置し前記試料液を試料液の比重の差を用いて遠心分離される第1の試料液と第2の試料液とに計量し分離して貯留する試料液分離貯留部と、前記試料液分離貯留部の半径方向外側両端部に連結する第1の流路と第2の流路を介して前記第1と第2の試料液をそれぞれ貯留する第1と第2の定量貯留部と、を備え、
前記試料液分離貯留部に挿入されるべき試料液の液面から試料液分離貯留部に連結した第1の流路の折り返しの曲管部までの半径方向の長さ(h1)が、前記試料液分離貯留部に挿入されるべき試料液の液面から試料液分離貯留部に連結した第2の流路の折り返しの曲管部までの半径方向の長さ(h2)より短いことを特徴としたものである。
In order to solve the above-mentioned conventional problems, the centrifugal device of the present invention is a centrifugal device for performing centrifugal separation by centrifugal force and capillary force generated by rotating a sample liquid to be analyzed.
A sample liquid reservoir for injecting and storing the sample liquid, and a difference in specific gravity of the sample liquid that is connected to the sample liquid reservoir and a flow path and is located radially outside the sample liquid reservoir. A first sample solution and a second sample solution which are centrifuged using a first sample solution and a sample solution separation and storage unit for separating and storing the first sample solution and a second sample solution connected to both radially outer ends of the sample solution separation and storage unit A first and a second fixed amount storage section for storing the first and second sample liquids through one flow path and a second flow path, respectively.
The length (h1) in the radial direction from the liquid surface of the sample liquid to be inserted into the sample liquid separation / storage part to the bent tube part of the first flow path connected to the sample liquid separation / storage part is the sample. It is characterized by being shorter than the length (h2) in the radial direction from the liquid surface of the sample liquid to be inserted into the liquid separation storage section to the bent portion of the second flow path connected to the sample liquid separation storage section. It is a thing.

また、本発明の遠心分離方法は、試料貯留部からの分析すべき試料液を回転して発生する遠心力と毛細管力により遠心分離する分析試料液の遠心分離方法において、第1の回転数にて前記試料液貯留部の試料液を比重の差により分離して貯留し、次に第2の速度に減速して前記試料液分離貯留部から比重の軽い第1の試料液が前記定量貯留部に計量して移送され、次に前記第2の回転速度より遅い第3の回転速度に減速して比重の重い第2の試料液が前記定量貯留部に計量して移送され、段階的に回転速度を減速し遠心分離することを特徴としたものである。   In addition, the centrifugation method of the present invention is the first rotation speed in the centrifugation method of the analysis sample solution in which the sample solution to be analyzed from the sample reservoir is rotated by centrifugal force and capillary force. The sample liquid in the sample liquid storage part is separated and stored according to the difference in specific gravity, and then decelerated to a second speed, and the first sample liquid having a light specific gravity is transferred from the sample liquid separation storage part to the quantitative storage part. The second sample liquid having a higher specific gravity is weighed and transferred to the quantitative storage section and then rotated step by step. The second sample liquid is then decelerated to a third rotational speed that is slower than the second rotational speed. It is characterized by reducing the speed and centrifuging.

本発明の遠心分離デバイス及び遠心分離方法によれば、回転分析手段によって試料液の比重の異なる成分を完全に分離して分析に必要な試料液の定量採取を行うことができる。   According to the centrifugal separation device and the centrifugal separation method of the present invention, the components having different specific gravity of the sample liquid can be completely separated by the rotational analysis means, and the sample liquid necessary for analysis can be collected quantitatively.

以下に、本発明の遠心分離デバイスの実施の形態を図面とともに詳細に説明する。   Hereinafter, embodiments of the centrifugal separation device of the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1の実施例における遠心分離デバイスの構成を示す模式図である。図2は、第1の実施例における遠心分離デバイスのためのマイクロチャネル13が形成されたパネル12を示す図である。図3は、マイクロチャネル13である試料液分離貯留部22の詳細図である。図4はマイクロチャネル13を形成したパネル12の構成図である。   FIG. 1 is a schematic diagram showing the configuration of a centrifuge device in the first embodiment of the present invention. FIG. 2 is a diagram showing the panel 12 in which the microchannel 13 for the centrifuge device in the first embodiment is formed. FIG. 3 is a detailed view of the sample liquid separation and storage unit 22 that is the microchannel 13. FIG. 4 is a configuration diagram of the panel 12 in which the microchannel 13 is formed.

パネル12に形成されるマイクロチャネル13は、図4に示すような凹凸のあるマイクロチャネル13のパターンを中基板42に射出形成により製作しており、分析する試料液を試料液貯留部21に注入し、複数枚のパネル22を配置できる回転分析装置11に設置することで、遠心力と毛細管力を利用して試料液を遠心分離し定量採取することが可能となっている。   The microchannel 13 formed on the panel 12 is manufactured by injection-molding a pattern of the uneven microchannel 13 as shown in FIG. 4 on the middle substrate 42, and injecting the sample liquid to be analyzed into the sample liquid storage section 21. In addition, by installing the rotary analyzer 11 in which a plurality of panels 22 can be arranged, it is possible to centrifuge and sample the sample liquid using centrifugal force and capillary force.

図4に示すように、本実施例のパネル13は、上基板41、マイクロチャネル13を抽出形成した中基板42、そして下基板43で構成されており、それぞれの基板は接着剤により圧着されている。それぞれの基板の厚みは本実施例1においては1〜3mmで形成しているが、特に制限はない。それぞれの基板の形状についても、本実施例1では角丸四角形の形状を用いているが、目的に応じた形状、例えば、扇形、台形、円形等、その他の形状が可能である。それぞれの基板の材質としては、容易成形性、容易分析性、量産性、低コストの観点から、透明体のポリカ系樹脂を用いた。   As shown in FIG. 4, the panel 13 of the present embodiment is composed of an upper substrate 41, a middle substrate 42 on which microchannels 13 are formed by extraction, and a lower substrate 43. Each substrate is pressure-bonded with an adhesive. Yes. The thickness of each substrate is 1 to 3 mm in the first embodiment, but is not particularly limited. Regarding the shape of each substrate, a rounded square shape is used in the first embodiment, but other shapes such as a sector shape, a trapezoidal shape, a circular shape, and the like according to the purpose are possible. As the material of each substrate, a transparent polycarbonate-based resin was used from the viewpoint of easy moldability, easy analysis, mass production, and low cost.

マイクロチャネル13は、試料液の貯留部と、貯留部と貯留部の間の試料液を移送するための流路で構成されている。マイクロチャネル13の壁面は粘性抵抗を減らし、流体移動を促すために親水処理を行っている。ここで、親水処理とは主に試料と壁面の接触角が90度未満にある状態をいい、接触角が90度以上の場合は撥水処理されているものとする。一般的に接触角が低く、毛細管の断面積が小さくなればなるほど毛細管力が強くなる。本実施例1では、親水処理に界面活性剤を用いてマイクロチャネル13の壁面の表面処理を行い、接触角が70度程度になるように制御した。その他の表面処理方法としてはプラズマ、コロナ、オゾン、フッ素等の活性ガスを用いた表面処理方法や親水性のある微粒子埋め込みによる表面処理が挙げられる。   The microchannel 13 includes a sample liquid storage section and a flow path for transferring the sample liquid between the storage section and the storage section. The wall surface of the microchannel 13 is subjected to hydrophilic treatment in order to reduce viscous resistance and promote fluid movement. Here, the hydrophilic treatment mainly refers to a state where the contact angle between the sample and the wall surface is less than 90 degrees, and when the contact angle is 90 degrees or more, it is assumed that water repellent treatment is performed. In general, the lower the contact angle and the smaller the cross-sectional area of the capillary, the stronger the capillary force. In Example 1, surface treatment was performed on the wall surface of the microchannel 13 using a surfactant for hydrophilic treatment, and the contact angle was controlled to be about 70 degrees. Other surface treatment methods include a surface treatment method using an active gas such as plasma, corona, ozone, fluorine, or a surface treatment by embedding hydrophilic fine particles.

次に本実施例1におけるマイクロチャネル13の具体的な構成について説明する。図2に示すように、マイクロチャネル13の構成は、試料液を注入/貯留するための試料貯留部21と、試料液の比重の違いを利用して遠心分離を行うための試料液分離貯留部22と、分離された比重の軽い試料を貯留するための第1の定量貯留部23と、比重の重い試料を貯留するための第2の定量貯留部24で構成されている。   Next, a specific configuration of the microchannel 13 in the first embodiment will be described. As shown in FIG. 2, the configuration of the microchannel 13 includes a sample reservoir 21 for injecting / retaining the sample liquid and a sample liquid separation / reservoir for performing centrifugation using the difference in specific gravity of the sample liquid. 22, a first quantitative storage unit 23 for storing the separated light sample with a specific gravity, and a second quantitative storage unit 24 for storing a sample with a high specific gravity.

さらに、図3に示すように、試料液分離貯留部22の半径方向外側の壁面には、壁面の略中心から回転分析装置の回転中心に向かって形成される分離壁32を形成している。この分離壁32は、比重の違いによって分離される試料液を第1の分離貯留部22aと第2の分離貯留部22bに分離し貯留するための分離壁32である。即ち、比重の重い試料液と比重の軽い試料液を、分離壁32により第1の分離貯留部22aと第2の分離貯留部22bに概略的に分離して試料液分離貯留部22に貯留するものである。   Further, as shown in FIG. 3, a separation wall 32 is formed on the radially outer wall surface of the sample liquid separation storage unit 22 from the approximate center of the wall surface toward the rotation center of the rotation analyzer. The separation wall 32 is a separation wall 32 for separating and storing the sample liquid separated due to the difference in specific gravity into the first separation storage part 22a and the second separation storage part 22b. That is, a sample liquid having a high specific gravity and a sample liquid having a low specific gravity are roughly separated into a first separation storage part 22 a and a second separation storage part 22 b by the separation wall 32 and stored in the sample liquid separation storage part 22. Is.

さらに、この分離壁の先端部には逆流を防止するための逆流防止弁31を設けている。この逆流防止弁31の形状は、図3(a)に示すように分離壁32の半径方向内側先端部に回転方向とは逆の方向に伸びる突起部をもつような形状であればよい。通常、回転数が一定で加速度が加わっていない状態では、試料液が試料液分離貯留部22にすべて移動した状態(図3(a))では、液面は回転中心からほぼ等しい距離で定位する。しかしながら、回転数を減速させる際に回転方向とは逆に加速度が加わるため、試料液には加速度とは逆、つまり回転方向に慣性力が発生し、試料液には遠心力と慣性力のベクトルの合成方向の力が加わる(図3(b))。その影響によって、第2の分離貯留部22bに遠心分離された比重の重い試料液が分離壁32を超えて第1の分離貯留部22aに混入しようとする。このとき、図3に示すような逆流防止弁32を設けることによって、比重の重い試料液が分離壁32を超えて第1の分離貯留部32に混入することを抑制することが可能となる。   Further, a backflow prevention valve 31 for preventing backflow is provided at the tip of the separation wall. The backflow prevention valve 31 may have any shape as long as it has a protruding portion extending in the direction opposite to the rotation direction at the radially inner end portion of the separation wall 32 as shown in FIG. Normally, in a state where the rotation speed is constant and acceleration is not applied, in the state where the sample liquid has all moved to the sample liquid separation and storage unit 22 (FIG. 3A), the liquid surface is localized at an approximately equal distance from the center of rotation. . However, when the rotational speed is decelerated, acceleration is applied in the direction opposite to the rotation direction. Therefore, an inertial force is generated in the sample liquid opposite to the acceleration, that is, in the rotation direction, and the vector of centrifugal force and inertial force is generated in the sample liquid. A force in the direction of synthesis is applied (FIG. 3B). Due to the influence, the sample liquid with a high specific gravity, which has been centrifuged in the second separation and storage section 22b, tries to enter the first separation and storage section 22a beyond the separation wall 32. At this time, by providing the backflow prevention valve 32 as shown in FIG. 3, it is possible to prevent the sample liquid having a heavy specific gravity from entering the first separation storage section 32 beyond the separation wall 32.

特に血液を血漿・血清と血球に分離する場合は、比重の重い試料液が貯留される第2の分離貯留部22bの容量は、最初に注入する試料液の50%〜60%の容量としている。これは、一般的に人間の血液に含まれる比重の重い血球34の割合は30%〜50%であり、血球34を貯留するための第2の分離貯留部22bの容量が50%以上の容量を保持していれば比重の重い試料液が、比重の軽い試料液が貯留される第1の分離貯留部22a側には溢れないためである。逆に、第2の分離貯留部22bの容量を多くしすぎると、検体となる血清・血漿33の必要量の定量採取を行うために、最初に注入すべき血液61の量を増加する必要性が出てきたり、場合によっては検査に必要な血清・血漿33の必要量の定量採取ができない可能性があったりするため、第2の分離貯留部22bの容量は注入する試料液の60%以下が望ましい。   In particular, when separating blood into plasma / serum and blood cells, the volume of the second separation reservoir 22b in which a sample liquid with a high specific gravity is stored is 50% to 60% of the sample liquid to be injected first. . This is because the ratio of blood cells 34 having a high specific gravity contained in human blood is generally 30% to 50%, and the capacity of the second separation and storage unit 22b for storing the blood cells 34 is 50% or more. This is because the sample liquid having a high specific gravity does not overflow to the first separation storage part 22a side where the sample liquid having a low specific gravity is stored. On the other hand, if the volume of the second separation reservoir 22b is excessively increased, it is necessary to increase the amount of blood 61 to be injected first in order to perform quantitative collection of the necessary amount of serum / plasma 33 as a sample. Or the volume of the second separation reservoir 22b may be 60% or less of the sample solution to be injected. Is desirable.

それぞれの貯留部の深さは2mmであり、15μl以上の容量を確保している。さらに、それぞれの貯留部には、試料の輸送を促すために上基板41に空気孔25を設けている。この空気孔25は試料がパネル12の外部に飛散しないように空気穴内壁が撥水処理されており、空気孔直径も1mm以下で形成されている。   The depth of each storage part is 2 mm, and the capacity | capacitance of 15 microliters or more is ensured. Furthermore, air holes 25 are provided in the upper substrate 41 in each storage unit in order to facilitate transport of the sample. The air holes 25 are formed so that the inner walls of the air holes are water repellent so that the sample does not scatter outside the panel 12, and the diameter of the air holes is 1 mm or less.

それぞれの貯留部と貯留部の間は流路で連結されている。具体的には、試料液貯留部21の半径方向外側の壁面から試料液分離貯留部22の半径方向内側の壁面を連結する第1の流路26と、第1の分離貯留部22aの半径方向外側と、第1の定量貯留部23の回転方向に位置する側壁面を連結する第2の流路27と、第2の分離貯留部22bの半径方向外側と、第2の定量貯留部24の回転方向とは反対に位置する側壁面を連結する第3の流路28である。   Each storage part and the storage part are connected by a flow path. Specifically, the first flow path 26 that connects the radially outer wall surface of the sample liquid storage portion 21 to the radially inner wall surface of the sample liquid separation storage portion 22 and the radial direction of the first separation storage portion 22a. The second flow path 27 that connects the outer side, the side wall surface positioned in the rotation direction of the first quantitative reservoir 23, the radially outer side of the second separation reservoir 22 b, and the second quantitative reservoir 24 It is the 3rd flow path 28 which connects the side wall surface located in the direction opposite to a rotation direction.

特に、第2の流路27及び第3の流路28については、回転分析装置11の回転中心方向に折り返しのための曲管部29を備えたサイフォン形状である。第2の流路27と第3の流路28について、試料液が試料液分離貯留部22に入ったと仮定したときの液面から折り返しの曲管部29までの距離をそれぞれH1、H2としたときにH1>H2を満たすように形成する。このような構成を用いることによって、回転分析装置11の回転数を制御することで第1の定量貯留部23及び第2の定量貯留部24に分離後の試料液を選択的に移送することができる。本実施例1では、流路の幅を0.6〜1mm、深さを0.2mmで形成した。   In particular, the second flow path 27 and the third flow path 28 have a siphon shape including a bent pipe portion 29 for turning back in the direction of the rotation center of the rotation analyzer 11. For the second flow path 27 and the third flow path 28, the distances from the liquid surface to the folded bent pipe section 29 when the sample liquid has entered the sample liquid separation and storage section 22 are H1 and H2, respectively. Sometimes it is formed to satisfy H1> H2. By using such a configuration, it is possible to selectively transfer the separated sample liquid to the first quantitative reservoir 23 and the second quantitative reservoir 24 by controlling the rotational speed of the rotation analyzer 11. it can. In Example 1, the width of the flow path was 0.6 to 1 mm and the depth was 0.2 mm.

次に、本実施例1における試料移送のプロセスを血液の遠心分離及び定量採取を例にとって説明する。血液61は、主に血清・血漿33と、血球34に分類でき、血球は血清・血漿33にくらべて比重が重い。   Next, the sample transfer process in the first embodiment will be described by taking blood centrifugation and quantitative collection as an example. The blood 61 can be classified mainly into serum / plasma 33 and blood cells 34, and blood cells have a higher specific gravity than serum / plasma 33.

図5に本実施例1のプロセスフローを示す。図6に血液61の血清・血漿33及び血球34の遠心分離と定量採取の流れの模式図を示す。まず、試料液貯留部21に試料液である必要量の血液61を注入する(図6(a))。次に、パネル12を回転分析装置11に設置し、回転数Aで回転させ遠心分離を行う(図6(b))。この回転数Aは、第2の流路27、第3の流路28について、それぞれの試料液分離貯留部22の連結部からそれぞれの折り返し曲管部29の間の中途に試料が存在すると仮定した場合の試料液にかかる毛細管力63より遠心力62のほうが十分大きくなる回転数である。このときの回転方向は、必ず第2の流路27の方向、即ち、図1では反時計方向である。この回転方向は重要であり、遠心分離時に比重の重い血球34が第1の分離貯留部22a側に混入することを防いでいる。試料液の血液61は、回転数Aで遠心分離することにより、試料液貯留部22から第1の流路26を伝って第2の分離貯留部22b側に比重の重い血球61から移動していき一時貯留される。当然ながら、このとき試料液分離貯留部22に移動する試料液の中には比重の軽い血清・血漿33も混入している。即ち、回転数Aの場合、遠心力62>毛細菅力63の関係となり、試料液が流路26を介して試料液分離貯留部22に移動していく。   FIG. 5 shows a process flow of the first embodiment. FIG. 6 shows a schematic diagram of the flow of centrifugal separation and quantitative collection of serum / plasma 33 and blood cells 34 of blood 61. First, a necessary amount of blood 61, which is a sample solution, is injected into the sample solution storage unit 21 (FIG. 6A). Next, the panel 12 is installed in the rotation analyzer 11 and rotated at the rotation speed A to perform centrifugation (FIG. 6B). This rotational speed A is assumed that a sample exists in the middle of the second flow path 27 and the third flow path 28 between the connection portion of each sample liquid separation and storage section 22 and each folded pipe section 29. In this case, the centrifugal force 62 is sufficiently higher than the capillary force 63 applied to the sample solution. The rotation direction at this time is always the direction of the second flow path 27, that is, the counterclockwise direction in FIG. This direction of rotation is important and prevents blood cells 34 having a high specific gravity from being mixed into the first separation / storage part 22a side during centrifugation. By centrifuging the sample solution blood 61 at the rotation speed A, the sample solution blood 61 travels from the sample solution reservoir 22 through the first flow path 26 to the second separation reservoir 22b side from the heavier blood cell 61 having a higher specific gravity. It is stored temporarily. Needless to say, serum / plasma 33 having a light specific gravity is also mixed in the sample solution moving to the sample solution separation / storage unit 22 at this time. That is, in the case of the rotational speed A, the relationship of centrifugal force 62> capillary force 63 is established, and the sample solution moves to the sample solution separation / storage part 22 via the flow path 26.

試料液分離貯留部22に移動した血液61は遠心力62により比重の重い血球34が外周側に移動し、比重の軽い血清・血漿33は内周側に追いやられる。さらに、遠心分離を行うと、試料液分離貯留部22に形成した分離壁32を超えて第1の分離貯留部側に比重の軽い血清・血漿33が移動してくる。このとき、試料液貯留部21から試料液分離貯留部22に移動している血液61の中には、比重の重い血球34が含まれているが、血液61は回転方向の制御により必ず最初に第2の分離貯留部側に入るため、第1の分離貯留部22a側に比重の重い血球34には入らないようになっている。   The blood 61 that has moved to the sample liquid separation and storage unit 22 is moved to the outer peripheral side by the centrifugal force 62, and the serum / plasma 33 having a lower specific gravity is driven to the inner peripheral side. Further, when centrifugation is performed, the serum / plasma 33 having a low specific gravity moves to the first separation / storage part side beyond the separation wall 32 formed in the sample liquid separation / storage part 22. At this time, the blood 61 moving from the sample solution storage unit 21 to the sample solution separation and storage unit 22 includes blood cells 34 having a high specific gravity. Since it enters into the 2nd separation storage part side, it does not enter into blood cell 34 with heavy specific gravity in the 1st separation storage part 22a side.

第1の分離貯留部22aと第2の分離貯留部22bに試料液の血液81が十分に分離したら、回転数Aから回転数Bに減速させる(図6(c))。この回転数Bは、第2の流路27の内部の血清・血漿33にかかる毛細管力63と遠心力62のつり合いが逆転する回転数である。このとき、遠心分離により分離された比重の軽い血清・血漿33が、第1の分離貯留部22aから第2の流路27を伝って第1の定量貯留部23に移動し始める。第1の定量貯留部23に移動する血清・血漿33は、試料液分離貯留部22にすべて入った時点で定量されており、第2の分離貯留部22bの容量によって決定される。例えば、第2の分離貯留部22bの容量を注入する血液の略50%の容量にした場合、残りの略50%が比重の軽い血清・血漿33の量になるといった具合である。比重の軽い血清・血漿33を第1の定量貯留部24に定量した後、回転数Bから回転数Cに減速させる(図6(d))。この回転数Cは、第2の流路28の内部の血球34にかかる毛細管力63と遠心力62のつり合いが逆転する回転数である。このとき、第2の分離貯留部22bに残留した比重の重い血球34が、第2の定量貯留部24に移動する。分離された血液61がすべて、第1の定量貯留部23と第2の定量貯留部24に移動する(図6(e))ことで、検体となる比重の軽い血清・血漿33の定量採取が可能となり、これ以降に回転を伴うプロセスが生じたとしても、第1の定量貯留部23に比重の重い血球34が混入することはない。   When the blood 81 of the sample liquid is sufficiently separated into the first separation / storage section 22a and the second separation / storage section 22b, the speed is reduced from the rotation speed A to the rotation speed B (FIG. 6C). This rotational speed B is the rotational speed at which the balance between the capillary force 63 and the centrifugal force 62 applied to the serum / plasma 33 inside the second flow path 27 is reversed. At this time, the serum / plasma 33 having a low specific gravity separated by the centrifugal separation starts to move from the first separation reservoir 22 a to the first quantitative reservoir 23 through the second flow path 27. Serum / plasma 33 moving to the first fixed reservoir 23 is quantified at the time when all of the serum / plasma 33 enters the sample liquid separation reservoir 22, and is determined by the capacity of the second separation reservoir 22b. For example, when the volume of the second separation reservoir 22b is approximately 50% of the blood to be injected, the remaining approximately 50% is the amount of serum / plasma 33 having a low specific gravity. After the serum / plasma 33 having a light specific gravity is quantified in the first quantitative reservoir 24, it is decelerated from the rotational speed B to the rotational speed C (FIG. 6 (d)). This rotational speed C is the rotational speed at which the balance between the capillary force 63 and the centrifugal force 62 applied to the blood cells 34 inside the second flow path 28 is reversed. At this time, blood cells 34 having a high specific gravity remaining in the second separation and storage unit 22 b move to the second quantitative storage unit 24. All the separated blood 61 moves to the first quantitative reservoir 23 and the second quantitative reservoir 24 (FIG. 6 (e)), whereby quantitative collection of serum / plasma 33 with a low specific gravity as a specimen can be performed. Even if a process involving rotation occurs after this, blood cells 34 having a high specific gravity will not be mixed into the first quantitative reservoir 23.

図7は、本発明の第2の実施例における遠心分離デバイスの構成を示す模式図である。図8は第2の実施例における遠心分離デバイスのためのマイクロチャネル72が形成されたパネル71を示す図である。図9は、マイクロチャネル72の試料液分離貯留部81の詳細図である。   FIG. 7 is a schematic diagram showing the configuration of the centrifuge device in the second embodiment of the present invention. FIG. 8 is a view showing a panel 71 in which microchannels 72 for the centrifuge device in the second embodiment are formed. FIG. 9 is a detailed view of the sample liquid separation / storage part 81 of the microchannel 72.

実施例1の構成と異なるところは図9に示すように、試料液分離貯留部81の半径方向の外側の壁面をステップ状に形成して分離し、分離壁82によって形成される比重の重い試料液を貯留するための第2の分離貯留部81aと、残りの領域で構成される比重の軽い試料液を貯留するための分離貯留部81bを形成していることである。さらに第1の分離貯留部81aの半径方向外側の壁面について、第1の流路27の連結部から逆流防止弁83に向かって回転中心からの距離が近くなるように形成されていることである。また、第2の分離貯留部81bの半径方向外側の壁面について、第2の流路28の連結部から分離壁82に向かって回転中心からの距離が近くなるように形成している。   A difference from the configuration of the first embodiment is that a sample having a high specific gravity formed by the separation wall 82 is formed by separating the outer wall surface in the radial direction of the sample liquid separation storage unit 81 in a step shape as shown in FIG. The second separation and storage part 81a for storing the liquid and the separation and storage part 81b for storing the sample liquid with a low specific gravity constituted by the remaining regions are formed. Furthermore, the radially outer wall surface of the first separation and storage part 81a is formed so that the distance from the rotation center is closer to the backflow prevention valve 83 from the connection part of the first flow path 27. . In addition, the radially outer wall surface of the second separation storage portion 81b is formed so that the distance from the rotation center is closer to the separation wall 82 from the connection portion of the second flow path 28.

このような構成にすることによって、第2の分離貯留部81bから溢れ出た試料液が、第1の分離貯留部81aに移動するときの試料液の流速を弱めることができ、第2の分離貯留部81bに溜まっている比重の重い成分の逆流を抑制することが可能となる。さらに、それぞれの分離貯留部の半径方向外側の壁面に先に説明したような傾斜を形成することで、それぞれの分離貯留部に貯留した試料液をすべて流路内に移送することができる。   By adopting such a configuration, it is possible to reduce the flow rate of the sample liquid when the sample liquid overflowing from the second separation storage section 81b moves to the first separation storage section 81a, and the second separation It becomes possible to suppress the backflow of the heavy component having accumulated in the reservoir 81b. Furthermore, by forming the slope as described above on the radially outer wall surface of each separation storage section, all the sample liquid stored in each separation storage section can be transferred into the flow path.

図10に血液の遠心分離及び定量採取を例にとった試料移送例を模式図に示す。試料液である血液61を試料液貯留部21に注入(図10(a))し、回転分析装置11を回転数Aで遠心分離する(図10(b))。第1の回転数Aの遠心分離では、比重の重い第2の試料液が第2の分離貯留部81bに貯留され始める。即ち、回転数Aの場合、遠心力62>毛細菅力63の関係となり、試料液が第1の流路26を介して分離貯留部81bに移動していく。   FIG. 10 is a schematic diagram showing a sample transfer example taking blood centrifugation and quantitative sampling as an example. Blood 61, which is a sample solution, is injected into the sample solution reservoir 21 (FIG. 10A), and the rotation analyzer 11 is centrifuged at a rotation speed A (FIG. 10B). In the centrifugal separation at the first rotation speed A, the second sample liquid having a high specific gravity starts to be stored in the second separation storage unit 81b. That is, in the case of the rotational speed A, the relationship of centrifugal force 62> capillary force 63 is established, and the sample liquid moves to the separation storage part 81b through the first flow path 26.

試料液の血液61は、試料液貯留部22から第1の流路26を伝って試料液分離貯留部81の第1の分離貯留部81bに比重の重い血球34から移動していき貯留される。第1の分離貯留部81aと第2の分離貯留部81bに、試料液の血液61が十分に分離したら、回転数Aから回転数Bに減速する(図10(c))。遠心分離により分離された比重の軽い血清・血漿33が、第1の分離貯留部81bから第2の流路27を伝って、第1の定量貯留部23に移動し始める。比重の軽い血清・血漿33を定量した後、回転数Bから回転数Cに減速させる(図10(d))。このとき、第2の分離貯留部81bに残留した比重の重い血球34が、第2の定量貯留部24に移動する。分離された血液61がすべて、第1の定量貯留部23と第2の定量貯留部24に定量された状態(図10(e))で血液61の分離及び定量採取が完了となる。   The blood 61 of the sample liquid moves from the blood cell 34 having a high specific gravity to the first separation storage part 81b of the sample liquid separation storage part 81 through the first flow path 26 from the sample liquid storage part 22 and is stored. . When the blood 61 of the sample liquid is sufficiently separated into the first separation / storage part 81a and the second separation / storage part 81b, the speed is reduced from the rotational speed A to the rotational speed B (FIG. 10 (c)). The serum / plasma 33 having a low specific gravity separated by the centrifugal separation starts to move from the first separation / storage unit 81b to the first quantitative storage unit 23 through the second flow path 27. After quantifying the serum / plasma 33 having a light specific gravity, the serum / plasma 33 is decelerated from the rotational speed B to the rotational speed C (FIG. 10 (d)). At this time, blood cells 34 having a high specific gravity remaining in the second separation and storage unit 81 b move to the second quantitative storage unit 24. Separation and quantitative collection of blood 61 are completed in a state where all the separated blood 61 is quantified in the first quantitative reservoir 23 and the second quantitative reservoir 24 (FIG. 10 (e)).

本発明にかかる遠心分離デバイスは、試料液分離貯留部に挿入されるべき試料液の液面から試料液分離貯留部に連結した第1の流路の折り返しの曲管部までの長さ(h1)と、試料液分離貯留部に挿入されるべき試料液の液面から試料液分離貯留部に連結した第2の流路の折り返しの曲管部をまでの長さ(h2)の関係が、h1<h2を満たす構成を用いて、円盤型遠心分離手段によって段階的に円盤の回転数を減少させることで、試料液中の比重の異なる成分を完全に分離して、分析に必要な試料液の定量採取を行うことができる方法として有用である。   The centrifugal separation device according to the present invention has a length (h1) from the liquid surface of the sample liquid to be inserted into the sample liquid separation / storage section to the bent tube section of the first flow path connected to the sample liquid separation / storage section. ) And the length (h2) from the liquid surface of the sample liquid to be inserted into the sample liquid separation / storage part to the bent pipe part of the second flow path connected to the sample liquid separation / storage part, By using a configuration satisfying h1 <h2, the rotational speed of the disk is reduced stepwise by the disk-type centrifugal separation means, so that components having different specific gravities in the sample liquid are completely separated, and the sample liquid required for analysis It is useful as a method that enables quantitative collection of

本発明にかかる遠心分離デバイスは、血液成分に含まれる血球、血漿、血清等の分離採取が必要な医療分析検査装置等の用途にも適用できる。   The centrifuge device according to the present invention can also be applied to uses such as medical analysis test apparatuses that require separation and collection of blood cells, plasma, serum, and the like contained in blood components.

本発明の実施例1における遠心分離デバイスの概略構成図1 is a schematic configuration diagram of a centrifuge device in Embodiment 1 of the present invention. 本発明の実施例1における遠心分離デバイスに搭載するパネルの詳細図Detailed drawing of the panel mounted in the centrifuge device in Example 1 of the present invention 本発明の実施例1における遠心分離デバイスの試料液分離貯留部の詳細図Detailed view of the sample liquid separation storage part of the centrifugal separation device in Example 1 of the present invention 本発明の実施例1における遠心分離デバイスのパネルの構成を説明するための図The figure for demonstrating the structure of the panel of the centrifuge device in Example 1 of this invention. 本発明の実施例1における遠心分離方法のプロセスフローチャートProcess flowchart of centrifugal separation method in embodiment 1 of the present invention 本発明の実施例1における遠心分離デバイスを用いて血液の遠心分離及び定量採取を説明するための図The figure for demonstrating centrifugation and quantitative collection of blood using the centrifuge device in Example 1 of this invention 本発明の実施例2における遠心分離デバイスの概略構成図Schematic configuration diagram of a centrifuge device in Example 2 of the present invention 本発明の実施例2における遠心分離デバイスに搭載するパネルの詳細図Detail drawing of the panel mounted in the centrifuge device in Example 2 of the present invention 本発明の実施例2における遠心分離デバイスの試料液分離貯留部の詳細図Detailed view of the sample liquid separation storage part of the centrifuge device in Example 2 of the present invention 本発明の実施例2における遠心分離デバイスの血液の遠心分離及び定量採取を説明するための図The figure for demonstrating centrifugation and quantitative collection of the blood of the centrifuge device in Example 2 of this invention 従来の回転分析デバイスの試料の計量を説明するための図The figure for demonstrating the measurement of the sample of the conventional rotational analysis device 従来の他の回転分析デバイスの試料の計量を説明するための図The figure for demonstrating the measurement of the sample of the other conventional rotational analysis device 従来の更に他の回転分析デバイスの試料の計量を説明するための図The figure for demonstrating the measurement of the sample of other conventional rotational analysis devices

符号の説明Explanation of symbols

11 回転分析装置
12 第1の実施例のパネル
13 第1の実施例のマイクロチャネル
14 回転中心
21 試料貯留部
22 試料液分離貯留部
22a 第1の分離貯留部
22b 第2の分離貯留部
23 第1の定量貯留部
24 第2の定量貯留部
25 空気孔
26 第1の流路
27 第2の流路
28 第3の流路
29 折り返し曲管部
31 逆流防止弁
32 分離壁
33 血清・血漿
34 血球
41 上基板
42 中基板
43 下基板
61 血液
62 遠心力
63 毛細管力
71 第2の実施例のパネル
72 第2の実施例のマイクロチャネル
81 試料液分離貯留部
81a 第1の分離貯留部
81b 第2の分離貯留部
82 分離壁
83 逆流防止弁
111 中央収容部
112 計量室
113 溢流室
114 混合室
115 測定セル
116 供給口
117 溢流口
118 開口
121 大型流体室
122 計量室
123 溢流室
124 受容室
125 毛細管連結手段
126 サイフォン
131 貯留部
132 血球収容部
133 血球収容部と貯留部を接続する部分
134 サイフォン形状の出力流路
135 供給流路
DESCRIPTION OF SYMBOLS 11 Rotational analyzer 12 Panel of 1st Example 13 Microchannel of 1st Example 14 Center of rotation 21 Sample storage part 22 Sample liquid separation storage part 22a First separation storage part 22b Second separation storage part 23 First 1 Quantitative Reservoir 24 Second Quantitative Reservoir 25 Air Hole 26 First Flow Channel 27 Second Flow Channel 28 Third Flow Channel 29 Folded Tube Section 31 Backflow Prevention Valve 32 Separation Wall 33 Serum / Plasma 34 Blood cell 41 Upper substrate 42 Medium substrate 43 Lower substrate 61 Blood 62 Centrifugal force 63 Capillary force 71 Panel of the second embodiment 72 Microchannel of the second embodiment 81 Sample liquid separation and storage section 81a First separation and storage section 81b First 2 separation storage part 82 separation wall 83 backflow prevention valve 111 central accommodation part 112 measuring chamber 113 overflow chamber 114 mixing chamber 115 measurement cell 116 supply port 117 overflow port DESCRIPTION OF SYMBOLS 18 Opening 121 Large fluid chamber 122 Measuring chamber 123 Overflow chamber 124 Receiving chamber 125 Capillary connection means 126 Siphon 131 Storage part 132 Blood cell storage part 133 The part which connects a blood cell storage part and a storage part 134 Siphon-shaped output flow path 135 Supply flow Road

Claims (9)

分析すべき試料液を回転して発生する遠心力と毛細管力により遠心分離するための遠心分離デバイスにおいて、
試料液を注入及び収容するための試料液貯留部と、
前記試料液貯留部と流路で連結され当該試料液貯留部に対して半径方向外側に位置し前記試料液を試料液の比重の差を用いて遠心分離される第1の試料液と第2の試料液とに計量し分離して貯留する試料液分離貯留部と、
前記試料液分離貯留部の半径方向外側両端部に連結する第1の流路と第2の流路を介して前記第1と第2の試料液をそれぞれ貯留する第1と第2の定量貯留部と、
を備え、
前記試料液分離貯留部に挿入されるべき試料液の液面から試料液分離貯留部に連結した第1の流路の折り返しの曲管部までの半径方向の長さ(h1)が、前記試料液分離貯留部に挿入されるべき試料液の液面から試料液分離貯留部に連結した第2の流路の折り返しの曲管部までの半径方向の長さ(h2)より短いことを特徴とする遠心分離デバイス。
In a centrifuge device for centrifuging by a centrifugal force generated by rotating a sample liquid to be analyzed and a capillary force,
A sample solution reservoir for injecting and containing the sample solution; and
A first sample liquid and a second sample liquid that are connected to the sample liquid storage section through a flow path and are located radially outward with respect to the sample liquid storage section and centrifuge the sample liquid using a difference in specific gravity of the sample liquid. A sample liquid separation and storage part that weighs and separates and stores the sample liquid,
First and second quantitative storages for storing the first and second sample liquids, respectively, via a first flow path and a second flow path connected to both radially outer ends of the sample liquid separation storage section. And
With
The length (h1) in the radial direction from the liquid surface of the sample liquid to be inserted into the sample liquid separation / storage part to the bent tube part of the first flow path connected to the sample liquid separation / storage part is the sample. It is characterized by being shorter than the length (h2) in the radial direction from the liquid surface of the sample liquid to be inserted into the liquid separation storage section to the bent portion of the second flow path connected to the sample liquid separation storage section. Centrifuge device.
前記試料液分離貯留部は、前記試料液を分離貯留するための回転中心方向に向かって所定の長さの分離壁を有し、回転当初、前記分離壁によって分離された回転方向と逆側の貯留部に前記試料貯留部に貯留された試料液の略半分の量が計量されて貯留され、その後の回転によりそれを越える試料液は、前記分離壁を越えて、回転方向側の貯留部に貯留されることを特徴とする請求項1に記載の遠心分離デバイス。 The sample solution separation and storage unit has a separation wall having a predetermined length toward the rotation center direction for separating and storing the sample solution, and is initially on the opposite side of the rotation direction separated by the separation wall. Approximately half the amount of the sample liquid stored in the sample storage part is weighed and stored in the storage part, and the sample liquid that exceeds it by subsequent rotation passes over the separation wall to the storage part on the rotation direction side. The centrifuge device according to claim 1, wherein the centrifuge device is stored. 前記分離壁の半径方向内側先端部に回転方向とは逆の方向に伸びる突起状の逆流防止弁を有することを特徴とする請求項2に記載の遠心分離デバイス。 The centrifugal separation device according to claim 2, further comprising a protruding backflow prevention valve extending in a direction opposite to a rotation direction at a radially inner tip portion of the separation wall. 前記試料液分離貯留部は、前記試料液分離貯留部の半径方向の外側の壁面位置をステップ状に形成して分離され、第1の試料液を計量する回転方向側の前記試料液分離貯留部の半径方向の外側の壁面位置は、第2の試料液を計量するための半径方向の外側の壁面位置より第2の試料液を計量する前記試料液分離貯留部の容量が、前記試料液貯留部に注入する試料液の50%〜60%の容量を満たすべき距離だけ回転中心側に位置することを特徴とする請求項1に記載の遠心分離デバイス。 The sample liquid separation and storage part is separated by forming a wall surface position on the outer side in the radial direction of the sample liquid separation and storage part in a step shape, and the sample liquid separation and storage part on the rotational direction side for measuring the first sample liquid The outer wall surface position in the radial direction is such that the volume of the sample liquid separating and storing portion that measures the second sample liquid from the outer wall surface position in the radial direction for measuring the second sample liquid is the sample liquid storage volume. The centrifuge device according to claim 1, wherein the centrifuge device is located on the rotation center side by a distance that should satisfy a volume of 50% to 60% of the sample liquid injected into the part. 前記第1の試料液を計量する回転方向側の前記試料液分離貯留部の半径方向の外側の壁面位置は、前記第2の試料液を計量する試料液分離貯留部側へいくにつれて回転中心からの距離が近くなるように形成されることを特徴とする請求項1に記載の遠心分離デバイス。 The position of the outer wall surface in the radial direction of the sample liquid separation and storage section on the rotational direction side for measuring the first sample liquid is from the center of rotation toward the sample liquid separation and storage section side for measuring the second sample liquid. The centrifuge device according to claim 1, wherein the centrifuge device is formed so as to be close to each other. 前記第1の試料液は、血清・血漿成分であり、第2の試料液は、血球成分であることを特徴とする請求項4又は請求項5のいずれか一項に記載の遠心分離デバイス。 6. The centrifuge device according to claim 4, wherein the first sample solution is a serum / plasma component, and the second sample solution is a blood cell component. 試料貯留部からの分析すべき試料液を回転して発生する遠心力と毛細管力により遠心分離する分析試料液の遠心分離方法において、
第1の回転数にて前記試料液貯留部の試料液を比重の差により分離して貯留し、
次に第2の速度に減速して前記試料液分離貯留部から比重の軽い第1の試料液が前記定量貯留部に計量して移送され、
次に前記第2の回転速度より遅い第3の回転速度に減速して比重の重い第2の試料液が前記定量貯留部に計量して移送され、
段階的に回転速度を減速し遠心分離することを特徴とする分析試料液の遠心分離方法。
In the centrifugal separation method of the analytical sample liquid that is centrifuged by centrifugal force generated by rotating the sample liquid to be analyzed from the sample reservoir and capillary force,
The sample liquid in the sample liquid storage part is separated and stored by the difference in specific gravity at the first rotational speed,
Next, the second sample is decelerated to a second speed, and the first sample solution having a low specific gravity is weighed and transferred from the sample solution separation and storage unit to the quantitative storage unit.
Next, the second sample liquid having a heavy specific gravity is decelerated to a third rotational speed that is slower than the second rotational speed, and is metered and transferred to the quantitative reservoir.
A method for centrifuging an analysis sample solution, characterized by centrifuging at a reduced rotational speed stepwise.
前記試料液分離貯留部は、前記分析試料液を分離貯留するための回転中心方向に向かって所定の長さの分離壁を有し、回転当初、前記分離壁によって分離された回転方向と逆側の貯留部に前記試料貯留部に貯留された試料液の略半分の量が計量されて貯留され、その後の回転によりそれを越える試料液は、前記分離壁を越えて、回転方向側の貯留部に貯留されることを特徴とする請求項7に記載の遠心分離方法。 The sample solution separation and storage unit has a separation wall having a predetermined length toward the rotation center direction for separating and storing the analysis sample solution, and is opposite to the rotation direction separated by the separation wall at the beginning of rotation. Approximately half the amount of the sample liquid stored in the sample storage part is measured and stored in the storage part, and the sample liquid that exceeds it by the subsequent rotation passes the separation wall, and the storage part on the rotation direction side. The centrifugation method according to claim 7, wherein the centrifugal separation method is stored. 前記第1の試料液は、血清・血漿成分であり、第2の試料液は、血球成分であることを特徴とする請求項8に記載の分析試料液の遠心分離方法。
9. The method of centrifuging an analysis sample solution according to claim 8, wherein the first sample solution is a serum / plasma component, and the second sample solution is a blood cell component.
JP2006057420A 2006-03-03 2006-03-03 Centrifuge device and centrifuge method Active JP4752546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057420A JP4752546B2 (en) 2006-03-03 2006-03-03 Centrifuge device and centrifuge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057420A JP4752546B2 (en) 2006-03-03 2006-03-03 Centrifuge device and centrifuge method

Publications (2)

Publication Number Publication Date
JP2007232674A true JP2007232674A (en) 2007-09-13
JP4752546B2 JP4752546B2 (en) 2011-08-17

Family

ID=38553380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057420A Active JP4752546B2 (en) 2006-03-03 2006-03-03 Centrifuge device and centrifuge method

Country Status (1)

Country Link
JP (1) JP4752546B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156766A (en) * 2007-12-27 2009-07-16 Rohm Co Ltd Microchip
JP2009156683A (en) * 2007-12-26 2009-07-16 Rohm Co Ltd Microchip
JP2009276143A (en) * 2008-05-13 2009-11-26 Rohm Co Ltd Microchip
JP2010122022A (en) * 2008-11-19 2010-06-03 Panasonic Corp Analysis device, and analysis method using the same
JP2010145314A (en) * 2008-12-22 2010-07-01 Rohm Co Ltd Microchip
JP2011163882A (en) * 2010-02-08 2011-08-25 Horiba Ltd Liquid sample quantity determiner
JP2015503100A (en) * 2011-12-08 2015-01-29 バイオサーフィット、 ソシエダッド アノニマ Determination of sequential dispensing and sedimentation rate indicators
JP2017187659A (en) * 2016-04-07 2017-10-12 住友電気工業株式会社 Optical fiber ribbon and optical fiber cable
CN109283174A (en) * 2018-09-29 2019-01-29 厦门大学 A kind of quantitative detection CD and detection method
KR102091124B1 (en) * 2019-10-02 2020-03-19 주식회사 클리노믹스 Chamber for centrifuge device and centrifuge device comprising the same
WO2023120159A1 (en) * 2021-12-20 2023-06-29 Phcホールディングス株式会社 Biological sample separation container, biological sample separation control device, biological sample separation control method, and biological sample separation control program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167469A (en) * 1984-12-21 1986-07-29 イノヴエルフ Dynamic pipet operation rotor of centrifugal separation analyser
JPH05508709A (en) * 1990-06-04 1993-12-02 アバクシス,インコーポレイテッド Analytical rotary device and biological fluid analysis method
JP2005345160A (en) * 2004-05-31 2005-12-15 Advance Co Ltd Biological information analyzing unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167469A (en) * 1984-12-21 1986-07-29 イノヴエルフ Dynamic pipet operation rotor of centrifugal separation analyser
JPH05508709A (en) * 1990-06-04 1993-12-02 アバクシス,インコーポレイテッド Analytical rotary device and biological fluid analysis method
JP2005345160A (en) * 2004-05-31 2005-12-15 Advance Co Ltd Biological information analyzing unit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156683A (en) * 2007-12-26 2009-07-16 Rohm Co Ltd Microchip
JP2009156766A (en) * 2007-12-27 2009-07-16 Rohm Co Ltd Microchip
JP2009276143A (en) * 2008-05-13 2009-11-26 Rohm Co Ltd Microchip
JP2010122022A (en) * 2008-11-19 2010-06-03 Panasonic Corp Analysis device, and analysis method using the same
JP2010145314A (en) * 2008-12-22 2010-07-01 Rohm Co Ltd Microchip
US8646316B2 (en) 2010-02-08 2014-02-11 Horiba, Ltd. Liquid sample quantity determiner
JP2011163882A (en) * 2010-02-08 2011-08-25 Horiba Ltd Liquid sample quantity determiner
JP2015503100A (en) * 2011-12-08 2015-01-29 バイオサーフィット、 ソシエダッド アノニマ Determination of sequential dispensing and sedimentation rate indicators
JP2017187659A (en) * 2016-04-07 2017-10-12 住友電気工業株式会社 Optical fiber ribbon and optical fiber cable
CN109283174A (en) * 2018-09-29 2019-01-29 厦门大学 A kind of quantitative detection CD and detection method
KR102091124B1 (en) * 2019-10-02 2020-03-19 주식회사 클리노믹스 Chamber for centrifuge device and centrifuge device comprising the same
WO2021066506A1 (en) * 2019-10-02 2021-04-08 주식회사 클리노믹스 Chamber for centrifuge and centrifuge comprising same
WO2023120159A1 (en) * 2021-12-20 2023-06-29 Phcホールディングス株式会社 Biological sample separation container, biological sample separation control device, biological sample separation control method, and biological sample separation control program

Also Published As

Publication number Publication date
JP4752546B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4752546B2 (en) Centrifuge device and centrifuge method
JP5908917B2 (en) A microfluidic test carrier for allocating a certain volume of liquid to partial volumes
CN101520454B (en) Centrifugal fluid analyzer rotor
US8916112B2 (en) Liquid distribution and metering
KR101930610B1 (en) Rotatable cartridge for analyzing a biological sample
JP4619224B2 (en) Rotational analysis device
KR101859860B1 (en) Rotatable cartridge with a metering chamber for analyzing a biological sample
US20040121449A1 (en) Method and apparatus for separation of particles in a microfluidic device
US9221051B2 (en) Microfluidic element for analysis of a sample liquid
JP4927817B2 (en) Microfluidic device with multiple valves
EP2788736B1 (en) Sequential aliqoting and determination of an indicator of sedimentation rate
KR101930611B1 (en) Rotatable cartridge for processing and analyzing a biological sample
EP2928607B1 (en) Valving system for use in centrifugal microfluidic platforms
JP5376427B2 (en) Analytical device
CN108855258B (en) Microfluidic inspection device and microfluidic control method thereof
US20060204403A1 (en) Micro-fluidic fluid separation device and method
JP2008536143A (en) Upward micro tube
JP2008538319A (en) Separation structure
US10843195B2 (en) Devices, systems, and methods for specimen preparation using capillary and centrifugal forces
US20200230600A1 (en) Apparatus and methods for handling liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090303

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4752546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250