JP2007232563A - Electrode body - Google Patents

Electrode body Download PDF

Info

Publication number
JP2007232563A
JP2007232563A JP2006054519A JP2006054519A JP2007232563A JP 2007232563 A JP2007232563 A JP 2007232563A JP 2006054519 A JP2006054519 A JP 2006054519A JP 2006054519 A JP2006054519 A JP 2006054519A JP 2007232563 A JP2007232563 A JP 2007232563A
Authority
JP
Japan
Prior art keywords
silver
liquid
electrode
internal
silver chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006054519A
Other languages
Japanese (ja)
Other versions
JP4832921B2 (en
Inventor
Satoru Ito
哲 伊東
Jinkichi Miyai
迅吉 宮井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2006054519A priority Critical patent/JP4832921B2/en
Publication of JP2007232563A publication Critical patent/JP2007232563A/en
Application granted granted Critical
Publication of JP4832921B2 publication Critical patent/JP4832921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • External Artificial Organs (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode body which has a silver-silver chloride electrode as a reference electrode to house an internal liquid and is constituted so as to solve the problem wherein a liquid communication part is recrystallized to cause clogging when silver chloride is dissolved in a potassium chloride internal liquid to flow out and abnormal potential is generated. <P>SOLUTION: A properly selected liquid chelating agent, a coagulant and a polymeric flocculant are preliminarily charged in the internal liquid 9 and the silver ions dissolved in the internal liquid 9 are reacted with the liquid chelating agent to be formed into particles to be captured. The formed particles are further coagulated and flocculated to be formed into flocs. Further, the silver-silver chloride electrode 10 and the liquid communication body 12 of the electrode body is isolated by a dialytic membrane 3 so as to prevent fine particles, flocs, etc. from arriving at the liquid communication part 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内部液中に内部電極を浸漬した電極体、特にpH測定電極や酸化還元電極に関連し、とりわけその比較電極の部分に関連する。更に詳述するならば、比較電極の耐久性、再現性の改善に関する。   The present invention relates to an electrode body in which an internal electrode is immersed in an internal liquid, particularly a pH measurement electrode and a redox electrode, and particularly relates to a portion of the comparative electrode. More specifically, it relates to improvement of durability and reproducibility of the comparative electrode.

pH測定用の電極体は、構造的には、pH(水素濃度イオンの対数)に感応して電位を発生するガラス電極とこの電位測定の基準となる比較電極(または基準電極ともいう)の電極対から構成される。実用的な比較電極は、銀―塩化銀が内部液である一定濃度(飽和ないし3モルが多用される)の塩化カリウム溶液中の塩化物イオンに対して発生する電位を用いた銀―塩化銀の比較電極を用いるのが一般的である。   The electrode body for pH measurement is structurally composed of a glass electrode that generates a potential in response to pH (logarithm of hydrogen concentration ions) and a reference electrode (also referred to as a reference electrode) that serves as a reference for this potential measurement. Composed of pairs. A practical reference electrode is silver-silver chloride using the potential generated for chloride ions in a fixed concentration (saturated or 3 mol frequently used) silver chloride solution in which silver-silver chloride is the internal solution. It is common to use a comparative electrode.

この比較電極は被検液に対して電気的な導通を確保するために塩化カリウム溶液を少量ずつ流出させるための液絡部(ジャンクション)を有する。この液絡部は微細孔を有しており、この微細孔を通じては常の一定の割合で内部液が流出するようにされている必要がある。   This reference electrode has a liquid junction (junction) for allowing the potassium chloride solution to flow out little by little to ensure electrical continuity with the test solution. The liquid junction has fine holes, and it is necessary that the internal liquid flows out through the fine holes at a constant rate.

しかしながら銀線ないし銀棒上に溶着ないしメッキ等で形成された塩化銀が内部液に溶解したものが再結晶化して微細な結晶が液絡部に到達したり、液絡部を流通する溶解した塩化銀を含む内部液が、被検液と接触したときに、液絡部の近傍で還元され、塩化銀として析出するなどして、液絡部を目詰まりさせる等の障害を来たし、これが原因となって異常電位を生じるといった問題がある。   However, the silver chloride formed by welding or plating on the silver wire or silver bar is recrystallized and the fine crystals reach the liquid junction or dissolve through the liquid junction. When the internal liquid containing silver chloride comes into contact with the test solution, it is reduced near the liquid junction and deposited as silver chloride, causing problems such as clogging the liquid junction. There is a problem that an abnormal potential is generated.

したがって比較電極の耐久性、再現性を確保するためには、塩化カリウム溶液の内部液中に溶解する塩化銀が液絡部での目詰まり等を引起さないように処理する必要があった。   Therefore, in order to ensure the durability and reproducibility of the comparative electrode, it was necessary to treat silver chloride dissolved in the internal solution of the potassium chloride solution so as not to cause clogging at the liquid junction.

こうした目的で開示された公知の技術としては、複合イオン交換膜を用いて塩化銀を実質的に不溶化することを企図した特公平4−6906号、塩化銀が液絡部に到達しないように構造的に工夫を凝らした特公平4−1865号、キレート樹脂の機能に着目した特許公昭57−36539号、濃厚な塩化カリウム溶液中でも銀イオンを捕捉することが可能なキレート樹脂に着目して、これを内部液中の陽イオンと同形に処理することによって安定した実用性を確認した特公平5−17501号などがある。さらに最近では特殊な銀イオン吸着物質を特定の担持体に担持させて内部液中に設けるなどをした特開2004−157015号等の技術がある。とりわけキレート樹脂を用いる方法は実用性に優れている。
特公平5−17501号公報
Known techniques disclosed for such purposes include Japanese Patent Publication No. 4-6906, which is intended to substantially insolubilize silver chloride using a composite ion exchange membrane, and a structure that prevents silver chloride from reaching the liquid junction. Japanese Patent Publication No. 4-1865 with special ingenuity, Japanese Patent Publication No. 57-36539 focusing on the function of the chelating resin, and focusing on the chelating resin capable of capturing silver ions even in a concentrated potassium chloride solution. Japanese Patent Publication No. 5-17501, which has been confirmed to have stable practicality by treating the same as the cation in the internal solution. More recently, there is a technique such as Japanese Patent Application Laid-Open No. 2004-157015 in which a special silver ion adsorbing substance is supported on a specific support and provided in an internal liquid. In particular, the method using a chelate resin is excellent in practicality.
Japanese Patent Publication No. 5-17501

先行技術の多くは、内部液に溶解した銀イオンを吸着する機能を有する固体樹脂や固体の担持体に濃厚な塩化カリウム溶液で満たされた内極部に投与して銀イオンを内部液の液相から除去することによって、銀イオンによる悪影響から液絡部を保護するものであった。   Many of the prior arts administer silver ions to the inner liquid by applying it to the inner electrode filled with a concentrated potassium chloride solution on a solid resin or solid support having a function of adsorbing silver ions dissolved in the inner liquid. By removing from the phase, the liquid junction was protected from the adverse effects of silver ions.

一例として特公平5−17501号の方法に従って内極部の内部液にキレート樹脂を投与するには、内部液の補給口から一定量注ぎ入れる必要がある。この作業は細い管口から約1mm径の粒子を所定量送り込む作業であって、一定の時間を要する。また工業用のpH測定用ガラス電極においては、上部に内部液を貯えたリザーバタンクを備えており、内極部は、管を通じてリサーバタンクに接続し、リザーバタンクの内部液が少量づつ補給されるような構造になっているが、このような場合、一端、内極部に投与されたキレート樹脂が、輸送中に管を通じてリザーバタンクに逆流するなどの問題を発生することがあった。   As an example, in order to administer a chelate resin to the internal solution of the inner pole part according to the method of Japanese Patent Publication No. 5-17501, it is necessary to pour a certain amount from the supply port of the internal solution. This operation is an operation of feeding a predetermined amount of particles having a diameter of about 1 mm from a thin tube port, and requires a certain time. In addition, industrial glass electrodes for pH measurement are provided with a reservoir tank that stores internal liquid at the top, and the inner pole is connected to the reservoir tank through a tube, so that the internal liquid in the reservoir tank is replenished in small portions. However, in such a case, there is a case where the chelate resin administered to the inner pole portion is caused to flow back to the reservoir tank through the pipe during transportation.

更にキレート樹脂に対する銀イオンの吸着能を推測することは困難であり、いったん投与したキレート樹脂が、吸着の限界に達しているかどうかの確認ができなかった。
固体であるキレート樹脂は、内極の特定の場所に配置されていて、液絡部の手前でこの部分を覆うように配置されてはいるが、内部液が液絡部を通じて流出して行く場合、確実に100%近く銀イオンが捕捉されているかどうかは確認できていなかった。
Further, it is difficult to estimate the adsorption ability of silver ions to the chelate resin, and it has not been possible to confirm whether or not the chelate resin once administered has reached the limit of adsorption.
The chelate resin that is solid is placed at a specific location on the inner pole and is placed so as to cover this part before the liquid junction, but the internal liquid flows out through the liquid junction. It was not possible to confirm whether or not nearly 100% of silver ions were captured.

本発明はこのような事情に鑑みてなされたものであり、より扱い易く、銀イオンを確実に捕捉することにある。   This invention is made | formed in view of such a situation, It is easy to handle and exists in capture | acquisition of silver ion reliably.

発明者は、キレート剤の技術の進歩に着目した。周知のようにキレート剤は、反応によってその化学種の官能基で重金属イオン等を挟み込むように配位した際の、その形状を蟹のハサミに擬えてラテン語のキレートと命名され、その配位化合物をキレート化合物と呼んだ。その顕著な作用は、金属イオンに配位してそのイオン性を消去することであった。代表的なキレート試薬はEDTA(エチレンジアミン4酢酸)は、硬水の軟水化、イオンのマスキング剤、キレート滴定試薬として多用されている。   The inventor has focused on advances in chelating agent technology. As is well known, a chelating agent is named as a Latin chelate, which mimics the shape of the scissors of a spider when coordinated so that heavy metal ions etc. are sandwiched between functional groups of the chemical species by reaction, and its coordination compound Was called a chelate compound. Its prominent effect was to coordinate to the metal ion and erase its ionicity. A typical chelating reagent, EDTA (ethylenediaminetetraacetic acid), is widely used as a soft water for soft water, an ion masking agent, and a chelating titration reagent.

その後、キレート化合物の工業的応用として、排水や環境水中の金属イオンを除去する目的で、この金属イオンと結合した際のキレート化合物を水に不溶性とする研究が進展した。特開昭49−99978号は脂肪酸ポリジチオカルバミン酸をキレート化剤とすることによって金属とのキレート化合物を水に不溶化することを開示し、特開平7−213897号はその後の進展技術を開示している。   After that, as an industrial application of chelate compounds, research has progressed to make the chelate compounds insoluble in water when bound to the metal ions for the purpose of removing metal ions in wastewater and environmental water. Japanese Patent Laid-Open No. 49-99978 discloses that a chelate compound with a metal is insolubilized in water by using fatty acid polydithiocarbamic acid as a chelating agent, and Japanese Patent Laid-Open No. 7-213897 discloses a subsequent progress technique. Yes.

本発明においては、従来の水に可溶なキレート剤と区別して、その金属とのキレート化合物が水に不溶な性質をもつものを「液体キレート剤」と呼ぶことにする。液体キレート剤それ自身は水溶性のキレート高分子であり、ジチオカルバミン酸基(R-NH-CSNa)、チオール基(R-SH)、ザンセート基(R-O-CS2Na)などの官能基を持つ有機系化合物が知られている。これらの官能基が重金属類と選択的に反応して強固なキレート結合を形成することによって水に不溶の錯体となる。この時、同一の金属イオンに2個以上の原子によって配位結合し金属イオンを挟み込む形となる。ここで炭化水素基Rは高分子にすることによって液体キレート剤は凝集性が向上する。液体キレート剤はスミキレートHM6000(住友化学社製)、エポフロックL−1、L−2,L−3(いずれもミヨシ油脂社製)、ユニチカUML5000(ユニチカ社製)、ALM−648(日本曹達社製)などを用いることができる。   In the present invention, a conventional chelating agent that is soluble in water is referred to as a “liquid chelating agent” where the chelating compound with the metal has a property insoluble in water. The liquid chelating agent itself is a water-soluble chelating polymer and has an organic compound with functional groups such as dithiocarbamic acid group (R-NH-CSNa), thiol group (R-SH), and xanthate group (RO-CS2Na). It has been known. These functional groups selectively react with heavy metals to form a strong chelate bond, thereby forming a complex insoluble in water. At this time, the same metal ion is coordinated by two or more atoms to sandwich the metal ion. Here, when the hydrocarbon group R is a polymer, the liquid chelating agent has improved cohesiveness. Liquid chelating agents are Sumicchel HM6000 (manufactured by Sumitomo Chemical Co., Ltd.), Epoflock L-1, L-2, L-3 (all manufactured by Miyoshi Oil & Fats Co., Ltd.), Unitika UML5000 (manufactured by Unitika Ltd.), ALM-648 (manufactured by Nippon Soda Co., Ltd.) ) Etc. can be used.

発明者らは、内部液である濃厚な3モル塩化カリウム溶液に液体キレート剤を投入しても、基準電位を生じるための内部液としての性状に変化がないことを確認した。また塩化銀を飽和させた3モル塩化カリウム溶液に0.1%容量のL−1を投入すると硫化銀と思われる黒い沈殿を生じ、銀イオンは不溶化することがわかる。   The inventors have confirmed that even when a liquid chelating agent is added to a concentrated 3 mol potassium chloride solution which is an internal liquid, the properties as an internal liquid for generating a reference potential are not changed. It can also be seen that when 0.1% by volume of L-1 is added to a 3 molar potassium chloride solution saturated with silver chloride, a black precipitate that appears to be silver sulfide is formed and silver ions are insolubilized.

したがって本発明の請求項1は、内部液内に銀―塩化銀電極を内部電極として設け、液絡部を有する電極体において、内部液に所定量の液体キレート剤をあらかじめ配合してあることを特徴とする。内部電極である銀棒に形成した塩化銀層は内部液に触れて、次第に溶解し、徐々に不溶化した沈殿生じる。したがって溶解した塩化銀がそのまま電極体の液絡部に到達することはない。この不溶化した沈殿は、相当の微粒子であるために、そのまま内極部に沈殿すると、やがて液絡部に固体として到達し、液絡部を目詰まりさせる虞がある。   Therefore, according to the first aspect of the present invention, a silver-silver chloride electrode is provided as an internal electrode in the internal liquid, and in the electrode body having a liquid junction part, a predetermined amount of a liquid chelating agent is pre-mixed in the internal liquid. Features. The silver chloride layer formed on the silver rod as the internal electrode touches the internal solution and gradually dissolves, resulting in a gradually insolubilized precipitate. Therefore, the dissolved silver chloride does not reach the liquid junction of the electrode body as it is. Since the insolubilized precipitate is a substantial fine particle, if it settles as it is in the inner pole part, it will eventually reach the liquid junction as a solid and may clog the liquid junction.

そこで第2の請求項において、内部液に凝結剤および/または高分子凝集剤を配合してあることを特徴とする。これにより、生成した不溶化銀化合物は次第に凝集し、大きな粒子になるので、電極体の液絡部を目詰まりさせることはない。   Therefore, in the second claim, a coagulant and / or a polymer flocculant is blended in the internal liquid. Thereby, the generated insolubilized silver compound gradually aggregates into large particles, so that the liquid junction of the electrode body is not clogged.

また第3の請求項において、銀―塩化銀電極が透析膜で電極体の液絡部と隔絶されるようにしてあることを特徴とする。生成した不溶性の銀化合物は粒子の大きさにかかわらずオングストロームレベルのミクロ口径の透析膜のなかに閉じ込めておくことによって、微粒子の銀化合物が液絡部に到達することを阻止することができる。   In the third aspect, the silver-silver chloride electrode is isolated from the liquid junction of the electrode body by a dialysis membrane. Regardless of the size of the generated insoluble silver compound, it is possible to prevent the fine silver compound from reaching the liquid junction by confining it in a dialysis membrane having an angstrom level micro-caliber.

さらにまた第4の請求項において、銀―塩化銀電極が管状体内の上部に配置され、該管状体下部に充填物が通液可能に装着された管状体下部を透析膜で隔絶されるようにしてあることを特徴とする。基準電位を決定する反応(Ag+Cl-⇔AgCl)が銀―塩化銀の近傍で飽和に達していることが基準電位をより安定させることから、銀―塩化銀電極を管状体内で覆ってその上部に配置し、管状体下部に充填物を通液可能に装着することによって液体キレート剤の存在する内部液層から銀―塩化銀電極を遠ざけ、充填物を通過してきた銀イオンが液体キレート剤と会合するようにして生成した不溶性の銀化合物を通水性の透析膜で隔絶し、微粒子の銀化合物が電極体の液絡部に到達することを阻止することができるものである。 Furthermore, in the fourth claim, the lower part of the tubular body in which the silver-silver chloride electrode is disposed in the upper part of the tubular body and the filler is passed through the lower part of the tubular body is isolated by a dialysis membrane. It is characterized by being. Since the reaction that determines the reference potential (Ag + + Cl - ⇔AgCl) reaches saturation in the vicinity of silver-silver chloride, the reference potential becomes more stable. By placing the filler at the upper part and allowing the filler to pass through the lower part of the tubular body, the silver-silver chloride electrode is moved away from the inner liquid layer where the liquid chelator exists, and the silver ions that have passed through the filler are the liquid chelator. The insoluble silver compound produced by associating with the aqueous solution is separated by an aqueous dialysis membrane, and the fine silver compound can be prevented from reaching the liquid junction of the electrode body.

以上説明したように、本発明の電極体によれば、銀イオンを捕捉して微粒子を生成する液体キレート剤があらかじめ内部液に配合されているので、内極部に内部液補給口から注ぎ込むだけでよく操作は極めて簡単になる。また液体キレート剤は内部液に均一に分散しているので、その銀イオンを捕捉する効果は、キレート樹脂を用いる場合よりは確実なものとなる。また本発明によれば銀―塩化銀電極は、透析膜を介在させることによって電極体の液絡部と隔絶されているので、発生した微粒子は確実にこの透析膜で捕捉され、液絡部への到達が防止され、目詰まりを防止する。   As described above, according to the electrode body of the present invention, since the liquid chelating agent that captures silver ions and generates fine particles is pre-mixed in the internal liquid, it is simply poured into the inner pole portion from the internal liquid supply port. The operation is very easy. Moreover, since the liquid chelating agent is uniformly dispersed in the internal liquid, the effect of capturing the silver ions is more reliable than when a chelating resin is used. According to the present invention, since the silver-silver chloride electrode is isolated from the liquid junction of the electrode body by interposing the dialysis membrane, the generated fine particles are surely captured by this dialysis membrane and transferred to the liquid junction. Is prevented and clogging is prevented.

更に、銀イオンを捕捉したときは次第に、微粒子が生成し、更には凝集したフロックが生成するので、その量や大きさから銀棒から溶解、剥離した塩化銀層の量をモニターすることができる。これにより、内部電極の寿命や交換時期を知るための手がかりになる。   Further, when silver ions are captured, fine particles are gradually formed, and further, aggregated flocs are generated. Therefore, the amount of the silver chloride layer dissolved and peeled from the silver bar can be monitored from the amount and size thereof. . This provides a clue to know the life and replacement period of the internal electrodes.

1.液体キレート剤入りの3モル塩化カリウム内部液の調製と作用
通常に調製した3モル塩化カリウム溶液にミヨシ樹脂製のエポフロックL−1を0.1容量%添加する。更に凝結剤として少量の添加で凝結効果を奏する有機凝結剤の一種であるポリジメチルジアリルアンモニウムクロリド(商品名SR2000 スイレイ社製)を1重量%水溶液を0.1%容量添加する。最後に溶解しやすいエマルジョン型の高分子凝集剤(センカ社ないし神鋼パンテック社製)を溶液1Lあたり数滴、添加して15〜30分程度攪拌することによって得ることができる。(図1参照)この液体キレート剤入りの3モル塩化カリウム内部液は、銀―塩化銀電極を有する内部電極の内部液として、内部液補給口から投入され、塩化銀が内部液に溶解してくると、黒濁化して微粒子化する。そしてこの微粒子が多くなると次第に凝結、凝集が進行してフロックを形成する。
1. Preparation and action of 3 mol potassium chloride internal solution containing liquid chelating agent 0.1% by volume of Epofloc L-1 made by Miyoshi resin is added to the normally prepared 3 mol potassium chloride solution. Further, 0.1% by volume of a 1% by weight aqueous solution of polydimethyl diallyl ammonium chloride (trade name: SR2000 manufactured by Suirei Co., Ltd.), which is a kind of organic coagulant having a coagulation effect when added in a small amount as a coagulant. Finally, it can be obtained by adding a few drops of an emulsion-type polymer flocculant (manufactured by Senka or Shinko Pantech) per liter of solution and stirring for about 15 to 30 minutes. (Refer to FIG. 1) This 3 mol potassium chloride internal solution containing a liquid chelating agent was introduced as an internal solution of an internal electrode having a silver-silver chloride electrode from the internal solution replenishing port, and the silver chloride was dissolved in the internal solution. When it comes, it becomes black turbid and fine particles. As the amount of fine particles increases, condensation and aggregation gradually progress to form flocs.

2.透析膜による隔絶
液体キレート剤によって生成される縣濁粒子や、凝結、凝集した粒子、フロック等が電極体の液絡部に到達するのを阻止するために内部液の銀−塩化銀層と、液絡部の間に透析膜を設ける。再生セルロース膜、酢酸セルロース膜、ポリアクリロニトリル膜、ポリメチルメタクリレート膜、エチレンビニルアルコール膜、ポリスチレン膜、ポリアミド膜など透析膜として作用するように成膜された透析膜は、ポアサイズが通常、数十オングスロームなので、水やイオンは透過するが、粒子は通過できない。
2. Isolation by dialysis membrane In order to prevent suspended particles generated by the liquid chelating agent, aggregated particles, aggregated particles, floc, etc. from reaching the liquid junction of the electrode body, an internal liquid silver-silver chloride layer, A dialysis membrane is provided between the liquid junctions. A dialysis membrane such as a regenerated cellulose membrane, cellulose acetate membrane, polyacrylonitrile membrane, polymethyl methacrylate membrane, ethylene vinyl alcohol membrane, polystyrene membrane, polyamide membrane, etc., which has been formed to act as a dialysis membrane, usually has a pore size of several tens of angstroms So water and ions can pass through, but particles cannot pass through.

銀−塩化銀電層と液絡部を透析膜で隔絶するための最良の方法は、透析膜をチューブ状に成形した透析膜チューブを用いることである。例えば三光純薬製の透析用セルロースチューブは、その材質が再生セルロースからなり、製品番号UC8―32−25は膜厚が50μm、直径が6mmであり、通常、1〜3mm径の銀棒の先端に、メッキない熔融した塩化銀のディッピングで塩化銀層を形成して銀−塩化銀電極を構成した場合に、その塩化銀層の径が6mmを超えることはないので、この透析膜チューブを3〜5cmの長さに切断して、チューブの両端を熱溶着や高周波ミシンで密封することで、銀−塩化銀層を外部と隔絶することができる。(図2参照)図2において、1は比較電極用の内極を構成する銀棒であり、2はその先端部にメッキないし熔融引き上げによって調製した塩化銀層である。3は前記銀棒1と塩化銀層2で構成された銀―塩化銀電極10に挿入した透析膜チューブであり、4は熱溶着、超音波ミシン、接着などで密封した密封用封止部である。   The best method for separating the silver-silver chloride electrolayer from the liquid junction by a dialysis membrane is to use a dialysis membrane tube in which the dialysis membrane is formed into a tube shape. For example, a dialysis cellulose tube made by Sanko Junyaku is made of regenerated cellulose, and product number UC8-32-25 has a film thickness of 50 μm and a diameter of 6 mm. In addition, when a silver-silver chloride electrode is formed by forming a silver chloride layer by dipping molten silver chloride that is not plated, the diameter of the silver chloride layer does not exceed 6 mm. The silver-silver chloride layer can be isolated from the outside by cutting the tube to a length of ˜5 cm and sealing both ends of the tube with heat welding or a high-frequency sewing machine. (See FIG. 2) In FIG. 2, reference numeral 1 denotes a silver bar constituting an inner electrode for a reference electrode, and reference numeral 2 denotes a silver chloride layer prepared by plating or melt pulling at the tip. Reference numeral 3 denotes a dialysis membrane tube inserted into the silver-silver chloride electrode 10 composed of the silver bar 1 and the silver chloride layer 2, and reference numeral 4 denotes a sealing portion sealed by heat welding, ultrasonic sewing machine, adhesion or the like. is there.

3.透析膜の効果
透析膜はオングストロームレベルの微細孔を有し、イオンや水分子を自由に移動させるが、固体化した粒子は通過させない。溶解した銀イオンは次第に微粒子、フロックとして透析膜内に滞留、蓄積されるが、透析膜は銀―塩化銀電極を電極体の液絡部を通じて測定対象の試料液に導通するのに十分な面積を有しているので、比較電極としての機能を妨げることもない。更にここに蓄積される微粒子やフロックの大きさから内部電極としての塩化銀層の寿命等を推測することも可能である。
3. Effect of Dialysis Membrane Dialysis membrane has angstrom-level micropores and allows ions and water molecules to move freely, but does not allow solid particles to pass through. Dissolved silver ions gradually accumulate and accumulate in the dialysis membrane as fine particles and flocs, but the dialysis membrane has a sufficient area to conduct the silver-silver chloride electrode through the liquid junction of the electrode body to the sample solution to be measured. Therefore, the function as a reference electrode is not hindered. Further, the life of the silver chloride layer as the internal electrode can be estimated from the size of the fine particles and floc accumulated therein.

4.管状体による銀―塩化銀層の保護
基準電極としての銀−塩化銀電極において、基準電位を決定する反応(Ag+Cl-⇔AgCl)が銀―塩化銀の近傍で飽和に達していることが基準電位をより安定させることが知られている。液体キレート剤が直接、銀―塩化銀の近傍に存した場合、即座に溶解した銀イオンが液体キレートと反応して溶解平衡が失われる。そこで特公平5−17501号にも記載されているが、図3に示すように、銀―塩化銀電極10が内径数mmのガラス製管状体5の上部に配置され、管状体5下部に多孔性高分子物質や多孔性セラミック、ガラスビーズ等の充填物6を通液可能に装着するとともに、底部に管状体5用の液絡部7を設け、この管状体5を内部液9中に配置する。そして更にこの管状体5を、一例として三光純薬製の透析用チューブ(製品番号UC20―32−100で膜厚が50μm、直径が16mm)で覆い、チューブ3の両端を熱溶着や高周波ミシンで密封することで密封用封止部4を形成し、銀−塩化銀層を外部と隔絶する。
このような構成により、銀−塩化銀電極10に対して管状体5内の内部液9´の占める割合が極端に少ないため電位決定反応が速やかに生じ、塩化銀層2の溶解が抑制される。そのため、溶解した銀イオンも少量となり、これが充填剤6を通過して液体キレート剤と出会って微粒子が形成されるがその量も少なくなるため、液絡部7を目詰まりさせる虞がない。それとともに、充填物6により内部液9´の対流が起きにくくなり、内部液9´も管状体5の外へ流出しにくくなり電位はきわめて安定する。なお前記微粒子は、液絡部7を通過後に透析膜チューブ3で捕捉され、電極体の液絡部12とは隔絶される。
4). Protection of the silver-silver chloride layer by the tubular body In the silver-silver chloride electrode as the reference electrode, the reaction that determines the reference potential (Ag + + Cl - ⇔AgCl) must reach saturation near the silver-silver chloride It is known to make the reference potential more stable. When the liquid chelator is directly in the vicinity of silver-silver chloride, the dissolved silver ions react with the liquid chelate and the dissolution equilibrium is lost. Therefore, as described in Japanese Patent Publication No. 5-17501, as shown in FIG. 3, the silver-silver chloride electrode 10 is disposed on the upper part of the glass tubular body 5 having an inner diameter of several millimeters, and the lower part of the tubular body 5 is porous. A filling material 6 such as a porous polymer material, porous ceramic, glass beads and the like is mounted so that liquid can pass through, and a liquid junction 7 for the tubular body 5 is provided at the bottom, and the tubular body 5 is disposed in the internal liquid 9. To do. Further, this tubular body 5 is covered with a dialysis tube (product number UC20-32-100, with a film thickness of 50 μm and a diameter of 16 mm) made by Sanko Junyaku as an example, and both ends of the tube 3 are covered with heat welding or a high frequency sewing machine. The sealing part 4 for sealing is formed by sealing, and the silver-silver chloride layer is isolated from the outside.
With such a configuration, since the proportion of the internal liquid 9 ′ in the tubular body 5 is extremely small with respect to the silver-silver chloride electrode 10, the potential determination reaction occurs quickly, and dissolution of the silver chloride layer 2 is suppressed. . Therefore, a small amount of dissolved silver ions passes through the filler 6 and meets the liquid chelating agent to form fine particles, but the amount is also reduced, so there is no possibility of clogging the liquid junction 7. At the same time, convection of the internal liquid 9 ′ is less likely to occur due to the filler 6, and the internal liquid 9 ′ does not easily flow out of the tubular body 5, and the potential is extremely stable. The fine particles are captured by the dialysis membrane tube 3 after passing through the liquid junction 7 and are isolated from the liquid junction 12 of the electrode body.

5.全体としての実施態様1
全体としての実施態様1を図4に示す。図4は感応膜としてのガラス電極膜と比較電極を複合した電極体である。図4において11はガラス電極膜、8はガラス電極膜11の電位を取り出すガラス電極用内極である。二重管の外管と内管の間の部分に、比較電極用の銀―塩化銀電極10が配置され、内部液補給孔13から液体キレート剤入り内部液9が供給される。12は電極体の液絡部で銀―塩化銀電極10との導通を保っている。銀―塩化銀電極10は、透析膜チューブ3で隔絶されているので、溶解した銀―キレートのフロックは透析膜チューブ3の密封用封止部4に蓄積して、電極体の液絡部12に到達することはない。
5). Embodiment 1 as a whole
Embodiment 1 as a whole is shown in FIG. FIG. 4 shows an electrode body in which a glass electrode film as a sensitive film and a reference electrode are combined. In FIG. 4, 11 is a glass electrode film, and 8 is an inner electrode for glass electrode that takes out the potential of the glass electrode film 11. A silver-silver chloride electrode 10 for a reference electrode is disposed between the outer tube and the inner tube of the double tube, and the internal liquid 9 containing the liquid chelating agent is supplied from the internal liquid supply hole 13. Reference numeral 12 denotes a liquid junction of the electrode body, which maintains electrical continuity with the silver-silver chloride electrode 10. Since the silver-silver chloride electrode 10 is isolated by the dialysis membrane tube 3, the dissolved silver-chelate floc accumulates in the sealing portion 4 of the dialysis membrane tube 3, and the liquid junction 12 of the electrode body. Never reach.

6.全体としての実施態様2
全体としての実施態様2を図5に示す。図5は感応膜としてのガラス電極膜と比較電極を複合した電極体である。図5において11はガラス電極膜、8はガラス電極膜11の電位を取り出すガラス電極用内極である。二重管の外管と内管の間の部分に、比較電極用の銀―塩化銀電極10が配置され、内部液補給孔13から液体キレート剤入り内部液9が供給される。12は電極体の液絡部で銀―塩化銀電極10との導通を保っている。銀―塩化銀電極10は下部に充填物6が通液可能に装着された管状体5の上部にあり、液体キレート剤の存在する内部液層から該銀−塩化銀電極10を遠ざけ、充填物6を通過した銀イオンが液体キレート剤と会合するようにしたので、この近傍では溶解平衡が保たれており、電位はきわめて安定している。管状体5の下部は透析膜チューブ3で隔絶されているので、溶解した銀―キレートのフロックは透析膜チューブ3の密封用封止部4に蓄積して、電極体の液絡部12に到達することはない。
6). Overall embodiment 2
Embodiment 2 as a whole is shown in FIG. FIG. 5 shows an electrode body in which a glass electrode film as a sensitive film and a reference electrode are combined. In FIG. 5, 11 is a glass electrode film, and 8 is an inner electrode for glass electrode that takes out the potential of the glass electrode film 11. A silver-silver chloride electrode 10 for a reference electrode is disposed between the outer tube and the inner tube of the double tube, and the internal liquid 9 containing the liquid chelating agent is supplied from the internal liquid supply hole 13. Reference numeral 12 denotes a liquid junction of the electrode body, which maintains electrical continuity with the silver-silver chloride electrode 10. The silver-silver chloride electrode 10 is in the upper part of the tubular body 5 in which the filler 6 can be passed through the lower part, and the silver-silver chloride electrode 10 is moved away from the inner liquid layer where the liquid chelating agent is present. Since the silver ions having passed through 6 are associated with the liquid chelating agent, the dissolution equilibrium is maintained in this vicinity, and the potential is extremely stable. Since the lower part of the tubular body 5 is isolated by the dialysis membrane tube 3, the dissolved silver-chelate floc accumulates in the sealing seal 4 of the dialysis membrane tube 3 and reaches the liquid junction 12 of the electrode body. Never do.

以上、説明したように銀イオンと反応して不溶化する液体キレート剤を用いて溶解した銀イオンを内部液中で捕捉する例について記載したが、液体キレート剤は説明した以外の各種のものが知られており使用可能である。また不溶化後、凝結を促進する凝結剤も、無機系のものでは無機系のものとして硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PAC)、塩化第二鉄、ポリ硫酸第二鉄などが知られ、高分子凝集剤も、その凝集機能は吸着活性基であるカルボキシル基とアミド基による粒子への吸着と粒子間の架橋によるものであり、カチオン性、アニオン性、両性のもの等多くのものが利用可能であり、その最適な使用条件は、元々、銀の溶解度が低いので、凝結剤、凝集剤は少量で足り、内部液としての性状に影響を与えない範囲での適切な添加量は、適宜、試行錯誤で求めることが可能である。   As described above, the example of capturing the dissolved silver ion in the internal liquid using the liquid chelating agent that reacts with the silver ion to insolubilize is described, but various liquid chelating agents other than those described are known. It can be used. In addition, coagulants that promote coagulation after insolubilization include inorganic sulfates such as aluminum sulfate (sulfuric acid band), polyaluminum chloride (PAC), ferric chloride, and polyferric sulfate. In addition, the aggregation function of the polymer flocculant is based on the adsorption to the particles by the carboxyl group and the amide group, which are adsorption active groups, and the crosslinking between the particles, and there are many such as cationic, anionic and amphoteric ones. Since the solubility of silver is originally low, the amount of coagulant and flocculant is sufficient, and the appropriate amount of addition within the range that does not affect the properties of the internal liquid is It can be obtained by trial and error as appropriate.

液体キレート剤入りの3モル塩化カリウム内部液の調製を示す図である。It is a figure which shows preparation of 3 mol potassium chloride internal solution containing a liquid chelating agent. 銀−塩化銀電極を透析膜で隔絶する例を示す図である。It is a figure which shows the example which isolates a silver-silver chloride electrode with a dialysis membrane. 銀−塩化銀電極を管状体で覆い、透析膜で隔絶する例を示す図である。It is a figure which shows the example which covers a silver-silver chloride electrode with a tubular body and isolates with a dialysis membrane. 全体としての実施態様1を示す図である。It is a figure which shows Embodiment 1 as a whole. 全体としての実施態様2を示す図である。It is a figure which shows Embodiment 2 as a whole.

符号の説明Explanation of symbols

1 銀棒
2 塩化銀層
3 透析膜(透析膜チューブ)
4 密封用封止部
5 管状体
6 充填物
7 液絡部(管状体)
8 ガラス電極用内極
9,9´ 内部液
10 銀―塩化銀電極(比較電極)
11 ガラス電極膜
12 液絡部(電極体)
13 内部液補給孔




1 Silver bar 2 Silver chloride layer 3 Dialysis membrane (dialysis membrane tube)
4 Sealing part for sealing 5 Tubular body 6 Filling 7 Liquid junction (tubular body)
8 Inner electrode for glass electrode 9,9 'Internal solution 10 Silver-silver chloride electrode (reference electrode)
11 Glass electrode film 12 Liquid junction (electrode body)
13 Internal liquid replenishment hole




Claims (4)

内部液内に銀―塩化銀電極を内部電極として設け、液絡部を有する電極体において、内部液に所定量の液体キレート剤をあらかじめ配合してあることを特徴とする電極体。   An electrode body, wherein a silver-silver chloride electrode is provided as an internal electrode in an internal liquid, and a predetermined amount of a liquid chelating agent is blended in the internal liquid in an electrode body having a liquid junction. 前記内部液に凝結剤および/または高分子凝集剤を配合してあることを特徴とする請求項1に記載の電極体。   The electrode body according to claim 1, wherein a coagulant and / or a polymer flocculant is blended in the internal liquid. 前記銀―塩化銀電極が透析膜で前記液絡部と隔絶されるようにしてあることを特徴とする請求項1または請求項2に記載の電極体。   The electrode body according to claim 1 or 2, wherein the silver-silver chloride electrode is separated from the liquid junction by a dialysis membrane. 前記銀―塩化銀電極が管状体内の上部に配置され、該管状体下部に充填物が通液可能に装着された管状体下部を前記透析膜で隔絶されるようにしてあることを特徴とする請求項1または請求項2に記載の電極体。





















The silver-silver chloride electrode is disposed in the upper part of the tubular body, and the lower part of the tubular body in which a filler is permeable so as to be passed through the lower part of the tubular body is isolated by the dialysis membrane. The electrode body according to claim 1 or 2.





















JP2006054519A 2006-03-01 2006-03-01 Electrode body Expired - Fee Related JP4832921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054519A JP4832921B2 (en) 2006-03-01 2006-03-01 Electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054519A JP4832921B2 (en) 2006-03-01 2006-03-01 Electrode body

Publications (2)

Publication Number Publication Date
JP2007232563A true JP2007232563A (en) 2007-09-13
JP4832921B2 JP4832921B2 (en) 2011-12-07

Family

ID=38553282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054519A Expired - Fee Related JP4832921B2 (en) 2006-03-01 2006-03-01 Electrode body

Country Status (1)

Country Link
JP (1) JP4832921B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149779A (en) * 2010-01-20 2011-08-04 Sharp Corp Electrochemical measurement electrode, electrochemical measurement electrode chip, electrochemical measuring method using them, and analyzing method
JP2012141295A (en) * 2010-12-17 2012-07-26 Horiba Ltd Reference electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999978A (en) * 1973-01-30 1974-09-20
JPS5430095A (en) * 1977-08-10 1979-03-06 Toa Denpa Kougiyou Kk Silverrsilver chloride electrode
JPS62118248A (en) * 1985-11-19 1987-05-29 Denki Kagaku Keiki Co Ltd Electrode body
JPH06229973A (en) * 1993-01-29 1994-08-19 Kyoto Daiichi Kagaku:Kk Current detection type dry ion selective electrode
JPH07213897A (en) * 1994-01-31 1995-08-15 Nitto Boseki Co Ltd Polymer heavy metal collecting agent, alkali metal dithiocarbramate polymer and their production
JPH09196883A (en) * 1996-01-19 1997-07-31 Hitachi Ltd Ion sensor
JP2004157015A (en) * 2002-11-06 2004-06-03 Horiba Ltd Electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999978A (en) * 1973-01-30 1974-09-20
JPS5430095A (en) * 1977-08-10 1979-03-06 Toa Denpa Kougiyou Kk Silverrsilver chloride electrode
JPS62118248A (en) * 1985-11-19 1987-05-29 Denki Kagaku Keiki Co Ltd Electrode body
JPH06229973A (en) * 1993-01-29 1994-08-19 Kyoto Daiichi Kagaku:Kk Current detection type dry ion selective electrode
JPH07213897A (en) * 1994-01-31 1995-08-15 Nitto Boseki Co Ltd Polymer heavy metal collecting agent, alkali metal dithiocarbramate polymer and their production
JPH09196883A (en) * 1996-01-19 1997-07-31 Hitachi Ltd Ion sensor
JP2004157015A (en) * 2002-11-06 2004-06-03 Horiba Ltd Electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149779A (en) * 2010-01-20 2011-08-04 Sharp Corp Electrochemical measurement electrode, electrochemical measurement electrode chip, electrochemical measuring method using them, and analyzing method
US8702963B2 (en) 2010-01-20 2014-04-22 Sharp Kabushiki Kaisha Electrochemical measurement electrode, electrochemical measurement electrode chip, and electrochemical measuring method and analysis method using the same
JP2012141295A (en) * 2010-12-17 2012-07-26 Horiba Ltd Reference electrode

Also Published As

Publication number Publication date
JP4832921B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
Vidu et al. Removal of heavy metals from wastewaters: A challenge from current treatment methods to nanotechnology applications
Pan et al. Dual-functional ultrafiltration membrane for simultaneous removal of multiple pollutants with high performance
Sun et al. Fouling characteristics and electrochemical recovery of carbon nanotube membranes
Tang et al. Colloidal interactions and fouling of NF and RO membranes: a review
Plowman et al. Electrochemical fabrication of metallic nanostructured electrodes for electroanalytical applications
Taurino et al. Recent advances in third generation biosensors based on Au and Pt nanostructured electrodes
JP2009082818A (en) Treatment agent and treatment method for polluted water containing heavy metals
JP4832921B2 (en) Electrode body
Widmann et al. Mercury detection in seawater using a mercaptoacetic acid modified gold microwire electrode
Xu et al. Electrochemical detection of trace silver
Gervais et al. Study of an AuNPs functionalized electrode using different diazonium salts for the ultra-fast detection of Hg (II) traces in water
Qi et al. Enhancing the oil-fouling resistance of polymeric membrane ion-selective electrodes by surface modification of a zwitterionic polymer-based oleophobic self-cleaning coating
WO2008056696A1 (en) Washing storage solution for glass electrode and the like
JP6548960B2 (en) Electroplating cell and method of manufacturing metal film
CN104609518B (en) Method for selectively removing Fe2+ and/or Fe3+ from industrial waste water through electric adsorption technology
CN105948310A (en) Novel iron-manganese pollution automatic monitoring and accurate controlling process
Shen et al. Carbon nanotube integrative sampler (CNIS) for passive sampling of nanosilver in the aquatic environment
JPH09170998A (en) Reference electrode assembly
TWI684573B (en) Water treatment method and water treatment device
JP2009165928A (en) Water treatment apparatus and method
CN102636551A (en) Dynamic detection method of potassium ion exchange inside and outside HEK (human embryonic kidney) 293 cell and erythrocyte
JP2012026807A (en) Endotoxin detection method and endotoxin detector
JP3760137B2 (en) Reference electrode
JP4054246B2 (en) Electrode body
RU2350940C1 (en) Ion-selective electrode for definition of concentration of oxygen-containing ions of tungsten, molybdenum and vanadium and method for manufacture of ion-selective electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees