JP2007232556A - Optical displacement sensor - Google Patents

Optical displacement sensor Download PDF

Info

Publication number
JP2007232556A
JP2007232556A JP2006054292A JP2006054292A JP2007232556A JP 2007232556 A JP2007232556 A JP 2007232556A JP 2006054292 A JP2006054292 A JP 2006054292A JP 2006054292 A JP2006054292 A JP 2006054292A JP 2007232556 A JP2007232556 A JP 2007232556A
Authority
JP
Japan
Prior art keywords
light
peak position
threshold
image sensor
level distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006054292A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hirai
和彦 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SICK OPTEX KK
Original Assignee
SICK OPTEX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SICK OPTEX KK filed Critical SICK OPTEX KK
Priority to JP2006054292A priority Critical patent/JP2007232556A/en
Publication of JP2007232556A publication Critical patent/JP2007232556A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical displacement sensor capable of precisely detecting the peak position of light receiving level distribution of reflected light from a measured object even when the measured object is not a diffusing/reflecting surface. <P>SOLUTION: This optical displacement sensor comprises a projecting element 1 for radiating light to the measured object M, and an image sensor 4 for receiving reflected light of the radiated light from the measured object M, and measures the distance to the measured object M based on the peak position of the light receiving level distribution of the image sensor 4. This optical displacement sensor comprises a peak position determining means 8 for determining the peak position based on a threshold Th of the light receiving level, and a threshold setting means 7 for adjusting and setting the threshold Th, based on the magnitude of the amount of received light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、投光素子により光が照射された測定対象物からの反射光を受光したイメージセンサからの受光データに基づいて、測定対象物までの距離を測定して測定対象物の変位を検出する光学式変位センサに関するものである。   The present invention detects the displacement of the measurement object by measuring the distance to the measurement object based on the light reception data from the image sensor that receives the reflected light from the measurement object irradiated with light by the light projecting element. The present invention relates to an optical displacement sensor.

従来から、物体の移動や物体の寸法などを測定するめに、測定対象物までの距離を三角測距方式で測定して測定対象物の変位を検出する光学式変位センサが用いられている(例えば、特許文献1参照)。この光学式変位センサは、図5に示すように、投光素子1から出射された光を投光レンズ2を通して測定対象物Mに照射し、測定対象物Mからの反射光を受光レンズ3を通してイメージセンサ4で受光し、このイメージセンサ4への反射光の受光スポット位置に基づき測定対象物Mまでの距離を測定するようになっている。したがって、例えば、測定対象物Mが実線の図示位置から2点鎖線の図示位置に変位した場合には、この測定対象物Mからの反射光のイメージセンサ4への受光スポット位置が矢印で示すように変化するので、その反射光の受光スポット位置の変化に基づき測定対象物Mの変位量を検出することができる。
特開昭62−218802号公報
Conventionally, in order to measure the movement of an object, the size of the object, etc., an optical displacement sensor that detects the displacement of the measurement object by measuring the distance to the measurement object by a triangulation method (for example, , See Patent Document 1). As shown in FIG. 5, this optical displacement sensor irradiates the measurement object M with the light emitted from the light projecting element 1 through the light projection lens 2, and reflects the reflected light from the measurement object M through the light receiving lens 3. Light is received by the image sensor 4 and the distance to the measuring object M is measured based on the light receiving spot position of the reflected light to the image sensor 4. Therefore, for example, when the measurement object M is displaced from the illustrated position of the solid line to the illustrated position of the two-dot chain line, the light receiving spot position of the reflected light from the measurement object M on the image sensor 4 is indicated by an arrow. Therefore, the displacement amount of the measuring object M can be detected based on the change in the light receiving spot position of the reflected light.
JP-A-62-218802

前記イメージセンサ4への反射光の受光スポット位置の検出は、例えば以下のように行われる。図6(a)はイメージセンサ4に入射した反射光の受光レベル分布の波形の一例を示したものであり、予め設定された受光レベルの閾値Thと受光レベル分布の波形との2箇所の交点におけるイメージセンサ4上の画素座標L1,L2を求めた上で、この両画素座標L1,L2の中間値を演算により求める〔(L1+L2)/2〕。この演算により算出される画素座標Pが、イメージセンサ4への反射光の受光スポット位置として、以後の測定対象物Mまでの距離の演算に用いられる。測定対象物Mにおける光の照射面が平滑な拡散反射面であれば、反射光が全ての方向に均一に反射される、つまり拡散反射されるので、イメージセンサ4での受光レベル分布は、図6(a)に示したように、受光レベルのピーク位置に対して左右対称の波形となり、上述のように算出した画素座標Pが、受光レベル分布のピーク位置の受光レベルTPの受光スポット位置に合致する。   The detection of the light receiving spot position of the reflected light to the image sensor 4 is performed as follows, for example. FIG. 6A shows an example of the waveform of the received light level distribution of the reflected light incident on the image sensor 4, and two intersections between the preset threshold value Th of the received light level and the waveform of the received light level distribution. After obtaining the pixel coordinates L1 and L2 on the image sensor 4, the intermediate value between the two pixel coordinates L1 and L2 is obtained by calculation [(L1 + L2) / 2]. The pixel coordinates P calculated by this calculation are used as the light receiving spot position of the reflected light to the image sensor 4 for the subsequent calculation of the distance to the measurement object M. If the light irradiation surface of the measurement object M is a smooth diffuse reflection surface, the reflected light is uniformly reflected in all directions, that is, diffusely reflected. As shown in FIG. 6A, the waveform is symmetrical with respect to the peak position of the light reception level, and the pixel coordinates P calculated as described above are the light reception spot positions of the light reception level TP at the peak position of the light reception level distribution. Match.

しかしながら、例えば、測定対象物Mの光照射面に細かな凹凸が存在したり、あるいは測定対象物Mが半透明のものである場合には、不均一な光反射や入射光の一部が透光するなどの現象が生じて、図6(b)に示すように、イメージセンサ4での受光レベル分布が受光ピークレベルTPを示すピーク位置Pに対して左右対称の波形とならないことがある。この場合には、上述した算出手段で求められる反射光の受光スポット位置P1〔=(L1+L2)/2〕は、実際のピーク位置Pに対し誤差Eがあり、この受光スポット位置P1を反射光の受光スポット位置として用いると、測定対称物Mまでの距離を正確に測定することができない。   However, for example, when there are fine irregularities on the light irradiation surface of the measuring object M, or when the measuring object M is translucent, uneven light reflection or part of incident light is transmitted. As shown in FIG. 6B, the light reception level distribution in the image sensor 4 may not have a symmetrical waveform with respect to the peak position P indicating the light reception peak level TP. In this case, the light receiving spot position P1 [= (L1 + L2) / 2] of the reflected light obtained by the calculating means described above has an error E with respect to the actual peak position P, and this light receiving spot position P1 is reflected by the reflected light. When used as a light receiving spot position, the distance to the measurement object M cannot be measured accurately.

本発明は、前記従来の問題に鑑みてなされたもので、測定対象物が拡散反射面でない場合であっても、その測定対象物からの反射光の受光レベル分布のピーク位置を容易かつ正確に検出することができる光学式変位センサを提供することを目的としている。   The present invention has been made in view of the above-described conventional problems. Even when the measurement object is not a diffuse reflection surface, the peak position of the light reception level distribution of the reflected light from the measurement object can be easily and accurately determined. An object of the present invention is to provide an optical displacement sensor that can be detected.

前記目的を達成するために、本発明に係る光学式変位センサは、測定対象物に光を照射する投光素子と、照射された光の前記測定対象物からの反射光を受光するイメージセンサとを有し、前記イメージセンサの受光レベル分布のピーク位置に基づいて前記測定対象物までの距離を測定するものであって、前記受光レベルの閾値に基づいて前記ピーク位置を判定するピーク位置判定手段と、前記イメージセンサの受光量の大きさに基づいて前記閾値を調整して設定する閾値設定手段と、を備えている。   In order to achieve the object, an optical displacement sensor according to the present invention includes a light projecting element that irradiates light to a measurement object, an image sensor that receives reflected light from the measurement object of the irradiated light, and A peak position determination means for measuring a distance to the measurement object based on a peak position of a light reception level distribution of the image sensor, and determining the peak position based on a threshold value of the light reception level And threshold setting means for adjusting and setting the threshold based on the amount of light received by the image sensor.

この構成によれば、閾値設定手段が、イメージセンサの受光量の大きさに基づいて、例えばイメージセンサの各画素の受光量の総和に基づいて、受光レベルの閾値を調整して設定すると、その設定された閾値に基づいて、ピーク位置判定手段がイメージセンサの受光レベル分布のピーク位置を判定する。例えば、ピーク位置判定手段は、従来と同様に、受光レベル分布における閾値に等しい2つの座標の中間位置をピーク位置と判定する。これにより、以下のとおり、測定対象物の光照射面が拡散反射面でないのに伴いイメージセンサが受光した受光レベル分布がピーク位置に対し左右非対称な波形である場合においても、前記判定したピーク位置が、受光レベル分布の実際の受光ピーク位置に近づく。   According to this configuration, when the threshold setting unit adjusts and sets the threshold of the received light level based on the magnitude of the received light amount of the image sensor, for example, based on the total received light amount of each pixel of the image sensor, Based on the set threshold value, the peak position determination means determines the peak position of the light reception level distribution of the image sensor. For example, the peak position determination means determines an intermediate position between two coordinates equal to the threshold value in the light reception level distribution as the peak position, as in the conventional case. Thus, as described below, even when the light reception level distribution received by the image sensor with the light irradiation surface of the measurement object not being a diffuse reflection surface is a waveform that is asymmetrical with respect to the peak position, the determined peak position However, it approaches the actual light receiving peak position of the light receiving level distribution.

すなわち、測定対象物の光照射面が拡散反射面でない場合のメージセンサの受光レベル分布は、全体として見た場合にピーク位置に対して左右非対称な歪んだ波形となるが、光学式変位センサの光学的特性上、比較的高い特定の受光レベル以上の頭部側の分布部分のみを抽出して見た場合、ピーク位置に対しほぼ左右対称の波形となる。また、このように歪んだ波形は一般に、波形の裾野が広い分だけ、面積(受光量)が大きい。したがって、受光量の大きさに対応して個々に調整して設定された閾値の受光レベルは前記特定の受光レベルに対応した高いものとなる。これにより、イメージセンサの受光レベル分布における閾値以上の頭部側の分布部分のみにおけるピーク位置を判定すれば、そのピーク位置は受光レベル分布の実際のピーク位置に近いものとなり、このピーク位置に基づき測定対象物までの距離を正確に測定することができる。また、前記頭部側の分布が十分に左右対称でない場合であっても、閾値が高くなることで、閾値に合致した2つの画素座標が接近するから、ピーク位置が狭い2つの画素座標の間に追い込まれることになり、これによって、ピーク位置がより正確に求まる。   That is, when the light irradiation surface of the measurement object is not a diffuse reflection surface, the received light level distribution of the image sensor is a distorted waveform that is asymmetrical with respect to the peak position when viewed as a whole. From the viewpoint of the characteristic, when only the distribution portion on the head side having a relatively high specific light receiving level or higher is extracted and viewed, the waveform is almost symmetrical with respect to the peak position. In addition, the waveform distorted in this way generally has a large area (amount of received light) due to the wide base of the waveform. Therefore, the light reception level of the threshold value adjusted and set individually corresponding to the magnitude of the light reception amount becomes high corresponding to the specific light reception level. As a result, if the peak position in only the distribution part on the head side that is equal to or greater than the threshold in the light reception level distribution of the image sensor is determined, the peak position is close to the actual peak position of the light reception level distribution. The distance to the measurement object can be accurately measured. Further, even when the distribution on the head side is not sufficiently symmetrical, since the two pixel coordinates that match the threshold approach due to the increase in the threshold value, the peak position is between the two pixel coordinates with a narrow peak position. Thus, the peak position can be obtained more accurately.

本発明において、前記閾値設定手段は前記受光レベル分布の平均値に基づいて前記閾値を設定する。この構成によれば、測定対称物の材質や表面状態に応じて反射率が異なるのに対応して反射光の強度も異なり、これに伴いイメージセンサの受光量も増減するが、受光レベル分布の平均値に基づいて算出した閾値の受光レベルは、受光量の大小に対応して波形が種々に異なる各受光レベル分布に対して、受光レベルのピーク位置に近い、比較的高い受光レベルになる。その結果、閾値よりも高い頭部側の左右対称に近い受光レベル分布から、実際のピーク位置を高精度に判定することができる。   In the present invention, the threshold value setting means sets the threshold value based on an average value of the light reception level distribution. According to this configuration, the intensity of the reflected light is different corresponding to the difference in reflectivity depending on the material and surface state of the measurement symmetrical object, and the amount of light received by the image sensor is increased or decreased accordingly. The light reception level of the threshold calculated based on the average value is a relatively high light reception level that is close to the peak position of the light reception level for each light reception level distribution with different waveforms corresponding to the magnitude of the light reception amount. As a result, the actual peak position can be determined with high accuracy from the light reception level distribution near the left-right symmetry higher than the threshold value.

また、本発明において、前記イメージセンサとして、例えば、CMOS型トランジスタまたは電荷結合素子を用いたリニアイメージセンサを使用できる。   In the present invention, as the image sensor, for example, a linear image sensor using a CMOS transistor or a charge coupled device can be used.

さらに、本発明において、前記ピーク位置を手動で修正するピーク位置修正手段を備えている。これにより、受光レベルの閾値を調整して設定した上で、この閾値に基づき判定した受光レベル分布のピーク位置であっても、測定対象物の材質や表面状態によっては、実際のピーク位置に対し多少のずれが生じることがあり、そのような場合には、例えば受光レベル分布の表示画面を見ながら、ピーク位置修正手段の手動操作により画面表示中のピーク位置を強制的にシフトさせて、受光レベル分布の実際のピーク位置に一致するように修正することができる。   Furthermore, in the present invention, there is provided peak position correcting means for manually correcting the peak position. As a result, after adjusting and setting the threshold of the light reception level, even if it is the peak position of the light reception level distribution determined based on this threshold, depending on the material and surface condition of the measurement object, In such a case, for example, while viewing the display screen of the received light level distribution, the peak position on the screen is forcibly shifted by manually operating the peak position correction means, It can be modified to match the actual peak position of the level distribution.

本発明の光学式変位センサによれば、イメージセンサの受光量の大きさに基づき受光レベルの閾値を調整して設定する閾値設定手段と、その設定された閾値に基づきイメージセンサの受光レベル分布のピーク位置を判定するピーク位置判定手段とを備えているので、測定対象物が拡散反射面でないのに対応してイメージセンサでの受光レベル分布がそのピーク位置に対し左右非対称な波形となる場合であっても、イメージセンサの受光レベル分布における受光ピーク位置を容易かつ正確に判定することができる。   According to the optical displacement sensor of the present invention, the threshold setting means for adjusting and setting the threshold of the received light level based on the magnitude of the received light amount of the image sensor, and the received light level distribution of the image sensor based on the set threshold. And a peak position determination means for determining the peak position, so that the received light level distribution at the image sensor has a waveform that is asymmetrical with respect to the peak position in response to the measurement object not being a diffuse reflection surface. Even if it exists, the light reception peak position in the light reception level distribution of an image sensor can be determined easily and correctly.

以下、本発明の好ましい実施形態について図面を参照しながら詳細に説明する。
図1は本発明の一実施形態に係る光学式変位センサを示すブロック図であり、この光学式変位センサの本体部Aは、投光レンズ2を通して測定対象物Mに光を照射する投光素子1と、照射された光の測定対象物Mからの反射光を受光レンズ3を通して受光するリニアイメージセンサ4と、このイメージセンサ4の受光量の大きさに基づいて受光レベルの閾値を調整して設定する閾値設定手段7と、この閾値設定手段7が設定した受光レベルの閾値に基づいてイメージセンサ4における受光レベル分布のピーク位置の画素座標を判定するピーク位置判定手段8と、このピーク位置判定手段8が判定したピーク位置の画素座標に基づいて、一定の基準面測定対象物Mまでの距離、例えば本体部Aの測定対象物Mに対向した前面から測定対象物Mまでの距離Dを測定して距離信号RSを出力する距離演算手段9と、前記投光素子1を駆動する投光素子駆動回路10とを備えている。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing an optical displacement sensor according to an embodiment of the present invention. A main body portion A of this optical displacement sensor irradiates light to a measurement object M through a light projection lens 2. 1 and a linear image sensor 4 that receives reflected light from the measurement object M of the irradiated light through the light receiving lens 3, and the threshold of the light reception level is adjusted based on the amount of light received by the image sensor 4. Threshold setting means 7 for setting, peak position determining means 8 for determining the pixel coordinates of the peak position of the received light level distribution in the image sensor 4 based on the threshold of the received light level set by the threshold setting means 7, and this peak position determination Based on the pixel coordinates of the peak position determined by the means 8, a distance to a certain reference surface measurement object M, for example, from the front surface of the main body A facing the measurement object M to the measurement object M. It includes a distance calculating means 9 for outputting a distance signal RS by measuring the distance D, and a light projecting device drive circuit 10 for driving the light projecting device 1.

さらに、前記光学式変位センサは、外部装置として、ピーク位置判定手段8が判定したピーク位置をイメージセンサ4が受光した受光レベル分布と共に画面表示する画面表示手段(モニタ)11と、この画面表示手段11に表示されたピーク位置判定手段8の判定によるピーク位置が同時に表示中の受光レベル分布の実際のピーク位置に対し誤差がある場合に、その誤差を手動操作で修正するための手動操作手段12とを備えている。また、本体部Aには、手動操作手段12から入力された修正指令信号に基づきピーク位置判定手段8が判定したピーク位置を修正してピーク位置修正手段13を有している。   Further, the optical displacement sensor includes, as an external device, screen display means (monitor) 11 that displays the peak position determined by the peak position determination means 8 together with the received light level distribution received by the image sensor 4, and the screen display means. When the peak position determined by the peak position determination means 8 displayed in 11 has an error with respect to the actual peak position of the received light level distribution being displayed at the same time, the manual operation means 12 for correcting the error manually. And has. The main body A has a peak position correcting means 13 by correcting the peak position determined by the peak position determining means 8 based on the correction command signal input from the manual operation means 12.

前記投光素子1には例えばレーザーダイオードが用いられており、このレーザーダイオードは、所定の投光パワーおよび投光時間で光出射するように投光素子駆動回路10により制御される。リニアイメージセンサ4としては、CMOS型トランジスタまたは電荷結合素子(CCD)などをリニアに配列したものが用いられる。この電荷結合素子(CCD)は、配列された各画素が、入射光の強度に比例した信号電荷を個々に蓄積して、その各画素にそれぞれ蓄積された各信号電荷を順次転送するものであるから、配列した各画素への反射光の受光量に基づき受光レベル分布を得ることができる。   For example, a laser diode is used for the light projecting element 1, and this laser diode is controlled by the light projecting element driving circuit 10 so as to emit light at a predetermined light projecting power and time. As the linear image sensor 4, a CMOS type transistor or a charge-coupled device (CCD) linearly arranged is used. In this charge coupled device (CCD), each arranged pixel individually accumulates signal charges proportional to the intensity of incident light, and sequentially transfers each signal charge accumulated in each pixel. Thus, the received light level distribution can be obtained based on the amount of reflected light received by the arranged pixels.

前記閾値設定手段7は、図2に示すように、イメージセンサ4の各画素A〜L毎にこれらの受光レベル(受光信号の強度)をそれぞれ求めて、その求めた各受光レベルを加算してイメージセンサ4の受光量の総和を算出した上で、この受光量の総和をイメージセンサ4の受光した画素数で除算して受光した各画素の受光量の平均値を算出し、この平均値に、測定すべき測定対象物Mの反射率などに対応して予め個々に設定された定数を掛けることにより、閾値Thを算出して、この閾値Thをピーク位置判定手段8に対し設定入力する。   As shown in FIG. 2, the threshold setting means 7 obtains the received light level (the intensity of the received light signal) for each of the pixels A to L of the image sensor 4 and adds the obtained received light levels. After calculating the sum of the received light amounts of the image sensor 4, the sum of the received light amounts is divided by the number of pixels received by the image sensor 4, and an average value of the received light amount of each pixel received is calculated. Then, a threshold value Th is calculated by multiplying a constant set in advance corresponding to the reflectance of the measurement object M to be measured, and this threshold value Th is set and inputted to the peak position determination means 8.

したがって、図3(a)と図3(b)との対比から明らかなように、イメージセンサ4が受光する毎に種々に波形が異なる受光レベル分布に対応して閾値設定手段7が設定した閾値Th1,Th2は、個々の受光レベル分布におけるピークレベルTP1,TP2よりも低く、かつ、ピークレベルTP1,TP2に比較的近い、高いレベルとなる。そのため、受光レベル分布における閾値Th1,Th2よりも高い頭部側はピーク位置Pを中心として概ね左右対称形となる。また、この頭部側の分布が十分に左右対称でない場合であっても、閾値が高くなることで、閾値Th1,Th2に合致した2つの画素座標L1,L2が接近するから、ピーク位置が狭い2つの画素座標L1,L2の間に追い込まれることになる。その結果、設定した閾値Th1,Th2の受光レベルに基づき、前述の〔(L1+L2)/2〕、つまり閾値Th1,Th2に合致した受光位置の中間値により判定したピーク位置は、受光レベル分布の実際のピーク位置Pとほぼ一致するものとなる。つまり、前記平均値を使用することにより、ピーク位置判定の精度が向上する。また、簡単な前記平均値と中間値の演算によって、ピーク位置Pを容易に求めることができる。 Therefore, as is clear from the comparison between FIG. 3A and FIG. 3B, the threshold value set by the threshold value setting means 7 corresponding to the received light level distribution having different waveforms each time the image sensor 4 receives light. Th1 and Th2 are high levels that are lower than the peak levels TP1 and TP2 in each received light level distribution and relatively close to the peak levels TP1 and TP2. For this reason, the head side higher than the threshold values Th1 and Th2 in the light reception level distribution is substantially symmetrical with respect to the peak position P. Even if the distribution on the head side is not sufficiently symmetrical, the peak position is narrow because the two pixel coordinates L1 and L2 that match the threshold values Th1 and Th2 approach each other because the threshold value increases. Driven between the two pixel coordinates L1 and L2. As a result, the peak position determined by the above-mentioned [(L1 + L2) / 2], that is, the intermediate value of the light receiving positions matching the threshold values Th1 and Th2, based on the light receiving levels of the set threshold values Th1 and Th2, is the actual light receiving level distribution. Is substantially coincident with the peak position P. That is, the accuracy of peak position determination is improved by using the average value. Further, the peak position P can be easily obtained by simply calculating the average value and the intermediate value.

したがって、ピーク位置判定手段8は、閾値設定手段7から入力した閾値Th1,Th2を現在設定中の閾値に代えて更新登録したのちに、閾値Th1,Th2と受光レベル分布の波形との2箇所の交点におけるイメージセンサ4上の画素座標L1,L2を求めた上で、両画素座標L1,L2間の中点位置の画素座標Pを算出して〔(L1+L2)/2〕、この画素座標Pを受光レベル分布のピーク位置と判定する。これにより、測定対象物Mの光照射面が拡散反射面でないのに伴いイメージセンサ4での受光レベル分布がピーク位置に対し左右非対称な波形となる場合であっても、ピーク位置判定手段8が判定した前記ピーク位置の画素座標Pは、受光レベル分布におけるピークに近い頭部側の分布からピーク位置を判定しているから、実際のピーク位置によく合致したものとなる。   Therefore, the peak position determination unit 8 updates and registers the threshold values Th1 and Th2 input from the threshold setting unit 7 in place of the currently set threshold values, and then the two positions of the threshold values Th1 and Th2 and the waveform of the received light level distribution. After obtaining the pixel coordinates L1 and L2 on the image sensor 4 at the intersection, the pixel coordinate P at the midpoint position between the two pixel coordinates L1 and L2 is calculated [(L1 + L2) / 2]. The peak position of the received light level distribution is determined. As a result, even when the light receiving surface distribution of the measuring object M is not a diffuse reflection surface and the received light level distribution at the image sensor 4 is asymmetrical with respect to the peak position, the peak position determining means 8 The determined pixel coordinates P of the peak position are well matched with the actual peak position because the peak position is determined from the head-side distribution close to the peak in the received light level distribution.

ここで、閾値設定手段7は受光レベル分布の平均値に基づいて閾値Th1,Th2を調整して設定しているので、前述のとおり、ピーク位置判定の精度が向上する。仮に、受光レベル分布におけるピーク位置に対し左右対称となる頭部の分布部分の抽出を目的として、従来よりも高い目の受光レベルを閾値として固定的に設定したときには、測定対象物Mの光照射面が黒色のように光反射率の低い場合に、受光レベル分布のピーク位置が閾値を下回る不具合が生じたり、逆に測定対象物Mの光照射面が白色のように光反射率が高い場合に、受光レベル分布における閾値の受光レベル以上の分布に非対称な波形部分が含まれてしまう不具合が生じる(図6(b)参照)。   Here, since the threshold setting means 7 adjusts and sets the thresholds Th1 and Th2 based on the average value of the received light level distribution, the accuracy of peak position determination is improved as described above. For the purpose of extracting the distribution portion of the head that is symmetrical with respect to the peak position in the light reception level distribution, when the light reception level of eyes higher than the conventional one is fixedly set as a threshold value, the light irradiation of the measuring object M is performed. When the light reflectance is low, such as black, when the peak position of the received light level distribution falls below the threshold, or when the light irradiation surface of the measuring object M is white, the light reflectance is high. In addition, there is a problem that an asymmetrical waveform portion is included in the distribution of the light reception level distribution equal to or higher than the threshold light reception level (see FIG. 6B).

上述のように受光量の大きさに基づき閾値Th1,Th2を設定した上で、この閾値Th1,Th2に基づき正確に判定するように図ったピーク位置であっても、測定対象物Mの材質や表面状態によっては、実際のピーク位置に対し多少のずれが生じることがあるので、このような不具合の発生を次のようして抑制している。画面表示手段11には、図4に示すようにピーク位置判定手段8が判定した受光レベル分布のピーク位置P0が、受光レベル分布の波形および閾値Thと共に画像表示されており、表示中のピーク位置P0が受光レベル分布の実際のピーク位置Pに対しずれている場合には一目瞭然に視認できる。その場合には、図1の手動操作手段12により誤差を無くす操作を行う。これにより、ピーク位置修正手段13が手動操作手段12からの設定入力に対応する位置シフト信号をピーク位置判定手段8に対し出力して、画面表示手段11に表示されている図4の判定ピーク位置P0が左右方向に強制的にシフトされるので、この表示画面を見ながら、判定ピーク位置P0を受光レベル分布の実際のピーク位置Pに一致するまでシフトさせる。ピーク位置判定手段8は、以後、前記手動操作によるピーク位置のシフト量を記憶して、自身が算出したピーク位置にシフト量分だけ修正して正確なピーク位置を判定する。   As described above, the threshold values Th1 and Th2 are set based on the magnitude of the amount of received light, and the material of the measurement object M and the peak position are set so as to be accurately determined based on the threshold values Th1 and Th2. Depending on the surface state, a slight shift may occur with respect to the actual peak position. Therefore, the occurrence of such a problem is suppressed as follows. On the screen display means 11, as shown in FIG. 4, the peak position P0 of the light reception level distribution determined by the peak position determination means 8 is displayed together with the waveform of the light reception level distribution and the threshold Th, and the peak position being displayed. When P0 is deviated from the actual peak position P of the received light level distribution, it can be visually recognized at a glance. In that case, an operation for eliminating the error is performed by the manual operation means 12 of FIG. As a result, the peak position correcting means 13 outputs a position shift signal corresponding to the setting input from the manual operating means 12 to the peak position determining means 8 and is displayed on the screen display means 11 as shown in FIG. Since P0 is forcibly shifted in the left-right direction, the determination peak position P0 is shifted until it matches the actual peak position P of the received light level distribution while viewing this display screen. After that, the peak position determination means 8 stores the shift amount of the peak position by the manual operation, and corrects the peak position calculated by itself by the shift amount to determine an accurate peak position.

前記受光レベル分布の平均値に合致した閾値による判定がピーク位置の誤差をもたらす場合、適宜平均値に1を越える定数、または1未満の定数を掛けたものを閾値として設定することにより、誤差を抑制することができる。   When the determination based on the threshold value that matches the average value of the received light level distribution causes an error in the peak position, the error is reduced by appropriately setting the average value multiplied by a constant larger than 1 or a constant smaller than 1 as the threshold value. Can be suppressed.

本発明の一実施形態に係る光学式変位センサを示すブロック図である。It is a block diagram which shows the optical displacement sensor which concerns on one Embodiment of this invention. 同上の光学式変位センサにおける閾値設定手段での閾値の設定手法を示す特性図である。It is a characteristic view which shows the setting method of the threshold value by the threshold value setting means in the optical displacement sensor same as the above. (a),(b)は異なる測定対象物における受光レベル分布とこれに対応して設定した閾値との関連を示す特性図である。(A), (b) is a characteristic view which shows the relationship between the light reception level distribution in a different measuring object, and the threshold value set corresponding to this. 受光レベルの表示画面を示す図である。It is a figure which shows the display screen of a light reception level. 同上の光学式変位センサによる距離測定を説明するための概略図である。It is the schematic for demonstrating the distance measurement by an optical displacement sensor same as the above. (a),(b)は従来の光学式変位センサにおける異なる測定対象物における受光レベル分布と閾値との関連を示す特性図である。(A), (b) is a characteristic view which shows the relationship between the light reception level distribution and threshold value in the different measuring object in the conventional optical displacement sensor.

符号の説明Explanation of symbols

1 投光素子
4 イメージセンサ
7 閾値設定手段
8 ピーク位置判定手段
13 ピーク位置修正手段(修正手段)
M 測定対象物
Th,Th1,Th2 閾値
DESCRIPTION OF SYMBOLS 1 Light projection element 4 Image sensor 7 Threshold setting means 8 Peak position determination means 13 Peak position correction means (correction means)
M Measurement object Th, Th1, Th2 Threshold

Claims (3)

測定対象物に光を照射する投光素子と、照射された光の前記測定対象物からの反射光を受光するイメージセンサとを有し、前記イメージセンサの受光レベル分布のピーク位置に基づいて前記測定対象物までの距離を測定する光学式変位センサであって、
前記受光レベルの閾値に基づいて前記ピーク位置を判定するピーク位置判定手段と、
前記イメージセンサの受光量の大きさに基づいて前記閾値を調整して設定する閾値設定手段と、
を備えた光学式変位センサ。
A light projecting element that irradiates light to the measurement object; and an image sensor that receives reflected light from the measurement object of the irradiated light, and based on a peak position of a light reception level distribution of the image sensor. An optical displacement sensor that measures the distance to a measurement object,
Peak position determination means for determining the peak position based on a threshold of the light reception level;
Threshold setting means for adjusting and setting the threshold based on the amount of light received by the image sensor;
Optical displacement sensor with
請求項1において、前記閾値設定手段は前記受光レベル分布の平均値に基づいて前記閾値を設定する光学式変位センサ。   2. The optical displacement sensor according to claim 1, wherein the threshold setting means sets the threshold based on an average value of the light reception level distribution. 請求項1または2において、さらに、前記ピーク位置を手動で修正する修正手段を備えている光学式変位センサ。
3. The optical displacement sensor according to claim 1, further comprising correction means for manually correcting the peak position.
JP2006054292A 2006-03-01 2006-03-01 Optical displacement sensor Pending JP2007232556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054292A JP2007232556A (en) 2006-03-01 2006-03-01 Optical displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054292A JP2007232556A (en) 2006-03-01 2006-03-01 Optical displacement sensor

Publications (1)

Publication Number Publication Date
JP2007232556A true JP2007232556A (en) 2007-09-13

Family

ID=38553275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054292A Pending JP2007232556A (en) 2006-03-01 2006-03-01 Optical displacement sensor

Country Status (1)

Country Link
JP (1) JP2007232556A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137313A (en) * 2010-12-24 2012-07-19 Pulstec Industrial Co Ltd Three-dimensional shape measurement device
CN108571927A (en) * 2017-03-10 2018-09-25 株式会社三丰 Optical displacement meter, optical displacement meter adjusting method and optical displacement measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137313A (en) * 2010-12-24 2012-07-19 Pulstec Industrial Co Ltd Three-dimensional shape measurement device
CN108571927A (en) * 2017-03-10 2018-09-25 株式会社三丰 Optical displacement meter, optical displacement meter adjusting method and optical displacement measurement method
CN108571927B (en) * 2017-03-10 2021-12-21 株式会社三丰 Optical displacement meter, optical displacement meter adjusting method, and optical displacement measuring method

Similar Documents

Publication Publication Date Title
US7525536B2 (en) Coordinate input device, control method therefor, and control program for implementing the method
US7643159B2 (en) Three-dimensional shape measuring system, and three-dimensional shape measuring method
US9459448B2 (en) Beam scanning type display apparatus
US20130342852A1 (en) Optical Measuring Device
US7339685B2 (en) Method and apparatus for electronically generating an outline indicating the size of an energy zone imaged onto the IR detector of a radiometer
US8121814B2 (en) Three-dimensional processor and method for controlling display of three-dimensional data in the three-dimensional processor
TWI420081B (en) Distance measuring system and distance measuring method
TWI282406B (en) Displacement sensor including automatic setting device for measurement area
US20200011972A1 (en) Distance measurement device
US20080259288A1 (en) Rear projection display
US20210270971A1 (en) Measurement-value correction method for distance measuring device, and distance measuring device
US20230102878A1 (en) Projector and projection method
US10325377B2 (en) Image depth sensing method and image depth sensing apparatus
JP2007232556A (en) Optical displacement sensor
US20150185321A1 (en) Image Display Device
JP4973836B2 (en) Displacement sensor with automatic measurement area setting means
KR20100132841A (en) Device for measuring area with non-contact
CN115407349A (en) Image capture auxiliary multi-line laser ranging module
JP3730982B2 (en) projector
US9606637B2 (en) Projector and electronic device having projector function
JP2009014495A (en) Measuring device and measuring method using it
JPH1075468A (en) Focus measurement method
KR20140036644A (en) Tilt check apparatus and the method thereof
JP4659996B2 (en) Optical measuring device
JP3709405B2 (en) Projector having tilt angle measuring device