JP2007232449A - Separation method of liquid droplet and inspection method of liquid droplet - Google Patents

Separation method of liquid droplet and inspection method of liquid droplet Download PDF

Info

Publication number
JP2007232449A
JP2007232449A JP2006051982A JP2006051982A JP2007232449A JP 2007232449 A JP2007232449 A JP 2007232449A JP 2006051982 A JP2006051982 A JP 2006051982A JP 2006051982 A JP2006051982 A JP 2006051982A JP 2007232449 A JP2007232449 A JP 2007232449A
Authority
JP
Japan
Prior art keywords
slope
regions
droplet
different
angles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006051982A
Other languages
Japanese (ja)
Inventor
Akira Nakajima
章 中島
Shunsuke Suzuki
俊介 鈴木
Munehisa Sakai
宗寿 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Tokyo Institute of Technology NUC
Original Assignee
Kanagawa Academy of Science and Technology
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology, Tokyo Institute of Technology NUC filed Critical Kanagawa Academy of Science and Technology
Priority to JP2006051982A priority Critical patent/JP2007232449A/en
Publication of JP2007232449A publication Critical patent/JP2007232449A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separation method of a liquid droplet which enables the simple separation of the liquid droplet corresponding to its properties in a short time, and the inspection method of the liquid droplet which enables the simple inspection of whether the liquid droplet has predetermined properties or the concentration or the like of a solute. <P>SOLUTION: When the liquid droplet is allowed to fall along a slope having a plurality of regions different in the falling angle of the liquid droplet, the falling direction of the liquid droplet changes at the boundary of the mutual regions different in the falling angle. As a result, the liquid droplet arrives at a position different from that in the case where the liquid droplet falls along the slope toward a just-under direction according to gravity and its arrival point changes in dependence on properties such as the size of the liquid droplet or the concentration of the solute. The liquid droplet is separated from its properties by utilizing this phenomenon to inspect whether the liquid droplet has predetermined properties. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液滴の分離方法及び検査方法並びにそれらに用いられる器具に関する。   The present invention relates to a method for separating and inspecting a droplet, and an instrument used therefor.

液体成分の分離技術は様々な学術分野や製造業分野で必要とされており、これまで多くの手法が開発されている。中でもクロマトグラフのように細孔で形成されるカラム内を液体試料が透過する過程での基材との親和性の違いを利用するものが最も一般的な技術であり、これに外部から電界や磁場、あるいは遠心力などを利用するものが考案されている。このような方法は条件を適切に選ぶことで優れた分離効率を挙げることができるが、一方でカラムを通過するのに一定の時間がかかるため一般に効率が低く大量処理が行いにくい、分離するものによりカラム寿命が極端に短くなるため多くのカラムを必要とする、カラムコストが高い、といった問題点がある。   Liquid component separation techniques are required in various academic and manufacturing industries, and many methods have been developed so far. Among them, the most common technique is to utilize the difference in affinity with the base material in the process of liquid sample permeating through the column formed by pores as in the chromatograph. A device using a magnetic field or centrifugal force has been devised. Such a method can give excellent separation efficiency by appropriately selecting the conditions, but on the other hand, it takes a certain amount of time to pass through the column, so it is generally inefficient and difficult to process in large quantities. As a result, the lifetime of the column becomes extremely short, so that many columns are required and the column cost is high.

一方、固体表面の濡れ制御は物理と化学の境界に位置する技術課題であり、その応用範囲はあらゆる工学分野に及ぶ最も基礎的かつ重要な研究領域である。従来、固体表面の濡れはヤングの式を基にして接触角の測定等から得られる濡れ特性と固体表面の組成や構造との関係が理論・実験両面から検討されてきた。しかしながら近年各種の工学分野では液滴の除去性、具体的には転落加速度の重要性が認識され始めている。しかしながらこれまでの研究は、ほとんどが表面での転落加速度の実測値と物性との対応付けに終始しており(非特許文献1〜4)、動的濡れ性の制御を液体の分離に応用した例は無い。   On the other hand, wetting control of a solid surface is a technical problem located at the boundary between physics and chemistry, and its application range is the most fundamental and important research area in all engineering fields. Conventionally, the wetting of solid surfaces has been studied from both theoretical and experimental viewpoints on the relationship between the wetting characteristics obtained from contact angle measurement and the like and the composition and structure of the solid surface based on Young's equation. However, in recent years, in various engineering fields, the importance of droplet removability, specifically the fall acceleration, has begun to be recognized. However, most of the research so far has been focused on associating measured values of fall acceleration and physical properties on the surface (Non-Patent Documents 1 to 4), and applied dynamic wettability control to liquid separation. There is no example.

Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K. and Watanabe, T., Langmur. Vol.16, pp5754-5760 (2000)Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K. and Watanabe, T., Langmur. Vol.16, pp5754-5760 (2000) Nakajima, A., Suzuki, S., Kameshima, Y., Yoshida, N., Watanabe, T., and Okada, K., Chem. Lett., 32[12], 1148-1149 (2003)Nakajima, A., Suzuki, S., Kameshima, Y., Yoshida, N., Watanabe, T., and Okada, K., Chem. Lett., 32 [12], 1148-1149 (2003) Yoshida, N., Abe, Y., Shigeta, H., Takami, K., Osaki, K, Watanabe, T., Hashimoto, K., and Nakajima, A., J. Sol-Gel Sci. Tech., 31, 195-199 (2004)Yoshida, N., Abe, Y., Shigeta, H., Takami, K., Osaki, K, Watanabe, T., Hashimoto, K., and Nakajima, A., J. Sol-Gel Sci. Tech., 31, 195-199 (2004) Suzuki, S., Kameshima, Y., Nakajima, A., and Okada, K., Surf. Sci., Vol 557/1-3 pp L163-L168 (2004)Suzuki, S., Kameshima, Y., Nakajima, A., and Okada, K., Surf. Sci., Vol 557 / 1-3 pp L163-L168 (2004)

本発明の目的は、簡便かつ短時間で、液滴の性質に応じて液滴を分離することができる、液滴の分離方法を提供することである。また、本発明の目的は、簡便かつ短時間で、液滴が所定の性質を有しているか否かや、溶質の濃度等を検査することができる、液滴の検査方法を提供することである。さらに、本発明の目的は、これらの方法に用いられる器具を提供することである。   An object of the present invention is to provide a droplet separation method that can separate droplets according to the properties of the droplets easily and in a short time. Another object of the present invention is to provide a droplet inspection method that can inspect whether or not a droplet has a predetermined property, the concentration of a solute, and the like in a simple and short time. is there. Furthermore, it is an object of the present invention to provide instruments used in these methods.

本発明らは、鋭意研究の結果、液滴の転落角が異なる複数の領域を有する斜面上を液滴に転落させると、転落角が異なる領域同士の境界において液滴の転落方向が変わり、その結果、液滴が重力に従って斜面内を真下に向かって転落した場合とは異なる位置に到達し、かつ、その到達点が、液滴の大きさや溶質の濃度等の性質に依存して変化することを見出した。そして、この現象を利用して、液滴をその性質に基づいて分離することが可能であることに想到した。さらに、この現象を利用して、液滴が所定の性質を有しているか否かを検査することも可能であることに想到し、本発明に至った。   As a result of diligent research, the present inventors have found that when a drop on a slope having a plurality of regions with different drop angles is dropped into a droplet, the drop direction of the droplet changes at the boundary between regions with different drop angles. As a result, the droplet reaches a position different from the case where it falls down on the slope according to gravity, and the arrival point changes depending on properties such as the size of the droplet and the concentration of the solute. I found. Then, the inventors have come up with the idea that it is possible to separate droplets based on their properties using this phenomenon. Furthermore, the inventors have conceived that it is possible to inspect whether or not a droplet has a predetermined property by utilizing this phenomenon, and have reached the present invention.

すなわち、本発明は、斜面上に液滴を点着し、該液滴に前記斜面上を転落させて斜面の下に到達させ、液滴の性質に応じて到達位置が異なることを利用して液滴を分離する方法であって、前記斜面の表面は、前記液滴の転落角が異なる少なくとも2個の領域を有し、前記点着点から前記斜面内直下方向に斜面下まで延びる直線が、転落角の異なる前記少なくとも2個の領域を通過するように該少なくとも2個の領域が配置される、液滴の分離方法を提供する。また、本発明は、斜面上に一定量の液滴を点着し、斜面上を転落させて斜面の下に到達させ、液滴の性質に応じて到達位置が異なることを利用して液滴を検査する方法であって、前記斜面の表面は、前記液滴の転落角が異なる少なくとも2個の領域を有し、前記点着点から前記斜面内直下方向に斜面下まで延びる直線が、転落角の異なる前記少なくとも2個の領域を通過するように該少なくとも2個の領域が配置される、液滴の検査方法を提供する。さらに、本発明は、液滴の転落角が異なる少なくとも2個の領域を有する板を具備し、上記本発明の分離方法を行なうために用いられる液滴の分離器具を提供する。さらに、本発明は、液滴の転落角が異なる少なくとも2個の領域を有する板を具備し、上記本発明の検査方法を行なうために用いられる液滴の検査器具を提供する。   That is, the present invention makes use of the fact that droplets are spotted on a slope, the droplet falls on the slope and reaches the bottom of the slope, and the arrival position varies depending on the properties of the droplet. In the method for separating a droplet, the surface of the slope has at least two regions with different drop angles of the droplet, and a straight line extending from the spot to the inside of the slope to the bottom of the slope A method for separating droplets is provided, wherein the at least two regions are arranged so as to pass through the at least two regions having different falling angles. In addition, the present invention drops a certain amount of liquid droplets on the slope, drops on the slope and reaches below the slope, and uses the fact that the arrival position differs depending on the properties of the liquid droplet The surface of the slope has at least two regions with different drop angles of the droplets, and a straight line extending from the spot to the bottom of the slope in the direction immediately below the slope falls. There is provided a method for inspecting a droplet, wherein the at least two regions are arranged so as to pass through the at least two regions having different corners. Furthermore, the present invention provides a droplet separation device that includes a plate having at least two regions having different drop falling angles, and is used for performing the separation method of the present invention. Furthermore, the present invention provides a droplet inspection instrument comprising a plate having at least two regions having different drop falling angles, and used for performing the inspection method of the present invention.

本発明により、簡便かつ短時間で、液滴の性質に応じて液滴を分離することができる、液滴の分離方法が提供された。本発明の分離方法は、斜面上に液滴を点着し、斜面下において、各位置ごとに液滴を回収するだけで極めて簡便に実施することができ、かつ、液滴の点着から回収までに要する時間は数秒以内であり、極めて短時間に実施することができる。   According to the present invention, there is provided a droplet separation method that can separate droplets according to the properties of the droplets easily and in a short time. The separation method of the present invention can be carried out very simply by spotting a droplet on the slope and collecting the droplet at each position below the slope, and collecting from the spot of the droplet. The time required until is within a few seconds, and can be carried out in a very short time.

また、本発明により、簡便かつ短時間で、液滴が所定の性質を有しているか否かや、溶質の濃度等を検査することができる、液滴の検査方法が提供された。本発明の検査方法は、斜面上に液滴を点着し、斜面下における液滴の転落位置を測定するだけで極めて簡便に実施することができ、かつ、液滴の点着から回収までに要する時間は数秒以内であり、極めて短時間に実施することができる。この検査方法により、飲料の品質管理や、工場排液の管理等を極めて簡便かつ短時間に行なうことができる。   In addition, according to the present invention, there is provided a droplet inspection method capable of inspecting whether a droplet has a predetermined property, the concentration of a solute, and the like in a simple and short time. The inspection method of the present invention can be carried out extremely simply by spotting a droplet on a slope and measuring the position of the droplet falling below the slope. The time required is within a few seconds and can be carried out in a very short time. With this inspection method, beverage quality control, factory drainage management, and the like can be performed very simply and in a short time.

上記の通り、本発明の液滴の分離方法は、斜面上に液滴を点着し、該液滴に前記斜面上を転落させて斜面の下に到達させ、液滴の性質に応じて到達位置が異なることを利用して液滴を分離する方法である。該方法に用いられる斜面は、前記液滴の転落角が異なる少なくとも2個の領域を有する。該少なくとも2個の領域は、前記点着点から前記斜面内直下方向に斜面下まで延びる直線が、転落角の異なる前記少なくとも2個の領域を通過するように該少なくとも2個の領域が配置されている。   As described above, the method for separating liquid droplets according to the present invention drops a droplet on a slope, causes the droplet to fall on the slope and reach the bottom of the slope, and reaches according to the nature of the droplet. This is a method of separating droplets by utilizing the fact that the positions are different. The slope used in the method has at least two regions with different drop angles of the droplets. The at least two regions are arranged such that a straight line extending from the spot to the bottom of the slope in the direction directly below the slope passes through the at least two regions having different falling angles. ing.

転落角は、平坦な面上に液滴を点着し、面を傾けていったときに液滴が転落し始める時の傾斜角である。転落角が異なることは、撥液性が異なることを意味する。液滴の転落時に、斜面の表面に液滴が付着する(斜面の表面が濡れる)と、回収される液の量が減少し、かつ、次の液滴の分離を行なう前に斜面の表面を洗浄、乾燥させる必要が生じるため、斜面の表面は液滴に対して撥液性であることが好ましく、各領域の転落角はいずれも20度以下であることが好ましい。また、分離能を大きくするために、各領域の転落角の差は3度以上であることが好ましく、5度以上であることがさらに好ましい。また、斜面の傾斜角は、転落角の最も大きな領域の転落角よりも大きな角度であればよいが、あまりに大きいと分離能が低下するので、通常、25度〜45度程度が好ましい。   The falling angle is an inclination angle when the droplet starts to drop when the droplet is spotted on the flat surface and the surface is inclined. Different rolling angles mean that the liquid repellency is different. When a droplet falls, if the droplet adheres to the surface of the slope (the surface of the slope gets wet), the amount of liquid collected decreases, and the surface of the slope is removed before the next droplet is separated. Since it is necessary to wash and dry, the surface of the slope is preferably liquid repellent with respect to the droplets, and the falling angle of each region is preferably 20 degrees or less. Further, in order to increase the resolution, the difference in the falling angle of each region is preferably 3 degrees or more, and more preferably 5 degrees or more. In addition, the inclination angle of the slope may be an angle larger than the falling angle of the region having the largest falling angle, but if it is too large, the separability is lowered.

また、分離に供される液滴は、水系の場合が多いので、各領域は、転落角が異なる少なくとも2種類の撥水剤でそれぞれ処理することにより形成することが好ましい。撥水剤を用いた表面処理により前記各領域を形成する場合には、各領域を任意のパターンに形成することができるので有利である。撥水剤としては、フッ素を含有したものが、撥水効果が大きいので好ましく、特にフルオロアルキルシラン類(フッ素数の多いものはパーフルオロアルキルシラン類と呼ばれる)が好ましい。フルオロアルキルシラン類中のアルキル基の長さやアルキル基中の置換フッ素の数を変えることにより撥水性を変えることができる。フルオロアルキルシラン類としては、シラン(SiH4)の1つの水素を長鎖アルキル基で置換し、かつ、該長鎖アルキル中の複数の水素をフッ素で置換し、シランの残りの3個の水素はメトキシ基のような低級アルコキシル基又は塩素のようなハロゲンで置換されたものが多い。このようなフルオロアルキルシラン系の撥水剤は種々市販されているので、市販品を好ましく用いることができる。この他、パーフルオロアルキルカルボン酸系、パーフルオロアルキルスルホン酸系、パーフルオロアルキルリン酸系等の表面処理剤、パーフルオロアルキル基含有オリゴマー、PTFE に代表される各種フッ素系樹脂も適用が可能である。またフッ素を含まない、オクタデシルトリメトキシシラン(ODS)のようなアルキル系の撥水剤も利用可能である。これらの撥水剤も種々市販されているので、市販品を利用することができる。撥水処理は浸漬法が効率やコストの点で最も優れるが、原料によっては蒸着法も可能である。 In addition, since the droplets used for separation are often aqueous, each region is preferably formed by treatment with at least two types of water repellents having different falling angles. When each region is formed by surface treatment using a water repellent, each region can be formed in an arbitrary pattern, which is advantageous. As the water repellent, those containing fluorine are preferable because they have a large water repellent effect, and fluoroalkylsilanes (those having a large number of fluorines are called perfluoroalkylsilanes) are particularly preferable. The water repellency can be changed by changing the length of the alkyl group in the fluoroalkylsilane or the number of substituted fluorines in the alkyl group. As fluoroalkylsilanes, one hydrogen of silane (SiH 4 ) is substituted with a long chain alkyl group, and a plurality of hydrogens in the long chain alkyl are substituted with fluorine, and the remaining three hydrogens of the silane are substituted. Are often substituted with a lower alkoxyl group such as a methoxy group or a halogen such as chlorine. Since such fluoroalkylsilane-based water repellents are commercially available, commercially available products can be preferably used. In addition, surface treatment agents such as perfluoroalkyl carboxylic acids, perfluoroalkyl sulfonic acids, and perfluoroalkyl phosphates, perfluoroalkyl group-containing oligomers, and various fluorine resins typified by PTFE are also applicable. is there. In addition, alkyl-based water repellents such as octadecyltrimethoxysilane (ODS) that do not contain fluorine can also be used. Since these water repellents are also commercially available, commercially available products can be used. For the water repellent treatment, the immersion method is most excellent in terms of efficiency and cost, but depending on the raw material, a vapor deposition method is also possible.

上記の通り、液滴の点着点から前記斜面内直下方向に斜面下まで延びる直線が、転落角の異なる前記少なくとも2個の領域を通過するように該少なくとも2個の領域が配置されている。ここで、「斜面内直下方向」とは、斜面の表面が均一である場合に、液滴が重力に従って転落する進路の方向であり、斜面が平坦な平面である場合には、最短距離で斜面下に到達する進路の方向である。   As described above, the at least two regions are arranged so that a straight line extending from the spot of the droplet to the lower surface of the inclined surface in the direction directly below the inclined surface passes through the at least two regions having different falling angles. . Here, the “directly below the slope” means the direction of the path in which droplets fall according to gravity when the slope surface is uniform, and when the slope is a flat plane, the slope is the shortest distance. The direction of the path to reach down.

分離能を大きくするために、本発明の方法では、前記直線が、転落角の異なる前記領域の境界を複数回通過することが好ましく、少なくとも4回通過することがさらに好ましい。   In order to increase the resolution, in the method of the present invention, it is preferable that the straight line passes through the boundary of the region having different falling angles a plurality of times, and more preferably at least four times.

転落角が異なる前記少なくとも2個の領域は、転落角が異なる3種類以上の領域であってもよいが、該領域は、転落角が異なる2種類の領域から成り、前記直線が該2種類の領域の境界を複数回通過するように該2種類の領域が交互に配置することが、使用する撥水剤の種類数を少なくし、斜面の形成がより簡便であり、一方、それでいて十分な分離能が得られるので好ましい。   The at least two regions having different sliding angles may be three or more types of regions having different sliding angles, but the region is composed of two types of regions having different sliding angles, and the straight line is the two types of regions. Alternating arrangement of the two types of regions so as to pass through the boundary of the region a plurality of times reduces the number of types of water repellent used and makes it easier to form slopes, while still providing sufficient separation It is preferable because the performance is obtained.

以下、本発明の分離方法の1例を図面に基づきより具体的に説明する。図1及び図2は、本発明の方法の原理を説明するための模式図である。図2に示すように、この例では、2種類の撥水剤でそれぞれ撥水処理して形成した第1の撥水領域16(以下、単に「領域」と呼ぶことがある)と第2の撥水領域18(以下、単に「領域」と呼ぶことがある)が交互に縞状に配置されている。図1では、明瞭性のために2種類の領域は図示されていない。図1中、参照番号10が斜面、12が液滴、14が液滴を滴下するためのノズルの先端である。斜面10は、傾斜角が角度αの斜面であり、図1中、「g sinα方向」と記載されている方向及び図2中、真下に向いた白抜きの矢印の方向が、「斜面内直下方向」である。図1中、「回転ライン方向」は、図2に示す縞模様のパターンを斜面内直下方向に沿って形成した場合から、角度Φだけ斜面内で回転させた方向を意味し、図2には回転角Φが35度の場合が示されている。なお、分離能が最も大きくなる最適の回転角Φは、液滴の性質や傾斜角により異なるので、回転角Φを変えて予備実験を行なって最適の回転角Φを見つけた後、分離を実施することが好ましい。   Hereinafter, one example of the separation method of the present invention will be described more specifically with reference to the drawings. 1 and 2 are schematic views for explaining the principle of the method of the present invention. As shown in FIG. 2, in this example, a first water-repellent region 16 (hereinafter simply referred to as “region”) and a second water-repellent treatment formed by two types of water-repellent agents, respectively. Water-repellent regions 18 (hereinafter sometimes simply referred to as “regions”) are alternately arranged in a striped pattern. In FIG. 1, the two types of regions are not shown for clarity. In FIG. 1, reference numeral 10 is a slope, 12 is a droplet, and 14 is a tip of a nozzle for dropping the droplet. The inclined surface 10 is an inclined surface having an inclination angle α. In FIG. 1, the direction indicated as “g sin α direction” and the direction of the white arrow pointing downward in FIG. Direction. In FIG. 1, the “rotation line direction” means a direction in which the striped pattern shown in FIG. The case where the rotation angle Φ is 35 degrees is shown. Note that the optimum rotation angle Φ with the highest resolution depends on the properties of the droplets and the tilt angle. Therefore, preliminary experiments were conducted by changing the rotation angle Φ to find the optimum rotation angle Φ, and then separation was performed. It is preferable to do.

図2によく示されるように、斜面内直下方向(真下に向いた白抜きの矢印の方向)に斜面下まで延びる直線が、転落角の異なる2つの領域である領域16及び領域18を通過するように領域16及び領域18が配置されている。また、この直線が、領域16と領域18の境界を複数回(図2の模式図では4回)通過するように領域16及び領域18が配置されている。   As is well shown in FIG. 2, a straight line extending to the lower side of the slope in the direction directly below the slope (the direction of the white arrow pointing directly below) passes through the two areas 16 and 18, which have two different falling angles. Thus, the region 16 and the region 18 are arranged. Further, the region 16 and the region 18 are arranged so that the straight line passes through the boundary between the region 16 and the region 18 a plurality of times (four times in the schematic diagram of FIG. 2).

本発明の方法では、斜面10の上部の一点に液滴を点着し、液滴に前記斜面上を転落させて斜面の下に到達させる。この場合、液滴は領域16と領域18の各境界で進路が変わり、図2中の直角に折れ曲がった複数の白抜き矢印で示すように、ジグザグに転落していく。このため、液滴は、斜面内真下とは異なる斜面下の位置に到達する。そして、領域16と領域18の各境界における進路変更の程度は、液滴の性質に依存して異なるので、斜面下での到達位置が液滴の性質に依存して異なる。従って、斜面下に転落してきた液滴を、各位置ごとに回収することにより、液滴の性質に基づき液滴を分離することができる。なお、ここで、「液滴を分離する」とは、言うまでもなく、単一の液滴を分離する意味ではなく、複数の液滴を上記の方法に供することにより、各液滴をその性質に基づいて分離するという意味である。   In the method of the present invention, a droplet is spotted on one point on the upper surface of the slope 10, and the droplet falls on the slope to reach the lower surface of the slope. In this case, the droplet path changes at each boundary between the region 16 and the region 18, and falls down in a zigzag as indicated by a plurality of white arrows bent at right angles in FIG. For this reason, the droplet reaches a position below the slope different from that directly below the slope. The degree of course change at each boundary between the region 16 and the region 18 varies depending on the properties of the droplets, so that the arrival position under the slope varies depending on the properties of the droplets. Therefore, by collecting the droplets that have fallen below the slope at each position, the droplets can be separated based on the properties of the droplets. Here, it goes without saying that “separating droplets” does not mean that a single droplet is separated, but by applying a plurality of droplets to the above method, each droplet is brought into its properties. It means to separate based on.

ここで、液滴の性質としては、液滴のサイズ、液滴を構成する溶媒の種類、及び液滴中の1又は2以上の溶質の種類や濃度、液滴の温度及び液滴の表面張力等を挙げることができる。図1の斜面下には、異なる大きさの液滴20が模式的に描かれており、大きな液滴ほど斜面内真下方向に近い方向に転落することを示している。   Here, as the properties of the droplet, the size of the droplet, the type of solvent constituting the droplet, the type and concentration of one or more solutes in the droplet, the temperature of the droplet, and the surface tension of the droplet Etc. Under the slope of FIG. 1, droplets 20 of different sizes are schematically drawn, indicating that larger droplets fall in a direction closer to the direction directly below the slope.

点着する液滴のサイズを一定にすれば、液滴のサイズ以外の性質、すなわち、液滴を構成する溶媒の種類、及び液滴中の1又は2以上の溶質の濃度等により液滴を分離することができる。さらに溶媒が同一の場合(例えば水溶液の場合)には、溶質の種類や濃度に基づいて液滴を分離することができる。なお、点着する液滴のサイズは、特に限定されないが、通常、5mgから45mg程度、好ましくは8mgから35mg程度である。   If the size of the droplet to be spotted is made constant, the droplet can be separated depending on properties other than the size of the droplet, that is, the type of solvent constituting the droplet, the concentration of one or more solutes in the droplet Can be separated. Further, when the solvent is the same (for example, in the case of an aqueous solution), the droplets can be separated based on the kind and concentration of the solute. The droplet size to be spotted is not particularly limited, but is usually about 5 mg to 45 mg, preferably about 8 mg to 35 mg.

斜面下における液滴の回収は、例えば、斜面下の水平方向の数mmごとに行なうことができ、それによって、性質の異なる液滴を、分離(分画)することができる。   Droplet collection under the slope can be performed, for example, every several millimeters in the horizontal direction under the slope, whereby droplets having different properties can be separated (fractionated).

なお、転落角が異なる領域のパターンは、図2に示すような単純な等幅の縞模様に限定されるものではなく、種々のパターンのものを採用することができる。これらの例を図3から図5に示す。図3に示すパターンは、図2と同様な縞模様であるが、斜面の下側に行くほど縞の幅が大きくなっている。図4に示すパターンは、点着位置から放射状に各領域を形成したものである。図5に示すパターンは、一方の領域を細長い直角三角形とし、この直角三角形を斜面方向に複数配置し、他方の領域を背景としたものである。なお、パターンは、要するに、点着点から前記斜面内直下方向に斜面下まで延びる直線が、転落角の異なる前記少なくとも2個の領域を通過するように該少なくとも2個の領域が配置されていればよく、好ましくは、該直線が、各領域の境界を複数回通過するように配置されていればよく、上記したパターンやそれらに類似するパターンに限定されるものではない。なお、各種パターンの場合も、上記した等幅縞模様の場合と同様、最適な回転角Φを予備実験により予め見つけた後、分離を行なうことが好ましい。   In addition, the pattern of the area | region from which a fall angle differs is not limited to a simple equal width striped pattern as shown in FIG. 2, The thing of a various pattern is employable. Examples of these are shown in FIGS. The pattern shown in FIG. 3 is a striped pattern similar to FIG. 2, but the width of the stripe increases toward the lower side of the slope. The pattern shown in FIG. 4 is obtained by forming each region radially from the spotting position. In the pattern shown in FIG. 5, one region is an elongated right triangle, a plurality of the right triangles are arranged in the slope direction, and the other region is used as the background. In short, the pattern is basically arranged such that the straight line extending from the spot to the bottom of the slope in the downward direction of the slope passes through the at least two areas having different falling angles. What is necessary is just to be arrange | positioned so that this straight line may pass through the boundary of each area | region several times, and it is not limited to the above-mentioned pattern or a pattern similar to them. In the case of various patterns as well, as in the case of the above-mentioned uniform width stripe pattern, it is preferable to perform separation after finding the optimum rotation angle Φ in advance through preliminary experiments.

本発明の分離方法によれば、それぞれ性質の異なる液滴を、その性質に基づいて分離し、回収することができる。従って、複数種類の異なる液体試料を、性質の同じもの同士でまとめることや、不均一な組成の単一の液体(例えば、溶質の濃度に勾配が生じているような液体)を、溶質の濃度等に基づいて分画することができる。   According to the separation method of the present invention, droplets having different properties can be separated and recovered based on the properties. Therefore, multiple different types of liquid samples are grouped together with the same properties, or a single liquid with a non-uniform composition (for example, a liquid having a gradient in solute concentration) And so on.

上記した分離方法と同様の原理を、液滴の検査に適用することができる。すなわち、斜面に点着する液滴の量を一定にすれば、液滴の到達位置は、液滴の組成に基づいて変化するので、液滴の到達位置を測定することにより、その液滴が所定の組成を有しているか否かを検査することができる。例えば、飲料の品質検査において、ある溶質(例えば、酒類におけるアルコール等)が所定量含まれているか否かを上記した方法により検査することができる。同様に、工場からの排液中の有害物質の濃度が、所定値以下になっているか否かを検査することができる。さらには、溶媒が同じで、1つの溶質の濃度だけが変化することがわかっている場合には、上記方法により溶質の濃度を検査する(すなわち濃度を測定する)ことも可能である。これは、例えば、濃度既知の標準液を複数作製し、それぞれについて到達位置を調べ、濃度と到達位置の関係を検量線に描いておき、濃度未知の試料液滴を点着した場合に、その到達位置を上記検量線にあてはめることにより、未知の試料中の前記溶質の濃度を測定することが可能である。なお、本発明の検査方法は、上記した本発明の分離方法と同一の原理により行なうものであるので、上記した本発明の分離方法についての説明事項は、本発明の検査方法においてもそのまま当てはまる(ただし、検査方法では、点着される液滴の量は一定であり、斜面下において液滴を回収する必要はない)。   The same principle as the separation method described above can be applied to the droplet inspection. In other words, if the amount of droplets that land on the slope is constant, the arrival position of the droplets changes based on the composition of the droplets. It can be checked whether or not it has a predetermined composition. For example, in the beverage quality inspection, it is possible to inspect whether or not a predetermined amount of a certain solute (for example, alcohol in alcoholic beverages) is included. Similarly, it is possible to inspect whether or not the concentration of harmful substances in the effluent from the factory is below a predetermined value. Furthermore, when it is known that the solvent is the same and only the concentration of one solute is changed, the concentration of the solute can be inspected (that is, the concentration is measured) by the above method. This is because, for example, a plurality of standard solutions with known concentrations are prepared, the arrival positions for each are examined, the relationship between the concentration and the arrival position is drawn on a calibration curve, and a sample droplet with an unknown concentration is spotted. By applying the reaching position to the calibration curve, it is possible to measure the concentration of the solute in an unknown sample. In addition, since the inspection method of the present invention is performed based on the same principle as the separation method of the present invention described above, the explanations about the separation method of the present invention described above also apply as they are to the inspection method of the present invention ( However, in the inspection method, the amount of droplets to be deposited is constant, and there is no need to collect the droplets under the slope).

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

パーフルオロアルキルシラン(FAS-17)(水の転落角が15度)を150℃、1時間の条件でCVDでガラス表面にコーティングし、ラインとスペースの幅が各500μmのライン・アンド・スペースのマスクを当ててXe真空紫外光を照射した。得られた表面をトルエンとアセトンで洗浄し、すぐにオクタデシルトリメトキシシラン(ODS)(水の転落角が9度)を同じ条件でCVD処理を行った。この面を35度に傾斜させ(図1中の角度α)、回転角度(図1中の角度Φ)を変えて様々な大きさの水滴を落とす実験を行った。その結果、35度回転した面において、水滴が転落する際、後退接触角側(固体との後ろ端点)で横方向にジグザグに移動する挙動が見られ(図2)、30mgの水滴と25mgの水滴とでは、点着位置からの面内直下の位置までの距離が80mmの時、8mm横にずれていた。   Perfluoroalkylsilane (FAS-17) (with a water falling angle of 15 degrees) was coated on the glass surface by CVD under conditions of 150 ° C for 1 hour, and line and space widths of 500 µm each for line and space. The mask was applied and Xe vacuum ultraviolet light was irradiated. The obtained surface was washed with toluene and acetone and immediately subjected to a CVD treatment with octadecyltrimethoxysilane (ODS) (with a water falling angle of 9 degrees) under the same conditions. This surface was tilted to 35 degrees (angle α in FIG. 1), and an experiment was conducted to drop water drops of various sizes by changing the rotation angle (angle Φ in FIG. 1). As a result, on the surface rotated 35 degrees, when a water drop falls, a behavior that moves zigzag laterally on the receding contact angle side (the back end point with the solid) is seen (Fig. 2), 30 mg water drop and 25 mg water drop In the case of water droplets, when the distance from the spotting position to the position directly below the surface was 80 mm, it was shifted 8 mm laterally.

比較例1
パーフルオロアルキルシラン、又はオクタデシルトリメトキシシラン(ODS)だけを同様にコーティングした斜面上で、実施例1と同じ操作を行った。その結果、各水滴は常に同じ場所に着液し、水滴のサイズに基づく分離は行なわれなかった。
Comparative Example 1
The same operation as in Example 1 was performed on a slope similarly coated with only perfluoroalkylsilane or octadecyltrimethoxysilane (ODS). As a result, each water droplet always landed at the same place, and separation based on the size of the water droplet was not performed.

実施例1と同じ表面に対し、水とジオキサンの混合溶液による実験を行った。水10mlに対し、ジオキサンを0.5ml〜5ml添加した混合溶液を調整し、液適量12μlで転落実験を行った。その結果、ジオキサンの濃度により液滴の転落経路が異なり、液中のジオキサン濃度の違いによる液滴の分離が可能であった。すなわち、ジオキサンの濃度が高いほど、真下からより大きく離れた位置に着液した。   An experiment using a mixed solution of water and dioxane was performed on the same surface as in Example 1. A mixed solution in which 0.5 ml to 5 ml of dioxane was added to 10 ml of water was prepared, and a drop experiment was conducted with an appropriate amount of 12 μl. As a result, the dropping route of the droplets differed depending on the concentration of dioxane, and it was possible to separate the droplets depending on the dioxane concentration in the liquid. That is, as the concentration of dioxane was higher, the liquid was deposited at a position farther away from directly below.

比較例2
パーフルオロアルキルシラン、又はオクタデシルトリメトキシシラン(ODS)だけを同様にコーティングした斜面を用い、実施例2と同じ操作を行った。その結果、液滴の量が同じ場合、各液滴は常に同じ場所に着液し、ジオキサン濃度に基づく分離は行なわれなかった。
Comparative Example 2
The same operation as in Example 2 was performed using a slope in which only perfluoroalkylsilane or octadecyltrimethoxysilane (ODS) was similarly coated. As a result, when the amount of droplets was the same, each droplet always landed at the same location, and separation based on dioxane concentration was not performed.

実施例1と同様な方法により、日本酒、芋焼酎、泡盛及びウイスキーを用いて実験した。ただし回転角Φは15°にした。結果を図6に示す。図6に示すように、アルコール濃度の高い芋焼酎とウィスキーでは、真下から大きく離れた位置に着液し、次に泡盛、次に日本酒の順で、真下からの距離が離れた位置に着液した。これにより、本発明の方法により、飲料の検査(アルコール濃度等の検査)が可能であることが確認された。   In the same manner as in Example 1, experiments were conducted using sake, shochu shochu, awamori and whiskey. However, the rotation angle Φ was 15 °. The results are shown in FIG. As shown in FIG. 6, in shochu and whiskey with high alcohol concentration, the liquid arrives at a position far from the bottom, then awamori, then sake, and the liquid is separated at a distance from the bottom. did. Thereby, it was confirmed by the method of this invention that the test | inspection (test | inspection of alcohol concentration etc.) of a drink is possible.

本発明の方法の原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of the method of this invention. 実施例で用いた斜面を模式的に示す図である。It is a figure which shows typically the slope used in the Example. 本発明の方法に用いる斜面上の、転落角の異なる2種類の領域の配置パターンの1例を示す図である。It is a figure which shows an example of the arrangement | positioning pattern of two types of area | regions from which the fall angle differs on the slope used for the method of this invention. 本発明の方法に用いる斜面上の、転落角の異なる2種類の領域の配置パターンの他の1例を示す図である。It is a figure which shows another example of the arrangement | positioning pattern of two types of area | regions where the fall angles differ on the slope used for the method of this invention. 本発明の方法に用いる斜面上の、転落角の異なる2種類の領域の配置パターンのさらに他の1例を示す図である。It is a figure which shows another example of the arrangement pattern of two types of area | regions where the fall angles differ on the slope used for the method of this invention. 実施例において行った、本発明の方法による酒類の液滴の転落の様子を示す連続写真である。It is a continuous photograph which shows the mode of the fall of the droplet of alcoholic beverages by the method of this invention performed in the Example.

符号の説明Explanation of symbols

10 斜面
12 液滴
14 ノズル先端
16 第1の撥水領域
18 第2の撥水領域
20 液滴
10 slope 12 droplet 14 nozzle tip 16 first water repellent area 18 second water repellent area 20 droplet

Claims (14)

斜面上に液滴を点着し、該液滴に前記斜面上を転落させて斜面の下に到達させ、液滴の性質に応じて到達位置が異なることを利用して液滴を分離する方法であって、前記斜面の表面は、前記液滴の転落角が異なる少なくとも2個の領域を有し、前記点着点から前記斜面内直下方向に斜面下まで延びる直線が、転落角の異なる前記少なくとも2個の領域を通過するように該少なくとも2個の領域が配置され、前記斜面下において各位置ごとに前記液滴を回収する、液滴の分離方法。   A method of spotting a droplet on a slope, causing the droplet to fall on the slope to reach the bottom of the slope, and separating the droplet by utilizing the fact that the arrival position differs depending on the nature of the droplet The surface of the slope has at least two regions with different drop angles of the droplets, and straight lines extending from the landing point to the lower slope in the slope are different in the drop angle. A method for separating droplets, wherein the at least two regions are arranged so as to pass through at least two regions, and the droplets are collected at each position under the slope. 前記直線が、転落角の異なる前記領域の境界を複数回通過する請求項1記載の方法。   The method according to claim 1, wherein the straight line passes a boundary of the region having different falling angles a plurality of times. 転落角が異なる前記少なくとも2個の領域は、転落角が異なる2種類の領域から成り、前記直線が該2種類の領域の境界を複数回通過するように該2種類の領域が交互に配置されている請求項2記載の方法。   The at least two regions having different sliding angles are composed of two types of regions having different sliding angles, and the two types of regions are alternately arranged so that the straight line passes through the boundary between the two types of regions a plurality of times. The method according to claim 2. 前記直線が、転落角の異なる領域の境界を少なくとも4回通過する請求項2又は3記載の方法。   The method according to claim 2 or 3, wherein the straight line passes through a boundary between regions having different falling angles at least four times. 前記少なくとも2個の領域は、前記斜面の表面を、転落角が異なる少なくとも2種類の撥水剤でそれぞれ処理することにより形成されたものである請求項1ないし4のいずれか1項に記載の方法。   The said at least 2 area | region is formed by processing the surface of the said slope with at least 2 types of water repellents from which a falling angle differs, respectively. Method. 一定量の液滴が点着される請求項1ないし5のいずれか1項に記載の方法。   6. The method according to any one of claims 1 to 5, wherein a certain amount of droplets is spotted. 斜面上に一定量の液滴を点着し、斜面上を転落させて斜面の下に到達させ、液滴の性質に応じて到達位置が異なることを利用して液滴を検査する方法であって、前記斜面の表面は、前記液滴の転落角が異なる少なくとも2個の領域を有し、前記点着点から前記斜面内直下方向に斜面下まで延びる直線が、転落角の異なる前記少なくとも2個の領域を通過するように該少なくとも2個の領域が配置される、液滴の検査方法。   It is a method of inspecting a droplet by spotting a certain amount of droplet on the slope, falling on the slope and reaching under the slope, and using the fact that the arrival position differs depending on the nature of the droplet. The surface of the slope has at least two regions with different drop angles of the droplets, and a straight line extending from the spot to the bottom of the slope in the direction immediately below the slope has the at least two different drop angles. A method for inspecting a droplet, wherein the at least two regions are arranged so as to pass through the regions. 前記直線が、転落角の異なる前記領域の境界を複数回通過する請求項7記載の方法。   The method according to claim 7, wherein the straight line passes through a boundary between the regions having different falling angles. 転落角が異なる前記少なくとも2個の領域は、転落角が異なる2種類の領域から成り、前記直線が該2種類の領域の境界を複数回通過するように該2種類の領域が交互に配置されている請求項8記載の方法。   The at least two regions having different sliding angles are composed of two types of regions having different sliding angles, and the two types of regions are alternately arranged so that the straight line passes through the boundary between the two types of regions a plurality of times. The method according to claim 8. 前記直線が、転落角の異なる前記領域の境界を少なくとも4回通過する請求項8又は9記載の方法。   The method according to claim 8 or 9, wherein the straight line passes through a boundary between the regions having different falling angles at least four times. 前記少なくとも2個の領域は、前記斜面の表面を、転落角が異なる少なくとも2種類の撥水剤でそれぞれ処理することにより形成されたものである請求項7ないし10のいずれか1項に記載の方法。   The said at least 2 area | region is formed by processing the surface of the said slope with at least 2 types of water repellents from which a falling angle differs, respectively. Method. 前記検査方法は、前記液滴中の溶質の濃度が所定の範囲内にあるか否かを調べるためのものである請求項7ないし11のいずれか1項に記載の方法。   The method according to any one of claims 7 to 11, wherein the inspection method is for checking whether or not a concentration of a solute in the droplet is within a predetermined range. 液滴の転落角が異なる少なくとも2個の領域を有する板を具備し、請求項1ないし6のいずれか1項に記載の方法を行なうために用いられる液滴の分離器具。   7. A droplet separation device comprising a plate having at least two regions with different drop falling angles, and used for carrying out the method according to claim 1. 液滴の転落角が異なる少なくとも2個の領域を有する板を具備し、請求項7ないし12のいずれか1項に記載の方法を行なうために用いられる液滴の検査器具。

13. A droplet inspection instrument comprising a plate having at least two regions with different drop falling angles, and used for performing the method according to claim 7.

JP2006051982A 2006-02-28 2006-02-28 Separation method of liquid droplet and inspection method of liquid droplet Pending JP2007232449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051982A JP2007232449A (en) 2006-02-28 2006-02-28 Separation method of liquid droplet and inspection method of liquid droplet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051982A JP2007232449A (en) 2006-02-28 2006-02-28 Separation method of liquid droplet and inspection method of liquid droplet

Publications (1)

Publication Number Publication Date
JP2007232449A true JP2007232449A (en) 2007-09-13

Family

ID=38553186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051982A Pending JP2007232449A (en) 2006-02-28 2006-02-28 Separation method of liquid droplet and inspection method of liquid droplet

Country Status (1)

Country Link
JP (1) JP2007232449A (en)

Similar Documents

Publication Publication Date Title
Parsa et al. Effect of substrate temperature on pattern formation of nanoparticles from volatile drops
Ooi et al. A floating self-propelling liquid marble containing aqueous ethanol solutions
Bluhm et al. Surface effects on cation transport across porous alumina membranes
JP6367172B2 (en) Packing in a chromatographic column
CZ15799A3 (en) Solid carrier for analytic measuring methods, manufacture and use thereof
US11383216B2 (en) Relating to substrates for the attachment of molecules
US20110086766A1 (en) Chemical and Biological Detection Arrays
US10520363B2 (en) Raman detecting chip for thin layer chromatography and method for separating and detecting an analyte
US20130101753A1 (en) Method for treating a drop of liquid
KR101724271B1 (en) Surface enhanced raman scattering sensor, method of forming the same, and analyzing method using the same
Kumar Fundamentals and Techniques of Biophysics and Molecular biology
Harris et al. Microchannel surface area enhancement using porous thin films
Al Balushi et al. Binary mixture droplet wetting on micro-structure decorated surfaces
JP2017508993A5 (en)
JP2007232449A (en) Separation method of liquid droplet and inspection method of liquid droplet
Burkarter et al. Electrosprayed superhydrophobic PTFE: a non-contaminating surface
Mitsushio et al. Molecular selectivity development of Teflon® AF1600-coated gold-deposited surface plasmon resonance-based glass rod sensor
WO2014082190A1 (en) Micro-liquid phase reaction method based on substrate of hydrophilic-hydrophobic mode
US20150190803A1 (en) Method for producing structured microcarriers
US20110290008A1 (en) Novel technique for uniformly applying analyte to a structured surface
KR20150040939A (en) Method for producing microcarriers
JP5086159B2 (en) Fluid handling unit and fluid handling apparatus using the same
WO2016090407A1 (en) Cuvette for optical spectroscopy
JP2012500992A (en) Apparatus for concentration and localization of solutes and method for concentration and localization of solutes
US11402307B2 (en) Method for concentrating analytes