JP2007231757A - Apparatus and method for controlling internal combustion engine - Google Patents

Apparatus and method for controlling internal combustion engine Download PDF

Info

Publication number
JP2007231757A
JP2007231757A JP2006051839A JP2006051839A JP2007231757A JP 2007231757 A JP2007231757 A JP 2007231757A JP 2006051839 A JP2006051839 A JP 2006051839A JP 2006051839 A JP2006051839 A JP 2006051839A JP 2007231757 A JP2007231757 A JP 2007231757A
Authority
JP
Japan
Prior art keywords
fuel
intake valve
temperature
intake
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006051839A
Other languages
Japanese (ja)
Inventor
Masato Hayasaka
全人 早坂
Takeo Kinoshita
剛生 木下
Masashi Komaki
正志 古牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006051839A priority Critical patent/JP2007231757A/en
Publication of JP2007231757A publication Critical patent/JP2007231757A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for controlling an internal combustion engine, wherein the apparatus can improve the accuracy of the control of an air-fuel ratio in the internal combustion engine by vaporizing the fuel stuck to an intake valve. <P>SOLUTION: In a control apparatus of the internal combustion engine 1 comprising an injector 11 for supplying fuel to an intake port 4, an ECU 30 acquires the temperature of an intake valve 9 for opening and closing the intake port 4 toward the combustion chamber 8 of the internal combustion engine 1, and regulates the pressure in the intake port 4 by controlling the operation of a variable valve mechanism 20 based on the acquired temperature of the intake valve 9 such that the temperature difference Tc between the temperature on the intake valve 9 and the boiling point of the fuel stuck on the intake valve 9 approaches to the target temperature difference Tt in a critical heat flux point P where the boiling state of the fuel stuck on the intake valve 9 changes from nucleate boiling to transition boiling. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、吸気通路に燃料を供給する燃料供給装置を備えた内燃機関の制御装置及び制御方法に関する。   The present invention relates to a control device and a control method for an internal combustion engine including a fuel supply device that supplies fuel to an intake passage.

燃料挙動モデルから吸気ポート及び吸気弁などの吸気通路構成部材に付着する燃料付着量を求めるとともにこの燃料付着量に基づいて燃料噴射量の補正に使用する燃料付着補正量を求め、吸入空気量が小さいときは吸気吸気量が大きいときよりも燃料付着補正量による燃料噴射量の補正を制限する内燃機関の燃料噴射量制御装置が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2が存在する。   From the fuel behavior model, the amount of fuel adhering to intake passage components such as the intake port and the intake valve is obtained, and the amount of fuel adhering to be used for correcting the fuel injection amount is obtained based on the amount of adhering fuel. There is known a fuel injection amount control device for an internal combustion engine that limits the correction of the fuel injection amount by the fuel adhesion correction amount when the intake air intake amount is large when the intake air amount is small (see Patent Document 1). In addition, there is Patent Document 2 as a prior art document related to the present invention.

特開2003−314329号公報JP 2003-314329 A 特開平10−77886号公報Japanese Patent Laid-Open No. 10-77886

吸気弁に付着した燃料(以下、付着燃料と呼ぶこともある。)の気化は、吸気弁から付着燃料への熱流束に影響され、この熱流束が増加するほど気化する付着燃料の量も増加する。従来の制御装置では、吸気弁から付着燃料への熱流束を考慮して燃料付着量を求めていないので、燃料噴射量の補正が不十分な場合がある。そのため、内燃機関の空燃比制御の精度が十分ではないことがある。なお、熱流束とは、単位面積当たり単位時間に移動する熱エネルギを意味する。   The vaporization of fuel adhering to the intake valve (hereinafter also referred to as adhering fuel) is affected by the heat flux from the intake valve to the adhering fuel, and the amount of adhering fuel that vaporizes increases as the heat flux increases. To do. In the conventional control device, since the fuel adhesion amount is not calculated in consideration of the heat flux from the intake valve to the adhered fuel, the correction of the fuel injection amount may be insufficient. Therefore, the accuracy of air-fuel ratio control of the internal combustion engine may not be sufficient. The heat flux means heat energy that moves per unit area per unit time.

そこで、本発明は、吸気弁に付着した燃料を速やかに気化させることによって内燃機関の空燃比制御の精度を向上させることが可能な内燃機関の制御装置及び制御方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a control device and a control method for an internal combustion engine that can improve the accuracy of air-fuel ratio control of the internal combustion engine by quickly vaporizing the fuel adhering to the intake valve. .

本発明の内燃機関の制御装置は、吸気通路に燃料を供給する燃料供給手段を備えた内燃機関の制御装置において、前記内燃機関の燃焼室に対して前記吸気通路を開閉する吸気弁の温度を取得する吸気弁温度取得手段と、前記吸気弁の温度と前記吸気弁に付着した燃料の沸点との温度差を変更する温度差変更手段と、前記吸気弁温度取得手段により取得された吸気弁の温度に基づいて前記吸気弁の温度と前記吸気弁に付着した燃料の沸点との温度差が、前記吸気弁に付着した燃料の沸騰状態が核沸騰から遷移沸騰に変わる限界熱流束点における温度差である目標温度差に近付くように前記温度差変更手段の動作を制御する動作制御手段と、を備えていることにより、上述した課題を解決する(請求項1)。   The control apparatus for an internal combustion engine according to the present invention is a control apparatus for an internal combustion engine provided with a fuel supply means for supplying fuel to the intake passage, and controls the temperature of the intake valve that opens and closes the intake passage with respect to the combustion chamber of the internal combustion engine. The intake valve temperature acquisition means to acquire, the temperature difference change means to change the temperature difference between the temperature of the intake valve and the boiling point of the fuel adhering to the intake valve, and the intake valve temperature acquisition means acquired by the intake valve temperature acquisition means Based on the temperature, the temperature difference between the temperature of the intake valve and the boiling point of the fuel adhering to the intake valve is the temperature difference at the critical heat flux point where the boiling state of the fuel adhering to the intake valve changes from nucleate boiling to transition boiling And the operation control means for controlling the operation of the temperature difference changing means so as to approach the target temperature difference, which solves the above-mentioned problem.

周知のように伝熱面から液体への熱流束は液体の沸騰状態に応じて変化する。液体の沸騰状態は、伝熱面と液体の沸点との温度差が増加するに従って核沸騰、遷移沸騰、膜沸騰の順に推移し、伝熱面から液体への熱流束は核沸騰から遷移沸騰に変わる限界熱流束点において極大値をとる。本発明の制御装置では、吸気弁の温度と付着燃料の沸点との温度差を限界熱流束点における温度差である目標温度差に近付けるので、吸気弁から付着燃料への熱流束を増加させ、付着燃料を速やかに気化させることができる。これにより、吸気通路に供給された燃料のうち燃焼室に導かれる量を増加させることができるので、内燃機関の空燃比制御の精度を向上させることができる。   As is well known, the heat flux from the heat transfer surface to the liquid changes according to the boiling state of the liquid. The boiling state of the liquid changes in the order of nucleate boiling, transition boiling, and film boiling as the temperature difference between the heat transfer surface and the liquid boiling point increases, and the heat flux from the heat transfer surface to the liquid changes from nucleate boiling to transition boiling. The maximum value is taken at the changing critical heat flux point. In the control device of the present invention, the temperature difference between the temperature of the intake valve and the boiling point of the attached fuel is brought close to the target temperature difference that is the temperature difference at the critical heat flux point, so the heat flux from the intake valve to the attached fuel is increased, Adhering fuel can be quickly vaporized. Thus, the amount of fuel supplied to the intake passage can be increased to the combustion chamber, so that the accuracy of air-fuel ratio control of the internal combustion engine can be improved.

本発明の制御装置の一形態においては、前記温度差変更手段として、前記吸気通路の圧力を変更する圧力変更手段が設けられていてもよいし(請求項2)、前記温度差変更手段として、前記吸気弁を昇温する吸気弁昇温手段が設けられていてもよい(請求項3)。燃料の沸点は燃料の周囲の圧力に応じて変化する。例えば、周囲の圧力を低下させることによって燃料の沸点を低下させることができる。そのため、吸気通路の圧力を変更することによって付着燃料の沸点を変化させることができる。従って、このように吸気通路の圧力又は吸気弁の温度を変更することによって吸気弁の温度と付着燃料の沸点の温度差を変更できる。   In one form of the control device of the present invention, as the temperature difference changing means, a pressure changing means for changing the pressure of the intake passage may be provided (Claim 2), or as the temperature difference changing means, Intake valve temperature raising means for raising the temperature of the intake valve may be provided. The boiling point of the fuel changes according to the pressure around the fuel. For example, the boiling point of the fuel can be reduced by reducing the ambient pressure. Therefore, the boiling point of the attached fuel can be changed by changing the pressure in the intake passage. Therefore, the temperature difference between the temperature of the intake valve and the boiling point of the attached fuel can be changed by changing the pressure of the intake passage or the temperature of the intake valve in this way.

本発明の制御装置の一形態においては、前記燃料供給手段から供給される燃料の性状を判定する燃料性状判定手段と、前記燃料性状判定手段の判定結果に基づいて前記目標温度差を補正する目標温度差補正手段と、をさらに備えていてもよい(請求項4)。燃料の沸点は燃料の性状に影響され、燃料が重質であるほど沸点は高くなる。そのため、燃料の沸騰状態が核沸騰から遷移沸騰に変わる温度差は燃料の性状に応じて変化する。この形態では、燃料の性状に応じて目標温度差が補正されるので、目標温度差を各性状の燃料の限界熱流束点における温度差に合わせることができる。そのため、吸気弁から付着燃料への熱流束を増加させて付着燃料の気化を促進させ、内燃機関の空燃比制御の精度を向上させることができる。   In one form of the control device of the present invention, a fuel property determination unit that determines the property of the fuel supplied from the fuel supply unit, and a target that corrects the target temperature difference based on a determination result of the fuel property determination unit And a temperature difference correcting means. The boiling point of the fuel is affected by the properties of the fuel, and the heavier the fuel, the higher the boiling point. Therefore, the temperature difference at which the boiling state of the fuel changes from nucleate boiling to transition boiling changes according to the properties of the fuel. In this embodiment, since the target temperature difference is corrected according to the properties of the fuel, the target temperature difference can be matched with the temperature difference at the critical heat flux point of each property fuel. Therefore, the heat flux from the intake valve to the attached fuel can be increased to promote the vaporization of the attached fuel, and the accuracy of air-fuel ratio control of the internal combustion engine can be improved.

本発明の内燃機関の制御方法は、吸気通路に燃料を供給する燃料供給手段を備えた内燃機関の制御方法において、前記内燃機関の燃焼室に対して前記吸気通路を開閉する吸気弁から前記吸気弁に付着した燃料への熱流束が増加するように前記吸気通路の圧力及び前記吸気弁の温度の少なくともいずれか一方を調整することにより、上述した課題を解決する(請求項5)。   The internal combustion engine control method of the present invention is a control method of an internal combustion engine comprising fuel supply means for supplying fuel to the intake passage, wherein the intake valve opens and closes the intake passage with respect to the combustion chamber of the internal combustion engine. The above-described problem is solved by adjusting at least one of the pressure of the intake passage and the temperature of the intake valve so that the heat flux to the fuel attached to the valve increases (Claim 5).

本発明の制御方法によれば、吸気弁から付着燃料への熱流束が増加するように吸気通路の圧力及び吸気弁の温度の少なくともいずれか一方を調整するので、本発明の制御装置と同様に、付着燃料の気化を促進させて吸気通路に供給された燃料のうち燃焼室に導かれる量を増加させることができる。そのため、内燃機関の空燃比制御の精度を向上させることができる。   According to the control method of the present invention, since at least one of the pressure of the intake passage and the temperature of the intake valve is adjusted so that the heat flux from the intake valve to the attached fuel increases, similarly to the control device of the present invention. Thus, the amount of the fuel supplied to the intake passage can be increased by promoting the vaporization of the adhered fuel. Therefore, the accuracy of air-fuel ratio control of the internal combustion engine can be improved.

本発明の制御方法に一形態においては、前記吸気弁の温度と前記吸気弁に付着した燃料の沸点との温度差が、前記吸気弁に付着した燃料の沸騰状態が核沸騰から遷移沸騰に変わる限界熱流束点における温度差に近付くように前記吸気通路の圧力及び前記吸気弁の温度の少なくともいずれか一方を調整してもよい(請求項6)。このように吸気弁の温度と付着燃料の沸点との温度差を限界熱流束点における温度差に近付けることにより、吸気弁から付着燃料への熱流束を増加させることができる。   In one embodiment of the control method of the present invention, the temperature difference between the temperature of the intake valve and the boiling point of the fuel attached to the intake valve changes the boiling state of the fuel attached to the intake valve from nucleate boiling to transition boiling. You may adjust at least any one of the pressure of the said intake passage, and the temperature of the said intake valve so that the temperature difference in a limit heat flux point may be approached (Claim 6). Thus, by bringing the temperature difference between the temperature of the intake valve and the boiling point of the attached fuel close to the temperature difference at the critical heat flux point, the heat flux from the intake valve to the attached fuel can be increased.

以上に説明したように、本発明によれば、吸気弁から付着燃料への熱流束を増加させ、付着燃料の気化を促進させることができるので、吸気弁に付着する燃料量を減少させることができる。そのため、吸気通路に供給された燃料のうち燃焼室に導かれる燃料量を増加させて内燃機関の空燃比制御の精度を向上させることができる。   As described above, according to the present invention, the heat flux from the intake valve to the attached fuel can be increased and the vaporization of the attached fuel can be promoted, so that the amount of fuel adhering to the intake valve can be reduced. it can. Therefore, it is possible to improve the accuracy of air-fuel ratio control of the internal combustion engine by increasing the amount of fuel led to the combustion chamber among the fuel supplied to the intake passage.

(第1の形態)
図1は、本発明の第1の形態に係る制御装置が組み込まれた内燃機関の要部を示している。図1の内燃機関(以下、エンジンと呼ぶこともある。)1は、車両に走行用動力源として搭載され、複数(図1では1つのみを示す。)の気筒2が形成されたシリンダブロック3と、シリンダブロック3の上部に取り付けられて一つの気筒2に対して吸気通路としての吸気ポート4及び排気通路としての排気ポート5がそれぞれ形成されるシリンダヘッド6とを備えている。各気筒2にはピストン7がそれぞれ往復動可能にそれぞれ挿入され、このピストン7と気筒2の壁面とシリンダヘッド6とによって各気筒2に燃焼室8がそれぞれ形成される。また、各気筒2には、吸気ポート4を開閉するための吸気弁9及び排気ポート5を開閉するための排気弁10がそれぞれ設けられている。各吸気ポート4には、燃料供給手段としてのインジェクタ11がそれぞれ設けられている。なお、これらの部分は周知のエンジンのものと同様でよいため、詳細な説明は省略する。
(First form)
FIG. 1 shows a main part of an internal combustion engine in which a control device according to a first embodiment of the present invention is incorporated. An internal combustion engine (hereinafter also referred to as an engine) 1 in FIG. 1 is mounted on a vehicle as a driving power source, and a cylinder block in which a plurality (only one is shown in FIG. 1) of cylinders 2 is formed. 3 and a cylinder head 6 attached to the upper part of the cylinder block 3 and formed with an intake port 4 as an intake passage and an exhaust port 5 as an exhaust passage for one cylinder 2, respectively. A piston 7 is inserted into each cylinder 2 so as to be able to reciprocate. A combustion chamber 8 is formed in each cylinder 2 by the piston 7, the wall surface of the cylinder 2, and the cylinder head 6. Each cylinder 2 is provided with an intake valve 9 for opening and closing the intake port 4 and an exhaust valve 10 for opening and closing the exhaust port 5. Each intake port 4 is provided with an injector 11 as fuel supply means. In addition, since these parts may be the same as that of a well-known engine, detailed description is abbreviate | omitted.

図1に示したように、エンジン1は、可変動弁機構20を備えている。可変動弁機構20は、駆動源としての吸気カムモータ21及び排気カムモータ22と、吸気カムモータ21の回転運動を吸気弁9を開閉駆動する直線運動に変化する吸気カム機構23と、排気カムモータ22の回転運動を排気弁10を開閉駆動する直線運動に変化する排気カム機構24とを備えている。可変動弁機構20は、吸気カムモータ21及び排気カムモータ22の回転速度を変化させることにより、吸気弁9及び排気弁10の開弁時期、閉弁時期、作用角、及びリフト量などの動弁特性をそれぞれ変更することができる。   As shown in FIG. 1, the engine 1 includes a variable valve mechanism 20. The variable valve mechanism 20 includes an intake cam motor 21 and an exhaust cam motor 22 as drive sources, an intake cam mechanism 23 that changes the rotational motion of the intake cam motor 21 into a linear motion that drives the intake valve 9 to open and close, and the rotation of the exhaust cam motor 22. And an exhaust cam mechanism 24 that changes the motion to a linear motion that drives the exhaust valve 10 to open and close. The variable valve mechanism 20 changes the rotational speeds of the intake cam motor 21 and the exhaust cam motor 22 to change valve characteristics such as the valve opening timing, valve closing timing, operating angle, and lift amount of the intake valve 9 and the exhaust valve 10. Can be changed respectively.

可変動弁機構20の動作は、エンジンコントロールユニット(ECU)30によって制御されている。ECU30は、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺機器を含んだコンピュータとして構成され、所定のセンサの出力信号を参照してインジェクタ11などの動作を制御してエンジン1の運転状態を制御する周知のコンピュータユニットである。ECU30が参照するセンサとしては、例えばエンジン1のクランク角に対応した信号を出力するクランク角センサ31、エンジン1の吸気量に対応した信号を出力するエアフローメータ32、吸気温度に対応した信号を出力する吸気温センサ33、エンジン1の冷却水の温度に対応した信号を出力する冷却水温センサ34、吸気ポート4の圧力に対応した信号を出力する吸気圧センサ35、及び燃料性状判定手段としての燃料性状センサ36などが設けられる。燃料性状センサ36は、例えば燃料を加熱したときにその燃料の50%が蒸発する温度である50%蒸留点を参照して燃料の性状を判定する。この50%蒸留点は、例えばエンジン1の燃料タンクに貯留されている燃料の一部を加熱して検出してもよいし、50%蒸留点と相関関係を有する物理量を検出し、この物理量に基づいて燃料の50%蒸留点を推定してもよい。   The operation of the variable valve mechanism 20 is controlled by an engine control unit (ECU) 30. The ECU 30 is configured as a computer including a microprocessor and peripheral devices such as a RAM and a ROM necessary for its operation, and controls the operation of the injector 11 and the like by referring to an output signal of a predetermined sensor to operate the engine 1. It is a well-known computer unit for controlling As sensors referred to by the ECU 30, for example, a crank angle sensor 31 that outputs a signal corresponding to the crank angle of the engine 1, an air flow meter 32 that outputs a signal corresponding to the intake amount of the engine 1, and a signal corresponding to the intake air temperature are output. An intake air temperature sensor 33 that outputs a signal corresponding to the temperature of the cooling water of the engine 1, an intake air pressure sensor 35 that outputs a signal corresponding to the pressure of the intake port 4, and a fuel as fuel property determination means A property sensor 36 and the like are provided. The fuel property sensor 36 determines the property of the fuel with reference to, for example, a 50% distillation point that is a temperature at which 50% of the fuel evaporates when the fuel is heated. This 50% distillation point may be detected by, for example, heating a part of the fuel stored in the fuel tank of the engine 1 or detecting a physical quantity correlated with the 50% distillation point. Based on this, the 50% distillation point of the fuel may be estimated.

インジェクタ11から噴射された燃料の一部は吸気弁9に付着する。この付着燃料の量が増加するとインジェクタ11から噴射された燃料量と燃焼室8に供給された燃料量との差が拡大するので、エンジン1の空燃比制御の精度が低下するおそれがある。そこで、ECU30は図2の熱流束制御ルーチンを実行して吸気弁9に付着した付着燃料の気化を促進させる。図2の制御ルーチンは、エンジン1の運転中に所定の周期で繰り返し実行される。   Part of the fuel injected from the injector 11 adheres to the intake valve 9. If the amount of the adhered fuel increases, the difference between the amount of fuel injected from the injector 11 and the amount of fuel supplied to the combustion chamber 8 increases, which may reduce the accuracy of air-fuel ratio control of the engine 1. Therefore, the ECU 30 executes the heat flux control routine of FIG. 2 to promote the vaporization of the attached fuel adhering to the intake valve 9. The control routine of FIG. 2 is repeatedly executed at a predetermined cycle while the engine 1 is operating.

図2の制御ルーチンにおいてECU30は、まずステップS11において吸気弁9の温度Tvを取得する。吸気弁9の温度Tvは、例えば吸気弁9に吸気弁9の温度に対応した信号を出力する温度センサを設けて取得してもよいし、図3に示した吸気弁温度算出ルーチンを実行することによって算出して取得してもよい。   In the control routine of FIG. 2, the ECU 30 first acquires the temperature Tv of the intake valve 9 in step S11. The temperature Tv of the intake valve 9 may be obtained, for example, by providing the intake valve 9 with a temperature sensor that outputs a signal corresponding to the temperature of the intake valve 9 or executing the intake valve temperature calculation routine shown in FIG. You may calculate and acquire by this.

図3の吸気弁温度算出ルーチンについて説明する。この算出ルーチンでは、吸気弁9に対する入熱量及び出熱量を算出し、この算出した入出熱量に基づいて吸気弁9の温度を算出する。なお、気筒2毎に吸気弁9が授受する熱量は異なるので、ECU30は図3の制御ルーチンをエンジン1の気筒2の数と同一の回数繰り返し実行して各気筒2に設けられた吸気弁9の温度Tvを算出する。   The intake valve temperature calculation routine of FIG. 3 will be described. In this calculation routine, the amount of heat input and the amount of heat output to the intake valve 9 are calculated, and the temperature of the intake valve 9 is calculated based on the calculated amount of input and output heat. Since the amount of heat transferred from the intake valve 9 to each cylinder 2 is different, the ECU 30 repeatedly executes the control routine of FIG. 3 the same number of times as the number of cylinders 2 of the engine 1 and the intake valves 9 provided in each cylinder 2. The temperature Tv is calculated.

図3のステップS101において、ECU30はまず前回この算出ルーチンを実行したときに算出された吸気弁温度Tv_oldを取得する。なお、後述するようにこの算出ルーチンにて算出された吸気弁温度Tvは、ECU30のRAMなどに一時的に記憶されている。冷間始動時、すなわちエンジン1が停止され、十分にエンジン1が冷却されている状態からエンジン1を始動するときの吸気弁9の温度はエンジン1の冷却水温度と略同一である。そこで、エンジン1が始動された直後に始めて実行される、すなわち始動後に1回目に実行される算出ルーチンでは、吸気弁温度Tv_oldにエンジン1の冷却水温度が代入される。続くステップS102においてECU30は、エンジン1の状態を表す各種のパラメータを取得する。これらのパラメータとしては、例えば吸入空気量、機関回転数、吸気弁9の開弁時期、吸気弁9の作用角、吸気弁9のリフト量などが取得される。なお、吸気弁9の開弁時期、作用角、及びリフト量など吸気弁9の動弁特性は、吸気カムモータ21の回転位置に基づいて取得される。   In step S101 in FIG. 3, the ECU 30 first acquires the intake valve temperature Tv_old calculated when the calculation routine was executed last time. As will be described later, the intake valve temperature Tv calculated by this calculation routine is temporarily stored in the RAM of the ECU 30 or the like. At the cold start, that is, when the engine 1 is stopped and the engine 1 is sufficiently cooled, the temperature of the intake valve 9 is substantially the same as the coolant temperature of the engine 1. Therefore, in the calculation routine that is executed for the first time immediately after the engine 1 is started, that is, executed for the first time after the engine 1 is started, the coolant temperature of the engine 1 is substituted for the intake valve temperature Tv_old. In the subsequent step S102, the ECU 30 acquires various parameters representing the state of the engine 1. As these parameters, for example, the intake air amount, the engine speed, the opening timing of the intake valve 9, the operating angle of the intake valve 9, the lift amount of the intake valve 9, and the like are acquired. The valve operating characteristics of the intake valve 9 such as the valve opening timing, the operating angle, and the lift amount of the intake valve 9 are acquired based on the rotational position of the intake cam motor 21.

続くステップS103〜S106においてECU30は、吸気ガス受熱量Qg、接触面受熱量Qs、燃料気化潜熱量Qf、及び燃焼ガス受熱量Qbを算出する。吸気ガス受熱量Qgは、吸気ポート4から燃焼室8に流入する吸気と吸気弁9との間で授受される熱量であり、前回算出した吸気弁9の温度Tv_oldと吸気温度との温度差、及び吸気弁9の周囲を吸気が通過している時間などに基づいて算出される。なお、吸気ガス受熱量Qgには、燃焼室8から吸気ポート4に逆流する吹き返しガスと吸気弁9との間で授受される熱量を考慮してもよい。接触面受熱量Qsは、着座時にシリンダヘッド6に設けられた吸気弁9の弁座と吸気弁9との間で授受される熱量であり、前回算出した吸気弁9の温度Tv_oldと吸気弁9の弁座の温度との温度差、及び吸気弁9が弁座に着座している着座時間などに基づいて算出される。燃料気化潜熱量Qfは、吸気弁9に付着した燃料が気化する際に持ち去る熱量であり、気化する付着燃料の量、燃料温度、燃料の気化潜熱などに基づいて算出される。なお、気化する付着燃料量は、吸気弁9の温度、吸気ポート4の圧力、インジェクタ11から噴射された燃料に基づいて算出される。燃焼ガス受熱量Qbは、燃焼室8内の燃焼ガスから吸気弁9に与えられる熱量であり、燃焼室8内の燃焼ガス温度、吸気弁9の閉弁時に燃焼ガスの熱が吸気弁9に作用する時間などに基づいて算出される。   In subsequent steps S103 to S106, the ECU 30 calculates the intake gas heat reception amount Qg, the contact surface heat reception amount Qs, the fuel vaporization latent heat amount Qf, and the combustion gas heat reception amount Qb. The intake gas heat receiving amount Qg is the amount of heat transferred between the intake air flowing into the combustion chamber 8 from the intake port 4 and the intake valve 9, and the temperature difference between the previously calculated temperature Tv_old of the intake valve 9 and the intake air temperature, And the time during which the intake air passes around the intake valve 9 is calculated. The intake gas heat receiving amount Qg may take into account the amount of heat transferred between the blowback gas flowing backward from the combustion chamber 8 to the intake port 4 and the intake valve 9. The contact surface heat receiving amount Qs is a heat amount transferred between the valve seat of the intake valve 9 provided in the cylinder head 6 and the intake valve 9 at the time of sitting, and the previously calculated temperature Tv_old of the intake valve 9 and the intake valve 9 This is calculated based on the temperature difference from the valve seat temperature and the seating time during which the intake valve 9 is seated on the valve seat. The fuel vaporization latent heat amount Qf is the amount of heat taken away when the fuel adhering to the intake valve 9 is vaporized, and is calculated based on the amount of adhering fuel vaporized, the fuel temperature, the fuel vaporization latent heat, and the like. The amount of attached fuel to be vaporized is calculated based on the temperature of the intake valve 9, the pressure of the intake port 4, and the fuel injected from the injector 11. The combustion gas heat reception amount Qb is the amount of heat given from the combustion gas in the combustion chamber 8 to the intake valve 9. The combustion gas temperature in the combustion chamber 8 and the heat of the combustion gas to the intake valve 9 when the intake valve 9 is closed. It is calculated based on the operating time.

次のステップS107においてECU30は、算出した吸気ガス受熱量Qg、接触面受熱量Qs、燃料気化潜熱量Qf、及び燃焼ガス受熱量Qbに基づいて吸気弁9の温度Tvを算出する。具体的には、まず算出した吸気ガス受熱量Qg、接触面受熱量Qs、燃料気化潜熱量Qf、及び燃焼ガス受熱量Qbを加算した総受熱量Qを吸気弁9の比熱Cvで割って吸気弁9の温度変化分ΔTvを算出する。その後、この温度変化分ΔTvを前回算出した吸気弁温度Tv_oldに加えることによって吸気弁9の温度Tvを算出する。算出した吸気弁温度TvはECU30のRAMに記憶され、図2の制御ルーチンなどで使用される。   In the next step S107, the ECU 30 calculates the temperature Tv of the intake valve 9 based on the calculated intake gas heat reception amount Qg, contact surface heat reception amount Qs, fuel vaporization latent heat amount Qf, and combustion gas heat reception amount Qb. Specifically, first, the intake heat amount Qg, the contact surface heat reception amount Qs, the fuel vaporization latent heat amount Qf, and the combustion gas heat reception amount Qb, which are calculated, are divided by the specific heat Cv of the intake valve 9 to obtain the intake air. A temperature change ΔTv of the valve 9 is calculated. Thereafter, the temperature change Tv of the intake valve 9 is calculated by adding the temperature change ΔTv to the previously calculated intake valve temperature Tv_old. The calculated intake valve temperature Tv is stored in the RAM of the ECU 30 and used in the control routine of FIG.

図2に戻って熱流束制御ルーチンの説明を続ける。次のステップS12においてECU30は、吸気弁9に付着した付着燃料の気化が促進する吸気ポート4の圧力(以下、目標吸気管圧と呼ぶ。)Ptを算出する。図4及び図5を参照して目標吸気管圧Ptの算出方法を説明する。図4は、吸気弁温度Tvと燃料の沸点Tbとの温度差Tcと吸気弁9から付着燃料への熱流束との関係の一例を示している。図4に示したように温度差Tcが増加するに従って燃料の沸騰状態が核沸騰、遷移沸騰、膜沸騰の順に推移し、吸気弁9から付着燃料への熱流束は燃料の沸騰状態が核沸騰から遷移沸騰に変わる限界熱流束点Pにおいて極大値をとる。なお以降、本発明では限界熱流束点Pを極大熱流束点と呼ぶこともある。吸気弁9に付着した付着燃料の気化を促進させるためには、吸気弁9から付着燃料への熱流束を増加させればよい。一方、温度差Tcを調整可能な範囲、すなわち吸気弁9の温度Tv又は燃料の沸点Tbを調整可能な温度範囲は限定される。そこで、温度差Tcを抑えつつ吸気弁9から付着燃料への熱流束を増加させるため、温度差Tcを極大熱流束点Pにおける温度差である目標温度差Ttに調整する。   Returning to FIG. 2, the description of the heat flux control routine will be continued. In the next step S12, the ECU 30 calculates the pressure (hereinafter referred to as a target intake pipe pressure) Pt of the intake port 4 that promotes the vaporization of the attached fuel adhering to the intake valve 9. A method for calculating the target intake pipe pressure Pt will be described with reference to FIGS. 4 and 5. FIG. 4 shows an example of the relationship between the temperature difference Tc between the intake valve temperature Tv and the fuel boiling point Tb and the heat flux from the intake valve 9 to the attached fuel. As shown in FIG. 4, as the temperature difference Tc increases, the boiling state of the fuel changes in the order of nucleate boiling, transition boiling, and film boiling, and the heat flux from the intake valve 9 to the attached fuel indicates that the boiling state of the fuel is nucleate boiling. The maximum value is taken at the critical heat flux point P that changes from transition to boiling. Hereinafter, in the present invention, the critical heat flux point P may be referred to as a maximum heat flux point. In order to promote the vaporization of the attached fuel adhering to the intake valve 9, the heat flux from the intake valve 9 to the attached fuel may be increased. On the other hand, the range in which the temperature difference Tc can be adjusted, that is, the temperature range in which the temperature Tv of the intake valve 9 or the boiling point Tb of the fuel can be adjusted is limited. Therefore, in order to increase the heat flux from the intake valve 9 to the adhered fuel while suppressing the temperature difference Tc, the temperature difference Tc is adjusted to a target temperature difference Tt that is a temperature difference at the maximum heat flux point P.

温度差Tcを目標温度差Ttに調整するためには、付着燃料の沸点Tbを吸気弁9の温度Tvから目標温度差Ttを引いた目標沸点Tb_tに調整すればよい。付着燃料の沸点Tbは吸気ポート4の圧力に影響されるので、吸気ポート4の圧力を調整して付着燃料の沸点Tbを調整する。図5は、付着燃料の沸点Tbと吸気ポート4の圧力との関係の一例を示している。図5に示したように付着燃料の沸点Tbは、吸気ポート4の圧力が高くなるほど上昇する。目標吸気管圧Ptには、温度差Tcが目標温度差Ttになる吸気ポート4の圧力が設定されればよい。そのため、図5を参照し、目標沸点Tb_tに対応する吸気ポート4の圧力を目標吸気管圧Ptに設定する。なお、図4及び図5の関係は、予め実験などにより求めておき、ECU30にマップとして記憶させておく。   In order to adjust the temperature difference Tc to the target temperature difference Tt, the boiling point Tb of the attached fuel may be adjusted to the target boiling point Tb_t obtained by subtracting the target temperature difference Tt from the temperature Tv of the intake valve 9. Since the boiling point Tb of the attached fuel is affected by the pressure of the intake port 4, the pressure of the intake port 4 is adjusted to adjust the boiling point Tb of the attached fuel. FIG. 5 shows an example of the relationship between the boiling point Tb of the attached fuel and the pressure of the intake port 4. As shown in FIG. 5, the boiling point Tb of the attached fuel increases as the pressure at the intake port 4 increases. The target intake pipe pressure Pt may be set to the pressure of the intake port 4 at which the temperature difference Tc becomes the target temperature difference Tt. Therefore, referring to FIG. 5, the pressure of the intake port 4 corresponding to the target boiling point Tb_t is set to the target intake pipe pressure Pt. 4 and FIG. 5 is obtained in advance by experiments or the like and stored in the ECU 30 as a map.

次のステップS13においてECU30は、吸気ポート4の圧力を目標吸気管圧Ptに調整する。吸気ポート4の圧力は、例えば吸気カムモータ21の動作を制御して吸気弁9のリフト量を変更することにより調整する。吸気行程時に吸気弁9のリフト量を増加させた場合は、吸気ポート4を流れる吸気の流量が増加するので、吸気ポート4の圧力が低下する。一方、吸気ポート4の圧力を上昇させる場合は、吸気弁9のリフト量を減少させる。このように吸気ポート4の圧力を変更することにより、可変動弁機構20が本発明の圧力変更手段、及び温度差変更手段として機能する。その後、今回の制御ルーチンを終了する。   In the next step S13, the ECU 30 adjusts the pressure of the intake port 4 to the target intake pipe pressure Pt. The pressure of the intake port 4 is adjusted by, for example, controlling the operation of the intake cam motor 21 and changing the lift amount of the intake valve 9. When the lift amount of the intake valve 9 is increased during the intake stroke, the flow rate of the intake air flowing through the intake port 4 increases, so the pressure of the intake port 4 decreases. On the other hand, when the pressure of the intake port 4 is increased, the lift amount of the intake valve 9 is decreased. By changing the pressure of the intake port 4 in this way, the variable valve mechanism 20 functions as the pressure changing means and the temperature difference changing means of the present invention. Thereafter, the current control routine is terminated.

図2の制御ルーチンを実行することにより、吸気弁9から付着燃料への熱流束を増加させることができるので、付着燃料の気化を促進させ、付着燃料の量を減少させることができる。そのため、インジェクタ11から噴射された燃料量と燃焼室8に供給された燃料量との差を縮小できる。従って、エンジン1の空燃比制御の精度を向上させることができる。   By executing the control routine of FIG. 2, the heat flux from the intake valve 9 to the attached fuel can be increased, so that vaporization of the attached fuel can be promoted and the amount of the attached fuel can be reduced. Therefore, the difference between the amount of fuel injected from the injector 11 and the amount of fuel supplied to the combustion chamber 8 can be reduced. Therefore, the accuracy of the air-fuel ratio control of the engine 1 can be improved.

なお、図2のステップS11を実行して吸気弁9の温度を取得することによりECU30は、本発明の吸気弁温度取得手段として機能する。また、ステップS13を実行して吸気ポート4の圧力を調整し、吸気弁9の温度と付着燃料の沸点との温度差を目標温度差に近付けることによりECU30は本発明の動作制御手段として機能する。   The ECU 30 functions as the intake valve temperature acquisition means of the present invention by acquiring the temperature of the intake valve 9 by executing step S11 of FIG. Further, the ECU 30 functions as the operation control means of the present invention by executing step S13 to adjust the pressure of the intake port 4 to bring the temperature difference between the temperature of the intake valve 9 and the boiling point of the attached fuel closer to the target temperature difference. .

(第2の形態)
図6及び図7を参照して本発明の第2の形態について説明する。第2の形態に係る制御装置も図1に示したエンジン1に適用される。図6は、図2に対応する図であり、ECU30が実行する熱流束制御ルーチンを示している。なお、図6において図2と同一の処理には同一の参照符号を付し、説明を省略する。図6の制御ルーチンもエンジン1の運転中に所定の周期で繰り返し実行される。
(Second form)
A second embodiment of the present invention will be described with reference to FIGS. The control device according to the second embodiment is also applied to the engine 1 shown in FIG. FIG. 6 is a diagram corresponding to FIG. 2 and shows a heat flux control routine executed by the ECU 30. In FIG. 6, the same processes as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted. The control routine of FIG. 6 is also repeatedly executed at a predetermined cycle while the engine 1 is operating.

図6の制御ルーチンにおいてECU30は、まずステップS21において燃料性状センサ36の出力信号を参照してインジェクタ11から噴射される燃料の性状を判定する。燃料の性状は、例えば燃料の50%蒸留点が予め設定した所定判定温度以上の場合に重質と判断され、燃料の50%蒸留点が所定判定温度未満の場合に軽質と判断される。軽質の燃料と重質の燃料とでは、温度差Tcと熱流束との関係が異なる。そこで、所定判定温度には、目標吸気管圧Ptを算出する際に使用する温度差Tcと熱流束との関係を変化させる必要があると判断可能な50%蒸留点が設定される。続くステップS11においてECU30は吸気弁9の温度を取得する。   In the control routine of FIG. 6, the ECU 30 first determines the property of the fuel injected from the injector 11 with reference to the output signal of the fuel property sensor 36 in step S21. The property of the fuel is judged to be heavy when, for example, the 50% distillation point of the fuel is equal to or higher than a predetermined determination temperature set in advance, and is judged to be light when the 50% distillation point of the fuel is lower than the predetermined determination temperature. The relationship between the temperature difference Tc and the heat flux is different between light fuel and heavy fuel. Therefore, a 50% distillation point at which it can be determined that the relationship between the temperature difference Tc used when calculating the target intake pipe pressure Pt and the heat flux needs to be changed is set as the predetermined determination temperature. In the subsequent step S11, the ECU 30 acquires the temperature of the intake valve 9.

次のステップS22においてECU30は、目標吸気管圧Ptを算出する。本形態では、図4に代わり図7を参照して目標吸気管圧Ptを算出する。燃料の性状によって燃料の沸点が変化するため、燃料の沸騰状態が核沸騰から遷移沸騰に変わる極大熱流束点Pの温度差は燃料の性状に応じて変化する。図7の線L1は軽質の燃料における温度差Tcと熱流束との関係の一例を示し、図7の線L2は重質の燃料における温度差Tcと熱流束との関係の一例を示している。また、図7の点P1は軽質の燃料の場合の極大熱流束点を示し、点P2は重質の燃料の場合の極大熱流束点を示している。本形態では、燃料の性状に応じて図7に線L1で示した関係と線L2で示した関係とを使い分け、軽質の燃料の場合は図7に線L1で示した関係を使用して目標吸気管圧Ptを算出する。一方、重質の燃料の場合は図7に線L2で示した関係を使用して目標吸気管圧Ptを算出する。なお、目標吸気管圧Ptを算出するための他の手順は、図2のステップS12の処理と同一である。   In the next step S22, the ECU 30 calculates a target intake pipe pressure Pt. In this embodiment, the target intake pipe pressure Pt is calculated with reference to FIG. 7 instead of FIG. Since the boiling point of the fuel changes depending on the properties of the fuel, the temperature difference at the maximum heat flux point P at which the boiling state of the fuel changes from nucleate boiling to transition boiling changes according to the properties of the fuel. The line L1 in FIG. 7 shows an example of the relationship between the temperature difference Tc and the heat flux in the light fuel, and the line L2 in FIG. 7 shows an example of the relationship between the temperature difference Tc in the heavy fuel and the heat flux. . Further, a point P1 in FIG. 7 indicates a maximum heat flux point in the case of light fuel, and a point P2 indicates a maximum heat flux point in the case of heavy fuel. In this embodiment, the relationship indicated by the line L1 in FIG. 7 and the relationship indicated by the line L2 are properly used according to the properties of the fuel. In the case of light fuel, the relationship indicated by the line L1 in FIG. The intake pipe pressure Pt is calculated. On the other hand, in the case of heavy fuel, the target intake pipe pressure Pt is calculated using the relationship indicated by the line L2 in FIG. The other procedure for calculating the target intake pipe pressure Pt is the same as the process in step S12 in FIG.

続くステップS13においてECU30は、吸気ポート4の圧力を目標吸気管圧Ptに調整する。その後、今回の制御ルーチンを終了する。   In subsequent step S13, the ECU 30 adjusts the pressure of the intake port 4 to the target intake pipe pressure Pt. Thereafter, the current control routine is terminated.

図6の制御ルーチンでは、燃焼の性状に応じて目標吸気管圧Ptを算出する際に使用する温度差Tcと熱流束との関係を変化させるので、燃料の性状が変化しても吸気弁9への燃料付着量を適切に減少させることができる。そのため、エンジン1の空燃比制御の精度をさらに向上させることができる。   In the control routine of FIG. 6, the relationship between the temperature difference Tc used when calculating the target intake pipe pressure Pt and the heat flux is changed in accordance with the combustion characteristics, so that the intake valve 9 is changed even if the fuel characteristics change. The amount of fuel adhering to can be reduced appropriately. Therefore, the accuracy of the air-fuel ratio control of the engine 1 can be further improved.

図7では、軽質燃料の場合に使用する温度差Tcと熱流束との関係、及び重質燃料の場合に使用する温度差Tcと熱流束との関係の2種類のみを示したが、燃料性状がこれらの中間の場合の温度差Tcと熱流束との関係など3種類以上の温度差Tcと熱流束との関係をマップとしてECU30に記憶させておき、これらの関係を使用して目標吸気管圧Ptを算出してもよい。また、燃料の50%蒸留点に応じて図7の線L1の位置を図7の左右方向に移動させ、この移動させた後の関係を使用して目標吸気管圧Ptを算出してもよい。これらの場合、燃料性状に応じた目標温度差Ttをさらに適切に設定できるので、吸気弁9への燃料付着量をさらに適切に減少させることができる。   FIG. 7 shows only two types of relationships, ie, the relationship between the temperature difference Tc used in the case of light fuel and the heat flux, and the relationship between the temperature difference Tc used in the case of heavy fuel and the heat flux. The relationship between the temperature difference Tc and the heat flux such as the relationship between the temperature difference Tc and the heat flux in the middle of these is stored in the ECU 30 as a map, and the target intake pipe is used using these relationships. The pressure Pt may be calculated. Further, the position of the line L1 in FIG. 7 is moved in the left-right direction in FIG. 7 according to the 50% distillation point of the fuel, and the target intake pipe pressure Pt may be calculated using the relationship after the movement. . In these cases, the target temperature difference Tt according to the fuel property can be set more appropriately, so that the amount of fuel adhering to the intake valve 9 can be further appropriately reduced.

なお、図6のステップS22の処理を実行し、燃料性状に応じて目標温度差Ttを変化させることにより、ECU30は本発明の目標温度差補正手段として機能する。   The ECU 30 functions as the target temperature difference correction means of the present invention by executing the process of step S22 of FIG. 6 and changing the target temperature difference Tt according to the fuel properties.

(第3の形態)
図8及び図9を参照して本発明の第3の形態について説明する。図8に示したように本形態では、吸気弁9に吸気弁昇温手段としての電気ヒータ40が設けられている点が図1と異なる。その他の部分は図1と共通であるため説明を省略する。電気ヒータ40は、吸気弁9の内部に設けられた電熱線41と、電熱線41への通電時間等を調整するヒータコントローラ42とを備えている。ECU30は、ヒータコントローラ42を介して電熱線41の動作を制御する。図9は、図8のECU30が実行する熱流束制御ルーチンを示している。なお、図9において図2及び図6と同一の処理には同一の参照符号を付して説明を省略する。図9の制御ルーチンはエンジン1の運転中に所定の周期で繰り返し実行される。
(Third form)
A third embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 8, this embodiment is different from FIG. 1 in that the intake valve 9 is provided with an electric heater 40 as an intake valve temperature raising means. Other parts are the same as those in FIG. The electric heater 40 includes a heating wire 41 provided inside the intake valve 9 and a heater controller 42 that adjusts the energization time of the heating wire 41 and the like. The ECU 30 controls the operation of the heating wire 41 via the heater controller 42. FIG. 9 shows a heat flux control routine executed by the ECU 30 of FIG. In FIG. 9, the same processes as those in FIGS. 2 and 6 are denoted by the same reference numerals, and the description thereof is omitted. The control routine of FIG. 9 is repeatedly executed at a predetermined cycle while the engine 1 is operating.

図9の制御ルーチンにおいてECU30は、まずステップS21において燃料の性状を判定する。続くステップS31においてECU30は、燃料性状センサ36の出力信号に基づいて燃料の沸点Tbを算出する。燃料の沸点Tbは50%蒸留点と相関関係を有しており、50%蒸留点が高いほど燃料の沸点Tbも高くなる。そこで、例えば50%蒸留点と燃料の沸点Tbとの関係を予め実験などで求めてECU30にマップとして記憶させておき、このマップを参照して燃料の沸点Tbを算出する。   In the control routine of FIG. 9, the ECU 30 first determines the fuel properties in step S21. In subsequent step S31, the ECU 30 calculates the boiling point Tb of the fuel based on the output signal of the fuel property sensor 36. The boiling point Tb of the fuel has a correlation with the 50% distillation point, and the higher the 50% distillation point, the higher the boiling point Tb of the fuel. Therefore, for example, the relationship between the 50% distillation point and the boiling point Tb of the fuel is obtained in advance through experiments and stored in the ECU 30 as a map, and the boiling point Tb of the fuel is calculated with reference to this map.

次のステップS32においてECU30は、算出した燃料の沸点Tbに基づいて目標吸気弁温度Tvtを算出する。この際、まずECU30は判定した燃料の性状に基づいて目標温度差Ttを算出する。目標温度差Ttは、例えば図7に示した関係に基づいて算出する。具体的には、まず判定した燃料の性状に基づいて図7の線L1又は線L2のいずれの関係を使用するか判断し、次にその使用する関係に基づいて目標温度差Ttを算出する。次に算出した燃料の沸点Tbと算出した目標温度差Ttとを足して目標吸気弁温度Tvtを算出する。続くステップS33においてECU30は、吸気弁9の温度が目標吸気弁温度Tvtに調整されるように電気ヒータ40の動作を制御する。その後、今回の制御ルーチンを終了する。   In the next step S32, the ECU 30 calculates a target intake valve temperature Tvt based on the calculated fuel boiling point Tb. At this time, first, the ECU 30 calculates the target temperature difference Tt based on the determined property of the fuel. The target temperature difference Tt is calculated based on the relationship shown in FIG. 7, for example. Specifically, first, it is determined which relationship of line L1 or line L2 in FIG. 7 is used based on the determined property of the fuel, and then the target temperature difference Tt is calculated based on the relationship used. Next, the target intake valve temperature Tvt is calculated by adding the calculated fuel boiling point Tb and the calculated target temperature difference Tt. In subsequent step S33, the ECU 30 controls the operation of the electric heater 40 so that the temperature of the intake valve 9 is adjusted to the target intake valve temperature Tvt. Thereafter, the current control routine is terminated.

第3の形態では、吸気弁9の温度Tvを調整して吸気弁9から付着燃料への熱流束を増加させる。この形態においても、吸気弁9に付着する燃料量を適切に減少させることができるので、エンジン1の空燃比制御の精度を向上させることができる。   In the third mode, the temperature Tv of the intake valve 9 is adjusted to increase the heat flux from the intake valve 9 to the attached fuel. Also in this embodiment, since the amount of fuel adhering to the intake valve 9 can be appropriately reduced, the accuracy of air-fuel ratio control of the engine 1 can be improved.

本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、吸気ポートの圧力を変化させる手段は可変動弁機構に限定されない。吸気弁とスロットルバルブとの間にさらにバルブを設け、このバルブの開度を調整して吸気ポートの圧力を調整してもよい。可変動弁機構も、電気モータでカムを駆動して吸気弁を開閉駆動するものに限定されない。少なくとも吸気弁のリフト量を変更可能な動弁機構であればよい。   The present invention is not limited to the above-described form and can be implemented in various forms. For example, the means for changing the pressure of the intake port is not limited to the variable valve mechanism. An additional valve may be provided between the intake valve and the throttle valve, and the pressure of the intake port may be adjusted by adjusting the opening of the valve. The variable valve mechanism is not limited to one that drives the cam with an electric motor to open and close the intake valve. Any valve mechanism that can change at least the lift amount of the intake valve may be used.

本発明の第1の形態に係る制御装置が組み込まれた内燃機関の要部を示す図。The figure which shows the principal part of the internal combustion engine in which the control apparatus which concerns on the 1st form of this invention was integrated. ECUが実行する熱流束制御ルーチンを示すフローチャート。The flowchart which shows the heat flux control routine which ECU performs. ECUが実行する吸気弁温度算出ルーチンを示すフローチャート。The flowchart which shows the intake-valve temperature calculation routine which ECU performs. 吸気弁温度と燃料の沸点との温度差と吸気弁から付着燃料への熱流束との関係の一例を示す図。The figure which shows an example of the relationship between the temperature difference of the intake valve temperature and the boiling point of fuel, and the heat flux from the intake valve to the adhered fuel. 付着燃料の沸点と吸気ポートの圧力との関係の一例を示す図。The figure which shows an example of the relationship between the boiling point of adhering fuel, and the pressure of an intake port. 第2の実施形態における熱流束制御ルーチンを示すフローチャート。The flowchart which shows the heat flux control routine in 2nd Embodiment. 第2の実施形態における温度差と熱流束との関係の一例を示す図。The figure which shows an example of the relationship between the temperature difference and heat flux in 2nd Embodiment. 本発明の第3の形態に係る制御装置が組み込まれた内燃機関の要部を示す図。The figure which shows the principal part of the internal combustion engine in which the control apparatus which concerns on the 3rd form of this invention was integrated. 第3の実施形態における熱流束制御ルーチンを示すフローチャート。The flowchart which shows the heat flux control routine in 3rd Embodiment.

符号の説明Explanation of symbols

1 内燃機関
4 吸気ポート(吸気通路)
8 燃焼室
9 吸気弁
11 インジェクタ(燃料供給手段)
20 可変動弁機構(温度差変更手段、圧力変更手段)
30 エンジンコントロールユニット(吸気弁温度取得手段、動作制御手段、目標温度差補正手段)
36 燃料性状センサ(燃料性状判定手段)
40 電気ヒータ(温度差変更手段、吸気弁昇温手段)
1 Internal combustion engine 4 Intake port (intake passage)
8 Combustion chamber 9 Intake valve 11 Injector (fuel supply means)
20 Variable valve mechanism (temperature difference changing means, pressure changing means)
30 Engine control unit (intake valve temperature acquisition means, operation control means, target temperature difference correction means)
36 Fuel property sensor (Fuel property judging means)
40 Electric heater (temperature difference changing means, intake valve temperature raising means)

Claims (6)

吸気通路に燃料を供給する燃料供給手段を備えた内燃機関の制御装置において、
前記内燃機関の燃焼室に対して前記吸気通路を開閉する吸気弁の温度を取得する吸気弁温度取得手段と、前記吸気弁の温度と前記吸気弁に付着した燃料の沸点との温度差を変更する温度差変更手段と、前記吸気弁温度取得手段により取得された吸気弁の温度に基づいて前記吸気弁の温度と前記吸気弁に付着した燃料の沸点との温度差が、前記吸気弁に付着した燃料の沸騰状態が核沸騰から遷移沸騰に変わる限界熱流束点における温度差である目標温度差に近付くように前記温度差変更手段の動作を制御する動作制御手段と、を備えていることを特徴とする内燃機関の制御装置。
In a control device for an internal combustion engine provided with fuel supply means for supplying fuel to an intake passage,
An intake valve temperature acquisition means for acquiring the temperature of the intake valve that opens and closes the intake passage with respect to the combustion chamber of the internal combustion engine, and a temperature difference between the temperature of the intake valve and the boiling point of the fuel adhering to the intake valve is changed. A temperature difference between the temperature of the intake valve and the boiling point of the fuel adhering to the intake valve based on the temperature of the intake valve acquired by the intake valve temperature acquisition means Operation control means for controlling the operation of the temperature difference changing means so as to approach a target temperature difference that is a temperature difference at a critical heat flux point at which the boiling state of the fuel changed from nucleate boiling to transition boiling. A control device for an internal combustion engine characterized by the above.
前記温度差変更手段として、前記吸気通路の圧力を変更する圧力変更手段が設けられていることを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control apparatus for an internal combustion engine according to claim 1, wherein pressure changing means for changing the pressure in the intake passage is provided as the temperature difference changing means. 前記温度差変更手段として、前記吸気弁を昇温する吸気弁昇温手段が設けられていることを特徴とする請求項1に記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to claim 1, wherein an intake valve temperature raising means for raising the temperature of the intake valve is provided as the temperature difference changing means. 前記燃料供給手段から供給される燃料の性状を判定する燃料性状判定手段と、前記燃料性状判定手段の判定結果に基づいて前記目標温度差を補正する目標温度差補正手段と、をさらに備えていることを特徴とする請求項1〜3のいずれか一項に記載の内燃機関の制御装置。   A fuel property determination unit that determines the property of the fuel supplied from the fuel supply unit; and a target temperature difference correction unit that corrects the target temperature difference based on a determination result of the fuel property determination unit. The control device for an internal combustion engine according to any one of claims 1 to 3. 吸気通路に燃料を供給する燃料供給手段を備えた内燃機関の制御方法において、
前記内燃機関の燃焼室に対して前記吸気通路を開閉する吸気弁から前記吸気弁に付着した燃料への熱流束が増加するように前記吸気通路の圧力及び前記吸気弁の温度の少なくともいずれか一方を調整することを特徴とする内燃機関の制御方法。
In a control method for an internal combustion engine provided with a fuel supply means for supplying fuel to an intake passage,
At least one of the pressure of the intake passage and the temperature of the intake valve so that the heat flux from the intake valve that opens and closes the intake passage to the fuel adhering to the intake valve increases with respect to the combustion chamber of the internal combustion engine Adjusting the internal combustion engine.
前記吸気弁の温度と前記吸気弁に付着した燃料の沸点との温度差が、前記吸気弁に付着した燃料の沸騰状態が核沸騰から遷移沸騰に変わる限界熱流束点における温度差に近付くように前記吸気通路の圧力及び前記吸気弁の温度の少なくともいずれか一方を調整することを特徴とする請求項5に記載の内燃機関の制御方法。   The temperature difference between the temperature of the intake valve and the boiling point of the fuel adhering to the intake valve approaches the temperature difference at the critical heat flux point where the boiling state of the fuel adhering to the intake valve changes from nucleate boiling to transition boiling 6. The method of controlling an internal combustion engine according to claim 5, wherein at least one of the pressure in the intake passage and the temperature of the intake valve is adjusted.
JP2006051839A 2006-02-28 2006-02-28 Apparatus and method for controlling internal combustion engine Pending JP2007231757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051839A JP2007231757A (en) 2006-02-28 2006-02-28 Apparatus and method for controlling internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051839A JP2007231757A (en) 2006-02-28 2006-02-28 Apparatus and method for controlling internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007231757A true JP2007231757A (en) 2007-09-13

Family

ID=38552614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051839A Pending JP2007231757A (en) 2006-02-28 2006-02-28 Apparatus and method for controlling internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007231757A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255350A (en) * 2011-06-07 2012-12-27 Nippon Soken Inc Fuel supply device of internal combustion engine
WO2014016920A1 (en) * 2012-07-25 2014-01-30 トヨタ自動車株式会社 Fuel injector device
JPWO2020240244A1 (en) * 2019-05-24 2020-12-03

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255350A (en) * 2011-06-07 2012-12-27 Nippon Soken Inc Fuel supply device of internal combustion engine
US9518543B2 (en) 2011-06-07 2016-12-13 Toyota Jidosha Kabushiki Kaisha Fuel supply system and fuel supply method for internal combustion engine
WO2014016920A1 (en) * 2012-07-25 2014-01-30 トヨタ自動車株式会社 Fuel injector device
JPWO2014016920A1 (en) * 2012-07-25 2016-07-07 トヨタ自動車株式会社 Fuel injection device
JPWO2020240244A1 (en) * 2019-05-24 2020-12-03
WO2020240244A1 (en) * 2019-05-24 2020-12-03 日産自動車株式会社 Internal combustion engine control method and control device
CN113853479A (en) * 2019-05-24 2021-12-28 日产自动车株式会社 Method and device for controlling internal combustion engine
JP7232566B2 (en) 2019-05-24 2023-03-03 日産自動車株式会社 CONTROL METHOD AND CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
CN113853479B (en) * 2019-05-24 2023-04-14 日产自动车株式会社 Method and device for controlling internal combustion engine

Similar Documents

Publication Publication Date Title
KR20030070904A (en) Controller of internal combustion engine
JP2007009807A (en) Control device for internal combustion engine
JP2007023800A (en) Valve characteristic control device for internal combustion engine
JP2007231757A (en) Apparatus and method for controlling internal combustion engine
JP3627601B2 (en) Engine intake air amount control device
JP4544110B2 (en) In-cylinder intake fresh air volume estimation device for internal combustion engine
JP2004116399A (en) Control method for internal combustion engine with variable valve system
JP2007002737A (en) Control device for internal combustion engine
JP2014163475A (en) Drive control device of electromagnetic valve
EP3633170A1 (en) Engine speed control device
JP2016070215A (en) Abnormality determination device for pressure reduction valve
JP2013253582A (en) Control device of cooling system
CN109798195B (en) Fuel injection control apparatus for internal combustion engine
JP4946996B2 (en) Fuel injection control device for internal combustion engine
JP6179240B2 (en) Engine supercharging control device
JP3965908B2 (en) Intake air amount calculation device for internal combustion engine
JP2008267216A (en) Fuel injection control device for internal combustion engine
JP6350567B2 (en) Engine oil supply device
JP2007315334A (en) Fuel injection control device for internal combustion engine
JP5076983B2 (en) Engine fuel injection control device
JP5752960B2 (en) Control device for electromagnetic variable valve timing device
JP4983742B2 (en) Control device for internal combustion engine
JP2011058435A (en) Fuel injection device for internal combustion engine
JP2010265819A (en) Control device for internal combustion engine
JP2009167856A (en) Control device of internal combustion engine