JP2007230858A - Heat insulating material and its production method - Google Patents

Heat insulating material and its production method Download PDF

Info

Publication number
JP2007230858A
JP2007230858A JP2007023084A JP2007023084A JP2007230858A JP 2007230858 A JP2007230858 A JP 2007230858A JP 2007023084 A JP2007023084 A JP 2007023084A JP 2007023084 A JP2007023084 A JP 2007023084A JP 2007230858 A JP2007230858 A JP 2007230858A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
coating layer
fine particles
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007023084A
Other languages
Japanese (ja)
Inventor
Shigeru Nakama
茂 中間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2007023084A priority Critical patent/JP2007230858A/en
Publication of JP2007230858A publication Critical patent/JP2007230858A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To prevent detachment of inorganic particulate in an inorganic particulate-containing heat insulating material, further, to make each surface smooth and satisfactory while having no crack, and further to eliminate restriction on using temperature and shape. <P>SOLUTION: In the heat insulating material, a coating layer is formed on at least a part of the surface of a heat insulating formed body comprising silica particulate, alumina particulate, aluminum silicate particulate or their mixture having a BET (Brunauer-Emett-Teller) specific surface area of 15 to 500 m<SP>2</SP>/g and a primary particle diameter of 0.003 to 1 μm, and the coating layer comprises inorganic particles with the average particle diameter of 0.05 to 50 μm, and a binder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無機微粒子を主原料として含む断熱性成形体及びその製造方法に関する。   The present invention relates to a heat insulating molded body containing inorganic fine particles as a main raw material and a method for producing the same.

従来から、エアロゲル、ヒューム状のシリカやアルミナ等の無機微粒子を加圧成形した断熱材や、無機微粒子に、補強用の繊維状物質や、輻射光の透過を抑制して断熱効果を向上させるための乳白材等を配合し、加圧成形した断熱材が広く使用されている。   In order to improve the heat insulation effect by suppressing the transmission of inorganic materials such as airgel, fume-like silica, alumina, etc., and heat insulating material by pressure, inorganic fine particles, reinforcing fibrous materials, and radiant light A heat insulating material obtained by blending a milk white material or the like and press-molding is widely used.

しかし、このような無機微粒子を含む断熱材では、微粒子間の結合力が小さいため、その表面は非常に脆弱で、無機微粒子が脱離しやすい。そのため、このような無機微粒子を含む断熱材を製造、施工する作業者の手や着衣に無機微粒子の付着が頻繁に発生し、更に送風装置が設置された屋内で使用する場合には、多量の無機微粒子が飛散するという問題がある。   However, in such a heat insulating material containing inorganic fine particles, since the bonding force between the fine particles is small, the surface thereof is very fragile and the inorganic fine particles are easily detached. For this reason, inorganic fine particles frequently adhere to the hands and clothes of workers who manufacture and construct such heat insulating materials, and when used indoors where a blower is installed, There is a problem that inorganic fine particles are scattered.

このような無機微粒子の脱離の問題を解決するために、金属フィルム、プラスチックフィルム、ガラス繊維製の織布等の表層材で断熱材を覆うことが一般に行われている。しかし、表層材の種類により使用温度が制限されたり、平板状の断熱材にしか適応できない等の不具合がある。   In order to solve such a problem of detachment of inorganic fine particles, it is generally performed to cover a heat insulating material with a surface layer material such as a metal film, a plastic film, or a glass fiber woven fabric. However, there are problems such as the use temperature being limited by the type of surface layer material, and being applicable only to flat heat insulating materials.

また、断熱材の表面に釉薬からなる緻密な被膜を形成したり(特許文献1参照)、表面をバインダ等で高密度化する(特許文献2参照)等の対策も採られている。しかし、前者は釉薬の焼結によって被膜自身に亀裂が生じたり、被膜が剥離するといった問題があり、また、後者は断熱材表面の無機微粒子を凝集させる方法であるため、断熱材表面に亀裂が発生するといった問題がある。これらの問題は、外観不良を招いたり、亀裂から無機微粒子が脱離する等の不具合を生じさせる。   In addition, measures such as forming a dense film made of a glaze on the surface of the heat insulating material (see Patent Document 1) or increasing the density of the surface with a binder or the like (see Patent Document 2) are also taken. However, the former has a problem that the coating itself cracks or the coating peels off due to the sintering of the glaze, and the latter is a method of agglomerating inorganic fine particles on the surface of the heat insulating material, so that the surface of the heat insulating material has cracks. There is a problem that occurs. These problems cause defects such as poor appearance and detachment of inorganic fine particles from cracks.

特開昭61−106476号公報JP 61-106476 A 特開2005−36975号公報JP 2005-36975 A

本発明はこのような状況に鑑みてなされたものであり、無機微粒子を含む断熱材における無機微粒子の脱離を防止するとともに、亀裂が無く、平滑で良好な表面とし、更には使用温度や形状の制限を無くすることを目的とする。   The present invention has been made in view of such circumstances, and prevents the removal of inorganic fine particles in a heat insulating material containing inorganic fine particles, has no cracks, has a smooth and good surface, and further uses temperature and shape. The purpose is to eliminate the restrictions.

上記の目的を達成するために、本発明は下記の断熱材及びその製造方法を提供する。
(1)BET比表面積が15〜500m/gで且つ一次粒子径が0.003〜1μmであるシリカ微粒子、アルミナ微粒子、ケイ酸アルミニウム微粒子もしくはこれらの混合物を含む断熱性成形体の表面の少なくとも一部に被覆層が形成され、該被覆層は平均粒子径0.05〜50μmの無機粒子と、バインダーとを含むことを特徴とする断熱材。
(2)バインダーがアルコキシド化合物の加水分解物及び金属酸化物のゾルの少なくとも1種からなることを特徴とする請求項1記載の断熱材。
(3)アルコキシド化合物の加水分解物の少なくとも一部が、金属原子に直接結合したアルキル基を有することを特徴とする上記(2)に記載の断熱材
(4)断熱性成形体が、繊維状物質及び乳白材の少なくとも一方を含有することを特徴とする上記(1)〜(3)の何れか1項に記載の断熱材。
(5)被覆層を構成する無機粒子が、シリカ、アルミナ、ケイ酸塩、アルミノケイ酸塩または乳白材の各粒子、あるいはこれらの混合物であることを特徴とする上記(1)〜(4)の何れか1項に記載の断熱材。
(6)被覆層が、繊維状物質及び有機増粘剤の少なくとも一方を含有することを特徴とする上記(1)〜(5)の何れか1項に記載の断熱材。
(7)BET比表面積が15〜500m/gで且つ一次粒子径が0.003〜1μmであるシリカ微粒子、アルミナ微粒子、ケイ酸アルミニウム微粒子もしくはこれらの混合物を含む成形体材料を所定形状に成形して得た断熱性成形体に、平均粒子径0.05〜50μmの無機粒子と、バインダーとを含む分散液を塗布した後、または含浸させた後、乾燥することを特徴とする断熱材の製造方法。
(8)バインダーがアルコキシド化合物の加水分解物及び金属酸化物のゾルの少なくとも1種からなることを特徴とする上記(7)記載の断熱材の製造方法。
(9)アルコキシド化合物の加水分解物の少なくとも一部が、金属原子に直接結合したアルキル基を有することを特徴とする上記(8)記載の断熱材の製造方法
(10)分散液の分散媒が、アルコールまたはアルコールと水との混合液であることを特徴とする上記(7)〜(9)の何れか1項に記載の断熱材の製造方法。
(11)分散液が、繊維状物質及び有機増粘剤の少なくとも一方を含有することを特徴とする上記(7)〜(10)の何れか1項に記載の断熱材の製造方法。
In order to achieve the above object, the present invention provides the following heat insulating material and method for producing the same.
(1) At least the surface of a heat insulating molded article containing silica fine particles, alumina fine particles, aluminum silicate fine particles or a mixture thereof having a BET specific surface area of 15 to 500 m 2 / g and a primary particle size of 0.003 to 1 μm. A heat insulating material characterized in that a coating layer is partially formed and the coating layer contains inorganic particles having an average particle diameter of 0.05 to 50 μm and a binder.
(2) The heat insulating material according to claim 1, wherein the binder comprises at least one of a hydrolyzate of an alkoxide compound and a metal oxide sol.
(3) At least a part of the hydrolyzate of the alkoxide compound has an alkyl group bonded directly to a metal atom, and the heat insulating material (4) heat insulating molded body according to the above (2) is a fibrous material The heat insulating material according to any one of (1) to (3) above, comprising at least one of a substance and a milk white material.
(5) The inorganic particles constituting the coating layer are silica, alumina, silicate, aluminosilicate or milk white particles, or a mixture thereof. Any one of the heat insulating materials.
(6) The heat insulating material according to any one of (1) to (5) above, wherein the coating layer contains at least one of a fibrous substance and an organic thickener.
(7) A molded body material containing silica fine particles, alumina fine particles, aluminum silicate fine particles or a mixture thereof having a BET specific surface area of 15 to 500 m 2 / g and a primary particle size of 0.003 to 1 μm is formed into a predetermined shape. A heat insulating material obtained by applying a dispersion containing inorganic particles having an average particle diameter of 0.05 to 50 μm and a binder to the heat insulating molded body obtained by impregnation, or drying after impregnation. Production method.
(8) The method for producing a heat insulating material according to the above (7), wherein the binder comprises at least one of a hydrolyzate of an alkoxide compound and a sol of metal oxide.
(9) The method for producing a heat insulating material according to the above (8), wherein at least a part of the hydrolyzate of the alkoxide compound has an alkyl group directly bonded to a metal atom. The method for producing a heat insulating material according to any one of the above (7) to (9), which is alcohol or a mixed liquid of alcohol and water.
(11) The method for producing a heat insulating material according to any one of (7) to (10) above, wherein the dispersion contains at least one of a fibrous substance and an organic thickener.

本発明の断熱材は、無機微粒子を含む断熱性成形体の表面に、無機粒子や繊維状物質をアルコキシド化合物の加水分解物や金属酸化物のゾル等からなるバインダーで結合した被覆層を形成したものである。そのため、無機微粒子の脱離が無く、また、亀裂も無く表面が平滑であり、更に被覆層は無機質であることから使用温度の制限もない。しかも、被覆層の形成方法は、被覆層の構成成分を含む分散液を塗布または含浸し、乾燥するだけであるため、工程が簡易であり、断熱性成形体の形状にも制限が無い。   In the heat insulating material of the present invention, a coating layer in which inorganic particles and fibrous substances are bonded with a binder made of a hydrolyzate of an alkoxide compound, a sol of a metal oxide, or the like is formed on the surface of a heat insulating molded body containing inorganic fine particles. Is. Therefore, there is no detachment of inorganic fine particles, there is no crack, the surface is smooth, and the coating layer is inorganic, so there is no restriction on the use temperature. In addition, since the coating layer is formed by simply applying or impregnating a dispersion containing the constituent components of the coating layer and drying, the process is simple and the shape of the heat insulating molded body is not limited.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、断熱性成形体は、BET比表面積が15〜500m/gで、且つ一次粒子径が0.003〜1μmであるシリカ微粒子、アルミナ微粒子、ケイ酸アルミニウム微粒子もしくはこれらの混合物を主成分として含む。これらの無機微粒子の一次粒子径が1μmを越えると、断熱性成形体が十分な断熱効果を得られず、0.003μmよりも小さい場合は非常に嵩高く、取扱いが困難である。また、無機微粒子のBET比表面積が15m/g未満または500m/gを超える場合も、断熱性成形体が十分な断熱効果を得られない。 In the present invention, the heat insulating molded body is mainly composed of silica fine particles, alumina fine particles, aluminum silicate fine particles or a mixture thereof having a BET specific surface area of 15 to 500 m 2 / g and a primary particle diameter of 0.003 to 1 μm. Contains as an ingredient. If the primary particle diameter of these inorganic fine particles exceeds 1 μm, the heat insulating molded product cannot obtain a sufficient heat insulating effect, and if it is smaller than 0.003 μm, it is very bulky and difficult to handle. In addition, when the BET specific surface area of the inorganic fine particles is less than 15 m 2 / g or more than 500 m 2 / g, the heat insulating molded body cannot obtain a sufficient heat insulating effect.

このようなBET比表面積及び一次粒径を満足するシリカ微粒子としては、ハロゲン化物等の燃焼により得られるシリカ、ケイ酸ナトリウムと硫酸との反応により得られるシリカ、アルコキシドの縮合により得られるシリカが挙げられる。また、アルミナ微粒子及びケイ酸アルミニウム微粒子についても、同様の方法により製造されたものを使用することができる。   Examples of the silica fine particles satisfying such BET specific surface area and primary particle diameter include silica obtained by combustion of halides, silica obtained by the reaction of sodium silicate and sulfuric acid, and silica obtained by condensation of alkoxide. It is done. Moreover, about the alumina fine particles and the aluminum silicate fine particles, those produced by the same method can be used.

断熱性成形体は、上記の無機微粒子のみで形成することもできるが、補強のために繊維状物質を含有してもよい。繊維状物質としてはガラス繊維、アルミナ繊維、ムライト繊維、シリカ繊維、ケイ酸アルミニウム繊維、ケイ酸塩繊維、アルミノケイ酸塩繊維、カーボン繊維、炭化ケイ素繊維等の無機繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアミド繊維等の有機繊維、もしくはこれらの混合物等が挙げられ、断熱材が使用される雰囲気、温度等を考慮して適宜選択される。尚、繊維径や繊維長には制限が無く、繊維の種類にもよるが、繊維径は0.8〜50μm、繊維長は1〜15mmが適当である。   The heat insulating molded body can be formed only from the inorganic fine particles, but may contain a fibrous substance for reinforcement. Examples of fibrous materials include glass fibers, alumina fibers, mullite fibers, silica fibers, aluminum silicate fibers, silicate fibers, aluminosilicate fibers, carbon fibers, silicon carbide fibers and other inorganic fibers, polyethylene fibers, polypropylene fibers, polyamides Examples thereof include organic fibers such as fibers, or mixtures thereof, and the like, which are appropriately selected in consideration of the atmosphere, temperature, and the like in which the heat insulating material is used. In addition, although there is no restriction | limiting in a fiber diameter and fiber length and it is based also on the kind of fiber, a fiber diameter is 0.8-50 micrometers and 1-15 mm is suitable for fiber length.

更に、断熱性成形体は乳白材を含有してもよい。乳白材は、輻射光の透過を抑制する機能を有しており、断熱性能を高める効果がある。乳白材としては酸化チタン、酸化ジルコニウム、ケイ酸ジルコニウム、炭化ケイ素、酸化亜鉛、酸化鉄、イルメナイト、窒化ほう素からなる各粒子、もしくはこれらの混合物等が挙げられ、断熱材が使用される温度での乳白効果等を考慮して適宜選択される。   Furthermore, the heat insulating molded body may contain an opacifying material. The milk white material has a function of suppressing transmission of radiant light, and has an effect of improving heat insulation performance. Examples of the milk white material include titanium oxide, zirconium oxide, zirconium silicate, silicon carbide, zinc oxide, iron oxide, ilmenite, particles of boron nitride, or a mixture thereof. It is appropriately selected in consideration of the milky white effect and the like.

繊維状物質や乳白材を含有する場合、繊維状物質の含有量を断熱性成形体全量の30質量%以下、乳白材の含有量を断熱性成形体全量の50質量%以下とするのが適当である。繊維状物質の含有量が30質量%を越えると、断熱性成形体の断熱性に与える影響が大きくなり、十分な断熱効果が得られなくなる。また、乳白材の含有量が50質量%を越えると、輻射光の抑制効果よりも乳白材自身の熱伝導効果が大きくなり、やはり十分な断熱効果が得られなくなる。   In the case of containing a fibrous substance or milky white material, it is appropriate that the content of the fibrous material is 30% by mass or less of the total amount of the heat insulating molded body, and the content of the milky white material is 50% by mass or less of the total amount of the heat insulating molded body. It is. When the content of the fibrous substance exceeds 30% by mass, the influence on the heat insulating property of the heat insulating molded body is increased, and a sufficient heat insulating effect cannot be obtained. On the other hand, when the content of the milk white material exceeds 50% by mass, the heat conduction effect of the milk white material itself becomes larger than the radiation light suppressing effect, and a sufficient heat insulating effect cannot be obtained.

断熱性成形体は、無機微粒子、必要に応じて繊維状物質や乳白材を添加して混合したものを所定の金型に充填し、加圧することで得られる。成形条件は、無機微粒子の種類、繊維状物質や乳白材の種類及びその配合比率、得られる成形体の形状等に応じて適宜設定される。   The heat-insulating molded product can be obtained by filling a predetermined mold with inorganic fine particles and, if necessary, adding and mixing a fibrous substance or a milky white material, followed by pressurization. The molding conditions are appropriately set according to the type of inorganic fine particles, the type of fibrous material or milk white material and the blending ratio thereof, the shape of the resulting molded body, and the like.

尚、断熱性成形体の密度は特に制限はないが、断熱性能を発揮するという観点から150〜600kg/mが好ましく、200〜400kg/mがより好ましい。また、熱伝導率についても特に制限はないが、断熱性能を発揮するという観点から0.020〜0.05W/m・K〔100℃〕が好ましく、0.025〜0.035W/m・K〔100℃〕がより好ましい。 The density of the heat insulating molded body is not particularly limited, but is preferably 150 to 600 kg / m 3 and more preferably 200 to 400 kg / m 3 from the viewpoint of exerting heat insulating performance. Moreover, although there is no restriction | limiting in particular also about heat conductivity, 0.020-0.05W / m * K [100 degreeC] is preferable from a viewpoint of exhibiting heat insulation performance, and 0.025-0.035W / m * K. [100 ° C.] is more preferable.

上記断熱性成形体の全表面、または表面の任意部分には、平均粒子径0.05〜50μmの無機粒子同士が、アルコキシド化合物の加水分解物及び金属酸化物のゾルの少なくとも1種により結合された被覆層が形成される。この被覆層は、平均粒子径0.05〜50μmの無機粒子と、アルコキシド化合物及び金属酸化物のゾルの少なくとも1種とを含む分散液を、断熱性成形体の全面または一部に塗布した後、または前記分散液に断熱性成形体の全体または一部を浸漬した後、乾燥することで形成される。尚、分散液を塗布する場合、塗布方法には制限がなく、刷毛やロール、スプレー等の公知の塗布手段を用いることができる。   Inorganic particles having an average particle diameter of 0.05 to 50 μm are bonded to the entire surface of the heat insulating molded body or an arbitrary portion of the surface by at least one of an alkoxide compound hydrolyzate and a metal oxide sol. A coating layer is formed. This coating layer is obtained by applying a dispersion liquid containing inorganic particles having an average particle diameter of 0.05 to 50 μm and at least one sol of an alkoxide compound and a metal oxide to the whole surface or a part of the heat insulating molded body. Alternatively, it is formed by immersing all or part of the heat insulating molded body in the dispersion and then drying. In addition, when apply | coating a dispersion liquid, there is no restriction | limiting in the application method, Well-known application means, such as a brush, a roll, and a spray, can be used.

無機粒子として平均粒径0.05μm未満の微細なものを用いた場合は、無機粒子同士の凝集が顕著となり、被覆層に亀裂が生じてしまう。また、50μmを超える大径粒子では表面の平滑性が低下する。尚、無機粒子の種類には制限がないが、耐熱性を考慮して、断熱性成形体に用いられているシリカやアルミナ、ケイ酸アルミニウムが好ましい。   When fine particles having an average particle size of less than 0.05 μm are used as the inorganic particles, the aggregation of the inorganic particles becomes remarkable, and the coating layer is cracked. Moreover, the smoothness of the surface is reduced with large-diameter particles exceeding 50 μm. In addition, although there is no restriction | limiting in the kind of inorganic particle, Considering heat resistance, the silica, alumina, and aluminum silicate which are used for the heat insulation molded object are preferable.

被覆層の厚さは、特に制限はないが、分散液の塗布または含浸、乾燥を経ることで通常は断熱材全体の10%以下の膜厚となる。但し、断熱性能や製造上の観点からは、30〜2000μmが好ましく、40〜500μmがより好ましく、45〜250μmが更に好ましい。また、被覆層が断熱材全体の厚みの10%以下であれば、無機粒子として乳白材も用いることができる。上述のように、乳白材は、多量になると自身の熱伝導の影響が現われてくるが、断熱材全体の厚さの10%以下であれば、乳白材を使用しても支障はない。尚、乳白材は、断熱性成形体に使用される乳白材を例示できるが、被覆層に用いる乳白材と断熱性成形体に用いる乳白材とは、同一でも異なっていてもよい。   The thickness of the coating layer is not particularly limited, but usually becomes a film thickness of 10% or less of the whole heat insulating material through application or impregnation of the dispersion and drying. However, from the viewpoint of heat insulation performance and production, 30 to 2000 μm is preferable, 40 to 500 μm is more preferable, and 45 to 250 μm is still more preferable. Moreover, if a coating layer is 10% or less of the thickness of the whole heat insulating material, a milk white material can also be used as an inorganic particle. As described above, when milk milk is used in a large amount, the effect of its own heat conduction appears. However, if milk milk is 10% or less of the total thickness of the heat insulating material, there is no problem even if milk milk is used. The milk white material can be exemplified by a milk white material used for the heat insulating molded body, but the milk white material used for the coating layer and the milk white material used for the heat insulating molded body may be the same or different.

更に、上記の無機粒子は、混合して用いることができ、その組み合わせや配合比率は、目的とする断熱性能により適宜設定される。   Furthermore, the above-mentioned inorganic particles can be mixed and used, and the combination and blending ratio thereof are appropriately set depending on the intended heat insulating performance.

分散液は、浸漬や塗布により断熱性成形体を形成している無機微粒子間に浸透するため、極性の高い分散媒を用いると、浸透した分散媒によって無機微粒子同士が凝集し、断熱性成形体に亀裂が発生するようになる。このような不具合は、水のような極性の大きな液体ほど顕著である。そのため、本発明では水よりも極性の小さなアルコールと水との混合液を分散液の分散媒に使用する。アルコールとしては、メタノール、エタノール、イソプロピルアルコール等が安全性や取扱い性に優れるため好適である。また、水:アルコール混合重量比は0:100〜70:30が好適である。分散液に含まれる成分にもよるが、この範囲であれば分散液と断熱性成形体との接触により生じる不具合を十分に小さくできる可能性が高い。   Since the dispersion permeates between the inorganic fine particles forming the heat insulating molded body by dipping or coating, when a highly polar dispersion medium is used, the inorganic fine particles are aggregated by the permeated dispersion medium, and the heat insulating molded body Cracks will occur. Such a problem is more conspicuous in a liquid having a large polarity such as water. Therefore, in the present invention, a mixed liquid of alcohol having a polarity smaller than water and water is used as a dispersion medium of the dispersion liquid. As the alcohol, methanol, ethanol, isopropyl alcohol and the like are preferable because they are excellent in safety and handleability. The water: alcohol mixing weight ratio is preferably 0: 100 to 70:30. Although it depends on the components contained in the dispersion, it is highly likely that the problems caused by the contact between the dispersion and the heat insulating molded body can be sufficiently reduced within this range.

但し、テトラメトキシシラン、テトラエトキシシラン等のアルコキシド化合物は一般式「M−(OR)n(M:金属原子、R;アルキル基)」で表されるが、水と反応して加水分解物「M−(OH)n」となり、更にこのアルコキシド化合物の加水分解物同士が脱水縮合して「M−O−M」となってバインダー機能を有するようになる。従って、アルコキシド化合物を用いる場合は、分散媒として、加水分解に十分な量の水とアルコールとの混合物を用いる必要があり、場合によっては、加水分解を促進するための塩酸や硫酸等の酸またはアンモニアや水酸化ナトリウム等のアルカリを添加する必要がある。また、アルコキシド化合物としては、前記のようなケイ素のアルコキシドやアルミニウムのアルコキシドが好ましい。ケイ素やアルミニウムのアルコキシド以外にも数多くのアルコキシド化合物があるが、それらは極めて高価であるため、現実的に使用できない。   However, although alkoxide compounds such as tetramethoxysilane and tetraethoxysilane are represented by the general formula “M- (OR) n (M: metal atom, R: alkyl group)”, they react with water to produce a hydrolyzate “ M- (OH) n ", and the hydrolyzates of the alkoxide compounds are dehydrated and condensed to form" M-OM "to have a binder function. Therefore, when an alkoxide compound is used, it is necessary to use a mixture of water and alcohol in a sufficient amount for hydrolysis as a dispersion medium. In some cases, an acid such as hydrochloric acid or sulfuric acid for promoting hydrolysis, or It is necessary to add alkali such as ammonia or sodium hydroxide. The alkoxide compound is preferably a silicon alkoxide or an aluminum alkoxide as described above. There are many alkoxide compounds other than silicon and aluminum alkoxides, but they are extremely expensive and cannot be practically used.

また、アルコキシド化合物の加水分解物の少なくとも一部が、金属原子に直接結合されたアルキル基を有していても良い。この場合、得られた断熱材が撥水性を示すといった利点が生じる。但し、アルコキシド化合物の加水分解物のすべてがアルキル基を有する場合、バインド作用が少なくなり、発塵抑制効果が低減してしまうので、(i)(a)金属原子に直接結合したアルキル基を有しないアルコキシド化合物の加水分解物と(b)金属原子に直接結合されたアルキル基を有するアルコキシド化合物の加水分解物との併用、(ii)(c)金属酸化物のゾルと(b)金属原子に直接結合されたアルキル基を有するアルコキシド化合物の加水分解物との併用、(iii)(a)金属原子に直接結合したアルキル基を有しないアルコキシド化合物の加水分解物と(c)金属酸化物のゾルと(b)金属原子に直接結合されたアルキル基を有するアルコキシド化合物の加水分解物との併用が好ましい。   Moreover, at least a part of the hydrolyzate of the alkoxide compound may have an alkyl group directly bonded to a metal atom. In this case, there is an advantage that the obtained heat insulating material exhibits water repellency. However, when all of the hydrolyzate of the alkoxide compound has an alkyl group, the binding action is reduced and the dust generation suppressing effect is reduced. Therefore, (i) (a) having an alkyl group directly bonded to a metal atom. (Ii) (c) metal oxide sol and (b) metal atom in combination with (b) hydrolyzate of alkoxide compound having an alkyl group directly bonded to the metal atom (Iii) (a) hydrolyzate of an alkoxide compound not having an alkyl group directly bonded to a metal atom and (c) sol of a metal oxide And (b) a combined use of a hydrolyzate of an alkoxide compound having an alkyl group directly bonded to a metal atom.

金属酸化物のゾルとしては、バインダー効果に優れ、入手も容易で取扱い性にも優れることから、アルミナ、ジルコニア、チタニア、シリカのゾルを好適に使用することができる。また、金属酸化物のゾルの粒子径としては5〜200nmが好ましく、5nm未満ではバインダー効果が強すぎるため被覆層に亀裂が生じてしまい、200nmを超えると十分なバインダー効果が得られない。尚、金属酸化物のゾルの分散媒は、分散液の分散媒に溶解可能なものであればよいが、水性の金属酸化物のゾルを使用する場合は分散媒の極性を増大させるため、その添加量には注意を払わなければならない。これに対し、アルコール類を分散媒とする金属酸化物のゾルは、このような注意が不要であるため好ましい。金属酸化物のゾルは、塗布または含浸された分散液において無機粒子同士の隙間に入り込み、乾燥により粒子が析出する。そして、この金属酸化物のゾルに由来する粒子の凝集力によって無機粒子同士を結合させる。   As the metal oxide sol, an alumina, zirconia, titania, and silica sol can be suitably used because of its excellent binder effect, easy availability, and excellent handleability. Further, the particle size of the metal oxide sol is preferably 5 to 200 nm, and if it is less than 5 nm, the binder effect is too strong, so that the coating layer is cracked, and if it exceeds 200 nm, a sufficient binder effect cannot be obtained. The dispersion medium of the metal oxide sol is not particularly limited as long as it can be dissolved in the dispersion medium of the dispersion liquid. However, when the aqueous metal oxide sol is used, the polarity of the dispersion medium is increased. Care must be taken with the amount added. On the other hand, a metal oxide sol using alcohols as a dispersion medium is preferable because such attention is unnecessary. The metal oxide sol enters the gaps between the inorganic particles in the applied or impregnated dispersion, and the particles are precipitated by drying. The inorganic particles are bonded to each other by the cohesive force of the particles derived from the metal oxide sol.

分散液における無機粒子、アルコキシド化合物、金属酸化物のゾルのそれぞれの含有量は、無機粒子同士を結合した状態で断熱性成形体の表面に保持できる限り制限はなく、また、アルコキシドや金属酸化物のゾルの種類によっても異なる。例えば、テトラエトキシシランを用いる場合は、無機粒子100重量部対し5〜200重量部とするのが好ましく、金属酸化物のゾルを用いる場合は、その固形分量が無機粒子100重量部対し5〜100重量部とすることが好ましい。   The content of each of the inorganic particles, the alkoxide compound, and the metal oxide sol in the dispersion is not limited as long as the inorganic particles can be held on the surface of the heat insulating molded body in a state where the inorganic particles are bonded to each other. It depends on the type of sol. For example, when tetraethoxysilane is used, the amount is preferably 5 to 200 parts by weight with respect to 100 parts by weight of the inorganic particles, and when a metal oxide sol is used, the solid content is 5 to 100 with respect to 100 parts by weight of the inorganic particles. It is preferable to use parts by weight.

また、被覆層は、補強用に繊維状物質を含有しても良い。繊維状物質により、被覆層にクラック(小さいひび割れ)が入るのをふせぐことができる。繊維状物質としては、断熱性成形体に配合されるものを例示でき、断熱材が使用される雰囲気や温度等を考慮して適宜選択される。但し、得られる被覆層の平滑性を考慮して、繊維径は無機粒子と同様の50μm以下であることが好ましい。繊維長は、繊維状物質の種類により適宜設定されるが、10mm以下が適当である。尚、被覆層における繊維状物質の含有量が多すぎると、繊維の絡まり等によって被覆層内に空隙が生じ、結果として断熱性成形体からの無機微粒子の脱離防止効果の低下を招き、更には被膜層の剥離や表面の平滑性の低下を招くおそれがある。そのため、本発明では、繊維状物質の含有量は、被覆層全量の40質量%以下とすることが好ましい。   Moreover, the coating layer may contain a fibrous substance for reinforcement. The fibrous material can prevent cracks (small cracks) from entering the coating layer. Examples of the fibrous substance include those blended in the heat insulating molded body, and are appropriately selected in consideration of the atmosphere, temperature, and the like in which the heat insulating material is used. However, in consideration of the smoothness of the resulting coating layer, the fiber diameter is preferably 50 μm or less, similar to the inorganic particles. The fiber length is appropriately set depending on the type of fibrous substance, but is preferably 10 mm or less. If the content of the fibrous substance in the coating layer is too large, voids are generated in the coating layer due to fiber entanglement and the like, resulting in a decrease in the effect of preventing the removal of inorganic fine particles from the heat insulating molded body. May cause peeling of the coating layer and deterioration of the smoothness of the surface. Therefore, in this invention, it is preferable that content of a fibrous substance shall be 40 mass% or less of the coating layer whole quantity.

繊維状物質を被覆層に含有させるには、無機粒子やアルコキシド化合物、金属酸化物のゾルとともにこれらを分散媒に添加すればよく、上記した被覆層における含有量となるように添加量を調整する。   In order to contain the fibrous substance in the coating layer, these may be added to the dispersion medium together with the inorganic particles, the alkoxide compound, and the sol of the metal oxide, and the addition amount is adjusted so as to be the content in the coating layer described above. .

また、分散液には有機増粘剤を添加してもよい。断熱性成形体に塗布または含浸された分散液は、断熱性成形体の内部へと浸透するため、有機増粘剤を添加して分散液の流動性を低下させて浸透を抑制することにより、被覆層が形成されやすくなる。有機増粘剤としては、増粘効果に優れ、被覆層の膜強度を高める効果もあることから、ポリビニルアルコールや、メチルセルロール、エチルセルロース等のセルロース類が好適である。但し、断熱材の使用時に異臭や発煙を生じるおそれがあるため、有機増粘剤の添加量は、分散媒全量の5質量%以下とするのが好ましい。   An organic thickener may be added to the dispersion. Since the dispersion applied or impregnated on the heat insulating molded body penetrates into the inside of the heat insulating molded body, an organic thickener is added to reduce the fluidity of the dispersion to suppress penetration. A coating layer is easily formed. As the organic thickener, polyvinyl alcohol, celluloses such as methylcellulose and ethylcellulose are suitable because they are excellent in the thickening effect and have the effect of increasing the film strength of the coating layer. However, since there is a risk of producing a strange odor or smoke when using the heat insulating material, the amount of the organic thickener added is preferably 5% by mass or less of the total amount of the dispersion medium.

分散液の断熱性成形体への塗布量や含浸量は、分散液の組成や濃度、断熱性成形体の大きさや形状、被覆層が形成される部分の面積や形状に応じて適宜設定され、好ましくは上記の被覆層厚となるように調整する。そして、塗布または含浸された分散液を乾燥することにより、無機粒子が、アルコキシド化合物の加水分解物や金属酸化物のゾルで結合された被覆層が形成される。形成される被覆層は、無機粒子の間に空隙も持つため、乾燥による収縮が抑えられ、亀裂の発生が抑えられる。   The amount of application and impregnation amount of the dispersion to the heat insulating molded body is appropriately set according to the composition and concentration of the dispersion, the size and shape of the heat insulating molded body, the area and shape of the part where the coating layer is formed, Preferably, the thickness of the coating layer is adjusted. Then, by drying the applied or impregnated dispersion, a coating layer in which inorganic particles are bonded with a hydrolyzate of an alkoxide compound or a sol of a metal oxide is formed. Since the coating layer to be formed also has voids between the inorganic particles, shrinkage due to drying is suppressed, and generation of cracks is suppressed.

また、分散液の塗布または浸漬と、その後の乾燥とを繰り返し行うこともできる。被覆層に亀裂が生じても、その上に新たな被覆層を形成することにより、亀裂が無く平滑な表面を有する被覆層が得られる。分散液の塗布または浸漬と、乾燥とを繰り返し行うことにより、上記の2000μm程度の厚い被覆層を形成することも可能である。   Moreover, application | coating or immersion of a dispersion liquid and subsequent drying can also be performed repeatedly. Even if a crack occurs in the coating layer, a coating layer having a smooth surface without cracks can be obtained by forming a new coating layer thereon. By repeatedly applying or immersing the dispersion and drying, it is possible to form the thick coating layer of about 2000 μm.

以下、実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is further demonstrated, this invention is not restrict | limited at all by this.

(実施例1)
一次粒子径が0.012μmで、BET比表面積が200m/gであるシリカ微粒子70重量部、平均径10μmで平均繊維長3mmのE−ガラス繊維10重量部及び炭化ケイ素20重量部を均一になるまで混合し、この混合物を加圧成形して密度300kg/mで、熱伝導率0.04W/m・K〔100℃〕の断熱性成形体を得た。
Example 1
Uniformly 70 parts by weight of silica fine particles having a primary particle diameter of 0.012 μm and a BET specific surface area of 200 m 2 / g, 10 parts by weight of E-glass fibers having an average diameter of 10 μm and an average fiber length of 3 mm, and 20 parts by weight of silicon carbide The mixture was pressure-molded to obtain a heat-insulating molded body having a density of 300 kg / m 3 and a thermal conductivity of 0.04 W / m · K [100 ° C.].

次いで、平均粒径0.7μmのシリカ粒子100重量部、平均径10μmで平均繊維長3mmのE−ガラス繊維3重量部、エタノール67重量部、水30重量部、テトラエトキシシラン150重量部及びメチルセルロース2重部からなる分散液を上記断熱性成形体の全面に塗布し、100℃の加熱炉に入れて乾燥して試験体を得た。   Subsequently, 100 parts by weight of silica particles having an average particle diameter of 0.7 μm, 3 parts by weight of E-glass fibers having an average diameter of 10 μm and an average fiber length of 3 mm, 67 parts by weight of ethanol, 30 parts by weight of water, 150 parts by weight of tetraethoxysilane and methylcellulose A dispersion composed of double parts was applied to the entire surface of the heat insulating molded body, put in a heating furnace at 100 ° C. and dried to obtain a test body.

(実施例2)
平均粒径0.7μmのシリカ粒子100重量部、平均径10μmで平均繊維長3mmのE−ガラス繊維3重量部、エタノール50重量部及びシリカゾル(固形分:20%、媒体:エタノール)100重量部からなる分散液を用いた以外は、実施例1と同様にして試験体を得た。
(Example 2)
100 parts by weight of silica particles having an average particle diameter of 0.7 μm, 3 parts by weight of E-glass fibers having an average diameter of 10 μm and an average fiber length of 3 mm, 50 parts by weight of ethanol and 100 parts by weight of silica sol (solid content: 20%, medium: ethanol) A test body was obtained in the same manner as in Example 1 except that the dispersion liquid consisting of

(実施例3)
平均粒径0.7μmのシリカ粒子100重量部、平均径10μmで平均繊維長3mmのE−ガラス繊維3重量部、エタノール90重量部、シリカゾル(固形分:20%、媒体:エタノール)25重量部及びテトラエトキシシラン75重量部からなる分散液を用いた以外は、実施例1と同様にして試験体を得た。
(Example 3)
100 parts by weight of silica particles having an average particle diameter of 0.7 μm, 3 parts by weight of E-glass fibers having an average diameter of 10 μm and an average fiber length of 3 mm, 90 parts by weight of ethanol, 25 parts by weight of silica sol (solid content: 20%, medium: ethanol) A test specimen was obtained in the same manner as in Example 1 except that a dispersion composed of 75 parts by weight of tetraethoxysilane was used.

(実施例4)
平均粒径0.7μmのシリカ粒子100重量部、平均径10μmで平均繊維長3mmのE−ガラス繊維3重量部、エタノール67重量部、水30重量部、テトラエトキシシラン125重量部、ジメチルジエトキシシラン50重量部及びメチルセルロース2重量部からなる分散液を用いた以外は、実施例1と同様にして試験体を得た。
Example 4
100 parts by weight of silica particles having an average particle diameter of 0.7 μm, 3 parts by weight of E-glass fibers having an average diameter of 10 μm and an average fiber length of 3 mm, 67 parts by weight of ethanol, 30 parts by weight of water, 125 parts by weight of tetraethoxysilane, dimethyldiethoxy A test body was obtained in the same manner as in Example 1 except that a dispersion composed of 50 parts by weight of silane and 2 parts by weight of methylcellulose was used.

(実施例5)
平均粒径0.7μmのシリカ粒子100重量部、平均径10μmで平均繊維長3mmのE−ガラス繊維3重量部、エタノール40重量部、水10重量部、シリカゾル(固形分:20%、媒体エタノール)75重量部及びジメチルジエトキシシラン50重量部からなる分散液を用いた以外は、実施例1と同様にして試験体を得た。
(Example 5)
100 parts by weight of silica particles having an average particle diameter of 0.7 μm, 3 parts by weight of E-glass fibers having an average diameter of 10 μm and an average fiber length of 3 mm, 40 parts by weight of ethanol, 10 parts by weight of water, silica sol (solid content: 20%, medium ethanol) ) A test specimen was obtained in the same manner as in Example 1 except that a dispersion comprising 75 parts by weight and 50 parts by weight of dimethyldiethoxysilane was used.

(実施例6)
平均粒径0.7μmのシリカ粒子100重量部、平均径10μmで平均繊維長3mmのE−ガラス繊維3重量部、エタノール90重量部、水15重量部、シリカゾル(固形分:20%、媒体エタノール)25重量部、テトラエトキシシラン50重量部及びジメチルジエトキシシラン50重量部からなる分散液を用いた以外は、実施例1と同様にして試験体を得た。
(Example 6)
100 parts by weight of silica particles having an average particle diameter of 0.7 μm, 3 parts by weight of E-glass fibers having an average diameter of 10 μm and an average fiber length of 3 mm, 90 parts by weight of ethanol, 15 parts by weight of water, silica sol (solid content: 20%, medium ethanol) ) A test specimen was obtained in the same manner as in Example 1 except that a dispersion comprising 25 parts by weight, 50 parts by weight of tetraethoxysilane and 50 parts by weight of dimethyldiethoxysilane was used.

(実施例7)
平均粒径0.7μmのシリカ粒子100重量部、平均径10μmで平均繊維長3mmのE−ガラス繊維3重量部、エタノール67重量部、水30重量部、ジメチルジエトキシシラン200重量部及びメチルセルロース2重量部からなる分散液を用いた以外は、実施例1と同様にして試験体を得た。
(Example 7)
100 parts by weight of silica particles having an average particle diameter of 0.7 μm, 3 parts by weight of E-glass fibers having an average diameter of 10 μm and an average fiber length of 3 mm, 67 parts by weight of ethanol, 30 parts by weight of water, 200 parts by weight of dimethyldiethoxysilane, and methylcellulose 2 A test body was obtained in the same manner as in Example 1 except that the dispersion liquid consisting of parts by weight was used.

(比較例1)
実施例1で作製した断熱性成形体を試験体とした。
(Comparative Example 1)
The heat insulating molded body produced in Example 1 was used as a test body.

(比較例2)
平均粒径0.7μmのシリカ粒子100重量部とエタノール200重量部とからなる分散液を用いて被覆層の形成を試みたが、シリカ粒子同士が結合せず被覆層が形成できなかった。
(Comparative Example 2)
An attempt was made to form a coating layer using a dispersion composed of 100 parts by weight of silica particles having an average particle size of 0.7 μm and 200 parts by weight of ethanol, but the silica particles were not bonded to each other, so that the coating layer could not be formed.

(比較例3)
平均粒径0.7μmのシリカ粒子100重量部と水200重量部とからなる分散液を用いて被覆層の形成を試みたが、シリカ粒子同士が結合せず被覆層が形成できず、更に断熱性成形体も大きく変形した。
(Comparative Example 3)
Although an attempt was made to form a coating layer using a dispersion composed of 100 parts by weight of silica particles having an average particle size of 0.7 μm and 200 parts by weight of water, the silica particles were not bonded to each other, so that the coating layer could not be formed. The molded product was also greatly deformed.

(比較例4)
分散液の代わりにシリカゾル(固形分:20%、媒体:エタノール)を塗布したが、被覆層の収縮により断熱性成形体が破壊した。
(Comparative Example 4)
Silica sol (solid content: 20%, medium: ethanol) was applied instead of the dispersion, but the heat-insulating molded product was destroyed due to shrinkage of the coating layer.

[発塵性の評価]
実施例1〜7及び比較例1の各試験体について、下記手順に従い発塵性の評価を行った。結果を表1に示す。
(1)試験体の表面に圧力3×104N/mで粘着テープ(ニチバン株式会社製セロテープ(登録商標)「CT−24」、幅24mm)を貼り付けた。
(2)5秒の静置後、試験体から粘着テープを剥がした。
(3)剥がした粘着テープを黒色紙上に貼り付けて明度指数を測定し、次式に従い発塵指数を求めた。明度指数はLb表示系のL値であり、色彩色差計(ミノルタ株式会社製「CR−300」、測定ヘッド91mm幅×201mm高さ×60mm奥行×670g重量×測定径8mm、)を用いて測定した。また、明度指数の測定は同一試験体について5回行い、その平均値を測定した。
発塵指数=試験体から剥がした粘着テープの明度指数−粘着テープ自体の明度指数
[Evaluation of dust generation]
About each test body of Examples 1-7 and Comparative Example 1, dusting property evaluation was performed according to the following procedure. The results are shown in Table 1.
(1) A pressure-sensitive adhesive tape (cello tape (registered trademark) “CT-24” manufactured by Nichiban Co., Ltd., width: 24 mm) was applied to the surface of the test body with a pressure of 3 × 104 N / m 2 .
(2) After standing for 5 seconds, the adhesive tape was peeled off from the specimen.
(3) The peeled adhesive tape was affixed on black paper, the brightness index was measured, and the dust generation index was determined according to the following formula. Lightness index is L value of L * a * b display system, color difference meter ("CR-300" manufactured by Minolta Co., Ltd., measuring head 91mm width x 201mm height x 60mm depth x 670g weight x measuring diameter 8mm) It measured using. The brightness index was measured five times for the same specimen, and the average value was measured.
Dust generation index = Lightness index of the adhesive tape peeled from the specimen-Lightness index of the adhesive tape itself

[撥水性の評価]
実施例1および4〜7の試験体の表面に純水1gを滴下し、水の吸収具合から撥水性を評価した。
[Evaluation of water repellency]
Pure water 1g was dripped on the surface of the test body of Example 1 and 4-7, and water repellency was evaluated from the water absorption condition.

Figure 2007230858
Figure 2007230858
Figure 2007230858
Figure 2007230858

付着物が付着していない粘着テープでは、光源からの光が粘着テープをほとんど透過し、黒色紙からは光がほとんど反射しないためL値が低くなる。これに対し付着物が付着した粘着テープでは、光源からの光が付着物で反射されるためL値が高くなる。従って、粘着テープへの付着物の付着量が多いほど、発塵指数も大きい値を示す。表1に示すように、本発明に従う被覆層が形成された実施例の試験体では、発塵指数が小さくなっており、被覆層中でシリカ粒子及びガラス繊維が強固に結合されていることがわかる。   In the pressure-sensitive adhesive tape to which no deposit is adhered, the light from the light source is almost transmitted through the pressure-sensitive adhesive tape, and the L value is low because the light is hardly reflected from the black paper. On the other hand, in the pressure-sensitive adhesive tape to which the adhering matter has adhered, the L value becomes high because the light from the light source is reflected by the adhering matter. Therefore, the larger the amount of deposits on the adhesive tape, the larger the dusting index. As shown in Table 1, in the test sample of the example in which the coating layer according to the present invention was formed, the dust generation index was small, and the silica particles and the glass fibers were firmly bonded in the coating layer. Recognize.

また、撥水性についても、実施例1において、純水は1秒もしないうちに試験体に吸収され、試験体表面に陥没状の変形が生じたが、実施例4〜7においては、純水は試験体に吸収されず24時間後もその表面に留まっていた。   Also, with respect to water repellency, in Example 1, pure water was absorbed by the test specimen within 1 second, and the surface of the test specimen was depressed, but in Examples 4 to 7, pure water was used. Was not absorbed by the specimen and remained on the surface after 24 hours.

Claims (11)

BET比表面積が15〜500m/gで且つ一次粒子径が0.003〜1μmであるシリカ微粒子、アルミナ微粒子、ケイ酸アルミニウム微粒子もしくはこれらの混合物を含む断熱性成形体の表面の少なくとも一部に被覆層が形成され、該被覆層は平均粒子径0.05〜50μmの無機粒子と、バインダーとを含むことを特徴とする断熱材。 At least part of the surface of the heat insulating molded body containing silica fine particles, alumina fine particles, aluminum silicate fine particles or a mixture thereof having a BET specific surface area of 15 to 500 m 2 / g and a primary particle diameter of 0.003 to 1 μm. A heat insulating material, wherein a coating layer is formed, and the coating layer contains inorganic particles having an average particle diameter of 0.05 to 50 µm and a binder. バインダーがアルコキシド化合物の加水分解物及び金属酸化物のゾルの少なくとも1種からなることを特徴とする請求項1記載の断熱材。   The heat insulating material according to claim 1, wherein the binder comprises at least one of a hydrolyzate of an alkoxide compound and a sol of a metal oxide. アルコキシド化合物の加水分解物の少なくとも一部が、金属原子に直接結合したアルキル基を有することを特徴とする請求項2に記載の断熱材   The heat insulating material according to claim 2, wherein at least a part of the hydrolyzate of the alkoxide compound has an alkyl group directly bonded to a metal atom. 断熱性成形体が、繊維状物質及び乳白材の少なくとも一方を含有することを特徴とする請求項1〜3の何れか1項に記載の断熱材。   The heat insulating material according to any one of claims 1 to 3, wherein the heat insulating molded body contains at least one of a fibrous substance and a milk white material. 被覆層を構成する無機粒子が、シリカ、アルミナ、ケイ酸塩、アルミノケイ酸塩または乳白材の各粒子、あるいはこれらの混合物であることを特徴とする請求項1〜4の何れか1項に記載の断熱材。   The inorganic particles constituting the coating layer are silica, alumina, silicate, aluminosilicate, opalescent particles, or a mixture thereof, according to any one of claims 1 to 4. Insulation material. 被覆層が、繊維状物質及び有機増粘剤の少なくとも一方を含有することを特徴とする請求項1〜5の何れか1項に記載の断熱材。   The insulating layer according to any one of claims 1 to 5, wherein the coating layer contains at least one of a fibrous substance and an organic thickener. BET比表面積が15〜500m/gで且つ一次粒子径が0.003〜1μmであるシリカ微粒子、アルミナ微粒子、ケイ酸アルミニウム微粒子もしくはこれらの混合物を含む成形体材料を所定形状に成形して得た断熱性成形体に、平均粒子径0.05〜50μmの無機粒子と、バインダーとを含む分散液を塗布した後、または含浸させた後、乾燥することを特徴とする断熱材の製造方法。 Obtained by molding a molding material containing silica fine particles, alumina fine particles, aluminum silicate fine particles or a mixture thereof having a BET specific surface area of 15 to 500 m 2 / g and a primary particle size of 0.003 to 1 μm into a predetermined shape. A method for producing a heat insulating material, comprising: applying a dispersion containing inorganic particles having an average particle size of 0.05 to 50 μm and a binder to or impregnating the heat insulating molded body, followed by drying. バインダーがアルコキシド化合物の加水分解物及び金属酸化物のゾルの少なくとも1種からなることを特徴とする請求項7記載の断熱材の製造方法。   The method for producing a heat insulating material according to claim 7, wherein the binder comprises at least one of a hydrolyzate of an alkoxide compound and a sol of a metal oxide. アルコキシド化合物の加水分解物の少なくとも一部が、金属原子に直接結合したアルキル基を有することを特徴とする請求項8記載の断熱材の製造方法   The method for producing a heat insulating material according to claim 8, wherein at least a part of the hydrolyzate of the alkoxide compound has an alkyl group directly bonded to a metal atom. 分散液の分散媒が、アルコールまたはアルコールと水との混合液であることを特徴とする請求項7〜9の何れか1項に記載の断熱材の製造方法。   The method for producing a heat insulating material according to any one of claims 7 to 9, wherein the dispersion medium of the dispersion liquid is alcohol or a mixed liquid of alcohol and water. 分散液が、繊維状物質及び有機増粘剤の少なくとも一方を含有することを特徴とする請求項7〜10の何れか1項に記載の断熱材の製造方法。   The method for producing a heat insulating material according to any one of claims 7 to 10, wherein the dispersion contains at least one of a fibrous substance and an organic thickener.
JP2007023084A 2006-02-02 2007-02-01 Heat insulating material and its production method Pending JP2007230858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023084A JP2007230858A (en) 2006-02-02 2007-02-01 Heat insulating material and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006025820 2006-02-02
JP2007023084A JP2007230858A (en) 2006-02-02 2007-02-01 Heat insulating material and its production method

Publications (1)

Publication Number Publication Date
JP2007230858A true JP2007230858A (en) 2007-09-13

Family

ID=38551830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023084A Pending JP2007230858A (en) 2006-02-02 2007-02-01 Heat insulating material and its production method

Country Status (1)

Country Link
JP (1) JP2007230858A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958517B1 (en) * 2009-06-29 2010-05-17 김시현 Adiabatic adhesive tape comprising of heat insulating material and manufacturing method thereof
JP2011162902A (en) * 2010-02-08 2011-08-25 Nichias Corp Heat insulation material and method for producing the same
JP2011163483A (en) * 2010-02-12 2011-08-25 Isolite Insulating Products Co Ltd High-performance heat insulating material and method for manufacturing the same
WO2012050035A1 (en) * 2010-10-14 2012-04-19 ニチアス株式会社 Heat insulating material and method for producing heat insulating material
US10520126B2 (en) 2013-02-28 2019-12-31 Panasonic Intellectual Property Management Co., Ltd. Heat insulating structure using aerogel
JP2020001942A (en) * 2018-06-26 2020-01-09 イソライト工業株式会社 Heat insulation material, and method of producing the same
WO2021125458A1 (en) * 2019-12-17 2021-06-24 (주)탑코글로벌 Method for manufacturing quasi-incombustible thermal insulation sheet, and quasi-incombustible thermal insulation sheet manufactured thereby
CN113272475A (en) * 2019-01-10 2021-08-17 日本碍子株式会社 Composite component
CN113939487A (en) * 2020-03-12 2022-01-14 住友理工株式会社 Heat insulating material and method for manufacturing same
CN114080719A (en) * 2020-03-12 2022-02-22 住友理工株式会社 Heat insulating material for battery pack and battery pack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106476A (en) * 1984-10-26 1986-05-24 松下電器産業株式会社 Heat insulator
JPH05194008A (en) * 1991-06-19 1993-08-03 Nichias Corp Production of heat insulating material
JPH0959567A (en) * 1994-06-07 1997-03-04 Nichiban Kenkyusho:Kk Coating composition
JP2005281400A (en) * 2004-03-29 2005-10-13 Nichias Corp Coating liquid and heat-resistant structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106476A (en) * 1984-10-26 1986-05-24 松下電器産業株式会社 Heat insulator
JPH05194008A (en) * 1991-06-19 1993-08-03 Nichias Corp Production of heat insulating material
JPH0959567A (en) * 1994-06-07 1997-03-04 Nichiban Kenkyusho:Kk Coating composition
JP2005281400A (en) * 2004-03-29 2005-10-13 Nichias Corp Coating liquid and heat-resistant structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958517B1 (en) * 2009-06-29 2010-05-17 김시현 Adiabatic adhesive tape comprising of heat insulating material and manufacturing method thereof
JP2011162902A (en) * 2010-02-08 2011-08-25 Nichias Corp Heat insulation material and method for producing the same
JP2011163483A (en) * 2010-02-12 2011-08-25 Isolite Insulating Products Co Ltd High-performance heat insulating material and method for manufacturing the same
WO2012050035A1 (en) * 2010-10-14 2012-04-19 ニチアス株式会社 Heat insulating material and method for producing heat insulating material
JP2012081701A (en) * 2010-10-14 2012-04-26 Nichias Corp Heat insulating material and method of manufacturing the same
US10520126B2 (en) 2013-02-28 2019-12-31 Panasonic Intellectual Property Management Co., Ltd. Heat insulating structure using aerogel
JP2020001942A (en) * 2018-06-26 2020-01-09 イソライト工業株式会社 Heat insulation material, and method of producing the same
CN113272475A (en) * 2019-01-10 2021-08-17 日本碍子株式会社 Composite component
CN113272474A (en) * 2019-01-10 2021-08-17 日本碍子株式会社 Heat dissipation component
WO2021125458A1 (en) * 2019-12-17 2021-06-24 (주)탑코글로벌 Method for manufacturing quasi-incombustible thermal insulation sheet, and quasi-incombustible thermal insulation sheet manufactured thereby
CN113939487A (en) * 2020-03-12 2022-01-14 住友理工株式会社 Heat insulating material and method for manufacturing same
CN114080719A (en) * 2020-03-12 2022-02-22 住友理工株式会社 Heat insulating material for battery pack and battery pack
CN114080719B (en) * 2020-03-12 2023-04-28 住友理工株式会社 Heat insulating material for battery pack and battery pack
US11655931B2 (en) 2020-03-12 2023-05-23 Sumitomo Riko Company Limited Heat insulating material and manufacturing method thereof
CN113939487B (en) * 2020-03-12 2023-09-12 住友理工株式会社 Heat insulating material and method for producing same

Similar Documents

Publication Publication Date Title
JP2007230858A (en) Heat insulating material and its production method
JP5081464B2 (en) Insulating material and manufacturing method thereof
AU2006337487B2 (en) Ceramic wall cladding composites that reflect IR radiation
RU2188763C2 (en) Laminated material
US6352610B1 (en) Composite materials based on vegetable materials
KR100587243B1 (en) Method for providing a metal surface with a vitreous layer
US5716424A (en) Method of producing glass substrates with improved long-term rigidity at elevated temperatures
CN108383487B (en) PAN pre-oxidized fiber felt/silicon dioxide aerogel composite material and preparation method thereof
ES2755412T3 (en) Coated glass sheet
BR122020004549B1 (en) ANTIFOG COATED TRANSPARENT ARTICLE
KR20130096852A (en) Ceramic coating materials and manufacturing methods of porous ceramic based cooking ware
TW201221364A (en) Heat insulator and method of producing the same
WO2016051750A1 (en) Low reflection coating, glass plate, glass substrate and photoelectric conversion device
WO2005095101A1 (en) Article with organic/inorganic composite coating formed and process for producing the same
JPH07315966A (en) High temperature coating provided on ceramic base material and method for non-calcining for obtaining this
US11788278B2 (en) High temperature-heat insulator
JP6771388B2 (en) Method for manufacturing a glass plate with a low reflection coating and a glass plate with a low reflection coating
CN103305124A (en) Nano SiO2 composite organic silicon-fluorine resin antifouling paint and preparation method thereof
US20180050956A1 (en) Coated glass sheet and method for producing same
CN104150783B (en) Hollow nanoparticle composite antifogging film and preparation method thereof
NO308862B1 (en) Antistatic coating composition, its use and method of producing a transparent conductive solution
JP5279371B2 (en) Thermal insulation covering body forming method and thermal insulation covering body
JP2003138163A (en) Photocatalyst coating composition and method for producing the same and photocatalyst using the same
JP6487933B2 (en) Low reflection coating, glass plate with low reflection coating, glass plate with low reflection coating, glass substrate, photoelectric conversion device, and method of manufacturing low reflection coating
JP4404275B2 (en) Antifogging glass and method for producing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710