JP2007229587A - Method for preparing photocatalyst member - Google Patents

Method for preparing photocatalyst member Download PDF

Info

Publication number
JP2007229587A
JP2007229587A JP2006053008A JP2006053008A JP2007229587A JP 2007229587 A JP2007229587 A JP 2007229587A JP 2006053008 A JP2006053008 A JP 2006053008A JP 2006053008 A JP2006053008 A JP 2006053008A JP 2007229587 A JP2007229587 A JP 2007229587A
Authority
JP
Japan
Prior art keywords
binder resin
photocatalyst
photocatalyst particles
silver
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006053008A
Other languages
Japanese (ja)
Inventor
Eiji Murase
栄次 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASUKATEKKU KK
PAINT SERVICE KK
Original Assignee
ASUKATEKKU KK
PAINT SERVICE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASUKATEKKU KK, PAINT SERVICE KK filed Critical ASUKATEKKU KK
Priority to JP2006053008A priority Critical patent/JP2007229587A/en
Publication of JP2007229587A publication Critical patent/JP2007229587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prepare a photocatalyst member which keeps photocatalyst particles sticking to a binder resin as firmly as not to be easily peeled off and has an antimicrobial function corresponding to the total quantity of the photocatalyst particles used. <P>SOLUTION: In this preparing method, a volatile solution containing photocatalyst particles in a dispersion state is charged to negative, the binder resin 4 is applied on a member surface, the member is charged to positive, the volatile solution containing the photocatalyst particles 6 charged to negative in the dispersion state is ejected toward the surface of the binder resin 4 on the condition that the photocatalyst particles 6 charged to negative in the volatile solution containing the photocatalyst particles 6 charged to negative in the dispersion state should reach the surface of the binder resin 4 before hardening of the surface of the binder resin 4 with the evaporation of volatile components in the volatile solution containing the photocatalyst particles 6 charged to negative in the dispersion state in the step, and the photocatalyst particles are dried in the state of contact with the binder resin 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、抗菌作用を有する光触媒部材の製造方法に関する。   The present invention relates to a method for producing a photocatalytic member having an antibacterial action.

二酸化チタンなどの半導体粒子には、太陽光等の光を利用して大気中の酸素をラジカル化する光触媒作用を有するもの(光触媒粒子と総称する)が知られている。光触媒作用により生成する酸素ラジカルは微生物などの有機物を分解するため、光触媒粒子を含有する樹脂の層を表面に形成した部材(光触媒部材)には、酸素ラジカルによる抗菌作用が認められる。このような光触媒部材は、例えば、衛生的な環境の求められる病院の治療室の壁材、床材又は天井材として使用されている。   As semiconductor particles such as titanium dioxide, those having a photocatalytic action that radicalizes oxygen in the atmosphere using light such as sunlight (collectively referred to as photocatalytic particles) are known. Since oxygen radicals generated by the photocatalytic action decompose organic substances such as microorganisms, antibacterial action due to oxygen radicals is recognized in a member (photocatalytic member) on which a resin layer containing photocatalyst particles is formed. Such a photocatalytic member is used, for example, as a wall material, floor material, or ceiling material in a hospital treatment room where a sanitary environment is required.

上記光触媒部材の製造方法として特許文献1に記載の方法が知られている。これによると、静電塗装により、主原料のバインダ樹脂に光触媒粒子を分散してなる塗料(溶液)を、被塗物(部材)に塗布する。そして焼付処理を施し、光触媒粒子を含有する樹脂の層を表面に有する光触媒部材を製造する。つきまわりがよく塗料ロスの少ない静電塗装を利用することで、部材表面に効率よく樹脂の層を形成する。そして、樹脂の層より一部の光触媒粒子が大気に露出した状態となる。
特開平8−302498号公報
As a method for producing the photocatalyst member, a method described in Patent Document 1 is known. According to this, a paint (solution) obtained by dispersing photocatalyst particles in a binder resin as a main raw material is applied to an object (member) by electrostatic coating. And a baking process is given and the photocatalyst member which has the layer of resin containing a photocatalyst particle on the surface is manufactured. By using electrostatic coating with good throwing power and little paint loss, a resin layer is efficiently formed on the surface of the member. And a part of photocatalyst particle will be in the state exposed to air | atmosphere from the layer of resin.
JP-A-8-302498

しかし、光触媒粒子が光触媒作用を発揮するためには大気中の酸素と接触する必要があるので、上記の製造方法により形成してなる樹脂の層は、樹脂層外表面から露出する一部の光触媒粒子だけで酸素ラジカルを生成し、残りの光触媒粒子は何の働きもしない。したがって、製造時に投入した光触媒粒子総量に応じた抗菌作用を得ることができなかった。   However, in order for the photocatalyst particles to exert photocatalytic action, it is necessary to come into contact with oxygen in the atmosphere. Therefore, the resin layer formed by the production method described above is partially photocatalyst exposed from the outer surface of the resin layer. The particles alone generate oxygen radicals, and the remaining photocatalytic particles do nothing. Therefore, an antibacterial action according to the total amount of photocatalyst particles introduced at the time of manufacture could not be obtained.

そこで、光触媒粒子量を比較的多くして、且つバインダ樹脂を必要最小限のみ加える。こうすることで樹脂の層から露出する光触媒粒子の割合を多くすることができる。しかし、光触媒粒子に対するバインダ樹脂含有比率の減少に比例して光触媒粒子の固着が弱くなり、光触媒部材から光触媒粒子が剥落し易くなる。例えば、図6(A)に示すように、塗布された光触媒粒子30はバインダ樹脂40に覆われた状態で部材50に接する。この状態で焼付けを行うと、光触媒粒子30は、両者の接点部分にある一部の硬化バインダ樹脂40aのみで部材50と固着する(図6(B))。もともと一部の硬化バインダ樹脂40aだけで固着しているため、布巾でこするなどの物理的な刺激を受けると、直ぐに、光触媒粒子30が部材50から剥落する(図6(C))。病院の治療室の壁材として部材50を使用する場合、治療室の壁材表面はアルコール液で頻繁に殺菌洗浄するので、光触媒粒子30を固着する一部の硬化バインダ樹脂40aがアルコール液で溶け出す。このため、光触媒粒子30の剥落が更に激しくなる。
このため、光触媒粒子が剥落しないように固着するとともに、使用した光触媒粒子総量に応じた抗菌作用を有する光触媒部材が切望されていた。
Therefore, the amount of the photocatalyst particles is relatively increased and only the necessary minimum amount of binder resin is added. By doing so, the proportion of the photocatalyst particles exposed from the resin layer can be increased. However, the sticking of the photocatalyst particles is weakened in proportion to the decrease in the binder resin content ratio with respect to the photocatalyst particles, and the photocatalyst particles are easily peeled off from the photocatalyst member. For example, as shown in FIG. 6A, the applied photocatalyst particles 30 are in contact with the member 50 while being covered with the binder resin 40. When baking is performed in this state, the photocatalyst particles 30 are fixed to the member 50 only with a part of the cured binder resin 40a at the contact portion between them (FIG. 6B). Originally, the photocatalyst particles 30 are peeled off from the member 50 as soon as a physical stimulus such as rubbing with a cloth is applied because they are fixed with only a part of the cured binder resin 40a (FIG. 6C). When the member 50 is used as a wall material in a hospital treatment room, the surface of the wall material in the treatment room is frequently sterilized and washed with an alcohol solution, so that part of the cured binder resin 40a that fixes the photocatalyst particles 30 is dissolved in the alcohol solution. put out. For this reason, peeling of the photocatalyst particles 30 becomes more severe.
For this reason, a photocatalyst member having an antibacterial action corresponding to the total amount of the photocatalyst particles used has been eagerly desired while being fixed so that the photocatalyst particles do not peel off.

本発明は上記の問題に鑑みて、容易に剥落しないようにバインダ樹脂に光触媒粒子を固着し、且つ使用した光触媒粒子総量に応じた抗菌作用を有する光触媒部材を製造するものである。   In view of the above problems, the present invention manufactures a photocatalyst member having antibacterial action according to the total amount of photocatalyst particles fixed to a binder resin so as not to easily peel off.

第1の発明の光触媒部材の製造方法は、光触媒粒子を分散状態で含有する揮発性溶液を負に帯電させ且つ部材を正に帯電させる。そして、部材表面にバインダ樹脂を塗布し、このバインダ樹脂表面が未硬化の状態のうちに、バインダ樹脂表面に向けて、負に帯電した光触媒粒子を分散状態で含有する揮発性溶液を噴射する。このとき、負に帯電した光触媒粒子を分散状態で含有する揮発性溶液中の負に帯電した光触媒粒子が前記バインダ樹脂表面に到達するまでに、負に帯電した光触媒粒子を分散状態で含有する揮発性溶液中の揮発性成分が噴射途中で発散する条件で噴射する。   In the method for producing a photocatalyst member of the first invention, a volatile solution containing the photocatalyst particles in a dispersed state is negatively charged and the member is positively charged. Then, a binder resin is applied to the surface of the member, and a volatile solution containing negatively charged photocatalyst particles in a dispersed state is sprayed toward the binder resin surface while the binder resin surface is uncured. At this time, the volatile solution containing the negatively charged photocatalyst particles in a dispersed state until the negatively charged photocatalyst particles in the volatile solution containing the negatively charged photocatalyst particles in a dispersed state reaches the surface of the binder resin. It sprays on the conditions which the volatile component in an ionic solution emits in the middle of injection.

上記条件として、例えば、光触媒粒子を分散状態で含有する揮発性溶液を噴射し、正に帯電した部材より電気的な引力を受ける範囲で浮遊状態とする。浮遊状態で大気中を漂う間に、光触媒粒子を分散状態で含有する揮発性溶液中の揮発性成分が発散し、溶液時の分散状態を保持した光触媒粒子がバインダ樹脂表面に向けて電気的に引き寄せられる。   As the above-mentioned conditions, for example, a volatile solution containing photocatalyst particles in a dispersed state is sprayed and brought into a floating state as long as an electrical attractive force is received from a positively charged member. While floating in the air in the floating state, volatile components in the volatile solution containing the photocatalyst particles in a dispersed state are emitted, and the photocatalyst particles that maintain the dispersed state in the solution are electrically directed toward the binder resin surface. Gravitate.

更に、光触媒粒子を分散状態で含有する揮発性溶液が浮遊状態となるのはバインダ樹脂表面近傍であることが望ましい。例えば、光触媒粒子を分散状態で含有する揮発性溶液をバインダ樹脂表面に向けて拡散噴射し、その後浮遊状態とする。   Furthermore, it is desirable that the volatile solution containing the photocatalyst particles in a dispersed state is in the vicinity of the binder resin surface. For example, a volatile solution containing the photocatalyst particles in a dispersed state is diffused and sprayed toward the binder resin surface, and then is brought into a floating state.

そして、バインダ樹脂表面に到達した光触媒粒子は、未硬化状態のバインダ樹脂に電気的な吸引力によって接し、光触媒粒子が同膜から露出した状態でバインダ樹脂表面に局在する。そして、光触媒粒子とバインダ樹脂の相互間に働く界面張力によって、光触媒粒子との接点付近のバインダ樹脂液面が盛り上がりながら光触媒粒子と接していき、両者の隙間を減少させる。   The photocatalyst particles that have reached the surface of the binder resin are brought into contact with the uncured binder resin by electrical attraction, and are localized on the surface of the binder resin with the photocatalyst particles being exposed from the film. Then, due to the interfacial tension acting between the photocatalyst particles and the binder resin, the liquid surface of the binder resin in the vicinity of the contact point with the photocatalyst particles rises and comes into contact with the photocatalyst particles, thereby reducing the gap between the two.

そして、バインダ樹脂を乾燥することにより、バインダ樹脂を引き締める。光触媒粒子は、この引き締めに追従してバインダ樹脂内に沈み込む。このため光触媒粒子は、バインダ樹脂に適度に埋め込まれて固着され、容易には剥落しない状態となる。
このことから、容易に剥落しないようにバインダ樹脂に光触媒粒子を固着し、且つ光触媒粒子は、バインダ樹脂の層表面に露出状態で局在する。つまり、バインダ樹脂の層が有する光触媒粒子総量に応じた抗菌作用(光触媒機能)を有する光触媒部材が製造される。
Then, the binder resin is tightened by drying the binder resin. The photocatalyst particles follow the tightening and sink into the binder resin. For this reason, the photocatalyst particles are appropriately embedded and fixed in the binder resin and are not easily peeled off.
For this reason, the photocatalyst particles are fixed to the binder resin so as not to easily peel off, and the photocatalyst particles are localized in an exposed state on the surface of the binder resin layer. That is, a photocatalyst member having an antibacterial action (photocatalytic function) corresponding to the total amount of photocatalyst particles contained in the binder resin layer is produced.

光触媒粒子として、太陽光等の光を利用して酸素をラジカル化する光触媒作用を有する半導体粒子を使用することができ、特に、金属を担持した二酸化チタンは、金属より発生するプラスイオンが光触媒作用を補助するため光触媒作用が強いので好ましい。   As the photocatalyst particles, semiconductor particles having a photocatalytic action that radicalizes oxygen using light such as sunlight can be used. In particular, titanium dioxide carrying a metal has a photocatalytic action due to positive ions generated from the metal. This is preferable because the photocatalytic action is strong.

また揮発性成分として、メタノール,エタノールやイソプロピルアルコールなどのアルコール系溶媒を使用でき、大気中で発散可能な液体であれば、エーテル系溶媒やアセトンなどのケトン系溶媒であっても使用することができる。安全性の観点からは、エタノール又は変性エタノールを揮発性成分として使用することが望ましい。
上述の揮発性成分は2種類以上を混合して使用してもよい。また光触媒粒子の固着に著しい悪影響を及ぼさない限り、分散剤として水を混合してもよい。
In addition, alcoholic solvents such as methanol, ethanol, and isopropyl alcohol can be used as volatile components, and ether-based solvents and ketone-based solvents such as acetone can be used as long as they can be emitted in the atmosphere. it can. From the viewpoint of safety, it is desirable to use ethanol or denatured ethanol as a volatile component.
Two or more kinds of the above volatile components may be mixed and used. Further, water may be mixed as a dispersant as long as it does not have a significant adverse effect on the fixation of the photocatalyst particles.

またバインダ樹脂として、熱を加えることで硬化する熱硬化性樹脂を溶剤に溶いた溶液を使用でき、特に塗料成分として使用される熱硬化性アクリル樹脂の溶液を使用することは製造コスト上望ましい。また常温においては硬化状態を保持する熱可塑性樹脂の溶液であっても使用することができる。
なお、熱硬化性樹脂や熱可塑性樹脂自体を溶融したものをバインダ樹脂として使用することもできる。
Further, as the binder resin, a solution in which a thermosetting resin that is cured by applying heat is dissolved in a solvent can be used. In particular, it is desirable in terms of manufacturing cost to use a solution of a thermosetting acrylic resin that is used as a coating component. Further, even a solution of a thermoplastic resin that maintains a cured state at room temperature can be used.
In addition, what melt | dissolved thermosetting resin or thermoplastic resin itself can also be used as binder resin.

第2の発明の光触媒部材の製造方法は、第1の発明において、負に帯電した光触媒粒子を分散状態で含有する揮発性溶液を加温状態で噴霧する。負に帯電した触媒粒子を分散状態で含有する揮発性溶液を加温することで溶液粘度が低下し、霧状となった負に帯電した触媒粒子を分散状態で含有する揮発性溶液が微小化することにより、揮発性成分が大気中に発散しやすくなる。   In the method for producing a photocatalyst member of the second invention, in the first invention, a volatile solution containing negatively charged photocatalyst particles in a dispersed state is sprayed in a heated state. By heating a volatile solution containing negatively charged catalyst particles in a dispersed state, the viscosity of the solution is lowered, and a volatile solution containing dispersed negatively charged catalyst particles in a dispersed state is miniaturized. By doing so, volatile components are easily emitted into the atmosphere.

第3の発明の光触媒部材の製造方法は、第1の発明又は第2の発明において、光触媒粒子は、銀を担持してなるアナターゼ型二酸化チタンである。
銀を担持してなるアナターゼ型二酸化チタンは、銀より発生するプラスイオンが光触媒作用を補助する。このため、屋内などの比較的光量の少ない場所においても高い光触媒作用を有する光触媒部材を製造することができる。
In the method for producing a photocatalyst member of the third invention, in the first invention or the second invention, the photocatalyst particles are anatase titanium dioxide carrying silver.
In anatase-type titanium dioxide carrying silver, positive ions generated from silver assist the photocatalytic action. For this reason, a photocatalytic member having a high photocatalytic action can be produced even in a place with a relatively small amount of light such as indoors.

第1の発明によれば、容易に剥落しないようにバインダ樹脂に光触媒粒子を固着し、バインダ樹脂の層が有する光触媒粒子総量に応じた抗菌作用を有する光触媒部材を製造できる。また第2の発明によれば、揮発性成分が大気中に発散しやすくなる。更に第3の発明によれば、高い光触媒作用を有する光触媒部材を製造可能である。   According to the first invention, it is possible to manufacture a photocatalyst member having antibacterial action according to the total amount of photocatalyst particles contained in the binder resin layer by fixing the photocatalyst particles to the binder resin so that they do not easily peel off. Further, according to the second invention, volatile components are easily emitted into the atmosphere. Furthermore, according to the third invention, a photocatalytic member having a high photocatalytic action can be produced.

以下に本発明を実施するための最良の形態を図面を用いて説明する。図1は、本実施例の静電塗装機12と光触媒作用を付与すべき部材2との位置関係を示す。
本実施例における光触媒部材の製造方法は、分散工程、静電工程及び乾燥工程とからなり、以下、順に説明する。
The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 shows the positional relationship between the electrostatic coating machine 12 of this embodiment and the member 2 to which photocatalysis is to be imparted.
The manufacturing method of the photocatalyst member in a present Example consists of a dispersion | distribution process, an electrostatic process, and a drying process, and is demonstrated in order below.

[分散工程]
エタノール(揮発性成分の一例)に、銀を担持してなるアナターゼ型二酸化チタン(光触媒粒子の一例であり、以下、銀担持二酸化チタンと呼ぶ)を密閉可能な攪拌容器13に投入する。
このときエタノール100重量部に対して、0.1〜3.0重量部の銀担持二酸化チタンを投入する。投入する銀担持二酸化チタンが0.1重量部未満であると、銀担持二酸化チタンに由来する抗菌作用自体が減少し、実用的な抗菌作用を発揮する光触媒部材とならない。またエタノール100重量部に対して3.0重量部よりも多くの銀担持二酸化チタンを投入したとする。この場合、電荷分散の極性を失い分散性が崩れ、銀担持二酸化チタンが凝集して沈降する。換言すると、エタノールより受ける電気的影響よりも銀担持二酸化チタン間で生じる分子間力が優り、銀担持二酸化チタン同士がその分子間力により互いに引き合い凝集して大きな塊となり沈降する。適度な分散性を確保しつつ実用的な抗菌作用を得るには、エタノール100重量部に対して0.2〜0.6重量部の銀担持二酸化チタンを投入する。
[Dispersion process]
Anatase-type titanium dioxide (an example of photocatalyst particles, hereinafter referred to as silver-carrying titanium dioxide) formed by supporting silver in ethanol (an example of a volatile component) is put into a sealable stirring vessel 13.
At this time, 0.1 to 3.0 parts by weight of silver-supported titanium dioxide is added to 100 parts by weight of ethanol. When the amount of the silver-supported titanium dioxide to be added is less than 0.1 parts by weight, the antibacterial action itself derived from the silver-supported titanium dioxide is reduced, and a photocatalytic member that exhibits a practical antibacterial action cannot be obtained. Further, it is assumed that more silver-supported titanium dioxide is added than 3.0 parts by weight with respect to 100 parts by weight of ethanol. In this case, the polarity of charge dispersion is lost, the dispersibility is lost, and the silver-supported titanium dioxide aggregates and settles. In other words, the intermolecular force generated between the silver-carrying titanium dioxides is superior to the electrical influence received from ethanol, and the silver-carrying titanium dioxides are attracted to each other by the intermolecular force and aggregate to form a large lump. In order to obtain a practical antibacterial action while ensuring appropriate dispersibility, 0.2 to 0.6 parts by weight of silver-supported titanium dioxide is added to 100 parts by weight of ethanol.

更にエタノール100重量部に対して5〜15重量部の水を添加してもよい。エタノール中の銀担持二酸化チタンに水分子が配位し、銀担持二酸化チタンがエタノール中に安定して分散する。エタノール100重量部に対して15重量部以下の水を添加するのであれば、後述の浮遊状態時にほぼ全ての水が発散するため、銀担持二酸化チタンの固着に著しい悪影響を及ぼすことはない。添加する水が15重量部より多いと、後述の浮遊状態で全ての水が発散せず、水に覆われた状態でバインダ樹脂表面に到着する銀担持二酸化チタンの割合が増加する。水に覆われた銀担持二酸化チタンはその固着性が低下し、時間経過とともにバインダ樹脂層より剥離する。銀担持二酸化チタンが剥離した箇所はアバタのようになり、光触媒部材の見栄えが悪くなる。銀担持二酸化チタンをエタノール中に安定して分散しつつ、銀担持二酸化チタンの固着性を確実に発揮するには、エタノール100重量部に対して8〜12重量部の水を添加する。   Further, 5 to 15 parts by weight of water may be added to 100 parts by weight of ethanol. Water molecules coordinate to silver-supported titanium dioxide in ethanol, and silver-supported titanium dioxide is stably dispersed in ethanol. If 15 parts by weight or less of water is added with respect to 100 parts by weight of ethanol, almost all of the water will diverge in the floating state described later, so that there is no significant adverse effect on the fixation of the silver-supported titanium dioxide. When the amount of water to be added is more than 15 parts by weight, all the water does not diverge in a floating state to be described later, and the ratio of silver-carrying titanium dioxide that reaches the surface of the binder resin while being covered with water increases. The silver-carrying titanium dioxide covered with water loses its adhesiveness and peels from the binder resin layer over time. The part where the silver-supported titanium dioxide is peeled becomes like an avatar, and the appearance of the photocatalyst member is deteriorated. In order to reliably exhibit the adhesiveness of the silver-supported titanium dioxide while stably dispersing the silver-supported titanium dioxide in ethanol, 8 to 12 parts by weight of water is added to 100 parts by weight of ethanol.

そして攪拌容器13を密閉し、プロペラ付きの攪拌機14にて、攪拌容器13内の銀担持二酸化チタンがエタノール中に均一に分散するように攪拌する。こうして、銀担持二酸化チタンを分散状態で含有するエタノール溶液(揮発性溶液の一例であり、以下、単にエタノール溶液と呼ぶ)を調製する。なお、調製後すぐに次の静電工程に移ってもよいが、攪拌機14で攪拌している間は銀担持二酸化チタンの凝縮が抑えられるので、密閉された攪拌容器13内でエタノール溶液を保管してもよい。   Then, the stirring vessel 13 is sealed, and stirred with a propeller equipped stirrer 14 so that the silver-supported titanium dioxide in the stirring vessel 13 is uniformly dispersed in ethanol. In this way, an ethanol solution containing silver-supported titanium dioxide in a dispersed state (an example of a volatile solution, hereinafter simply referred to as an ethanol solution) is prepared. In addition, although it may move to the following electrostatic process immediately after preparation, since the condensation of silver carrying | support titanium dioxide is suppressed during stirring with the stirrer 14, ethanol solution is stored in the sealed stirring container 13. May be.

[静電工程]
次にエタノール溶液を、第1チューブ11を通して加温筒10に送り込み加温する。
加温温度は15℃以上であることが好ましく、30℃以上であると更に好ましい。加温温度が15℃未満であると揮発性成分の発散促進効果が期待できない。また加温温度の上限は、使用する揮発性成分の沸点に応じて設定でき、安全性を考慮すると60℃以下に設定することが好ましい。安全性を考慮しつつ揮発性成分の発散促進効果を得る温度は30℃〜50℃である。
[Electrostatic process]
Next, the ethanol solution is sent to the heating cylinder 10 through the first tube 11 and heated.
The heating temperature is preferably 15 ° C. or higher, and more preferably 30 ° C. or higher. If the heating temperature is less than 15 ° C., the effect of promoting the diffusion of volatile components cannot be expected. The upper limit of the heating temperature can be set according to the boiling point of the volatile component to be used, and is preferably set to 60 ° C. or less in consideration of safety. The temperature for obtaining the effect of promoting the emission of volatile components while considering safety is 30 ° C to 50 ° C.

そして加温したエタノール溶液を、第2チューブ9を通して静電ガン8に送り込む。静電ガン8は、高圧発生器(図示しない)の負極(陰極)に通じている。静電ガン8と対向位置に配置された部材2は予め接地されている。このため負極に通じた静電ガン8を適切な位置に配置することで部材2が正極となる。こうして、静電ガン8と部材2との間に静電界(電気的な引力を受ける範囲)を形成する。なお使用電圧は、例えば25kV〜60kVである。
エタノール溶液を静電ガン8により拡散噴霧することで、エタノール溶液中の銀担持二酸化チタンは負に帯電する。以下、負に帯電した銀担持二酸化チタンに6の符号を付す。
The heated ethanol solution is sent to the electrostatic gun 8 through the second tube 9. The electrostatic gun 8 communicates with a negative electrode (cathode) of a high voltage generator (not shown). The member 2 disposed at a position facing the electrostatic gun 8 is grounded in advance. For this reason, the member 2 becomes a positive electrode by disposing the electrostatic gun 8 leading to the negative electrode at an appropriate position. In this way, an electrostatic field (a range that receives an electric attractive force) is formed between the electrostatic gun 8 and the member 2. The working voltage is, for example, 25 kV to 60 kV.
By diffusing and spraying the ethanol solution with the electrostatic gun 8, the silver-supported titanium dioxide in the ethanol solution is negatively charged. Hereinafter, the negatively charged silver-carrying titanium dioxide is denoted by the symbol 6.

上述の作業と平行して、熱硬化性アクリル樹脂を適当な溶剤に溶き、熱硬化性アクリル樹脂を含む溶液4(バインダ樹脂の一例であり、以下、熱可塑性アクリル樹脂溶液4と呼ぶ)とした後、静電ガン8と対向する部材2表面に塗布する。塗布された熱硬化性アクリル樹脂溶液4表面が未硬化の状態のうちに熱硬化性アクリル樹脂溶液4表面に向けてエタノール溶液を静電ガン8より噴霧する。
なお静電ガン8のノズル口径は、例えばφ0.8〜1.6mmである。
In parallel with the above-mentioned operation, a thermosetting acrylic resin was dissolved in an appropriate solvent to prepare a solution 4 containing a thermosetting acrylic resin (an example of a binder resin, hereinafter referred to as a thermoplastic acrylic resin solution 4). After that, it is applied to the surface of the member 2 facing the electrostatic gun 8. The ethanol solution is sprayed from the electrostatic gun 8 toward the surface of the thermosetting acrylic resin solution 4 while the surface of the applied thermosetting acrylic resin solution 4 is uncured.
The nozzle diameter of the electrostatic gun 8 is, for example, φ0.8 to 1.6 mm.

なお熱硬化性アクリル樹脂溶液4表面が未硬化の状態とは、後述の通り、負に帯電した銀担持二酸化チタン6に接する熱硬化性アクリル樹脂溶液4の液面が界面張力により盛り上がるだけの流動性を維持する状態のことをいう。例えば人の感触でいうと、指の腹で熱硬化性アクリル樹脂溶液4を軽く触れたときに同樹脂溶液4が指の腹に付着する状態のことをいう。   The uncured state of the surface of the thermosetting acrylic resin solution 4 means that the liquid surface of the thermosetting acrylic resin solution 4 in contact with the negatively charged silver-carrying titanium dioxide 6 swells as a result of interfacial tension, as will be described later. This refers to the state of maintaining sex. For example, in terms of human touch, it means a state in which the resin solution 4 adheres to the finger belly when the thermosetting acrylic resin solution 4 is lightly touched with the finger belly.

このとき、エタノール溶液中のエタノールが途中で発散し、負に帯電した銀担持二酸化チタン6のみが熱硬化性アクリル樹脂溶液4表面に到達する条件で拡散噴射する。例えば、静電ガン8と部材2とを500mm離して配置した場合、吐出圧力0.5〜1.5Kg/cmの範囲及びエア圧力1.5〜3.0Kg/cmの範囲でエタノール溶液を噴霧する。
上記条件で噴霧された霧状のエタノール溶液は、熱硬化性アクリル樹脂溶液4表面に到達する途中においてその直進力を失い、熱硬化性アクリル樹脂溶液4近傍において浮遊状態となる。例えば図1で説明すると、アルコール溶液が直進力を有する範囲(アルコール溶液が拡散する範囲)がS1であり、アルコール溶液が浮遊する範囲がS2となる。浮遊状態で大気中を漂う間にエタノール溶液中のエタノールが発散し、エタノール溶液時の分散状態を保持した負に帯電した銀担持二酸化チタン6が熱硬化性アクリル樹脂溶液4表面に向けて電気的に引き寄せられる。
At this time, the ethanol in the ethanol solution diverges in the middle, and only the negatively charged silver-carrying titanium dioxide 6 is diffused and jetted on the condition that it reaches the surface of the thermosetting acrylic resin solution 4. For example, when the electrostatic gun 8 and the member 2 are arranged at a distance of 500 mm, the ethanol solution can be used in a range of discharge pressure of 0.5 to 1.5 kg / cm 2 and air pressure of 1.5 to 3.0 kg / cm 2. Spray.
The mist-like ethanol solution sprayed under the above conditions loses its straight running force in the middle of reaching the surface of the thermosetting acrylic resin solution 4 and becomes a floating state in the vicinity of the thermosetting acrylic resin solution 4. For example, referring to FIG. 1, the range in which the alcohol solution has a straight force (the range in which the alcohol solution diffuses) is S1, and the range in which the alcohol solution floats is S2. The ethanol in the ethanol solution diverges while floating in the air in a floating state, and the negatively charged silver-carrying titanium dioxide 6 that maintains the dispersed state in the ethanol solution is electrically directed toward the thermosetting acrylic resin solution 4 surface. Be drawn to.

図2は、静電工程及び後の乾燥工程における光触媒粒子の挙動を説明するための説明図である。同図(A)及び(B)は、静電工程時の負に帯電した銀担持二酸化チタン6のようすである。
熱硬化性アクリル樹脂溶液4表面に到達した負に帯電した銀担持二酸化チタン6は、未硬化状態の熱硬化性アクリル樹脂溶液4に電気的な吸引力のみによって接する(図2Aを参照)。負に帯電した銀担持二酸化チタン6には熱硬化性アクリル樹脂溶液4内部に入り込むだけの直進力はないため、負に帯電した銀担持二酸化チタン6が熱硬化性アクリル樹脂溶液4表面に接した状態で動きを止め、これにより負に帯電した銀担持二酸化チタン6が露出状態で局在することとなる。このとき、負に帯電した銀担持二酸化チタン6と熱硬化性アクリル樹脂溶液4の相互間に働く界面張力によって、負に帯電した銀担持二酸化チタン6との接点付近の熱硬化性アクリル樹脂溶液4液面が盛り上がりながら負に帯電した銀担持二酸化チタン6に接していく。このため両者の隙間が減少する(図2Bを参照)。
FIG. 2 is an explanatory diagram for explaining the behavior of the photocatalyst particles in the electrostatic process and the subsequent drying process. FIGS. 4A and 4B show the negatively charged silver-carrying titanium dioxide 6 during the electrostatic process.
The negatively-charged silver-carrying titanium dioxide 6 that has reached the surface of the thermosetting acrylic resin solution 4 comes into contact with the uncured thermosetting acrylic resin solution 4 only by an electric attractive force (see FIG. 2A). Since the negatively charged silver-carrying titanium dioxide 6 does not have a linear force enough to enter the thermosetting acrylic resin solution 4, the negatively charged silver-carrying titanium dioxide 6 is in contact with the surface of the thermosetting acrylic resin solution 4. In this state, the movement is stopped, so that the negatively charged silver-carrying titanium dioxide 6 is localized in the exposed state. At this time, the thermosetting acrylic resin solution 4 in the vicinity of the contact point with the negatively charged silver-carrying titanium dioxide 6 due to the interfacial tension between the negatively-charged silver-carrying titanium dioxide 6 and the thermosetting acrylic resin solution 4. As the liquid level rises, it comes into contact with the negatively charged silver-carrying titanium dioxide 6. This reduces the gap between them (see FIG. 2B).

なお、負に帯電した銀担持二酸化チタン6がエタノールで覆われていると、銀担持二酸化チタン6と熱硬化性アクリル樹脂溶液4とが直接接触しないので、上記界面張力による効果が得られない。また熱硬化性アクリル樹脂溶液4はエタノール中にほとんど溶け込まない。従ってエタノールは、銀担持二酸化チタン6の上記固着を阻害する。このため、エタノール溶液中のエタノールが途中で発散し、負に帯電した銀担持二酸化チタン6が熱硬化性アクリル樹脂溶液4表面に到達する条件で噴霧することが必要である。
ただし、銀担持二酸化チタン6から完全にエタノールを除去する必要はなく、上述の界面張力が働くならば、多少のエタノールが残留していてもよい。
If the negatively charged silver-carrying titanium dioxide 6 is covered with ethanol, the silver-carrying titanium dioxide 6 and the thermosetting acrylic resin solution 4 are not in direct contact with each other, so that the effect of the interfacial tension cannot be obtained. Moreover, the thermosetting acrylic resin solution 4 hardly dissolves in ethanol. Therefore, ethanol inhibits the fixation of the silver-supported titanium dioxide 6. For this reason, it is necessary to spray the ethanol in the ethanol solution under the condition that the silver-carrying titanium dioxide 6 that has diverged on the way and reaches the surface of the thermosetting acrylic resin solution 4.
However, it is not necessary to completely remove ethanol from the silver-supported titanium dioxide 6, and some ethanol may remain as long as the above-described interfacial tension works.

[乾燥工程]
次に、熱硬化性アクリル樹脂溶液4を乾燥させる。乾燥法としては大気中に部材2を放置する自然乾燥でもよく、加熱装置(図示しない)にて部材2を乾燥する強制乾燥でもよい。例えば焼付処理を行う場合、静電工程の終了した部材2を焼付炉(図示しない)に入れて加熱する。加熱温度及び加熱時間は、使用するバインダ樹脂により適宜変更可能であり、例えば熱硬化性アクリル樹脂4の場合には、150℃〜160℃で30分〜40分加熱する。また熱硬化性メラミン樹脂の場合には、110℃〜130℃で20分〜45分加熱する。
[Drying process]
Next, the thermosetting acrylic resin solution 4 is dried. The drying method may be natural drying in which the member 2 is left in the atmosphere, or forced drying in which the member 2 is dried with a heating device (not shown). For example, when performing a baking process, the member 2 after the electrostatic process is put into a baking furnace (not shown) and heated. The heating temperature and the heating time can be appropriately changed depending on the binder resin to be used. For example, in the case of the thermosetting acrylic resin 4, heating is performed at 150 to 160 ° C. for 30 to 40 minutes. In the case of a thermosetting melamine resin, it is heated at 110 to 130 ° C. for 20 to 45 minutes.

上述の条件で部材2を乾燥し、熱硬化性アクリル樹脂溶液4中の熱硬化性アクリル樹脂を硬化して引き締める。銀担持二酸化チタン(負には帯電していないので、便宜上7の符号を付す)は、この引き締めに追従して熱硬化性アクリル樹脂溶液4内に沈み込む。このため銀担持二酸化チタン7は、熱硬化性アクリル樹脂溶液4を乾燥してなる熱硬化性アクリル樹脂層5に適度に埋め込まれて固着され、容易には剥落しない状態となる。
図2の(C)に、乾燥工程後の銀担持二酸化チタン7のようすを示す。
The member 2 is dried under the above-described conditions, and the thermosetting acrylic resin in the thermosetting acrylic resin solution 4 is cured and tightened. Silver-carrying titanium dioxide (which is not negatively charged and therefore given the sign of 7 for convenience) sinks into the thermosetting acrylic resin solution 4 following this tightening. Therefore, the silver-carrying titanium dioxide 7 is appropriately embedded and fixed in the thermosetting acrylic resin layer 5 formed by drying the thermosetting acrylic resin solution 4 and is not easily peeled off.
FIG. 2C shows the appearance of the silver-supported titanium dioxide 7 after the drying step.

図3は、銀担持二酸化チタン7の配置状態を示す光触媒部材20の断面図である。
このように、銀担持二酸化チタン7を容易に剥落しないように熱硬化性アクリル樹脂層5に固着する。固着した銀担持二酸化チタン7は、上述の通り、熱硬化性アクリル樹脂層5の表面に露出状態で局在する。よって、熱硬化性アクリル樹脂層5が有する銀担持二酸化チタン7総量に応じた抗菌作用を有する光触媒部材20を製造することができる。
FIG. 3 is a cross-sectional view of the photocatalytic member 20 showing the arrangement of the silver-carrying titanium dioxide 7.
In this way, the silver-carrying titanium dioxide 7 is fixed to the thermosetting acrylic resin layer 5 so as not to easily peel off. The fixed silver-carrying titanium dioxide 7 is localized in the exposed state on the surface of the thermosetting acrylic resin layer 5 as described above. Therefore, the photocatalytic member 20 having an antibacterial action according to the total amount of the silver-carrying titanium dioxide 7 included in the thermosetting acrylic resin layer 5 can be manufactured.

以下、本発明を試験例に基づいて説明する。なお本発明はこの試験例に限定されない。
[試験例1]
(実施例1〜3の調製)
(1)エタノール溶液(揮発性溶液)の調製
水100重量部に対して5.0重量部の銀担持二酸化チタンを投入して銀担持二酸化チタン分散水溶液を調製した。エタノール溶媒90重量部に対して10重量部の銀担持二酸化チタン分散水溶液を投入し、エタノール溶液を調製した。そしてプロペラ付攪拌機にて10分間攪拌することでエタノール溶液を調製した。
(2)熱硬化性アクリル樹脂溶液(バインダ樹脂)の調製
熱硬化性アクリル樹脂(本試験例では、大日本塗料株式会社製アクローゼ#6000)を溶剤(本試験例では、大日本塗料株式会社製アクローゼ#6000シンナー)に溶き、熱硬化性アクリル樹脂溶液(不揮発分50〜60%)とした。この熱硬化性アクリル樹脂溶液をアルミ製板(50mm×50mm、板厚1.5mm)表面に塗布し、厚み10μmのバインダ樹脂溶液の未硬化層が形成されてなるバインダ樹脂片を作製した。
(3)静電塗装及び焼付処理
静電塗装は、室内(温度10℃及び湿度40℃)で行った(図1を参照)。
上記バインダ樹脂片を、静電ガンより500mm離して配置した。上記エタノール溶液は、加温筒にて20℃に加温した。そして静電ガン(使用電圧30kV、ノズル口径φ1.1mm)よりバインダ樹脂片のバインダ樹脂溶液表面に向けてエタノール溶液を8秒間噴霧した(噴霧条件:吐出圧力0.8Kg/cm、エア圧力2.5Kg/cm)。その後、バインダ試験片を加熱装置に入れ、150℃で30分間焼成処理を行い、各試験片を調製した。
Hereinafter, the present invention will be described based on test examples. The present invention is not limited to this test example.
[Test Example 1]
(Preparation of Examples 1-3)
(1) Preparation of ethanol solution (volatile solution) 5.0 parts by weight of silver-supported titanium dioxide was added to 100 parts by weight of water to prepare a silver-supported titanium dioxide dispersed aqueous solution. 10 parts by weight of a silver-supported titanium dioxide dispersion aqueous solution was added to 90 parts by weight of an ethanol solvent to prepare an ethanol solution. And the ethanol solution was prepared by stirring for 10 minutes with the stirrer with a propeller.
(2) Preparation of thermosetting acrylic resin solution (binder resin) Thermosetting acrylic resin (Acroze # 6000 manufactured by Dainippon Paint Co., Ltd. in this test example) was used as a solvent (Dainippon Paint Co., Ltd. manufactured in this test example). It was dissolved in Acrose # 6000 thinner) to obtain a thermosetting acrylic resin solution (non-volatile content: 50 to 60%). This thermosetting acrylic resin solution was applied to the surface of an aluminum plate (50 mm × 50 mm, plate thickness 1.5 mm) to produce a binder resin piece in which an uncured layer of a binder resin solution having a thickness of 10 μm was formed.
(3) Electrostatic coating and baking treatment The electrostatic coating was performed indoors (temperature 10 ° C. and humidity 40 ° C.) (see FIG. 1).
The binder resin piece was placed 500 mm away from the electrostatic gun. The ethanol solution was heated to 20 ° C. with a heating cylinder. Then, an ethanol solution was sprayed for 8 seconds from the electrostatic gun (operating voltage 30 kV, nozzle diameter φ 1.1 mm) toward the surface of the binder resin solution of the binder resin piece (spraying condition: discharge pressure 0.8 kg / cm 2 , air pressure 2 .5 Kg / cm 2 ). Then, the binder test piece was put into the heating apparatus, the baking process was performed for 30 minutes at 150 degreeC, and each test piece was prepared.

上記の条件において、バインダ樹脂片を作製(熱硬化性アクリル樹脂溶液をアルミ製板に塗布)してから5分後にエタノール溶液を噴霧した後に焼成したものを実施例1の試験片とした。バインダ樹脂片を作製してから10分後にエタノール溶液を噴霧した後に焼成したものを実施例2の試験片とした。バインダ樹脂片を作製してから15分後にエタノール溶液を噴霧した後に焼成したものを実施例3の試験片とした。   Under the above-described conditions, a test piece of Example 1 was obtained by baking a binder resin piece (applying a thermosetting acrylic resin solution on an aluminum plate) and spraying an ethanol solution 5 minutes later. A test piece of Example 2 was obtained by spraying an ethanol solution 10 minutes after producing the binder resin piece and then firing. A test piece of Example 3 was obtained by spraying an ethanol solution 15 minutes after producing the binder resin piece and then firing.

(比較例1及び2の調製)
比較例1として、熱硬化性アクリル樹脂及び銀担持二酸化チタンを酢酸エチルに投入して比較溶液を調製した。上記各成分の混合比率は、熱硬化性アクリル樹脂:銀担持二酸化チタン分散水溶液:シンナー溶媒=1:6:3とした。つまり、銀担持二酸化チタンに対して熱硬化性アクリル樹脂を必要最小限のみ加えた。この比較溶液を、アルミ製板(50mm×50mm、板厚1.5mm)表面に塗布し、厚み10μmの比較バインダ樹脂層が形成されてなるバインダ樹脂片を作製した。このバインダ樹脂片を、上記実施例と同様の条件で焼成処理したものを比較例1の試験片とした。
また比較例2として、上記アルミ製板(バインダ樹脂層を形成しない状態)に抗菌性能試験を行った。
(Preparation of Comparative Examples 1 and 2)
As Comparative Example 1, a thermosetting acrylic resin and silver supported titanium dioxide were added to ethyl acetate to prepare a comparative solution. The mixing ratio of the above components was thermosetting acrylic resin: silver-supported titanium dioxide dispersed aqueous solution: thinner solvent = 1: 6: 3. That is, only the minimum necessary thermosetting acrylic resin was added to the silver-supported titanium dioxide. This comparative solution was applied to the surface of an aluminum plate (50 mm × 50 mm, plate thickness 1.5 mm) to produce a binder resin piece in which a comparative binder resin layer having a thickness of 10 μm was formed. A test piece of Comparative Example 1 was obtained by baking this binder resin piece under the same conditions as in the above example.
Moreover, as Comparative Example 2, an antibacterial performance test was performed on the aluminum plate (in a state where no binder resin layer was formed).

(抗菌性能試験)
フィルム密着法(JIS Z 2801)による抗菌性能試験を実施例及び比較例の各試験片に対して実施した。抗菌性能試験に用いた菌は、大腸菌(初発菌数2.1×10)であった。焼成処理後の各試験片に対して抗菌性能試験(第1次抗菌性能試験)を行った。更に、焼成処理後の各試験片を、99%アルコールの染み込んだ布で365回拭いた後に抗菌性能試験を行った(第2次抗菌性能試験)。
(Antimicrobial performance test)
The antibacterial performance test by the film adhesion method (JIS Z 2801) was performed on each test piece of the example and the comparative example. The bacteria used for the antibacterial performance test was Escherichia coli (initial number of bacteria 2.1 × 10 5 ). An antibacterial performance test (first antibacterial performance test) was performed on each test piece after the firing treatment. Furthermore, each test piece after the baking treatment was wiped 365 times with a cloth soaked with 99% alcohol and then subjected to an antibacterial performance test (second antibacterial performance test).



表1は、実施例1〜3及び比較例1及び2の抗菌性能試験の結果(菌数)を示した表である。
表1より、実施例1〜3及び比較例1は、第1次抗菌性能試験において同様の抗菌作用を発揮した。つまり実施例1〜3は、銀担持二酸化チタンを多量に含有する比較例1と同様の良好な抗菌作用を発揮することが判明した。
また実施例1〜3は、第2次抗菌性能試験においても良好な抗菌作用を発揮した。つまり実施例1〜3では、各試験片を99%アルコールを染み込ませた布で365回拭いても実用的な抗菌作用が認められた。一方、比較例1では、抗菌作用の急激な低下が認められた。これにより実施例1〜3では、比較例1と比べて、熱硬化性アクリル樹脂層に対して銀担持二酸化チタンがより強固に固着し、容易には剥離しないことが判明した。
Table 1 is a table showing the results (the number of bacteria) of the antibacterial performance tests of Examples 1 to 3 and Comparative Examples 1 and 2.
From Table 1, Examples 1-3 and Comparative Example 1 exhibited the same antibacterial action in the first antibacterial performance test. That is, it turned out that Examples 1-3 exhibit the same favorable antibacterial action as the comparative example 1 which contains a large amount of silver carrying | support titanium dioxide.
Moreover, Examples 1-3 demonstrated the favorable antimicrobial effect also in the 2nd antimicrobial performance test. That is, in Examples 1 to 3, practical antibacterial action was recognized even when each test piece was wiped 365 times with a cloth soaked with 99% alcohol. On the other hand, in Comparative Example 1, a sharp decrease in antibacterial action was observed. Thereby, in Examples 1-3, compared with the comparative example 1, it turned out that silver carrying | support titanium dioxide adheres more firmly with respect to a thermosetting acrylic resin layer, and does not peel easily.

[試験例2]
(実施例4〜11の調製)
揮発性溶液として、上記実施例1〜3の場合と同一成分及び同一条件で調製したエタノール溶液を使用した。
バインダ樹脂として、熱硬化性アクリル樹脂(本試験例では、大日本塗料株式会社製アクローゼ#6000)を溶剤(大日本塗料株式会社製アクローゼ#6000シンナー)に溶いたアクリル樹脂クリア(不揮発分45〜50%)を使用した。アクリル樹脂クリアは、その成分中に二酸化チタン(顔料成分)を含まない。このアクリル樹脂クリアをガラス製板(50mm×50mm、板厚1.5mm)表面に塗布し、厚み10μmのアクリル樹脂クリアの未硬化層が形成されてなるバインダ樹脂片を作製した。静電塗装及び焼付処理は、[試験例1]に示す条件と同一条件で行った。
[Test Example 2]
(Preparation of Examples 4-11)
As a volatile solution, an ethanol solution prepared under the same components and the same conditions as those in Examples 1 to 3 was used.
As the binder resin, an acrylic resin clear (non-volatile content 45 to 45) obtained by dissolving a thermosetting acrylic resin (in this test example, Akrose # 6000 manufactured by Dainippon Paint Co., Ltd.) in a solvent (acrose # 6000 thinner manufactured by Dainippon Paint Co., Ltd.). 50%) was used. The acrylic resin clear does not contain titanium dioxide (pigment component) in its components. This acrylic resin clear was applied to the surface of a glass plate (50 mm × 50 mm, plate thickness 1.5 mm) to produce a binder resin piece in which an uncured layer of acrylic resin clear having a thickness of 10 μm was formed. The electrostatic coating and baking treatment were performed under the same conditions as shown in [Test Example 1].

上記の条件において、バインダ樹脂片を作製(アクリル樹脂クリアをガラス製板に塗布)してから5分後にエタノール溶液を噴霧した後に焼成したものを実施例4の試験片とした。以下順に、10分後に噴霧した後に焼成したものを実施例5の試験片、15分後に噴霧した後に焼成したものを実施例6の試験片、20分後に噴霧した後に焼成したものを実施例7、30分後に噴霧した後に焼成したものを実施例8、40分後に噴霧した後に焼成したものを実施例9、50分後に噴霧した後に焼成したものを実施例10、そして60分後に噴霧した後に焼成したものを実施例11の試験片とした。
また比較例3として、上記ガラス製板(バインダ樹脂層を形成しない状態)に抗菌性能試験を行った。
Under the above conditions, a test piece of Example 4 was prepared by spraying an ethanol solution 5 minutes after producing a binder resin piece (applying acrylic resin clear on a glass plate) and then firing. In the following order, the sample that was fired after spraying after 10 minutes was fired after the test piece of Example 5, the test piece that was fired after spraying after 15 minutes was the test piece of Example 6, and the sample fired after being sprayed after 20 minutes was Example 7. Example 8 after spraying after 30 minutes, fired after spraying after 40 minutes, Example 9 after spraying after 40 minutes, Example 10 after spraying after spraying after 50 minutes, and after spraying after 60 minutes The fired product was used as a test piece of Example 11.
Further, as Comparative Example 3, an antibacterial performance test was performed on the glass plate (in a state where no binder resin layer was formed).

(抗菌性能試験)
抗菌性能試験は、上記[試験例1]と同様の条件で行い、抗菌性能試験に用いた菌は、黄色ブドウ球菌(Staphylococcusaureus NBRC 12732 初発菌数60,000)であった。焼成処理後の各試験片を、99%アルコールの染み込んだ布で365回拭いた後に抗菌性能試験を行った(第2次抗菌性能試験)。
(Antimicrobial performance test)
The antibacterial performance test was performed under the same conditions as in [Test Example 1], and the bacteria used in the antibacterial performance test was Staphylococcus aureus (Staphylococcus aureus NBRC 12732 initial bacterial count 60,000). Each test piece after the baking treatment was wiped 365 times with a cloth soaked with 99% alcohol and then subjected to an antibacterial performance test (second antibacterial performance test).

(走査型電子顕微鏡による断面撮影及びX線解析)
実施例5の試験片(10分後に噴霧したもの)を、バインダ樹脂層を垂直に切断した後、走査型電子顕微鏡にてその断面を撮影した(図4を参照)。
更に、実施例5の試験片のバインダ樹脂層表層を薄く切り取ることで得た試料をX線解析した(図5を参照)。
(Section imaging and X-ray analysis using a scanning electron microscope)
The test piece of Example 5 (sprayed after 10 minutes) was taken with a scanning electron microscope after the binder resin layer was cut vertically (see FIG. 4).
Further, a sample obtained by thinly cutting the surface layer of the binder resin layer of the test piece of Example 5 was subjected to X-ray analysis (see FIG. 5).


表2は、各実施例4〜11及び比較例3の抗菌性能試験の結果(菌数)を示した表である。
表2より、実施例4〜11のいずれにおいても良い抗菌作用を示したことから、アクリル樹脂クリアの未硬化の状態は5〜60分後まで継続することが分かった。またアクリル樹脂クリアを塗布してから40分経過前にエタノール溶液を噴霧すると、バインダ樹脂表面に銀担持二酸化チタンが強く固着することがわかった。
更に、大腸菌(5μm程度)よりも小さい黄色ブドウ球菌(1μm程度)であっても抗菌作用を発揮することが分かった。つまり本試験においては、1μm程度の小さな微生物であっても殺菌できるほど、光触媒部材表面に固着した銀担持二酸化チタン同士の間隔隙間が小さく、銀担持二酸化チタンが密集状態で固着したことがわかった。
Table 2 is a table showing the results (bacterial count) of the antibacterial performance tests of Examples 4 to 11 and Comparative Example 3.
From Table 2, it was found that the uncured state of the acrylic resin clear continued until 5 to 60 minutes after showing good antibacterial action in any of Examples 4 to 11. Further, it was found that when the ethanol solution was sprayed 40 minutes before the acrylic resin clear was applied, the silver-supported titanium dioxide strongly adhered to the surface of the binder resin.
Furthermore, it was found that even S. aureus (about 1 μm) smaller than E. coli (about 5 μm) exerts an antibacterial action. In other words, in this test, it was found that the gap between the silver-carrying titanium dioxides adhered to the surface of the photocatalyst member was so small that even small microorganisms of about 1 μm could be sterilized, and the silver-carrying titanium dioxides adhered in a dense state .

図4は、走査型電子顕微鏡によるバインダ樹脂層(実施例5)の断面を示す図である。
走査型電子顕微鏡による断面撮影によって、バインダ樹脂表面に銀担持二酸化チタンが固着したことが判明した。
図5は、バインダ樹脂層表層成分のX線解析データを示す図である。
X線解析において、バインダ樹脂層表層にチタン(Ti)が含まれていることがわかった。本試験に用いたアクリル樹脂クリアにはチタン(Ti)は含有されていない。つまり、バインダ樹脂表面に固着した物質が銀担持二酸化チタンであることがX線解析データから証明された。
FIG. 4 is a view showing a cross section of the binder resin layer (Example 5) by a scanning electron microscope.
Cross-sectional photography with a scanning electron microscope revealed that silver-carrying titanium dioxide was fixed on the surface of the binder resin.
FIG. 5 is a diagram showing X-ray analysis data of the surface component of the binder resin layer.
X-ray analysis revealed that titanium (Ti) was contained in the surface layer of the binder resin layer. The acrylic resin clear used in this test does not contain titanium (Ti). That is, it was proved from the X-ray analysis data that the substance fixed on the surface of the binder resin was silver-supported titanium dioxide.

本発明の光触媒部材の製造方法は、本実施の形態で説明した外観、構成、処理、表示例等に限定されず、種々の変更、追加、削除が可能である。
本実施例では、熱硬化性アクリル樹脂溶液をバインダ樹脂として使用する例を説明したが、その他に、シリコン樹脂、アルキド樹脂、アミノアルキド樹脂、ビニル樹脂、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂等の溶剤系塗料やUV硬化型樹脂を使用可能である。
上記樹脂を溶く溶剤としては、使用するバインダ樹脂を溶くことが可能な脂肪族炭化水素類、芳香族炭化水素類、ハロゲン化炭化水素類、アルコール類、ケトン類、エステル類、エーテル類など塗料用溶剤として用いられる溶剤を使用可能であり、これらの溶剤を2種類以上混合して使用してもよい。更に、これらの溶剤に顔料などの着色成分を添加してもよい。
The manufacturing method of the photocatalyst member of the present invention is not limited to the appearance, configuration, processing, display example, and the like described in the present embodiment, and various changes, additions, and deletions are possible.
In this embodiment, an example in which a thermosetting acrylic resin solution is used as a binder resin has been described. In addition, solvents such as silicon resin, alkyd resin, aminoalkyd resin, vinyl resin, epoxy resin, polyester resin, and urethane resin are used. System paints and UV curable resins can be used.
Solvents that dissolve the resin include aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, alcohols, ketones, esters, and ethers that can dissolve the binder resin used. A solvent used as a solvent can be used, and two or more of these solvents may be mixed and used. Furthermore, coloring components such as pigments may be added to these solvents.

例えばフタル酸樹脂、アクリル樹脂又は反応硬化型アクリルウレタン樹脂などの自然乾燥(常温乾燥)型塗料溶液をバインダ樹脂として使用することも可能である。
また同様に、水系アクリルエマルション樹脂溶液もバインダ樹脂として使用可能である。アクリルエマルション樹脂溶液は、溶液中の揮発性成分が発散することでアクリル樹脂同士が融着してバインダ樹脂層を形成するので自然乾燥に適する。
For example, a natural drying (room temperature drying) type coating solution such as a phthalic acid resin, an acrylic resin, or a reaction-curing acrylic urethane resin may be used as the binder resin.
Similarly, an aqueous acrylic emulsion resin solution can also be used as the binder resin. The acrylic emulsion resin solution is suitable for natural drying because the volatile components in the solution diverge and the acrylic resins are fused to form a binder resin layer.

またバインダ樹脂として、液状ポリエチレン樹脂、不飽和ポリエステル樹脂やポリウレタン樹脂などのバインダ樹脂同士が重合反応を起こすことで(ゾルゲル変化により)難溶性バインダ樹脂層を形成する重合性液状樹脂を使用できる。これらの重合性液状樹脂は溶剤に溶く必要がない。そして、重合反応により硬化バインダ樹脂層を形成するので、自然乾燥に適する。
更に、橋架剤を加えることで縮合反応を起こすポリエステル樹脂などの2液形常温硬化塗料も使用することができ、これらのバインダ樹脂も自然乾燥に適する。
Further, as the binder resin, a polymerizable liquid resin that forms a poorly soluble binder resin layer by causing a polymerization reaction between binder resins such as liquid polyethylene resin, unsaturated polyester resin, and polyurethane resin (by sol-gel change) can be used. These polymerizable liquid resins do not need to be dissolved in a solvent. And since a hardening binder resin layer is formed by a polymerization reaction, it is suitable for natural drying.
Furthermore, a two-component room temperature curing paint such as a polyester resin that causes a condensation reaction by adding a crosslinking agent can be used, and these binder resins are also suitable for natural drying.

更に溶融した樹脂をバインダ樹脂として使用することもできる。例えば、射出成形型のキャビティ内側面に予めエタノール溶液を噴霧しておく。そこに溶融した樹脂を流し込む。樹脂が硬化した後には、その表面に銀担持二酸化チタンが固着する。   Further, a molten resin can be used as the binder resin. For example, an ethanol solution is sprayed in advance on the inner surface of the cavity of the injection mold. Pour molten resin into it. After the resin is cured, silver-carrying titanium dioxide adheres to the surface.

静電塗装機と部材との位置関係を示す関係図である。It is a related figure which shows the positional relationship of an electrostatic coating machine and a member. 静電工程及び乾燥工程における光触媒粒子の挙動を説明するための説明図である。It is explanatory drawing for demonstrating the behavior of the photocatalyst particle in an electrostatic process and a drying process. 光触媒粒子の配置状態を示す光触媒部材の断面図である。It is sectional drawing of the photocatalyst member which shows the arrangement | positioning state of a photocatalyst particle. 走査型電子顕微鏡によるバインダ樹脂層の断面を示す図である。It is a figure which shows the cross section of the binder resin layer by a scanning electron microscope. バインダ樹脂層表層成分のX線解析データを示す図である。It is a figure which shows the X-ray-analysis data of a binder resin layer surface layer component. 従来製造方法における光触媒粒子の挙動を説明するための説明図である。It is explanatory drawing for demonstrating the behavior of the photocatalyst particle in a conventional manufacturing method.

符号の説明Explanation of symbols

2 部材
4 熱硬化性アクリル樹脂溶液
5 熱硬化性アクリル樹脂層
6 負に帯電した銀担持二酸化チタン
7 露出状態の銀担持二酸化チタン
8 静電ガン
9 第2チューブ
10 加温筒
11 第1チューブ
12 静電塗装機
13 攪拌容器
14 攪拌機
20 光触媒部材
2 Member 4 Thermosetting acrylic resin solution 5 Thermosetting acrylic resin layer 6 Negatively charged silver-carrying titanium dioxide 7 Exposed silver-carrying titanium dioxide 8 Electrostatic gun 9 Second tube 10 Heating cylinder 11 First tube 12 Electrostatic coating machine 13 Stirrer 14 Stirrer 20 Photocatalyst member

Claims (3)

光触媒粒子を部材に固着させることで光触媒機能を有する光触媒部材を製造する光触媒部材の製造方法において、
光触媒粒子を分散状態で含有する揮発性溶液を負に帯電させ、
前記部材表面にバインダ樹脂を塗布し、且つ該部材を正に帯電させ、
該バインダ樹脂表面が未硬化の状態のうちに、該バインダ樹脂表面に向けて、負に帯電した前記光触媒粒子を分散状態で含有する揮発性溶液を噴射するに際し、
前記負に帯電した光触媒粒子を分散状態で含有する揮発性溶液中の揮発性成分が途中で発散し、該負に帯電した光触媒粒子を分散状態で含有する揮発性溶液中の負に帯電した光触媒粒子が前記バインダ樹脂表面に到達する条件で噴射し、
前記光触媒粒子が前記バインダ樹脂に接した状態で乾燥させることを特徴とする光触媒部材の製造方法。
In the method for producing a photocatalyst member for producing a photocatalyst member having a photocatalytic function by fixing photocatalyst particles to the member,
A volatile solution containing the photocatalyst particles in a dispersed state is negatively charged,
A binder resin is applied to the surface of the member, and the member is positively charged;
When injecting a volatile solution containing the negatively charged photocatalyst particles in a dispersed state toward the binder resin surface while the binder resin surface is in an uncured state,
Volatile components in the volatile solution containing the negatively charged photocatalyst particles in a dispersed state are emitted in the middle, and the negatively charged photocatalyst in the volatile solution containing the negatively charged photocatalyst particles in a dispersed state Injecting under the condition that particles reach the binder resin surface,
The method for producing a photocatalyst member, wherein the photocatalyst particles are dried in contact with the binder resin.
前記負に帯電した光触媒粒子を分散状態で含有する揮発性溶液を加温状態で噴霧する請求項1に記載の光触媒部材の製造方法。   The method for producing a photocatalyst member according to claim 1, wherein a volatile solution containing the negatively charged photocatalyst particles in a dispersed state is sprayed in a heated state. 請求項1又は2に記載の光触媒部材の製造方法において、
前記光触媒粒子は、銀を担持してなるアナターゼ型二酸化チタンである光触媒部材の製造方法。

In the manufacturing method of the photocatalyst member according to claim 1 or 2,
The method for producing a photocatalyst member, wherein the photocatalyst particles are anatase-type titanium dioxide carrying silver.

JP2006053008A 2006-02-28 2006-02-28 Method for preparing photocatalyst member Pending JP2007229587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053008A JP2007229587A (en) 2006-02-28 2006-02-28 Method for preparing photocatalyst member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053008A JP2007229587A (en) 2006-02-28 2006-02-28 Method for preparing photocatalyst member

Publications (1)

Publication Number Publication Date
JP2007229587A true JP2007229587A (en) 2007-09-13

Family

ID=38550717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053008A Pending JP2007229587A (en) 2006-02-28 2006-02-28 Method for preparing photocatalyst member

Country Status (1)

Country Link
JP (1) JP2007229587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732564B1 (en) * 2014-03-12 2015-06-10 株式会社ペイントサービス Particle coating apparatus and particle coating method
JP2017213566A (en) * 2017-08-08 2017-12-07 株式会社ペイントサービス Particle applying device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150990A (en) * 1986-12-12 1988-06-23 キヤノン株式会社 Manufacture of resin molded product
JPH08112834A (en) * 1994-10-17 1996-05-07 Dainippon Ink & Chem Inc Production of colored plastic molded article
JP2001081409A (en) * 1999-09-14 2001-03-27 Daido Steel Co Ltd Anti-fungus coating agent, anti-fungus agent and method for inhibiting nosocomial infection
JP2001098458A (en) * 1999-09-28 2001-04-10 Shinshu Ceramics:Kk Photocatalyst treated material and method for producing the same
JP2005006696A (en) * 2003-06-16 2005-01-13 Takehiro Eguchi Cleaning material coating member, manufacturing method therefor and painting method
JP2005254216A (en) * 2004-03-15 2005-09-22 Kiyoto Takamori Working method for photocatalyst coating material and water storage tank constructed using the working method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150990A (en) * 1986-12-12 1988-06-23 キヤノン株式会社 Manufacture of resin molded product
JPH08112834A (en) * 1994-10-17 1996-05-07 Dainippon Ink & Chem Inc Production of colored plastic molded article
JP2001081409A (en) * 1999-09-14 2001-03-27 Daido Steel Co Ltd Anti-fungus coating agent, anti-fungus agent and method for inhibiting nosocomial infection
JP2001098458A (en) * 1999-09-28 2001-04-10 Shinshu Ceramics:Kk Photocatalyst treated material and method for producing the same
JP2005006696A (en) * 2003-06-16 2005-01-13 Takehiro Eguchi Cleaning material coating member, manufacturing method therefor and painting method
JP2005254216A (en) * 2004-03-15 2005-09-22 Kiyoto Takamori Working method for photocatalyst coating material and water storage tank constructed using the working method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732564B1 (en) * 2014-03-12 2015-06-10 株式会社ペイントサービス Particle coating apparatus and particle coating method
JP2015171687A (en) * 2014-03-12 2015-10-01 株式会社ペイントサービス Particle coating device and particle coating method
JP2017213566A (en) * 2017-08-08 2017-12-07 株式会社ペイントサービス Particle applying device

Similar Documents

Publication Publication Date Title
US20190177560A1 (en) Biopolymer-Based Inks and Use Thereof
KR101764516B1 (en) Copper complex titanium oxide dispersion liquid, coating agent composition, and antibacterial/antiviral member
Fichman et al. Seamless metallic coating and surface adhesion of self-assembled bioinspired nanostructures based on di-(3, 4-dihydroxy-L-phenylalanine) peptide motif
JP6838185B2 (en) Antiviral substrate
CN101304813A (en) Method of enhancing biocompatibility of elastomeric materials by microtexturing using microdroplet patterning
JP3717868B2 (en) Photocatalytic coating agent, photocatalytic composite material and production method thereof
JP3985164B2 (en) Functional coating material, functional composite material and method for producing the same
JP2007229587A (en) Method for preparing photocatalyst member
JP2005179686A (en) Photocatalytic coating agent, photocatalytic composite material and method for producing the same
JP2004143452A (en) Self-cleaning aqueous coating composition and self- cleaning member
TW202007388A (en) Polymer-collagen composite film and method of forming the same
JP6793704B2 (en) Method for producing antifungal / antibacterial substrate, antifungal / antibacterial composition and antifungal / antibacterial substrate
JP2011246669A (en) Primer composition for hardly bondable plastic material, bonding method, and optical encoder
JP2005068185A (en) Photocatalyst-supported structure and method for producing the same
JP2022158745A (en) Antimicrobial composition and antimicrobial substrate
JP2021187842A (en) Antimicrobial composition and antimicrobial substrate
JP2002060676A (en) Coating composition
JP2010125357A (en) Coated product
JP2004269898A (en) Photocatalytic coating agent and photocatalytic composite material, and preparation process for this agent
JP2021038237A (en) Antifungal/antibacterial substrate, antifungal/antibacterial composition and production method of antifungal/antibacterial substrate
JP2010215702A (en) Surface reforming method and surface reforming material
JP4269993B2 (en) Surface treatment method
EP3549780A2 (en) Coating solution for forming ink receiving layer and method of producing coating solution for forming ink receiving layer
JP2022109609A (en) Antimicrobial composition, antimicrobial substrate and method for producing antimicrobial substrate
JP2009280829A (en) Photocatalytic coating material, photocatalytic composite material, and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629