JP2007227816A - Plasma treatment ending method - Google Patents

Plasma treatment ending method Download PDF

Info

Publication number
JP2007227816A
JP2007227816A JP2006049497A JP2006049497A JP2007227816A JP 2007227816 A JP2007227816 A JP 2007227816A JP 2006049497 A JP2006049497 A JP 2006049497A JP 2006049497 A JP2006049497 A JP 2006049497A JP 2007227816 A JP2007227816 A JP 2007227816A
Authority
JP
Japan
Prior art keywords
power
plasma
discharge
plasma treatment
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006049497A
Other languages
Japanese (ja)
Other versions
JP4678688B2 (en
Inventor
Kazuhiro Koga
和博 古賀
Tadayoshi Hasebe
忠義 長谷部
Kazuhiro Okochi
和浩 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consortium for Advanced Semiconductor Materials and Related Technologies
Original Assignee
Consortium for Advanced Semiconductor Materials and Related Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consortium for Advanced Semiconductor Materials and Related Technologies filed Critical Consortium for Advanced Semiconductor Materials and Related Technologies
Priority to JP2006049497A priority Critical patent/JP4678688B2/en
Publication of JP2007227816A publication Critical patent/JP2007227816A/en
Application granted granted Critical
Publication of JP4678688B2 publication Critical patent/JP4678688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide plasma treatment ending techniques with which electric charges on an object to be treated can be removed within a short time, and stable plasma treatment is performed without damage of the object to be treated, conveyance trouble or the like. <P>SOLUTION: With a plasma treatment ending method; a voltage is applied between a pair of electrodes, the plasma of supplied reaction gases is operated on an object to be treated, and plasma treatment is performed and then ended. The method includes a power reduction step of reducing a power to a power W<SB>20</SB>smallest among powers W<SB>2</SB>meeting a condition smaller than a supplied power W<SB>1</SB>during the plasma treatment, but stably maintaining plasma discharging at a time point to end the plasma treatment; a discharging step of stably performing plasma discharging for a predetermined period of time (t) on the condition of the power W<SB>20</SB>reduced in the power reduction step; and a stop step of stopping supplying the power after the discharging step. The reaction gases are similarly supplied from a state under the plasma treatment to the discharging step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プラズマを用いた成膜、プラズマエッチングやその他のプラズマ表面処理の技術、中でもプラズマ薄膜形成やHe,Ar,O等のプラズマガスを用いて表面処理を行った後のプラズマ処理終了方法に関する。 The present invention relates to plasma deposition, plasma etching and other plasma surface treatment techniques, especially plasma treatment after plasma thin film formation and surface treatment using He, Ar, O 2 or other plasma gas. Regarding the method.

プラズマCVDによって半導体基板上に薄膜を形成する技術は、今日、広く用いられている。すなわち、図2に示される如くの装置を用いて薄膜形成が行われている。尚、図2中、1はSiウェハ、2はSiウェハ1が載置されている電極、3は反応ガスの供給用シャワーを兼ねた電極、4は高周波(RF)電源、5はマッチングボックス、6a,6bはプラズマ反応室内に電極3を介して供給する反応ガスを制御する流量計である。そして、電極2上にSiウェハ1が置かれた後、先ず、プラズマ反応室内が真空排気される。この後、主反応ガスが流量計6aで制御されながらプラズマ反応室内に供給されると共に、副反応ガスが流量計6bで制御されながらプラズマ反応室内に供給される。そして、高周波電源4のスイッチがオンされ、一対の平行平板型の電極2,3間に所定の電圧が印加されてプラズマが形成される。これによって、Siウェハ1上に薄膜が形成されたり、或いはSiウェハ1表面がエッチングを受けたりする。すなわち、所定のプラズマ表面処理が行われる。そして、所望の表面処理が完了すると、高周波電源4のスイッチがオフにされる。この後、Siウェハ1がリフトピンで持ち上げられ、下部電極2から取り外され、プラズマ反応室から搬出される。   A technique for forming a thin film on a semiconductor substrate by plasma CVD is widely used today. That is, thin film formation is performed using an apparatus as shown in FIG. In FIG. 2, 1 is a Si wafer, 2 is an electrode on which the Si wafer 1 is placed, 3 is an electrode also serving as a reaction gas supply shower, 4 is a radio frequency (RF) power source, 5 is a matching box, Reference numerals 6a and 6b denote flow meters for controlling the reaction gas supplied to the plasma reaction chamber through the electrode 3. After the Si wafer 1 is placed on the electrode 2, first, the plasma reaction chamber is evacuated. Thereafter, the main reaction gas is supplied into the plasma reaction chamber while being controlled by the flow meter 6a, and the secondary reaction gas is supplied into the plasma reaction chamber while being controlled by the flow meter 6b. Then, the switch of the high-frequency power source 4 is turned on, and a predetermined voltage is applied between the pair of parallel plate electrodes 2 and 3 to form plasma. As a result, a thin film is formed on the Si wafer 1 or the surface of the Si wafer 1 is etched. That is, a predetermined plasma surface treatment is performed. When the desired surface treatment is completed, the switch of the high frequency power supply 4 is turned off. Thereafter, the Si wafer 1 is lifted by lift pins, removed from the lower electrode 2, and carried out of the plasma reaction chamber.

上記一連の工程における電力条件、ガス流量、Siウェハ1におけるチャージ電荷の時系列変化が図3に示される。この図3から判る通り、反応ガス(プロセスガス)は、高周波電源4のスイッチオン(時刻t)前(時刻t)から供給されているものの、高周波電源4のスイッチオフ(時刻t)と同時に供給は停止される。そして、Siウェハ1表面の電位はプラズマ放電の開始に伴って高くなり、一定時間後には一定の値となる。この所定値が続いた後のプラズマ放電終了時(時刻t)からは、Siウェハ1にチャージした電荷はプラズマ反応室内のプロセスガスを介して自然放電する。しかしながら、放電し難い為、放電終了までには時間が掛かる。この放電が完了するまでは、Siウェハ1は下部電極2に静電吸着された状態である。従って、下部電極2に静電吸着されたSiウェハ1をリフトピンで突き上げて剥離させようとしても、中々、簡単には行えない。すなわち、無理矢理に突き上げる為、Siウェハ1に割れ・欠けが起きたり、又、Siウェハ1の搬送トラブルが起きたりしている。 FIG. 3 shows time series changes in the power condition, gas flow rate, and charge charge in the Si wafer 1 in the above series of steps. As can be seen from FIG. 3, the reactive gas (process gas) is supplied (time t 0 ) before the high frequency power supply 4 is switched on (time t 1 ), but the high frequency power supply 4 is switched off (time t 2 ). At the same time, the supply is stopped. The potential on the surface of the Si wafer 1 increases with the start of plasma discharge, and becomes a constant value after a certain time. From the end of the plasma discharge after the predetermined value continues (time t 2 ), the charge charged in the Si wafer 1 spontaneously discharges through the process gas in the plasma reaction chamber. However, since it is difficult to discharge, it takes time to complete the discharge. Until this discharge is completed, the Si wafer 1 is electrostatically attracted to the lower electrode 2. Therefore, even if the Si wafer 1 electrostatically attracted to the lower electrode 2 is pushed up by the lift pins and peeled off, it cannot be easily performed. That is, forcibly pushing up, the Si wafer 1 is cracked or chipped, or the Si wafer 1 is transported.

そこで、このような問題点を解決する為、例えばRF電力を遮断するに際して、(1) RF電力を急激に下げないで、徐々に低下させる手法や、(2) 急激にRF電力を0にした後、成膜時印加電力の50%以下の電力を、再度、投入すると言った手法が提案(特開平3−44472号公報)されている。
特開平3−44472号公報
Therefore, in order to solve such problems, for example, when cutting off the RF power, (1) a method of gradually reducing the RF power without suddenly decreasing, or (2) the RF power being suddenly reduced to 0 Thereafter, a method has been proposed (JP-A-3-44472) in which power of 50% or less of the applied power at the time of film formation is turned on again.
Japanese Patent Laid-Open No. 3-44472

上記提案の技術によれば、Siウェハ1表面のチャージ電荷を放電プラズマを介してアース側であるプラズマ反応室(反応容器)に逃がすことが出来、一定の効果が奏されるようである。   According to the proposed technique, the charge on the surface of the Si wafer 1 can escape to the plasma reaction chamber (reaction vessel) on the ground side via the discharge plasma, and a certain effect seems to be achieved.

しかしながら、上記(1)の手法では、RF電力の降下時間が短い場合、帯電した電荷が十分には除去されず、静電吸着による搬送トラブルの発生が依然として認められた。又、RF電力降下速度が速い為、放電プラズマのインピーダンスマッチングが追随できず、絶えず収束動作を繰り返し、マッチングが取れない状態が発生する。この為、プラズマ放電が不安定になり、Siウェハ1上にアーキングが発生する問題が認められた。   However, in the above method (1), when the drop time of the RF power is short, the charged electric charge is not sufficiently removed, and the occurrence of a transportation trouble due to electrostatic adsorption is still recognized. In addition, since the RF power drop rate is fast, impedance matching of the discharge plasma cannot follow, and the convergence operation is continuously repeated, and a state where matching cannot be obtained occurs. For this reason, the problem that plasma discharge became unstable and arcing occurred on the Si wafer 1 was recognized.

さて、従来では、プラズマ処理が終了した時点では、例えば膜形成用の主反応ガスの導入を停止し、副反応ガスのみのプラズマにて処理している。この為、放電インピーダンスが成膜時とは違う状態になり、インピーダンスマッチングが取り難くなっている。従って、チャージ電荷の除去を完全にする為、電力値の降下時間を十分に長く取る必要が有った。ところで、プラズマインピーダンスマッチングが追随できる降下速度としては、通常の作業条件では、15W/秒程度が考えられる。この為、RF電源4を、例えば300Wから0Wまで下げるのに約20秒程度は掛かってしまう。これでは、処理時間が長くなり、短TAT(Turn Around Time)化を進めるには不利である。   Conventionally, at the time when the plasma processing is completed, for example, the introduction of the main reaction gas for film formation is stopped, and the processing is performed using plasma of only the secondary reaction gas. For this reason, the discharge impedance is different from that at the time of film formation, and it is difficult to obtain impedance matching. Therefore, in order to completely remove the charge charge, it is necessary to take a sufficiently long drop time of the power value. By the way, as a descent speed that plasma impedance matching can follow, about 15 W / sec is considered under normal working conditions. For this reason, it takes about 20 seconds to lower the RF power source 4 from 300 W to 0 W, for example. In this case, the processing time becomes long, and it is disadvantageous to advance the TAT (Turn Around Time).

ところで、上記特許文献1の技術における(1)の手法は、RF電力を連続的に徐々に下げることを内容とするが、ステップ状に電力を下げることが考えられる。この場合も、放電のインピーダンスマッチングを確実に取り、放電を安定化させる為には、1ステップに、通常の作業条件では、3秒以上が必要で有る。従って、例えば300WのRF電力から50Wずつ3秒間のステップで降下させた場合、6ステップで18秒も掛かる。すなわち、短時間で終了させることが出来ない。更には、連続的ないしはステップ状にRF電力を下げて行くと、プラズマ放電が続いている為、インピーダンスマッチングが取れない不安定な条件で成膜が進行して行く。そして、このような不安定な状況下でのプラズマ処理の続行が好ましくないことは容易に理解される。例えば、プラズマ放電による成膜において、印加電力と膜厚・膜質とは密接な関係が有り、前記のような不安定状況下での成膜は膜質を低下せしめてしまう。尚、本件の場合のSiウェハ1にチャージした電荷の放電特性などが図(4)に図示される。   By the way, although the technique (1) in the technique of the above-mentioned patent document 1 is intended to reduce the RF power continuously and gradually, it is conceivable to reduce the power stepwise. Also in this case, in order to ensure the impedance matching of the discharge and stabilize the discharge, one step requires 3 seconds or more under normal working conditions. Therefore, for example, when the power is lowered from RF power of 300 W in steps of 50 W in 3 seconds, it takes 18 seconds in 6 steps. That is, it cannot be completed in a short time. Further, when the RF power is lowered continuously or stepwise, the plasma discharge continues, so that film formation proceeds under unstable conditions where impedance matching cannot be obtained. And it is easily understood that it is not preferable to continue the plasma treatment under such unstable conditions. For example, in the film formation by plasma discharge, there is a close relationship between the applied power and the film thickness / film quality, and the film formation under the unstable condition as described above deteriorates the film quality. Incidentally, the discharge characteristic of the charge charged on the Si wafer 1 in this case is shown in FIG.

一方、上記特許文献1の技術における(2)の手法は、一旦、電力を0Wにしてプラズマ放電を停止させ、再度、放電を低電力で発生させるものである。しかしながら、再度の放電の為の投入電力は小さく、かつ、一旦、既に、放電を停止している為、RFマッチングを取り難く、放電させるステップを5秒間程度の短時間にすると、放電が発生しないまま、そのステップが終了し、当初の目的であるチャージ電荷の除去が出来ないことになる。従って、RF電力を0Wに降下させるステップと、再投入してプラズマ放電を発生させて安定化するステップとの操作を要する為、やはり、10〜15秒以上が必要となり、時間短縮の効果がなくなる。更に、一旦、RF電力を遮断しているので、再開する為には、最低電力ではプラズマの発生が不安定になるから、最低電力より高めの電力値でスタートせざるを得ない。そして、この場合も、前記(1)の場合と同様に不安定な条件でのプラズマ処理が進行してしまう。尚、本件の場合のSiウェハ1にチャージした電荷の放電特性などが図(5)に図示される。   On the other hand, the method (2) in the technique of the above-mentioned Patent Document 1 temporarily stops the plasma discharge by setting the power to 0 W, and again generates the discharge at a low power. However, since the input power for the second discharge is small and the discharge has already stopped, it is difficult to obtain RF matching, and no discharge occurs if the discharge step is set to a short time of about 5 seconds. The step ends, and the charge charge, which is the original purpose, cannot be removed. Therefore, since it is necessary to operate the step of lowering the RF power to 0 W and the step of stabilizing by supplying the plasma again to generate plasma discharge, 10 to 15 seconds or more are necessary, and the effect of shortening the time is lost. . Further, since the RF power is once cut off, in order to resume, the generation of plasma becomes unstable at the lowest power, so it is necessary to start with a power value higher than the lowest power. In this case as well, plasma processing under unstable conditions proceeds as in the case of (1). Incidentally, the discharge characteristic of the charge charged on the Si wafer 1 in this case is shown in FIG.

更に、特許文献1の(1),(2)の手法は、共に、膜成長をさせない副反応ガスのみを流しながらRF電力を印加している為、耐プラズマ性が弱い膜ではダメージを受ける問題も有る。
このようなことから、特許文献1の技術は満足できるものでは無い。
Further, in both methods (1) and (2) of Patent Document 1, since RF power is applied while flowing only the side reaction gas that does not cause film growth, the film having poor plasma resistance is damaged. There is also.
For these reasons, the technique of Patent Document 1 is not satisfactory.

従って、本発明が解決しようとする課題は、被処理物にチャージした電荷を短時間の中に除去でき、そして被処理物の損傷や搬送トラブル等が無く、かつ、安定したプラズマ処理が行われるプラズマ処理終了技術を提供することである。   Accordingly, the problem to be solved by the present invention is that the charge charged to the object to be processed can be removed in a short time, and there is no damage to the object to be processed, no transportation trouble, etc., and stable plasma processing is performed. It is to provide a plasma processing termination technique.

前記の課題は、一対の電極間に電圧を印加して供給反応ガスのプラズマを被処理物に作用させてプラズマ処理を行った後にプラズマ処理を終了させるプラズマ処理終了方法であって、
プラズマ処理を終了させようとする時点において、プラズマ処理中の供給電力Wよりも小さく、しかしながらプラズマ放電が安定して維持される条件を満たす電力Wに下げる電力低下ステップと、
前記電力低下ステップで低下させられた電力W条件で、所定時間tの間、プラズマ放電を安定して行わしめる放電ステップと、
前記放電ステップの後、電力供給を停止する停止ステップ
とを具備し、
前記プラズマ処理中から前記放電ステップに掛けての間は前記反応ガスを同様に供給する
ことを特徴とするプラズマ処理終了方法によって解決される。
The above-mentioned problem is a plasma processing end method for applying a voltage between a pair of electrodes to cause a plasma of a supplied reaction gas to act on an object to be processed, and then ending the plasma processing.
A power reduction step that reduces the power W 2 to a condition that is less than the supply power W 1 during the plasma treatment, but which satisfies the condition that the plasma discharge is stably maintained, at the time of ending the plasma treatment;
In the power reduction power W 2 condition that is lowered in step, the predetermined time t, the discharge step occupying performed a plasma discharge stable,
After the discharging step, comprising a stopping step of stopping the power supply,
The problem is solved by the plasma processing termination method in which the reaction gas is supplied in the same manner during the plasma processing and the discharge step.

特に、一対の電極間に電圧を印加して供給反応ガスのプラズマを被処理物に作用させてプラズマ処理を行った後にプラズマ処理を終了させるプラズマ処理終了方法であって、
プラズマ処理を終了させようとする時点において、プラズマ処理中の供給電力Wよりも小さく、しかしながらプラズマ放電が安定して維持される条件を満たす電力Wの中でも最も小さい電力W20に下げる電力低下ステップと、
前記電力低下ステップで低下させられた電力W20条件で、所定時間tの間、プラズマ放電を安定して行わしめる放電ステップと、
前記放電ステップの後、電力供給を停止する停止ステップ
とを具備し、
前記プラズマ処理中から前記放電ステップに掛けての間は前記反応ガスを同様に供給する
ことを特徴とするプラズマ処理終了方法によって解決される。
In particular, a plasma processing end method for ending plasma processing after applying a voltage between a pair of electrodes to cause plasma of a supplied reaction gas to act on a workpiece to perform plasma processing,
At the time it is intended to end the plasma processing, smaller than the supply power W 1 during plasma processing, however plasma discharge power decreases to reduce to the smallest power W 20 Among satisfy power W 2 to be stably maintained Steps,
A discharge step of stably performing plasma discharge for a predetermined time t under the condition of power W 20 reduced in the power reduction step;
After the discharging step, comprising a stopping step of stopping the power supply,
The problem is solved by the plasma processing termination method in which the reaction gas is supplied in the same manner during the plasma processing and the discharge step.

尚、上記のプラズマ処理終了方法における放電ステップは、好ましくは、該放電ステップによって被処理物にチャージした静電気が実質上消失するまで維持される。   Note that the discharge step in the plasma processing termination method is preferably maintained until the static electricity charged to the object to be processed by the discharge step substantially disappears.

又、上記のプラズマ処理終了方法における電力低下ステップにおいて、好ましくは、その電力低下速度は可能な限り大きなもので行われる。   Further, in the power reduction step in the plasma processing termination method, the power reduction rate is preferably as high as possible.

上記のようにしてプラズマ処理の終了を行わせると、インピーダンスマッチングが取り易い放電が安定している状態の下で電力値を下げることになり、又、低い電力値でプラズマが維持される時間が設けられたので、短時間で被処理物を取り出せるようになった。   When the plasma processing is terminated as described above, the power value is lowered under the condition that the discharge that is easy to obtain impedance matching is stable, and the time during which the plasma is maintained at a low power value is obtained. Since it is provided, the workpiece can be taken out in a short time.

すなわち、RF電力を0Wでは無い小さな電力まで下げた場合、放電プラズマのインピーダンスマッチングが上手く取れないことがあるものの、RF電力以外のプラズマ条件を変えずに電力変化を一瞬に生じさせると、却って、安定したプラズマが維持できることが見出され、そのような状況下のプラズマ放電が確保された後では、被処理物にチャージした電荷を上手く放電させることが出来、被処理物を速やかに取り外すことが出来るようになったのである。   That is, when the RF power is lowered to a small power that is not 0 W, impedance matching of the discharge plasma may not be successfully performed, but if a power change is generated instantaneously without changing the plasma conditions other than the RF power, After finding that stable plasma can be maintained and plasma discharge under such circumstances is secured, the charge charged to the object can be discharged well and the object to be processed can be removed quickly. It became possible.

そして、小電力での印加にも拘らず、プラズマは安定したものであるから、膜形成の場合には劣悪な膜が付け加わるような恐れは無く、又、膜に損傷を与える恐れも無い。   In spite of application with a small electric power, the plasma is stable, so that there is no possibility that a poor film is added in the film formation, and there is no possibility that the film is damaged.

本発明になるプラズマ処理終了方法は、一対の電極間に電圧を印加して一方の電極に載せた被処理物に供給反応ガスに基づくプラズマを作用させてプラズマ処理を行った後にプラズマ処理を終了させる方法である。そして、プラズマ処理を終了させようとする時点において、プラズマ処理中の供給電力Wよりも小さく、しかしながらプラズマ放電が安定して維持される条件を満たす電力Wに下げる電力低下ステップを有する。特に、プラズマ処理を終了させようとする時点において、プラズマ処理中の供給電力Wよりも小さく、しかしながらプラズマ放電が安定して維持される条件を満たす電力Wの中でも最も小さい電力W20に下げる電力低下ステップを有する。又、電力低下ステップで低下させられた電力W(中でも、W20)条件で、所定時間tの間、プラズマ放電を安定して行わしめる放電ステップを有する。前記放電ステップの後、電力供給を停止する停止ステップを有する。そして、前記プラズマ処理中から前記放電ステップに掛けての間は前記反応ガスを同様に供給するものである。上記のプラズマ処理終了方法における放電ステップは、好ましくは、該放電ステップによって被処理物にチャージした静電気が実質上消失するまで維持される。又、上記のプラズマ処理終了方法における電力低下ステップにおいて、好ましくは、その電力低下速度は可能な限り大きなもので行われる。
以下、更に詳しく説明する。
The plasma processing termination method according to the present invention is such that a voltage is applied between a pair of electrodes and plasma based on the supplied reaction gas is applied to an object to be processed placed on one electrode, and then the plasma processing is terminated. It is a method to make it. Then, at the point of time when the plasma processing is to be terminated, there is a power reduction step that lowers the power W 2 to satisfy the condition that the plasma power is kept stable, which is smaller than the supply power W 1 during the plasma processing. In particular, at the time it is intended to end the plasma processing, smaller than the supply power W 1 during plasma processing, however reduced to the smallest power W 20 Among satisfy power W 2 where plasma discharge is stably maintained A power reduction step. In addition, there is a discharge step in which plasma discharge is stably performed for a predetermined time t under the condition of power W 2 (particularly W 20 ) reduced in the power reduction step. After the discharging step, there is a stopping step of stopping power supply. The reaction gas is supplied in the same manner during the plasma treatment and the discharge step. The discharge step in the plasma processing termination method is preferably maintained until the static electricity charged to the object to be processed by the discharge step substantially disappears. Further, in the power reduction step in the plasma processing termination method, the power reduction rate is preferably as high as possible.
This will be described in more detail below.

図1は、プラズマCVD装置を用いてプラズマ処理が行われる場合のRF電力・プロセスガス・Siウェハにチャージした電荷のタイムチャートを示したものである。   FIG. 1 is a time chart of RF power, process gas, and electric charge charged on a Si wafer when plasma processing is performed using a plasma CVD apparatus.

本発明は図2に示されたプラズマCVD装置を用いることが出来る。
先ず、Siウェハ1をプラズマ反応室内に搬送して300〜400℃に保持された電極2上に載置する。そして、プラズマ反応室内を0.4Pa以下の真空度に排気した後、所定量の反応ガス(主反応ガス及び副反応ガス:プロセスガス)を導入し、高周波電源4のスイッチを入れてRF電力を印加する。これによって、所定のプラズマ処理が行われる。例えば、所定の膜がSiウェハ1上に形成される。
In the present invention, the plasma CVD apparatus shown in FIG. 2 can be used.
First, the Si wafer 1 is transported into the plasma reaction chamber and placed on the electrode 2 held at 300 to 400 ° C. Then, after evacuating the plasma reaction chamber to a vacuum level of 0.4 Pa or less, a predetermined amount of reaction gas (main reaction gas and sub reaction gas: process gas) is introduced, and the RF power supply 4 is turned on to supply RF power. Apply. Thereby, a predetermined plasma process is performed. For example, a predetermined film is formed on the Si wafer 1.

この後、プラズマ処理を終えてSiウェハ1をプラズマ反応室内から取り出す。その為、先ず、RF電力を、プラズマ放電が安定して維持できる程度の最低電力に下げる。そして、この状態下で数秒間維持する。尚、この間、プロセスガス、即ち、主反応ガスも副反応ガスも共に、流量や圧力を維持する。つまり、RF電力を低下させる以外は条件を変更しない。   Thereafter, the plasma processing is finished and the Si wafer 1 is taken out from the plasma reaction chamber. Therefore, first, the RF power is lowered to the lowest power that can stably maintain the plasma discharge. And it maintains for several seconds under this state. During this time, the process gas, that is, both the main reaction gas and the side reaction gas maintain the flow rate and pressure. In other words, the conditions are not changed except for reducing the RF power.

上記工程によって、Siウェハ1にチャージしていた電荷は放電してしまうことになるので、RF電力を遮断し、又、プロセスガスの供給を停止する。   The electric charge that has been charged in the Si wafer 1 is discharged by the above process, so the RF power is cut off and the supply of the process gas is stopped.

上記ステップの状況が示されている図1から判る通り、膜形成時のRF電力から最低電力値に下げた時点では、Siウェハ1表面には未だ電荷が残留している。しかしながら、プラズマ放電が安定して維持できる程度の最低電力に下げて放電を維持している間に、プラズマを通して、電荷が、アース(プラズマ反応室を構成する容器)側に放電されるようになる。その結果、残留電荷は、短時間の中に、極微量ないしは無くなる。従って、この段階にて、Siウェハ1をリフトピンで持ち上げると、下部電極2からSiウェハ1が簡単に取り外されるようになる。そして、スムーズにプラズマ反応室外に搬出できる。   As can be seen from FIG. 1 in which the situation of the above steps is shown, when the RF power at the time of film formation is lowered to the minimum power value, charges still remain on the surface of the Si wafer 1. However, while the discharge is maintained at the lowest power that can stably maintain the plasma discharge, the electric charge is discharged to the ground (vessel constituting the plasma reaction chamber) through the plasma. . As a result, the residual charge is negligible or disappears in a short time. Therefore, at this stage, when the Si wafer 1 is lifted by the lift pins, the Si wafer 1 can be easily removed from the lower electrode 2. And it can be smoothly carried out of the plasma reaction chamber.

因みに、上記プラズマ放電が安定して維持できる程度の最低電力は、例えば50W程度である。しかしながら、電極形状、高周波の周波数、電極間距離(RF電力を印加するカソード電極とアース間、又はバイアス印加電極間との距離)により多少の違いが有る。従って、プロセスガスの流量、圧力や電極間距離等をプラズマ処理(例えば、成膜)時と同じ条件にし、RF電力のみを成膜時の値から徐々に下げ、反射波出力が成膜時の値以下でプラズマ放電状態が安定しているか否かを目視で確認しながら探索すれば良い。   Incidentally, the minimum power at which the plasma discharge can be stably maintained is, for example, about 50 W. However, there are some differences depending on the electrode shape, the frequency of the high frequency, and the distance between the electrodes (the distance between the cathode electrode to which the RF power is applied and the ground or the bias application electrode). Therefore, the process gas flow rate, pressure, distance between electrodes, etc. are set to the same conditions as during plasma processing (for example, film formation), and only the RF power is gradually reduced from the value during film formation, and the reflected wave output is It may be searched while visually confirming whether the plasma discharge state is stable below the value.

又、最低電力にてプラズマ放電を維持する時間は、Siウェハ1表面にチャージした電荷をプラズマを介して逃がすのに必要な時間であるが、放電が安定していれば、一瞬の間で済む。しかしながら、プラズマ放電のインピーダンスマッチングが確実に取れ、かつ、放電が安定維持できるか否かに依存することを考慮すると、一般的には、2〜5秒程度、特に3秒程度を要する。但し、放電が不安定になると、プラズマ内に電位の勾配が形成され、Siウェハ表面のチャージ電荷が逆に増える現象や、プラズマインピーダンスが変わり、放電による除電が出来ない状態も発生する。従って、最終的には、目視による放電の確認、及び反射波出力が所定の値以下であることを確認して、最低電力の放電時間を決めるようにすれば良い。   Further, the time for maintaining the plasma discharge at the lowest power is the time necessary for releasing the electric charge charged on the surface of the Si wafer 1 through the plasma. However, if the discharge is stable, the time is sufficient for a moment. . However, considering that the impedance matching of the plasma discharge can be reliably obtained and depends on whether or not the discharge can be stably maintained, generally, it takes about 2 to 5 seconds, particularly about 3 seconds. However, when the discharge becomes unstable, a potential gradient is formed in the plasma, and the phenomenon that the charge charge on the surface of the Si wafer increases conversely, or the plasma impedance changes and a state in which static elimination due to discharge cannot be performed occurs. Therefore, finally, it is sufficient to confirm the discharge by visual inspection and confirm that the reflected wave output is not more than a predetermined value, and determine the discharge time of the minimum power.

以下、更に詳しい具体例を挙げて説明する。
先ず、SiOC等の膜形成における実施例を図2のCVD装置を参照しながら説明する。
Hereinafter, a more specific example will be described.
First, an embodiment in forming a film such as SiOC will be described with reference to the CVD apparatus in FIG.

Siウェハ1をプラズマ反応室内に搬送し、300〜400℃に保持された下部電極2上に載せた。そして、プラズマ反応室内を0.4Pa以下に真空排気し、時刻(t)に、800sccmのTMS(トリメチルシラン),2000sccmのO,400sccmのHeを導入した。 The Si wafer 1 was transferred into the plasma reaction chamber and placed on the lower electrode 2 held at 300 to 400 ° C. Then, the plasma reaction chamber was evacuated to 0.4 Pa or less, and 800 sccm of TMS (trimethylsilane), 2000 sccm of O 2 , and 400 sccm of He were introduced at time (t 0 ).

その後、時刻(t)に、例えば300WのRF電力(13.56MHz)を印加した。 Thereafter, for example, 300 W of RF power (13.56 MHz) was applied at time (t 1 ).

そして、所定時間が経過した時刻(t)において、瞬時に、RF電力を50W(予め調べているプラズマ放電が安定して維持できる最低RF電力値)に下げた。この状態にて、3秒間維持する。尚、この3秒間の間も、プロセスガスを同様に供給する。 Then, at a time (t 2 ) at which a predetermined time has elapsed, the RF power was instantaneously reduced to 50 W (the lowest RF power value at which the plasma discharge being examined in advance can be stably maintained). This state is maintained for 3 seconds. Note that the process gas is supplied in the same manner for 3 seconds.

前記3秒経過後の時刻(t)において、RF電力を遮断すると共に、プロセスガス(TMS,O,He)の導入を停止した。 At the time (t 3 ) after the elapse of 3 seconds, the RF power was cut off and the introduction of process gas (TMS, O 2 , He) was stopped.

このようにした結果、Siウェハ表面にチャージした電荷は、アース側に流れ込み、極微量若しくは無くなった。従って、Siウェハ1をスムーズに問題なく取り出せた。そして、除電の為に要する3秒間程度の時間は短時間である為、放電を維持している間に成膜される膜は僅かで、問題にならない。かつ、成膜時と同じガス雰囲気条件で除電処理を行う為、膜を成長させないOやN等の副反応ガスのイオンによるSiウェハへの衝撃が無く、Siウェハにダメージを与えることも無い。 As a result, the electric charge charged on the surface of the Si wafer flowed to the ground side, and it was extremely small or disappeared. Therefore, the Si wafer 1 can be taken out smoothly and without problems. And since the time of about 3 seconds required for static elimination is a short time, the film formed while maintaining the discharge is very small and does not cause a problem. In addition, since the charge removal process is performed under the same gas atmosphere conditions as in the film formation, there is no impact on the Si wafer by ions of a side reaction gas such as O 2 or N 2 that does not grow the film, and the Si wafer may be damaged No.

上記実施例は膜形成の場合を説明したが、本実施例では、膜成長を伴わないプラズマ表面処理の場合について説明する。尚、例えばHe,Ar,O等を用いたプラズマ表面処理の場合、CF,CHCl等を用いたプラズマエッチングの場合にも適用できるが、以下ではHeを用いた場合で説明する。 In the above embodiment, the case of film formation has been described. In this embodiment, the case of plasma surface treatment without film growth will be described. For example, the plasma surface treatment using He, Ar, O 2 or the like can be applied to the case of plasma etching using CF 4 , CHCl 3, or the like.

先ず、Siウェハ1をプラズマ反応室内に搬送し、300〜400℃に保持された下部電極2上に載せた。そして、プラズマ反応室内を0.4Pa以下に真空排気し、2800sccmのHeを導入し、800Paの圧力にした。
その後、例えば300WのRF電力(13.56MHz)を印加した。
First, the Si wafer 1 was transferred into the plasma reaction chamber and placed on the lower electrode 2 maintained at 300 to 400 ° C. Then, the plasma reaction chamber was evacuated to 0.4 Pa or less, and 2800 sccm of He was introduced to a pressure of 800 Pa.
Thereafter, for example, 300 W of RF power (13.56 MHz) was applied.

そして、所定時間が経過して所望の表面処理が行われた時刻において、瞬時に、RF電力を50W(予め調べているプラズマ放電が安定して維持できる最低RF電力値)に下げ、この状態にて、3秒間維持した。尚、この3秒間の間もHeを同様に供給する。   Then, at the time when the desired surface treatment is performed after a predetermined time has elapsed, the RF power is instantaneously reduced to 50 W (the lowest RF power value at which the plasma discharge being examined in advance can be stably maintained), and this state is reached. For 3 seconds. It should be noted that He is supplied in the same manner for 3 seconds.

前記3秒経過後の時刻において、RF電力を遮断する(0にする)と共に、プロセスガス(He)の導入を停止した。   At the time after the elapse of 3 seconds, the RF power was cut off (set to 0) and the introduction of the process gas (He) was stopped.

このようにした結果、HeプラズマでもSiウェハ1表面に電荷が蓄積されるが、低電力(50W)に維持している間にチャージ電荷はプラズマを介してアース側に流れ、チャージ電荷が無くなる。従って、RF電力を0にしてSiウェハを取り外す場合に、下部電極2に吸着することなく、簡単に取り外すことが出来る。   As a result, charges are accumulated on the surface of the Si wafer 1 even in He plasma. However, while maintaining low power (50 W), the charge charges flow to the ground side through the plasma, and the charge charges disappear. Therefore, when removing the Si wafer with the RF power set to 0, it can be easily removed without being attracted to the lower electrode 2.

本発明のプラズマ処理のタイムチャートTime chart of plasma processing of the present invention プラズマCVD装置の概略図Schematic diagram of plasma CVD equipment 従来のプラズマ処理のタイムチャートConventional plasma processing time chart 特開平3−44472号の技術のタイムチャートTime chart of the technique of Japanese Patent Laid-Open No. 3-44472 特開平3−44472号の技術のタイムチャートTime chart of the technique of Japanese Patent Laid-Open No. 3-44472

符号の説明Explanation of symbols

1 Siウェハ
2,3 電極
4 高周波電源
5 RFマッチングボックス
6a 主反応ガスの流量計
6b 副反応ガスの流量計

特許出願人 次世代半導体材料技術研究組合
代 理 人 宇 高 克 己
DESCRIPTION OF SYMBOLS 1 Si wafer 2, 3 Electrode 4 High frequency power supply 5 RF matching box 6a Main reaction gas flowmeter 6b Side reaction gas flowmeter

Patent applicant Next-generation semiconductor material technology research association
Representative Katsumi Udaka

Claims (3)

一対の電極間に電圧を印加して供給反応ガスのプラズマを被処理物に作用させてプラズマ処理を行った後にプラズマ処理を終了させるプラズマ処理終了方法であって、
プラズマ処理を終了させようとする時点において、プラズマ処理中の供給電力Wよりも小さく、しかしながらプラズマ放電が安定して維持される条件を満たす電力Wに下げる電力低下ステップと、
前記電力低下ステップで低下させられた電力W条件で、所定時間tの間、プラズマ放電を安定して行わしめる放電ステップと、
前記放電ステップの後、電力供給を停止する停止ステップ
とを具備し、
前記プラズマ処理中から前記放電ステップに掛けての間は前記反応ガスを同様に供給する
ことを特徴とするプラズマ処理終了方法。
A plasma processing end method for applying a voltage between a pair of electrodes to cause a plasma of a supplied reaction gas to act on an object to be processed and then ending the plasma processing.
A power reduction step that reduces the power W 2 to a condition that is less than the supply power W 1 during the plasma treatment, but which satisfies the condition that the plasma discharge is stably maintained, at the time of ending the plasma treatment;
In the power reduction power W 2 condition that is lowered in step, the predetermined time t, the discharge step occupying performed a plasma discharge stable,
After the discharging step, comprising a stopping step of stopping the power supply,
The plasma processing end method is characterized in that the reaction gas is supplied in the same manner during the plasma processing and the discharge step.
電力低下ステップで低下させられる電力Wは、プラズマ放電が安定して維持される電力の中でも最も小さい電力W20であることを特徴とする請求項1のプラズマ処理終了方法。 Power W 2 to be reduced in power reduction step, plasma treatment termination method of claim 1, wherein the plasma discharge is the smallest power W 20 among power to be maintained stably. 放電ステップは、該放電ステップによって被処理物にチャージした静電気が実質上消失するまで維持されることを特徴とする請求項1のプラズマ処理終了方法。
2. The plasma processing termination method according to claim 1, wherein the discharging step is maintained until the static electricity charged to the object to be processed by the discharging step substantially disappears.
JP2006049497A 2006-02-27 2006-02-27 Plasma processing end method Active JP4678688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049497A JP4678688B2 (en) 2006-02-27 2006-02-27 Plasma processing end method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049497A JP4678688B2 (en) 2006-02-27 2006-02-27 Plasma processing end method

Publications (2)

Publication Number Publication Date
JP2007227816A true JP2007227816A (en) 2007-09-06
JP4678688B2 JP4678688B2 (en) 2011-04-27

Family

ID=38549295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049497A Active JP4678688B2 (en) 2006-02-27 2006-02-27 Plasma processing end method

Country Status (1)

Country Link
JP (1) JP4678688B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130054024A (en) * 2011-11-16 2013-05-24 주식회사 원익아이피에스 Method for manufacturing thin film
JP2015018876A (en) * 2013-07-09 2015-01-29 株式会社アルバック Conditioning method of reaction apparatus
US20200027685A1 (en) * 2018-07-20 2020-01-23 Asm Ip Holding B.V. Substrate processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251197A (en) * 1992-03-09 1993-09-28 Matsushita Electric Ind Co Ltd Dry etching method
JPH05283379A (en) * 1992-03-31 1993-10-29 Matsushita Electric Ind Co Ltd Dry etching method
JPH0653192A (en) * 1992-07-29 1994-02-25 Matsushita Electric Ind Co Ltd Dry etching method
JPH08176854A (en) * 1994-12-22 1996-07-09 Nissin Electric Co Ltd Plasma treatment
JP2001506421A (en) * 1996-12-18 2001-05-15 ラム・リサーチ・コーポレーション Method for reducing plasma-induced charging damage
JP2002176047A (en) * 2000-09-26 2002-06-21 Applied Materials Inc Method of reducing plasma-induced damage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251197A (en) * 1992-03-09 1993-09-28 Matsushita Electric Ind Co Ltd Dry etching method
JPH05283379A (en) * 1992-03-31 1993-10-29 Matsushita Electric Ind Co Ltd Dry etching method
JPH0653192A (en) * 1992-07-29 1994-02-25 Matsushita Electric Ind Co Ltd Dry etching method
JPH08176854A (en) * 1994-12-22 1996-07-09 Nissin Electric Co Ltd Plasma treatment
JP2001506421A (en) * 1996-12-18 2001-05-15 ラム・リサーチ・コーポレーション Method for reducing plasma-induced charging damage
JP2002176047A (en) * 2000-09-26 2002-06-21 Applied Materials Inc Method of reducing plasma-induced damage

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130054024A (en) * 2011-11-16 2013-05-24 주식회사 원익아이피에스 Method for manufacturing thin film
CN103946961A (en) * 2011-11-16 2014-07-23 圆益Ips股份有限公司 Method for manufacturing a thin film
JP2015501551A (en) * 2011-11-16 2015-01-15 ウォニック アイピーエス カンパニー リミテッド Thin film manufacturing method
KR101897214B1 (en) * 2011-11-16 2018-10-23 주식회사 원익아이피에스 Method for manufacturing thin film
JP2015018876A (en) * 2013-07-09 2015-01-29 株式会社アルバック Conditioning method of reaction apparatus
US20200027685A1 (en) * 2018-07-20 2020-01-23 Asm Ip Holding B.V. Substrate processing method
JP2020013995A (en) * 2018-07-20 2020-01-23 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing method
CN110739198A (en) * 2018-07-20 2020-01-31 Asm Ip控股有限公司 Substrate processing method
US10770257B2 (en) 2018-07-20 2020-09-08 Asm Ip Holding B.V. Substrate processing method
JP7321802B2 (en) 2018-07-20 2023-08-07 エーエスエム・アイピー・ホールディング・ベー・フェー Substrate processing method
TWI821306B (en) * 2018-07-20 2023-11-11 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
CN110739198B (en) * 2018-07-20 2024-06-25 Asmip控股有限公司 Substrate processing method

Also Published As

Publication number Publication date
JP4678688B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
US8545670B2 (en) Plasma processing apparatus and plasma processing method
US9034198B2 (en) Plasma etching method
US20180082861A1 (en) Selective etch using material modification and rf pulsing
JP6071514B2 (en) Electrostatic chuck reforming method and plasma processing apparatus
JP4714166B2 (en) Substrate plasma processing apparatus and plasma processing method
US20110049101A1 (en) Arrangements for manipulating plasma confinement within a plasma processing system and methods thereof
US7335601B2 (en) Method of processing an object and method of controlling processing apparatus to prevent contamination of the object
US20070020941A1 (en) Plasma etching apparatus and particle removal method
KR20100083670A (en) Seasoning method for plasma processing apparatus and judging method for termination of seasoning
KR20160088816A (en) Etching method
JP5548028B2 (en) Deposition chamber remote cleaning method
CN109841475B (en) Pretreatment method and wafer treatment method
JP4145925B2 (en) Plasma etching method
JP4678688B2 (en) Plasma processing end method
KR20160088819A (en) Etching method
KR20180032153A (en) Plasma processing method
US20190393048A1 (en) Method for area-selective etching of silicon nitride layers for the manufacture of microelectronic workpieces
JP2008116615A (en) Method for stripping mask resist by plasma asher and apparatus therefor
JP4480012B2 (en) Etching method and etching apparatus
JP2928555B2 (en) Plasma processing equipment
JP5896419B2 (en) Plasma processing apparatus and cleaning method thereof
KR100724214B1 (en) Radio frequency power purge method on plasma chamber
JP7222150B1 (en) Plasma treatment method
JP6305087B2 (en) Plasma processing method
JPH0547713A (en) Apparatus for plasma processing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110126

R150 Certificate of patent or registration of utility model

Ref document number: 4678688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250