JP2007227636A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2007227636A
JP2007227636A JP2006046880A JP2006046880A JP2007227636A JP 2007227636 A JP2007227636 A JP 2007227636A JP 2006046880 A JP2006046880 A JP 2006046880A JP 2006046880 A JP2006046880 A JP 2006046880A JP 2007227636 A JP2007227636 A JP 2007227636A
Authority
JP
Japan
Prior art keywords
protective film
light
film
wavelength
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006046880A
Other languages
Japanese (ja)
Other versions
JP5009540B2 (en
Inventor
Takayoshi Hotta
貴義 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2006046880A priority Critical patent/JP5009540B2/en
Publication of JP2007227636A publication Critical patent/JP2007227636A/en
Application granted granted Critical
Publication of JP5009540B2 publication Critical patent/JP5009540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device having high photoelectric conversion rates by increasing the number of carriers to be generated, even for lights having different wavelengths such as R, G and B. <P>SOLUTION: The semiconductor device has a plurality of element portions 11<SB>B</SB>, 11<SB>G</SB>and 11<SB>R</SB>alignedly provided on a plane and executing photoelectric conversion of incident lights; and a protective film 12 for protecting the element portions 11<SB>B</SB>, 11<SB>G</SB>and 11<SB>R</SB>. In the semiconductor device, the protective films 12 are formed so as to have different thicknesses depending on the wavelengths of lights to be subjected to photoelectric conversion so that the incident strength of the lights into each of the element sections 11<SB>B</SB>, 11<SB>G</SB>and 11<SB>R</SB>may be the maximum. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、イメージセンサに用いられる半導体装置に関する。   The present invention relates to a semiconductor device used for an image sensor.

イメージセンサは、例えば、1つのフォトダイオードを有するセルを、平面上に複数整列配置したものであり、通常、カラーフィルタやプリズムに入射光を入射して、赤色域(R域)、緑色域(G域)、青色域(B域)各々の波長の光に分光し、分光した光を同じ構造のセルに各々入射することにより、R、G、B各々の波長の光の入射強度を検出している。又、タイムシェアによりR、G、B各々の波長の光を同一セルに入射し、そのタイムシェア毎に、R、G、B各々の波長の光の入射強度を検出するものもある。   An image sensor is, for example, a cell in which a plurality of cells having one photodiode are arranged on a plane. Usually, incident light is incident on a color filter or a prism, and a red region (R region) or a green region ( G light) and blue light (B light) are divided into light of each wavelength, and the divided light is made incident on cells of the same structure to detect the incident intensity of light of each of R, G, and B wavelengths. ing. In addition, there is a type in which light of R, G, and B wavelengths is incident on the same cell by time sharing, and the incident intensity of light of each wavelength of R, G, and B is detected for each time sharing.

特開平10−144951号公報Japanese Patent Laid-Open No. 10-144951

図1に、一般的なイメージセンサの1つのセルの構成を示す。
図1に示すように、イメージセンサを構成する1つのセル(画素)は、P型基板1の所定領域に形成されたN型ウェル2と、素子間分離のため、N型ウェル2の上方周縁部に形成されたLOCOS(Local Oxidation of Silicon)法により形成されたフィールド酸化膜3と、N型ウェル2と電気的接続を取るための高濃度N型領域4と、フィールド酸化膜3の上層に形成された層間絶縁膜5と、層間絶縁膜5を貫通して形成され、高濃度N型領域4と接続される配線6と、層間絶縁膜5、配線6の上層に形成され、素子を保護する保護膜7を有するものである。上記構成のセルにおいては、P型基板1とN型ウェル2により、1つのフォトダイオードが形成されており、P型基板1とN型ウェル2との界面近傍に空乏層8が生成される。入射光9が入射された際には、セル内部で吸収された光によりキャリア10(電子−正孔対)が発生し、主に空乏層8で発生したキャリア10が、各々P型領域、N型領域へ移動することで電流が生じて、光電変換が行われることになる。
FIG. 1 shows a configuration of one cell of a general image sensor.
As shown in FIG. 1, one cell (pixel) constituting an image sensor includes an N-type well 2 formed in a predetermined region of a P-type substrate 1 and an upper peripheral edge of the N-type well 2 for element isolation. The field oxide film 3 formed by the LOCOS (Local Oxidation of Silicon) method formed in the region, the high-concentration N-type region 4 for electrical connection with the N-type well 2, and the field oxide film 3 The formed interlayer insulating film 5, the wiring 6 formed through the interlayer insulating film 5 and connected to the high-concentration N-type region 4, and the interlayer insulating film 5 and the wiring 6 are formed on the upper layer to protect the element. The protective film 7 is provided. In the cell having the above configuration, one photodiode is formed by the P-type substrate 1 and the N-type well 2, and a depletion layer 8 is generated near the interface between the P-type substrate 1 and the N-type well 2. When incident light 9 is incident, carriers 10 (electron-hole pairs) are generated by the light absorbed inside the cell, and the carriers 10 generated mainly in the depletion layer 8 are respectively converted into P-type regions and N-type regions. By moving to the mold region, a current is generated and photoelectric conversion is performed.

一般的に、保護膜7等の透過膜を光が透過する際には、光の透過強度は、保護膜7等の膜厚、光の波長によって相違する。ところが、従来のイメージセンサにおいては、同一構造のセルを用い、同一膜厚、同一膜質の保護膜7等を透過させて、R、G、B各々異なる波長の光を検出しているため、R、G、B各々異なる波長の光に対して、必ずしも、最適な透過強度となっていなかった。つまり、保護膜7等の透過膜の膜厚、膜質が、R、G、B各々異なる波長の光に対して適切な構成ではなかった。その結果、入射されたR、G、B各々異なる波長の光が、効率よくキャリアを発生させておらず、入射光を効率よく光電変換できていなかった。   Generally, when light is transmitted through a transmissive film such as the protective film 7, the light transmission intensity varies depending on the film thickness of the protective film 7 and the wavelength of light. However, in the conventional image sensor, since cells having the same structure are used and transmitted through the protective film 7 and the like having the same film thickness and the same film quality, light having different wavelengths is detected for each of R, G, and B. , G, and B did not necessarily have the optimal transmission intensity for light of different wavelengths. In other words, the thickness and quality of the transmissive film such as the protective film 7 are not suitable for light having different wavelengths for R, G, and B. As a result, incident R, G, and B light with different wavelengths did not efficiently generate carriers, and incident light could not be efficiently photoelectrically converted.

例えば、特許文献1においては、保護膜における光の干渉を避けるため、1つの受光素子に対して、厚さを段階的、連続的に変化した保護膜を用いているが、この場合、受光素子の大きさが大きくなると共に、受光素子全面が効率的に機能しておらず、やはり、光電変換の効率がよいものではなかった。特に、現在、デジタルカメラ等の普及に伴い、より高解像度のイメージセンサ、つまり、高画素数のイメージセンサが求められているが、全体の大きさを変更せず、高画素数とするには、1つのセル当たりの面積は小さくせざるを得ず、セル面積は小さくても、高い光電効率を有するものが求められている。   For example, in Patent Document 1, a protective film whose thickness is changed stepwise and continuously is used for one light receiving element in order to avoid interference of light in the protective film. In addition, the entire surface of the light receiving element did not function efficiently, and the photoelectric conversion efficiency was not good. In particular, with the widespread use of digital cameras and the like, there is a need for higher resolution image sensors, that is, image sensors with a high number of pixels. To increase the number of pixels without changing the overall size. The area per cell must be reduced, and even if the cell area is small, a cell having high photoelectric efficiency is required.

本発明は上記課題に鑑みなされたもので、R、G、B各々異なる波長の光であっても、発生するキャリアの数を増やして、高い光電効率を有する半導体装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device having a high photoelectric efficiency by increasing the number of carriers generated even when light of R, G, and B has different wavelengths. To do.

上記課題を解決する第1の発明に係る半導体装置は、
平面に整列配置され、入射された光の光電変換を行う複数の素子部と、前記素子部の表面を保護する保護膜とを有する半導体装置において、
各々の前記素子部への光の入射強度が最大となるように、光電変換を行う光の波長に応じて、前記保護膜を各々異なる膜厚に形成したことを特徴とする。
A semiconductor device according to a first invention for solving the above-mentioned problems is as follows.
In a semiconductor device having a plurality of element portions arranged in a plane and performing photoelectric conversion of incident light, and a protective film protecting the surface of the element portion,
The protective film is formed to have a different thickness according to the wavelength of light to be subjected to photoelectric conversion so that the incident intensity of light to each of the element portions is maximized.

上記課題を解決する第2の発明に係る半導体装置は、
上記第1の発明に記載の半導体装置において、
前記保護膜は、1層の保護膜を各々エッチングすることにより、各々異なる膜厚に形成されたものであることを特徴とする。
A semiconductor device according to a second invention for solving the above-mentioned problem is as follows.
In the semiconductor device according to the first invention,
The protective film is formed to have a different thickness by etching a single protective film.

上記課題を解決する第3の発明に係る半導体装置は、
上記第1の発明に記載の半導体装置において、
前記保護膜は、1層の保護膜又は積層された複数の保護膜により、各々異なる膜厚に形成されたものであることを特徴とする。
A semiconductor device according to a third invention for solving the above-mentioned problem is as follows.
In the semiconductor device according to the first invention,
The protective film is formed by a single protective film or a plurality of stacked protective films, each having a different thickness.

上記課題を解決する第4の発明に係る半導体装置は、
上記第1乃至第3の何れかの発明に記載の半導体装置において、
前記光電変換を行う光の波長λとし、前記保護膜の屈折率をnとし、mを任意の整数とする場合、
光電変換を行う光の波長に応じて、前記保護膜の膜厚tを、各々、t=[λ/(2n)]・mとしたことを特徴とする。
A semiconductor device according to a fourth invention for solving the above-mentioned problems is as follows.
In the semiconductor device according to any one of the first to third inventions,
When the wavelength λ of the light for performing the photoelectric conversion, the refractive index of the protective film is n, and m is an arbitrary integer,
According to the wavelength of light for photoelectric conversion, the thickness t of the protective film is t = [λ / (2n)] · m, respectively.

上記課題を解決する第5の発明に係る半導体装置は、
上記第1乃至第3の何れかの発明に記載の半導体装置において、
前記光電変換を行う光の波長を、少なくとも、可視光の青、緑、赤の波長域とし、前記保護膜を屈折率2.05の窒化珪素膜とする場合、
可視光の青の波長域に対する前記保護膜の厚さを、5250Å以上、5550Å以下の範囲、望ましくは5400Åとし、可視光の緑の波長域に対する前記保護膜の厚さを、6300Å以上、6700Å以下の範囲、望ましくは6500Åとし、可視光の赤の波長域に対する前記保護膜の厚さを、8150Å以上、8650Å以下の範囲、望ましくは8400Åとすることを特徴とする。
A semiconductor device according to a fifth invention for solving the above-mentioned problem is as follows.
In the semiconductor device according to any one of the first to third inventions,
When the wavelength of the light for performing the photoelectric conversion is at least a blue, green, and red wavelength range of visible light, and the protective film is a silicon nitride film having a refractive index of 2.05,
The thickness of the protective film with respect to the blue wavelength range of visible light is in the range of 5250 mm to 5550 mm, preferably 5400 mm, and the thickness of the protective film with respect to the green wavelength range of visible light is 6300 mm to 6700 mm. The thickness of the protective film with respect to the red wavelength region of visible light is 8150 mm or more and 8650 mm or less, preferably 8400 mm.

上記課題を解決する第6の発明に係る半導体装置は、
平面に整列配置され、入射された光の光電変換を行う複数の素子部と、前記素子部の表面を保護する保護膜とを有する半導体装置において、
各々の前記素子部への光の入射強度が最大となるように、光電変換を行う光の波長に応じて、前記保護膜の膜質を各々異なる屈折率としたことを特徴とする。
A semiconductor device according to a sixth invention for solving the above-mentioned problem is as follows.
In a semiconductor device having a plurality of element portions arranged in a plane and performing photoelectric conversion of incident light, and a protective film protecting the surface of the element portion,
The protective film has a different refractive index according to the wavelength of light for photoelectric conversion so that the incident intensity of light to each of the element portions is maximized.

上記課題を解決する第7の発明に係る半導体装置は、
上記第6の発明に記載の半導体装置において、
前記光電変換を行う光の波長λとし、前記保護膜の膜厚をtとし、mを任意の整数とする場合、
光電変換を行う光の波長に応じて、前記保護膜の屈折率nを、各々、n=[λ/(2t)]・mとしたことを特徴とする。
A semiconductor device according to a seventh invention for solving the above-mentioned problem is as follows.
In the semiconductor device according to the sixth invention,
When the wavelength λ of the light for performing the photoelectric conversion, the thickness of the protective film is t, and m is an arbitrary integer,
The protective film has a refractive index n of n = [λ / (2t)] · m depending on the wavelength of light for photoelectric conversion.

上記課題を解決する第8の発明に係る半導体装置は、
上記第6の発明に記載の半導体装置において、
前記光電変換を行う光の波長を、少なくとも、可視光の青、緑、赤の波長域とし、
前記保護膜の膜厚を5000Åとする場合、
可視光の青の波長域に対する前記保護膜の屈折率を、1.71以上、1.85以下の範囲、望ましくは1.78とし、可視光の緑の波長域に対する前記保護膜の屈折率を、1.52以上、1.68以下の範囲、望ましくは1.60、可視光の赤の波長域に対する前記保護膜の屈折率を、1.94以上、2.18以下の範囲、望ましくは2.06とし、
前記保護膜の膜厚を6000Åとする場合、
可視光の青の波長域に対する前記保護膜の屈折率を、1.79以上、1.91以下の範囲、望ましくは1.85とし、可視光の緑の波長域に対する前記保護膜の屈折率を、1.70以上、1.86以下の範囲、望ましくは1.78、可視光の赤の波長域に対する前記保護膜の屈折率を、1.63以上、1.83以下の範囲、望ましくは1.73とすることを特徴とする。
A semiconductor device according to an eighth invention for solving the above-mentioned problems is as follows.
In the semiconductor device according to the sixth invention,
The wavelength of the light for performing the photoelectric conversion is at least a blue, green, red wavelength range of visible light,
When the thickness of the protective film is 5000 mm,
The refractive index of the protective film with respect to the blue wavelength range of visible light is set to 1.71 or more and 1.85 or less, preferably 1.78, and the refractive index of the protective film with respect to the green wavelength range of visible light is set to 1.78. 1.52 or more and 1.68 or less, preferably 1.60, and the refractive index of the protective film with respect to the red wavelength region of visible light is 1.94 or more and 2.18 or less, preferably 2 .06,
When the thickness of the protective film is 6000 mm,
The refractive index of the protective film with respect to the blue wavelength range of visible light is 1.79 to 1.91, preferably 1.85, and the refractive index of the protective film with respect to the green wavelength range of visible light is The refractive index of the protective film in the range of 1.70 or more and 1.86 or less, preferably 1.78, or the red wavelength region of visible light is 1.63 or more and 1.83 or less, preferably 1 .73.

本発明によれば、各々異なる波長の光に対して、各々異なる最適な膜厚、膜質の保護膜を透過させるので、各々異なる波長の光により各素子部で発生するキャリアの数が増加して、入射した光を高効率で光電変換することができ、その結果、検出感度を向上させることができる。   According to the present invention, since the protective films having different optimum film thicknesses and film qualities are transmitted with respect to light having different wavelengths, the number of carriers generated in each element portion by light having different wavelengths is increased. The incident light can be photoelectrically converted with high efficiency, and as a result, the detection sensitivity can be improved.

本発明に係る半導体装置は、イメージセンサを構成する各々のセルにおいて、入射された異なる波長の光に対して、各波長の光が最大の透過強度で透過するように、つまり、光電変換を行う素子部に最大の入射強度で入射するように、保護膜等の膜厚、膜質を最適なものとしたものである。
以下、図1〜図5を参照して、本発明に係る半導体装置の実施形態を説明する。
The semiconductor device according to the present invention performs photoelectric conversion in each cell constituting the image sensor so that light of each wavelength is transmitted with the maximum transmission intensity with respect to incident light of different wavelengths. The film thickness and film quality of the protective film and the like are optimized so as to enter the element portion with the maximum incident intensity.
Hereinafter, an embodiment of a semiconductor device according to the present invention will be described with reference to FIGS.

本発明に係る半導体装置は、図1に示したイメージセンサのセルと同等の基本的構成を有するものである。
つまり、イメージセンサを構成する1つのセル(画素)として、P型基板1の所定領域に形成されたN型ウェル2と、素子間分離のため、N型ウェル2の上方周縁部に形成されたフィールド酸化膜3と、N型ウェル2と電気的接続を行う高濃度N型領域4と、フィールド酸化膜3の上層に形成された層間絶縁膜5と、層間絶縁膜5を貫通して形成され、高濃度N型領域4と接続される配線6と、層間絶縁膜5、配線6の上層に形成され、素子を保護する保護膜7を有するものである。なお、P型、N型は、上記組み合わせに限定されず、逆の構成としてもよい。
The semiconductor device according to the present invention has a basic configuration equivalent to that of the image sensor cell shown in FIG.
That is, as one cell (pixel) constituting the image sensor, the N-type well 2 formed in a predetermined region of the P-type substrate 1 and the upper peripheral portion of the N-type well 2 for element separation are formed. Field oxide film 3, high-concentration N-type region 4 that is electrically connected to N-type well 2, interlayer insulating film 5 formed on field oxide film 3, and interlayer insulating film 5 are formed. A wiring 6 connected to the high-concentration N-type region 4, an interlayer insulating film 5, and a protective film 7 for protecting the element are formed on the wiring 6. Note that the P-type and the N-type are not limited to the above combinations, and may be reversed.

ここで、上記セルのプロセス条件について説明を行う。N型ウェル2は、P型基板1に、リン(P)がイオン注入され、その後の熱拡散工程により、拡散及び活性化されて形成されたものであり、注入量としては、例えば、2×1012/cm2である。熱拡散工程を制御して、N型ウェル2の深さを1μmとする場合、N型ウェル2における不純物濃度は、2×1016/cm3となる。又、N型ウェル2の深さを2μmとする場合、N型ウェル2における不純物濃度は、1×1016/cm3となる。 Here, the process conditions of the cell will be described. The N-type well 2 is formed by ion-implanting phosphorus (P) into the P-type substrate 1 and then diffusing and activating it by a subsequent thermal diffusion process. 10 12 / cm 2 . When the depth of the N-type well 2 is set to 1 μm by controlling the thermal diffusion process, the impurity concentration in the N-type well 2 is 2 × 10 16 / cm 3 . When the depth of the N-type well 2 is 2 μm, the impurity concentration in the N-type well 2 is 1 × 10 16 / cm 3 .

保護膜7としては、酸化珪素膜(SiO2)、窒化酸化珪素膜(SiON)、窒化珪素膜(Si34)等の絶縁膜を用いており、プラズマCVD装置を用いて成膜する。
酸化珪素膜を用いる場合、プロセス条件は、プラズマ生成用の電磁波として、高周波及び低周波の2種類を用いており、高周波の電磁波は0.62kW、低周波の電磁波は0.38kWの電力を印加している。又、圧力は1.9Torr、基板温度は400℃であり、原料として、珪酸エチル(TEOS;テトラエトキシシラン)を1.8ml/min、酸素(O2)を4.0slm供給し、成膜する膜厚に応じて、プロセス時間を設定している。このプロセスにより成膜された酸化珪素膜の屈折率は、1.46±0.01となる。なお、「slm」は、1気圧、0℃における1分間当たりの流量をリットルで表示した単位である。
As the protective film 7, an insulating film such as a silicon oxide film (SiO 2 ), a silicon nitride oxide film (SiON), or a silicon nitride film (Si 3 N 4 ) is used, and is formed using a plasma CVD apparatus.
In the case of using a silicon oxide film, two kinds of process conditions are used, ie, high frequency and low frequency as electromagnetic waves for plasma generation, and 0.62 kW for high frequency electromagnetic waves and 0.38 kW for low frequency electromagnetic waves. is doing. The pressure is 1.9 Torr, the substrate temperature is 400 ° C., and 1.8 lm / min of ethyl silicate (TEOS; tetraethoxysilane) and 4.0 slm of oxygen (O 2 ) are supplied as raw materials to form a film. The process time is set according to the film thickness. The refractive index of the silicon oxide film formed by this process is 1.46 ± 0.01. “Slm” is a unit expressed in liters per minute at 1 atm and 0 ° C.

又、窒化酸化珪素膜を用いる場合、プロセス条件は、プラズマ生成用の電磁波として、高周波及び低周波の2種類を用いており、高周波の電磁波は0.4kW、低周波の電磁波は0.4kWの電力を印加している。又、圧力は1.9Torr、基板温度は400℃であり、原料として、シラン(SiH4)を0.2slm、アンモニア(NH3)を2.0slm、亜酸化窒素(N2O)を1.4slm、窒素(N2)を5.0slm供給し、成膜する膜厚に応じて、プロセス時間を設定している。このプロセスにより成膜された窒化酸化珪素膜の屈折率は、1.85±0.03となる。 In the case of using a silicon nitride oxide film, two kinds of process conditions are used, ie, high frequency and low frequency as electromagnetic waves for plasma generation. The high frequency electromagnetic waves are 0.4 kW, and the low frequency electromagnetic waves are 0.4 kW. Power is being applied. The pressure is 1.9Torr, the substrate temperature was 400 ° C., as a starting material, silane (SiH 4) 0.2 slm, ammonia (NH 3) 2.0slm, nitrous oxide (N 2 O) 1. 4 slm and nitrogen (N 2 ) are supplied at 5.0 slm, and the process time is set according to the film thickness to be formed. The refractive index of the silicon nitride oxide film formed by this process is 1.85 ± 0.03.

又、窒化珪素膜を用いる場合、プロセス条件は、プラズマ生成用として、RF(13.56MHz)の電磁波を用いており、0.58kWの電力を印加している。又、圧力は1.5Torr、基板温度は350℃であり、原料として、シランを0.8slm、アンモニアを2.0slm供給し、成膜する膜厚に応じて、プロセス時間を設定している。このプロセスにより成膜された窒化珪素膜の屈折率は、2.05±0.05となる。   When a silicon nitride film is used, RF (13.56 MHz) electromagnetic waves are used as process conditions for plasma generation, and electric power of 0.58 kW is applied. The pressure is 1.5 Torr, the substrate temperature is 350 ° C., 0.8 lm of silane and 2.0 slm of ammonia are supplied as raw materials, and the process time is set according to the film thickness to be formed. The refractive index of the silicon nitride film formed by this process is 2.05 ± 0.05.

上記構成のセルは、可視光の各波長R、G、Bを検出するため、各々独立して形成されており、これらが、平面上に複数整列配置されて、イメージセンサを構成している。なお、図示していないが、各セルの上方には、入射光をR、G、B各波長に分光する分光部材(例えば、カラーフィルタ等)が配置されており、分光部材により分光された各波長の光が、R、G、B用の各セルに各々入射されるようになっている。   The cells having the above-described configuration are formed independently to detect the wavelengths R, G, and B of visible light, and a plurality of these cells are arranged on a plane to constitute an image sensor. Although not shown, a spectral member (for example, a color filter) that splits incident light into R, G, and B wavelengths is disposed above each cell. Light of a wavelength is incident on each of the R, G, and B cells.

本実施例では、R、G、B用の各セルにおいて、各波長の光の透過強度が最大となるように、保護膜7の膜厚を最適な膜厚としている。ここで、図2に、R、G、B各波長の光に対し、保護膜の厚さを変化させたときの信号強度の変化のグラフ、つまり、透過強度に相関する強度の変化のグラフを示して、各波長に対する最適な膜厚を説明する。なお、図2のグラフは、保護膜として、窒化珪素膜を用い、その屈折率として2.05を用いており、R、G、B各波長は、その中心波長として、Rが6900Å、Gが5350Å、Bが4450Åを用いている。又、信号強度は、保護膜の厚さが0(ゼロ)の時の信号強度を1として、その相対変化をプロットしたものである。   In the present embodiment, in each of the R, G, and B cells, the protective film 7 has an optimum film thickness so that the transmission intensity of light of each wavelength is maximized. Here, FIG. 2 shows a graph of a change in signal intensity when the thickness of the protective film is changed for light of each wavelength of R, G, and B, that is, a graph of a change in intensity correlated with the transmission intensity. The optimum film thickness for each wavelength will be described. In the graph of FIG. 2, a silicon nitride film is used as a protective film, and a refractive index of 2.05 is used. R, G, and B wavelengths have a center wavelength of R of 6900 mm and G of 5350cm, B uses 4450cm. The signal intensity is a plot of the relative change with the signal intensity when the thickness of the protective film is 0 (zero) as 1.

一般的に、透過膜の厚さを変化させたとき、透過膜を透過する光の強度の変化は、透過膜内での干渉の作用により、光の波長が半波長ずれる度に強め合い(透過膜による吸収が最小になる)、その強度は、余弦関数で表される周期的な変化をする。そして、強度の変化の周期は、光の波長により各々異なり、R、G、B各波長に対する強度は、図2に示すような変化となる。   In general, when the thickness of the permeable membrane is changed, the change in the intensity of light transmitted through the permeable membrane is strengthened each time the wavelength of light is shifted by half a wavelength due to the interference effect in the transmissive membrane (transmitted). The absorption of the film is minimized), and its intensity undergoes a periodic change represented by a cosine function. The period of change in intensity differs depending on the wavelength of light, and the intensity for each wavelength of R, G, and B changes as shown in FIG.

通常、保護膜としての機能を確保するためには、少なくとも4000Å、できれば、5000Å以上の膜厚が必要であり、これが、保護膜の下限値である。又、保護膜の応力を考慮すると、窒化珪素膜の場合、15000〜20000Å(1.5〜2.0μm)が、保護膜の上限値となる。   Usually, in order to ensure the function as a protective film, a film thickness of at least 4000 mm, preferably 5000 mm or more is necessary, which is the lower limit of the protective film. In consideration of the stress of the protective film, in the case of the silicon nitride film, 15000 to 20000 mm (1.5 to 2.0 μm) is the upper limit value of the protective film.

そこで、5000Åより大きい膜厚において、B域光の信号強度が略1となる5400Åの膜厚におけるG域光、R域光の信号強度に着目すると、G域光は0.9程度、R域光は0.8程度の信号強度である。同様に、G域光の信号強度が略1となる6500Åの膜厚におけるB域光、R域光の信号強度に着目すると、B域光は略1であるのに対して、R域光は0.9程度の信号強度であり、R域光の信号強度が略1となる8400Åの膜厚におけるB域光、G域光の信号強度に着目すると、B域光は0.7程度、G域光は0.5程度の信号強度である。このように、1つの膜厚において、全ての色域の波長の光に対して、信号強度を略1とすることはなく、このことから、光の波長に応じて、膜厚を変更した方がよいことがわかる。   Therefore, when attention is paid to the signal intensity of the G-band light and the R-band light at the thickness of 5400 mm where the signal intensity of the B-band light becomes approximately 1 at a film thickness larger than 5000 mm, the G-band light is about 0.9, Light has a signal intensity of about 0.8. Similarly, when attention is paid to the signal intensity of the B-band light and R-band light at a thickness of 6500 mm where the signal intensity of the G-band light is approximately 1, the B-band light is approximately 1, whereas the R-band light is Focusing on the signal intensities of the B-band light and G-band light at a thickness of 8400 mm where the signal intensity of the R-band light is approximately 1, the signal intensity of the R-band light is about 0.7, The local light has a signal intensity of about 0.5. In this way, the signal intensity does not become substantially 1 for light of all color gamut wavelengths in one film thickness. From this, the film thickness is changed according to the wavelength of light. It turns out that is good.

従って、保護膜として屈折率2.05の窒化珪素膜を用いる場合には、図2により、保護膜の膜厚を、B用のセルに対しては、5250Å以上、5550Å以下の範囲(5400ű3%程度)、望ましくは5400Åとし、G用のセルに対しては、6300Å以上、6700Å以下の範囲(6500ű3%程度)、望ましくは6500Åとし、R用のセルに対しては、8150Å以上、8650Å以下の範囲(8400ű3%程度)、望ましくは8400Åとすれば、信号強度の相対値は、0.9以上となる。   Therefore, when a silicon nitride film having a refractive index of 2.05 is used as the protective film, the protective film thickness is in the range of 5250 mm or more and 5550 mm or less (5400 mm ± 5 for the B cell, as shown in FIG. 3400), preferably 5400 mm, for G cells, 6300 mm or more and 6700 mm or less (6500 mm ± 3%), preferably 6500 mm, for R cells 8150 mm or more , 8650 mm or less (about 8400 mm ± 3%), preferably 8400 mm, the relative value of the signal intensity is 0.9 or more.

次に、各セルにおいて、保護膜を最適な膜厚に形成する形成方法について、図3を用いて説明を行う。なお、図3においては、説明を簡略にするため、素子部を符号11B、11G、11Rで表し、保護膜を符号11で表して説明を行う。 Next, a method for forming a protective film with an optimum film thickness in each cell will be described with reference to FIG. In FIG. 3, for simplicity of description, the element portions are denoted by reference numerals 11 B , 11 G , and 11 R , and the protective film is denoted by reference numeral 11.

本実施例においては、各セルで検出する波長域の光に対して、保護膜の膜厚を各々最適なものに形成するため、素子部11B、11G、11Rの形成後、最初に、厚い膜厚で保護膜12を堆積する。この厚い膜厚の保護膜12は、素子部11B、11G、11Rで用いる最大の膜厚、例えば、図2を参照すると、素子部11Rに最適な膜厚TRとなる8400Åを堆積すればよい(図3(a)参照)。 In this embodiment, in order to form the protective film with the optimum film thickness for the light in the wavelength range detected by each cell, first, after the formation of the element portions 11 B , 11 G , 11 R , A protective film 12 is deposited with a thick film thickness. Protective film 12 of the large thickness, the maximum thickness used in the element portion 11 B, 11 G, 11 R , for example, referring to FIG. 2, a 8400Å of an optimal thickness T R in the element portion 11 R What is necessary is just to deposit (refer Fig.3 (a)).

次に、素子部11R領域の保護膜12がエッチングされないように、この部分をレジスト等でマスクした後、他の素子部11B、11Gの領域の保護膜12をドライエッチング等によりエッチングして、その膜厚を削減させる。このとき、削減する膜厚は、素子部11Gに最適な膜厚、例えば、図2を参照すると、素子部11Gに最適な膜厚TGである6500Åとなるように、エッチングを行う(図3(b)参照)。 Next, after masking this portion with a resist or the like so that the protective film 12 in the element portion 11 R region is not etched, the protective film 12 in the region of the other element portions 11 B and 11 G is etched by dry etching or the like. To reduce the film thickness. At this time, the film thickness to reduce the optimum film thickness in the element unit 11 G, for example, referring to FIG. 2, so that the 6500Å an optimum thickness T G in the element unit 11 G, etched ( (Refer FIG.3 (b)).

最後に、素子部11R、11G領域の保護膜12がエッチングされないように、これらの部分をマスクした後、素子部11B領域の保護膜12をドライエッチング等によりエッチングして、その膜厚を削減させる。このとき、削減する膜厚は、素子部11Bに最適な膜厚、例えば、図2を参照すると、素子部11Bに最適な膜厚TBである5400Åとなるように、エッチングを行う(図3(c)参照)。なお、図3(b)で示す手順と図3(c)で示す手順は、逆の順序であってもよい。 Finally, these portions are masked so that the protective film 12 in the element portions 11 R and 11 G regions is not etched, and then the protective film 12 in the element portion 11 B region is etched by dry etching or the like to obtain a film thickness. Reduce. At this time, the film thickness to reduce the optimum thickness to the element portion 11 B, for example, referring to FIG. 2, so that the 5400Å an optimum thickness T B to the element portion 11 B, etched ( (Refer FIG.3 (c)). The procedure shown in FIG. 3B and the procedure shown in FIG. 3C may be reversed.

このようにして、異なる波長域を検出する各素子部11B、11G、11Rに対応して、最適な膜厚を有する保護膜が形成されることになる。このような構成を有するセルにおいては、入射光が入射された際、保護膜の干渉の影響をできるだけ低減して、入射光がP型基板とN型ウェルの界面近傍に生成された空乏層により多く到達することになり、そのため、空乏層でより多くのキャリアが発生することになる。その結果、入射光に対して、高効率の光電変換を達成することが可能となり、検出感度を向上させることができる。 In this manner, a protective film having an optimum film thickness is formed corresponding to each element unit 11 B , 11 G , 11 R that detects different wavelength ranges. In the cell having such a configuration, when incident light is incident, the influence of the interference of the protective film is reduced as much as possible, and the incident light is generated by a depletion layer generated near the interface between the P-type substrate and the N-type well. A large amount will be reached, and therefore more carriers will be generated in the depletion layer. As a result, it is possible to achieve high-efficiency photoelectric conversion with respect to incident light and improve detection sensitivity.

なお、本実施例においては、1層の保護膜を予め形成しておき、その1層の保護膜の膜厚を削ることにより、各セルの保護膜を最適な膜厚に形成しているが、複層の保護膜を予め形成しておき、複層の保護膜の何れか一方又は両方の膜厚を削ることにより、各セルの保護膜を最適な膜厚に形成してしてもよい。   In this embodiment, a single protective film is formed in advance, and the protective film of each cell is formed to an optimum thickness by reducing the thickness of the single protective film. The protective film of each cell may be formed in advance, and the protective film of each cell may be formed to an optimum film thickness by reducing the thickness of one or both of the multilayer protective films. .

本実施例の半導体装置は、実施例1と同様に、各セルにおいて、保護膜の膜厚を各々最適な異なる膜厚としたものである。但し、本実施例では、異なる膜厚の保護膜の形成方法が実施例1と相違するものであり、この形成方法について、図4を用いて説明を行う。なお、図4においても、説明を簡略にするため、素子部を符号11B、11G、11Rで表し、保護膜を符号13〜15で表して説明を行う。 As in the first embodiment, the semiconductor device according to the present embodiment is such that the protective film has a different optimum film thickness in each cell. However, in this embodiment, a method for forming a protective film having a different film thickness is different from that in Embodiment 1, and this forming method will be described with reference to FIG. In FIG. 4, the element portions are represented by reference numerals 11 B , 11 G , and 11 R and the protective film is represented by reference numerals 13 to 15 in order to simplify the description.

本実施例においては、各セルが検出する波長域の光に対して、保護膜の膜厚を各々最適なものに形成するため、素子部11B、11G、11Rの形成後、最初に、所定膜厚T1で保護膜13を全面に堆積する。所定膜厚T1の保護膜13は、素子部11Bで用いる膜厚、例えば、図2を参照すると、素子部11Bに最適な膜厚5400Åを堆積すればよい(図4(a)参照)。 In the present embodiment, in order to form the protective film with the optimum film thickness for the light in the wavelength band detected by each cell, first, after the formation of the element portions 11 B , 11 G , 11 R , A protective film 13 is deposited on the entire surface with a predetermined film thickness T 1 . The protective film 13 having the predetermined film thickness T 1 may be deposited to a film thickness used in the element portion 11 B , for example, an optimum film thickness of 5400 mm in the element portion 11 B (see FIG. 4A). ).

次に、素子部11B以外の領域、つまり、素子部11G、素子部11Rの領域に、所定膜厚T2で保護膜14を保護膜13上に積層する。ここでは、保護膜13の膜厚T1と保護膜14の膜厚T2の和が、素子部11Gで用いる膜厚、例えば、図2を参照すると、素子部11Gに最適な膜厚6500Åとなるように、保護膜14を積層すればよい(図4(b)参照)。 Next, the protective film 14 is laminated on the protective film 13 with a predetermined thickness T 2 in a region other than the element portion 11 B , that is, in the regions of the element portion 11 G and the element portion 11 R. Here, the sum of the film thickness T 1 of the protective film 13 and the film thickness T 2 of the protective film 14 is the film thickness used in the element portion 11 G , for example, the optimum film thickness for the element portion 11 G with reference to FIG. The protective film 14 may be laminated so as to be 6500 mm (see FIG. 4B).

最後に、素子部11B、素子部11G以外の領域、つまり、素子部11Rの領域のみに、所定膜厚T3で保護膜15を保護膜14上に積層する。ここでは、保護膜13の膜厚T1、保護膜14の膜厚T2及び保護膜15の膜厚T3の和が、素子部11Rで用いる膜厚、例えば、図2を参照すると、素子部11Rに最適な膜厚8400Åとなるように、保護膜15を積層すればよい(図4(c)参照)。 Finally, the protective film 15 is laminated on the protective film 14 with a predetermined film thickness T 3 only in the region other than the element portion 11 B and the element portion 11 G , that is, the region of the element portion 11 R. Here, the sum of the film thickness T 1 of the protective film 13, the film thickness T 2 of the protective film 14 and the film thickness T 3 of the protective film 15 is the film thickness used in the element portion 11 R , for example, referring to FIG. The protective film 15 may be stacked so as to have an optimum film thickness of 8400 mm for the element portion 11 R (see FIG. 4C).

このようにして、実施例1と同様に、異なる波長域を検出する各素子部11B、11G、11Rに対応して、最適な膜厚を有する保護膜が形成されることになる。このような構成を有するセルにおいては、入射光が入射された際、保護膜の干渉の影響をできるだけ低減して、入射光がP型基板とN型ウェルの界面近傍に生成された空乏層により多く到達することになり、そのため、空乏層近傍でより多くのキャリアが発生することになる。その結果、入射光に対して、高効率の光電変換を達成することが可能となり、検出感度を向上させることができる。 In this manner, as in the first embodiment, a protective film having an optimum film thickness is formed corresponding to each element unit 11 B , 11 G , 11 R that detects different wavelength regions. In the cell having such a configuration, when incident light is incident, the influence of the interference of the protective film is reduced as much as possible, and the incident light is generated by a depletion layer generated near the interface between the P-type substrate and the N-type well. Therefore, more carriers are generated and more carriers are generated in the vicinity of the depletion layer. As a result, it is possible to achieve high-efficiency photoelectric conversion with respect to incident light and improve detection sensitivity.

本実施例の半導体装置は、実施例1、2とは異なり、保護膜の膜厚ではなく、各セルが検出する波長域の光に対して、保護膜の膜質を各々最適なものに形成したものである。この形成方法について、図5を用いて説明を行う。なお、図5においても、説明を簡略にするため、素子部を符号11B、11G、11Rで表し、保護膜を符号16で表して説明を行う。 Unlike the first and second embodiments, the semiconductor device of this example is formed not to have a protective film thickness but to have an optimum film quality of the protective film for light in the wavelength range detected by each cell. Is. This forming method will be described with reference to FIG. In FIG. 5, the element portions are represented by reference numerals 11 B , 11 G , and 11 R and the protective film is represented by reference numeral 16 in order to simplify the description.

本実施例においては、各セルが検出する波長域の光に対して、保護膜の膜質を各々最適なものに形成するため、素子部11B、11G、11Rの形成後、所定膜厚の保護膜16を堆積した後、素子部11B、11G、11Rに応じて、保護膜16に所定量、所定種のイオンを注入することにより、保護膜16の膜質、例えば、屈折率等の光学的特性を最適なものとするものである。本実施例の場合、イオン注入を行う素子部の順序はなく、どのような順序で行っても構わないが、ここでは、一例として、素子部11B、11G、11Rの順序で説明を行う。 In this embodiment, in order to form the film quality of the protective film with respect to the light in the wavelength band detected by each cell, the film thickness of the protective film is optimized, so that a predetermined film thickness is formed after the formation of the element portions 11 B , 11 G and 11 R After the protective film 16 is deposited, a predetermined amount of ions of a predetermined type are implanted into the protective film 16 in accordance with the element portions 11 B , 11 G , and 11 R , so that the film quality of the protective film 16, for example, the refractive index The optical characteristics such as these are optimized. In the case of the present embodiment, there is no order of the element portions for ion implantation, and any order may be used. However, here, as an example, the description is given in the order of the element portions 11 B , 11 G , 11 R. Do.

最初に、素子部11G、11R領域の保護膜16がイオン注入されないように、この部分をレジスト17でマスクした後、素子部11Bの領域の保護膜16に、所定量、所定種のイオン18を注入する。このとき、イオン種として、例えば、保護膜16が酸化珪素膜(SiO2)であれば、珪素(Si)又は酸素(O)を用い、保護膜16が窒化酸化珪素膜(SiON)であれば、珪素(Si)又は酸素(O)又は窒素(N)を用い、保護膜16が窒化珪素膜(Si34)であれば、珪素(Si)又は窒素(N)を用いる。又、注入量としては、所望の光学的特性、つまり、所定膜厚の保護膜16において、B域光の信号強度(透過強度)が最大となるような屈折率特性を有する膜質となる注入量とする(図5(a)参照)。 First, this portion is masked with a resist 17 so that the protective film 16 in the element portions 11 G and 11 R regions is not ion-implanted, and then a predetermined amount and a predetermined type of protective film 16 in the region of the element portion 11 B are formed. Ions 18 are implanted. At this time, as the ion species, for example, if the protective film 16 is a silicon oxide film (SiO 2 ), silicon (Si) or oxygen (O) is used, and if the protective film 16 is a silicon nitride oxide film (SiON). If silicon (Si), oxygen (O) or nitrogen (N) is used and the protective film 16 is a silicon nitride film (Si 3 N 4 ), silicon (Si) or nitrogen (N) is used. Further, the injection amount is a desired optical characteristic, that is, an injection amount that provides a film quality having a refractive index characteristic that maximizes the signal intensity (transmission intensity) of the B-band light in the protective film 16 having a predetermined film thickness. (See FIG. 5A).

次に、レジスト17を除去し、素子部11B、11Rの領域の保護膜16がイオン注入されないように、この部分をレジスト19でマスクした後、素子部11Gの領域の保護膜16に、所定量、所定種のイオン20を注入する。このときも、イオン種として、例えば、保護膜16が酸化珪素膜であれば、珪素又は酸素を用い、保護膜16が窒化酸化珪素膜であれば、珪素又は酸素又は窒素を用い、保護膜16が窒化珪素膜であれば、珪素又は窒素を用いる。又、注入量としても、所望の光学的特性、つまり、所定膜厚の保護膜16において、G域光の信号強度(透過強度)が最大となるような屈折率特性を有する膜質となる注入量とする(図5(b)参照)。 Next, the resist 17 is removed, and this portion is masked with a resist 19 so that the protective film 16 in the region of the element portions 11 B and 11 R is not ion-implanted, and then the protective film 16 in the region of the element portion 11 G is formed. A predetermined amount of ions 20 of a predetermined type are implanted. Also at this time, as the ion species, for example, if the protective film 16 is a silicon oxide film, silicon or oxygen is used. If the protective film 16 is a silicon nitride oxide film, silicon, oxygen, or nitrogen is used, and the protective film 16 is used. If is a silicon nitride film, silicon or nitrogen is used. Also, as the injection amount, the desired optical characteristic, that is, the injection amount that provides a film quality having a refractive index characteristic that maximizes the signal intensity (transmission intensity) of the G light in the protective film 16 having a predetermined film thickness. (See FIG. 5B).

最後に、レジスト19を除去し、素子部11B、11Gの領域の保護膜16がイオン注入されないように、この部分をレジスト21でマスクした後、素子部11Rの領域の保護膜16に、所定量、所定種のイオン22を注入する。このときも、イオン種として、例えば、保護膜16が酸化珪素膜であれば、珪素又は酸素を用い、保護膜16が窒化酸化珪素膜であれば、珪素又は酸素又は窒素を用い、保護膜16が窒化珪素膜であれば、珪素又は窒素を用いる。又、注入量としても、所望の光学的特性、つまり、所定膜厚の保護膜16において、R域光の信号強度(透過強度)が最大となるような屈折率特性を有する膜質となる注入量とする(図5(c)参照)。 Finally, the resist 19 is removed, and this portion is masked with a resist 21 so that the protective film 16 in the region of the element portions 11 B and 11 G is not ion-implanted, and then the protective film 16 in the region of the element portion 11 R is formed. A predetermined amount of ions 22 of a predetermined type are implanted. Also at this time, as the ion species, for example, if the protective film 16 is a silicon oxide film, silicon or oxygen is used. If the protective film 16 is a silicon nitride oxide film, silicon, oxygen, or nitrogen is used, and the protective film 16 is used. If is a silicon nitride film, silicon or nitrogen is used. Also, as the injection amount, the desired optical characteristic, that is, the injection amount that provides a film quality having a refractive index characteristic that maximizes the signal intensity (transmission intensity) of the R region light in the protective film 16 having a predetermined film thickness. (See FIG. 5C).

そして、レジスト21を削除すると、図5(d)に示すように、各波長を検出する素子部11B、11G、11Rに応じて、最適な光学特性の領域AB、AG、ARを有する保護膜16が形成されることになる。このような構成を有するセルにおいては、入射光が入射された際、保護膜の干渉の影響をできるだけ低減して、入射光がP型基板とN型ウェルの界面近傍に生成された空乏層に到達することになり、そのため、空乏層でより多くのキャリアが発生することになる。その結果、入射光に対して、高効率の光電変換を達成することが可能となり、検出感度を向上させることができる。 Then, removing the resist 21, as shown in FIG. 5 (d), depending on the element unit 11 B, 11 G, 11 R for detecting the respective wavelength regions A B optimum optical properties, A G, A A protective film 16 having R is formed. In the cell having such a configuration, when incident light is incident, the influence of the interference of the protective film is reduced as much as possible, and the incident light is generated in the depletion layer generated near the interface between the P-type substrate and the N-type well. As a result, more carriers are generated in the depletion layer. As a result, it is possible to achieve high-efficiency photoelectric conversion with respect to incident light and improve detection sensitivity.

一般的に、透過膜の膜厚を一定としても、透過膜の屈折率を変化させると、透過膜を透過する光の強度の変化は、透過膜内での干渉の作用により、光の波長が半波長ずれる度に強め合い、その強度は、余弦関数で表される周期的な変化をする。そして、強度の変化の周期は、光の波長により各々異なり、R、G、B各波長に対する強度は、図6、7に示すような変化となる。なお、図6、7においては、最大強度を1として、その相対的変化を図示した。   In general, even if the film thickness of the transmissive film is constant, if the refractive index of the transmissive film is changed, the change in the intensity of the light transmitted through the transmissive film is caused by the effect of interference in the transmissive film. Each time it deviates by half a wavelength, it strengthens and its intensity changes periodically represented by a cosine function. The period of change in intensity differs depending on the wavelength of light, and the intensity for each wavelength of R, G, and B changes as shown in FIGS. In FIGS. 6 and 7, the relative change is illustrated with the maximum intensity being 1.

具体的には、信号強度の相対値は、保護膜の膜厚をt、光の膜中の波長をLとすると、COS(2π×t/(L/2))に比例する。保護膜の屈折率をn、光の空気中の波長をλとすると、L=λ/nであり、信号強度の相対値は、COS(2π×2nt/λ)に比例することになる。そして、(2nt/λ)が整数になるとき、信号強度の相対値は最大値をとるため、mを任意の整数とすると、保護膜の屈折率nは、n=[λ/(2t)]・mにより求められる。従って、この式を用いて、光電変換を行う光の波長に応じて、所望の屈折率特性を求めればよい。なお、上記計算過程において、保護膜の膜厚tについて求めると、膜厚tは、t=[λ/(2n)]・mにより求めることができ、実施例1、2において、この式を用いて、光電変換を行う光の波長に応じて、所望の膜厚を求めるようにしてもよい。   Specifically, the relative value of the signal intensity is proportional to COS (2π × t / (L / 2)), where t is the thickness of the protective film and L is the wavelength in the light film. When the refractive index of the protective film is n and the wavelength of light in the air is λ, L = λ / n, and the relative value of the signal intensity is proportional to COS (2π × 2nt / λ). When (2nt / λ) becomes an integer, the relative value of the signal intensity takes the maximum value. When m is an arbitrary integer, the refractive index n of the protective film is n = [λ / (2t)].・ It is calculated by m. Therefore, a desired refractive index characteristic may be obtained using this equation in accordance with the wavelength of light for photoelectric conversion. In the above calculation process, when the film thickness t of the protective film is obtained, the film thickness t can be obtained by t = [λ / (2n)] · m. Thus, a desired film thickness may be obtained according to the wavelength of light for performing photoelectric conversion.

光電変換を行う光の波長を、可視光の青、緑、赤の波長域とし、保護膜の膜厚を5000Åとする場合には、図6に示すように、可視光の青の波長域(中心波長4450Å)に対する保護膜の屈折率を、1.71以上、1.85以下の範囲、望ましくは1.78とし、可視光の緑の波長域(中心波長5350Å)に対する保護膜の屈折率を、1.52以上、1.68以下の範囲、望ましくは1.60とし、可視光の赤の波長域(中心波長6900Å)に対する保護膜の屈折率を、1.94以上、2.18以下の範囲、望ましくは2.06とすれば、信号強度の相対値は、0.9以上となる。   When the wavelength of light to be subjected to photoelectric conversion is set to the blue, green, and red wavelength ranges of visible light and the thickness of the protective film is set to 5000 mm, as shown in FIG. The refractive index of the protective film with respect to the central wavelength 4450 mm is set to 1.71 or more and 1.85 or less, preferably 1.78, and the refractive index of the protective film with respect to the green wavelength region of visible light (central wavelength 5350 mm) is set. 1.52 or more and 1.68 or less, preferably 1.60, and the refractive index of the protective film with respect to the red wavelength region of visible light (center wavelength 6900 mm) is 1.94 or more and 2.18 or less. If the range, preferably 2.06, the relative value of the signal intensity is 0.9 or more.

又、保護膜の膜厚を6000Åとする場合には、図7に示すように、可視光の青の波長域(中心波長4450Å)に対する保護膜の屈折率を、1.79以上、1.91以下の範囲、望ましくは1.85とし、可視光の緑の波長域(中心波長5350Å)に対する保護膜の屈折率を、1.70以上、1.86以下の範囲、望ましくは1.78とし、可視光の赤の波長域(中心波長6900Å)に対する保護膜の屈折率を、1.63以上、1.83以下の範囲、望ましくは1.73とすれば、信号強度の相対値は、0.9以上となる。   When the thickness of the protective film is 6000 mm, as shown in FIG. 7, the refractive index of the protective film with respect to the blue wavelength region of visible light (center wavelength 4450 mm) is 1.79 or more and 1.91. The following range, preferably 1.85, and the refractive index of the protective film with respect to the green wavelength region of visible light (center wavelength 5350 mm) is 1.70 or more and 1.86 or less, preferably 1.78, If the refractive index of the protective film with respect to the red wavelength region of visible light (center wavelength 6900 mm) is in the range of 1.63 or more and 1.83 or less, preferably 1.73, the relative value of the signal intensity is 0.7. 9 or more.

なお、本実施例においては、保護膜にイオン注入を行うことで、保護膜の膜質を、各セルに最適な膜質としているが、上述したプラズマCVD装置における保護膜のプロセス条件において、原料の供給比等を変更することによって、保護膜の成膜時に、各セルに最適な膜質の保護膜を成膜するようにしてもよい。   In this embodiment, ion implantation is performed on the protective film so that the film quality of the protective film is optimum for each cell. However, the supply of raw materials is performed under the above-described protective film process conditions in the plasma CVD apparatus. By changing the ratio or the like, a protective film having an optimum film quality for each cell may be formed at the time of forming the protective film.

イメージセンサの1つのセルの構成を示す図である。It is a figure which shows the structure of one cell of an image sensor. R、G、B各波長の光に対し、保護膜の厚さを変化させたときの信号強度の変化を示すグラフである。It is a graph which shows the change of signal intensity when the thickness of a protective film is changed with respect to the light of each wavelength of R, G, and B. 本発明に係る半導体装置の形成方法の一例(実施例1)を説明する図である。It is a figure explaining an example (Example 1) of the formation method of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の形成方法の他の一例(実施例2)を説明する図である。It is a figure explaining other examples (Example 2) of the formation method of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の形成方法の他の一例(実施例3)を説明する図である。It is a figure explaining other examples (Example 3) of the formation method of the semiconductor device which concerns on this invention. R、G、B各波長の光に対し、保護膜(膜厚5000Å)の屈折率を変化させたときの信号強度の変化を示すグラフである。It is a graph which shows the change of signal intensity when changing the refractive index of a protective film (film thickness 5000mm) with respect to the light of each wavelength of R, G, and B. R、G、B各波長の光に対し、保護膜(膜厚6000Å)の屈折率を変化させたときの信号強度の変化を示すグラフである。It is a graph which shows the change of signal intensity when changing the refractive index of a protective film (film thickness of 6000 mm) with respect to the light of each wavelength of R, G, and B.

符号の説明Explanation of symbols

1 P型基板
2 N型ウェル
3 フィールド酸化膜
4 高濃度N型領域
5 層間絶縁膜
6 配線
7、12、13、14、15、16 保護膜
8 空乏層
9 入射光
10 キャリア
11R、11G、11B 素子部
17、19、21 レジスト
18、20、22 イオン
1 P-type substrate 2 N-type well 3 Field oxide film 4 High-concentration N-type region 5 Interlayer insulating film 6 Wiring 7, 12, 13, 14, 15, 16 Protective film 8 Depletion layer 9 Incident light 10 Carrier 11 R , 11 G , 11 B element portion 17, 19, 21 resist 18, 20, 22 ion

Claims (8)

平面に整列配置され、入射された光の光電変換を行う複数の素子部と、前記素子部の表面を保護する保護膜とを有する半導体装置において、
各々の前記素子部への光の入射強度が最大となるように、光電変換を行う光の波長に応じて、前記保護膜を各々異なる膜厚に形成したことを特徴とする半導体装置。
In a semiconductor device having a plurality of element portions arranged in a plane and performing photoelectric conversion of incident light, and a protective film protecting the surface of the element portion,
2. A semiconductor device according to claim 1, wherein the protective film is formed to have a different thickness in accordance with a wavelength of light for photoelectric conversion so that an incident intensity of light to each of the element portions is maximized.
前記保護膜は、1層の保護膜を各々エッチングすることにより、各々異なる膜厚に形成されたものであることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the protective film is formed to have a different thickness by etching each of the protective films of one layer. 前記保護膜は、1層の保護膜又は積層された複数の保護膜により、各々異なる膜厚に形成されたものであることを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the protective film is formed to have a different thickness by a single protective film or a plurality of stacked protective films. 前記光電変換を行う光の波長λとし、前記保護膜の屈折率をnとし、mを任意の整数とする場合、
光電変換を行う光の波長に応じて、前記保護膜の膜厚tを、各々、t=[λ/(2n)]・mとしたことを特徴とする請求項1乃至請求項3のいずれかに記載の半導体装置。
When the wavelength λ of the light for performing the photoelectric conversion, the refractive index of the protective film is n, and m is an arbitrary integer,
4. The film thickness t of the protective film is set to t = [λ / (2n)] · m, respectively, according to the wavelength of light to be subjected to photoelectric conversion. A semiconductor device according to 1.
前記光電変換を行う光の波長を、少なくとも、可視光の青、緑、赤の波長域とし、
前記保護膜を屈折率2.05の窒化珪素膜とする場合、
可視光の青の波長域に対する前記保護膜の厚さを、5250Å以上、5550Å以下の範囲、望ましくは5400Åとし、可視光の緑の波長域に対する前記保護膜の厚さを、6300Å以上、6700Å以下の範囲、望ましくは6500Åとし、可視光の赤の波長域に対する前記保護膜の厚さを、8150Å以上、8650Å以下の範囲、望ましくは8400Åとすることを特徴とする請求項1乃至請求項3のいずれかに記載の半導体装置。
The wavelength of the light for performing the photoelectric conversion is at least a blue, green, red wavelength range of visible light,
When the protective film is a silicon nitride film having a refractive index of 2.05,
The thickness of the protective film with respect to the blue wavelength range of visible light is in the range of 5250 mm to 5550 mm, preferably 5400 mm, and the thickness of the protective film with respect to the green wavelength range of visible light is 6300 mm to 6700 mm. The thickness of the protective film with respect to the red wavelength region of visible light is 8150 mm or more and 8650 mm or less, preferably 8400 mm. The semiconductor device according to any one of the above.
平面に整列配置され、入射された光の光電変換を行う複数の素子部と、前記素子部の表面を保護する保護膜とを有する半導体装置において、
各々の前記素子部への光の入射強度が最大となるように、光電変換を行う光の波長に応じて、前記保護膜の膜質を各々異なる屈折率としたことを特徴とする半導体装置。
In a semiconductor device having a plurality of element portions arranged in a plane and performing photoelectric conversion of incident light, and a protective film protecting the surface of the element portion,
A semiconductor device characterized in that the protective film has a different refractive index according to the wavelength of light for photoelectric conversion so that the incident intensity of light to each of the element portions is maximized.
前記光電変換を行う光の波長λとし、前記保護膜の膜厚をtとし、mを任意の整数とする場合、
光電変換を行う光の波長に応じて、前記保護膜の屈折率nを、各々、n=[λ/(2t)]・mとしたことを特徴とする請求項6に記載の半導体装置。
When the wavelength λ of the light for performing the photoelectric conversion, the thickness of the protective film is t, and m is an arbitrary integer,
7. The semiconductor device according to claim 6, wherein the refractive index n of the protective film is set to n = [λ / (2t)] · m, respectively, according to the wavelength of light for performing photoelectric conversion.
前記光電変換を行う光の波長を、少なくとも、可視光の青、緑、赤の波長域とし、
前記保護膜の膜厚を5000Åとする場合、
可視光の青の波長域に対する前記保護膜の屈折率を、1.71以上、1.85以下の範囲、望ましくは1.78とし、可視光の緑の波長域に対する前記保護膜の屈折率を、1.52以上、1.68以下の範囲、望ましくは1.60、可視光の赤の波長域に対する前記保護膜の屈折率を、1.94以上、2.18以下の範囲、望ましくは2.06とし、
前記保護膜の膜厚を6000Åとする場合、
可視光の青の波長域に対する前記保護膜の屈折率を、1.79以上、1.91以下の範囲、望ましくは1.85とし、可視光の緑の波長域に対する前記保護膜の屈折率を、1.70以上、1.86以下の範囲、望ましくは1.78、可視光の赤の波長域に対する前記保護膜の屈折率を、1.63以上、1.83以下の範囲、望ましくは1.73とすることを特徴とする請求項6に記載の半導体装置。
The wavelength of the light for performing the photoelectric conversion is at least a blue, green, red wavelength range of visible light,
When the thickness of the protective film is 5000 mm,
The refractive index of the protective film with respect to the blue wavelength range of visible light is set to 1.71 or more and 1.85 or less, preferably 1.78, and the refractive index of the protective film with respect to the green wavelength range of visible light is set to 1.78. 1.52 or more and 1.68 or less, preferably 1.60, and the refractive index of the protective film with respect to the red wavelength region of visible light is 1.94 or more and 2.18 or less, preferably 2 .06,
When the thickness of the protective film is 6000 mm,
The refractive index of the protective film with respect to the blue wavelength range of visible light is 1.79 to 1.91, preferably 1.85, and the refractive index of the protective film with respect to the green wavelength range of visible light is The refractive index of the protective film in the range of 1.70 or more and 1.86 or less, preferably 1.78, or the red wavelength region of visible light is 1.63 or more and 1.83 or less, preferably 1 The semiconductor device according to claim 6, wherein the semiconductor device is .73.
JP2006046880A 2006-02-23 2006-02-23 Semiconductor device Expired - Fee Related JP5009540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046880A JP5009540B2 (en) 2006-02-23 2006-02-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046880A JP5009540B2 (en) 2006-02-23 2006-02-23 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2007227636A true JP2007227636A (en) 2007-09-06
JP5009540B2 JP5009540B2 (en) 2012-08-22

Family

ID=38549147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046880A Expired - Fee Related JP5009540B2 (en) 2006-02-23 2006-02-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5009540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061203A (en) * 2009-09-09 2011-03-24 Samsung Electronics Co Ltd Antireflection image sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112067A (en) * 1984-06-27 1986-01-20 Ricoh Co Ltd Amorphous silicon unmagnifying photosensor
JPS61129880A (en) * 1984-11-28 1986-06-17 Fujitsu Ltd Semiconductor photodetector
JPS63281458A (en) * 1987-05-13 1988-11-17 Seiko Instr & Electronics Ltd Semiconductor photodetector and manufacture thereof
JPH0922994A (en) * 1995-07-06 1997-01-21 Sony Corp Color solid state image sensor and color solid state image device
JPH0951084A (en) * 1995-08-04 1997-02-18 Sony Corp Optical device
JPH10125281A (en) * 1996-10-24 1998-05-15 Iwasaki Electric Co Ltd Metal halide lamp with transparent heat insulation film
JP2000343267A (en) * 1999-05-28 2000-12-12 Sumitomo Electric Ind Ltd Infrared region laser beam machine, and its protective window
JP2003069007A (en) * 2001-08-24 2003-03-07 Matsushita Electric Ind Co Ltd Solid-state imaging device and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112067A (en) * 1984-06-27 1986-01-20 Ricoh Co Ltd Amorphous silicon unmagnifying photosensor
JPS61129880A (en) * 1984-11-28 1986-06-17 Fujitsu Ltd Semiconductor photodetector
JPS63281458A (en) * 1987-05-13 1988-11-17 Seiko Instr & Electronics Ltd Semiconductor photodetector and manufacture thereof
JPH0922994A (en) * 1995-07-06 1997-01-21 Sony Corp Color solid state image sensor and color solid state image device
JPH0951084A (en) * 1995-08-04 1997-02-18 Sony Corp Optical device
JPH10125281A (en) * 1996-10-24 1998-05-15 Iwasaki Electric Co Ltd Metal halide lamp with transparent heat insulation film
JP2000343267A (en) * 1999-05-28 2000-12-12 Sumitomo Electric Ind Ltd Infrared region laser beam machine, and its protective window
JP2003069007A (en) * 2001-08-24 2003-03-07 Matsushita Electric Ind Co Ltd Solid-state imaging device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061203A (en) * 2009-09-09 2011-03-24 Samsung Electronics Co Ltd Antireflection image sensor

Also Published As

Publication number Publication date
JP5009540B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
US8492804B2 (en) Solid-state imaging device, method for producing same, and camera
US7262400B2 (en) Image sensor device having an active layer overlying a substrate and an isolating region in the active layer
US7196314B2 (en) Image sensor and pixel having an anti-reflective coating over the photodiode
US20080157254A1 (en) Compound semiconductor image sensor
US8981517B2 (en) Solid-state image pickup device and image pickup apparatus including the same
KR100658930B1 (en) Image sensor capable of adjusting focusing length for individual color and method for fabrication thereof
KR100753391B1 (en) cmos image sensor
JP2003229562A (en) Semiconductor device, its manufacturing method and semiconductor manufacturing apparatus
JPWO2006028128A1 (en) Solid-state image sensor
JP2011035204A (en) Solid-state image pickup element, method for manufacturing the same, and image pickup device
TWI452682B (en) Photoelectric conversion device
KR101106336B1 (en) Image sensor with improved signal to noise ratio and method for fabrication thereof
KR20090103114A (en) Photodetecting device and method of manufacturing the same
US9159754B1 (en) Image sensor having anti-reflective layer and fabricating method thereof
JP5009540B2 (en) Semiconductor device
JP2005197709A (en) Image sensor and its manufacturing method
US10084006B2 (en) Optical receiver, portable electronic device, and method of producing optical receiver
JP2013219189A (en) Sold-state imaging device and method for manufacturing solid-state imaging device
US9876126B2 (en) Semiconductor device and semiconductor device manufacturing method
TW201103132A (en) Solid-state image device, method for producing the same, and image pickup apparatus
JP2012094714A (en) Solid-state imaging device and method of manufacturing the same
JP4569169B2 (en) Solid-state imaging device and manufacturing method thereof
JP2005033110A (en) Solid image image sensor, and manufacturing method thereof
US20080160664A1 (en) Method for manufacturing image sensor
KR100595901B1 (en) Image sensor and method for fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5009540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees