JP2007227191A - Induction heating element and its manufacturing method - Google Patents

Induction heating element and its manufacturing method Download PDF

Info

Publication number
JP2007227191A
JP2007227191A JP2006047663A JP2006047663A JP2007227191A JP 2007227191 A JP2007227191 A JP 2007227191A JP 2006047663 A JP2006047663 A JP 2006047663A JP 2006047663 A JP2006047663 A JP 2006047663A JP 2007227191 A JP2007227191 A JP 2007227191A
Authority
JP
Japan
Prior art keywords
heating element
layer
heating
main body
inorganic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006047663A
Other languages
Japanese (ja)
Other versions
JP2007227191A5 (en
Inventor
Tetsuya Otani
哲也 大谷
Masao Miyashiro
雅夫 宮代
Ichiji Kawasumi
一司 川澄
Hirosuke Takahata
宏亮 高畑
Taro Inoue
太郎 井上
Satoshi Hata
諭 畑
Yoshiki Hashizume
良樹 橋詰
Taro Morimitsu
太郎 森光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Shiga Prefectural Government.
Toyo Aluminium Ekco Products Co Ltd
Original Assignee
Toyo Aluminum KK
Shiga Prefectural Government.
Toyo Aluminium Ekco Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Shiga Prefectural Government. , Toyo Aluminium Ekco Products Co Ltd filed Critical Toyo Aluminum KK
Priority to JP2006047663A priority Critical patent/JP2007227191A/en
Publication of JP2007227191A publication Critical patent/JP2007227191A/en
Publication of JP2007227191A5 publication Critical patent/JP2007227191A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating element easily manufacturable, having flexible usefulness, and capable of providing a high heating temperature in a short time; and to provide its manufacturing method. <P>SOLUTION: This induction heating element is provided with a body made of a nonmetal inorganic material, and a heat generation layer formed on a surface of the body and containing ferrosoferric oxide and a nonmetal inorganic material. In this manufacturing method of the induction heating element, a slurry-like layer containing ferrosoferric oxide and a nonmetal inorganic material is applied to a surface of the body made of a nonmetal inorganic material, and thereafter the heat generation layer is formed by drying and baking it. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、一般的には誘電加熱発熱体とその製造方法に関し、特定的には電子レンジ等にて出力されるマイクロ波の作用によって被加熱物自体が発熱する誘電加熱体とその製造方法に関するものである。   The present invention generally relates to a dielectric heating element and a manufacturing method thereof, and more particularly to a dielectric heating element that heats an object itself by the action of a microwave output from a microwave oven or the like, and a manufacturing method thereof. Is.

従来から、誘電加熱により発熱する発熱体として、被調理品に適度な焦げ目を付けるための電子レンジ調理用マイクロ波吸収発熱体は、たとえば、特開平8−231262号公報(特許文献1)に記載されているように知られている。この電子レンジ調理用マイクロ波吸収発熱体は、四三酸化鉄20〜70重量%と残部が粘土からなる混合物を焼成して成る焼結体である。また、この電子レンジ調理用マイクロ波吸収発熱体の製造方法は、四三酸化鉄20〜70重量%と残部が粘土からなる混合物を温度が1100〜1500℃、かつ酸素濃度が5%以下の雰囲気中で焼成する方法である。   Conventionally, as a heating element that generates heat by dielectric heating, a microwave-absorbing heating element for cooking a microwave oven to moderately burn a product to be cooked is described in, for example, Japanese Patent Laid-Open No. 8-231262 (Patent Document 1). As it is known. This microwave absorption heating element for cooking in a microwave oven is a sintered body obtained by firing a mixture of 20 to 70% by weight of iron trioxide and the balance being clay. Moreover, the manufacturing method of this microwave absorption heating element for microwave oven cooking is the atmosphere whose temperature is 1100-1500 degreeC and oxygen concentration is 5% or less in the mixture which consists of 20-70 weight% of triiron tetroxide and the remainder clay. It is the method of baking inside.

また、電子レンジでの加熱調理により破損する恐れがない電子レンジ用発熱皿は、たとえば、特開2001−128847号公報(特許文献2)に記載されている。この電子レンジ用発熱皿は、表面に釉薬層を有する皿本体の底部に、加熱媒体物を転写し、これをフラックス層の溶融温度で焼成することにより皿本体の釉薬層と加熱媒体物のフラックス層を溶融一体化し、皿本体の底部に発熱物質の薄膜を一体に添設固定することによって製造される。上記の加熱媒体物は、台紙上にフラックス層、フェライト層、フラックス層を順次積層状に印刷して、フェライト層をフラックス層でサンドイッチ状に挟み込み、表面をカバーコートで覆って転写紙構造に構成したものである。   Moreover, the heating tray for microwave ovens which does not have a possibility of being damaged by the heating cooking in a microwave oven is described in Unexamined-Japanese-Patent No. 2001-128847 (patent document 2), for example. This heating pan for a microwave oven transfers the heating medium material to the bottom of the dish body having a glaze layer on the surface, and bakes it at the melting temperature of the flux layer, thereby the flux of the glaze layer of the dish body and the heating medium material. The layers are fused and integrated, and a thin film of exothermic material is integrally attached and fixed to the bottom of the dish body. The above heating medium is composed of a transfer paper structure in which a flux layer, a ferrite layer, and a flux layer are sequentially printed on a backing sheet, the ferrite layer is sandwiched between the flux layers, and the surface is covered with a cover coat. It is a thing.

さらに、電子レンジ用の食器が、たとえば、特開平7−88032号公報(特許文献3)に記載されている。この電子レンジ用の食器は、陶磁器材料から成る食器内に、フェライトを主成分とした発熱体を埋設したものである。   Furthermore, tableware for microwave ovens is described in, for example, Japanese Patent Laid-Open No. 7-88032 (Patent Document 3). This tableware for a microwave oven is a table made of a ceramic material in which a heating element mainly composed of ferrite is embedded.

さらにまた、マイクロ波吸収発熱体が、たとえば、特許第3708225号公報(特許文献4)に記載されている。このマイクロ波吸収発熱体は、耐熱性高分子材料中に、粒径分布のピークを3〜5μmに調整したフェライト材料と、粒径分布のピークを10〜50μmに調整したフェライト材料とを分散させたものである。   Furthermore, a microwave absorption heating element is described in, for example, Japanese Patent No. 3708225 (Patent Document 4). This microwave absorption heating element is obtained by dispersing a ferrite material having a particle size distribution peak adjusted to 3 to 5 μm and a ferrite material having a particle size distribution peak adjusted to 10 to 50 μm in a heat resistant polymer material. It is a thing.

たとえば、特開平8―309276号公報(特許文献5)に記載されたマイクロ波発熱体は、セラミック成形体に酸化チタン粉末またはフェライト粉末を分散した耐熱性樹脂溶液を塗布乾燥してなるものである。   For example, a microwave heating element described in JP-A-8-309276 (Patent Document 5) is obtained by applying and drying a heat-resistant resin solution in which titanium oxide powder or ferrite powder is dispersed in a ceramic molded body. .

特開平9−249269号公報(特許文献6)に記載されたマイクロ波吸収発熱性の調理容器は、マイクロ波が透過自在とされた調理容器基材の外表面に、自己温度制御性を有するマイクロ波発熱性金属酸化物層が設けられてなるものである。   A microwave absorbing and exothermic cooking container described in Japanese Patent Laid-Open No. 9-249269 (Patent Document 6) is a micro having self-temperature controllability on the outer surface of a cooking container base material through which microwaves can pass. A wave exothermic metal oxide layer is provided.

また、エネルギーの損失がない電子レンジ用皿が、たとえば、特開平5−21155号公報(特許文献7)で提案されている。この電子レンジ用皿は、金属、ガラス又は陶器より造られた回転皿本体の表面に電磁波吸収体が形成されている。電磁波吸収体の材料は、フェライト電磁波吸収材、カーボン電磁波吸収材、誘電材電磁波吸収材、カーボフェライト電磁波吸収材又は他の電磁波吸収材が使用される。
特開平8−231262号公報 特開2001−128847号公報 特開平7−88032号公報 特許第3708225号公報 特開平8―309276号公報 特開平9−249269号公報 特開平5−21155号公報
Moreover, a dish for a microwave oven with no energy loss is proposed in, for example, Japanese Patent Laid-Open No. 5-21155 (Patent Document 7). In this microwave oven dish, an electromagnetic wave absorber is formed on the surface of a rotating dish body made of metal, glass or earthenware. As the material of the electromagnetic wave absorber, a ferrite electromagnetic wave absorber, a carbon electromagnetic wave absorber, a dielectric electromagnetic wave absorber, a carboferrite electromagnetic wave absorber, or another electromagnetic wave absorber is used.
JP-A-8-231262 JP 2001-128847 A Japanese Patent Laid-Open No. 7-88032 Japanese Patent No. 3708225 JP-A-8-309276 JP 9-249269 A JP-A-5-21155

しかしながら、誘電加熱、特にマイクロ波加熱によって短時間で数百℃程度まで発熱する誘電加熱発熱体は、製造販売されていない。   However, a dielectric heating heating element that generates heat up to about several hundred degrees Celsius in a short time by dielectric heating, particularly microwave heating, has not been manufactured and sold.

特開平8−231262号公報(特許文献1)に記載された発熱体は、その材料として四三酸化鉄を利用しているが、焼結体の塊で構成されるものである。このため、焼成収縮時において塊としての保形性を維持するために四三酸化鉄の含有量を70重量%以下に限定している。したがって、短時間で高い発熱温度を得ることができない。また、焼成雰囲気が限定されているので、工業的に生産する場合には製造コストが高くなる。さらに、得られた発熱体の外観は黒くなるので、この発熱体は陶磁器製品としては不適切なものである。   The heating element described in Japanese Patent Laid-Open No. 8-231262 (Patent Document 1) uses triiron tetroxide as its material, but is composed of a lump of sintered body. For this reason, in order to maintain the shape-retaining property as a lump at the time of firing shrinkage, the content of iron trioxide is limited to 70% by weight or less. Therefore, a high exothermic temperature cannot be obtained in a short time. In addition, since the firing atmosphere is limited, the production cost increases when industrially producing. Furthermore, since the appearance of the obtained heating element becomes black, this heating element is inappropriate as a ceramic product.

また、特開2001−128847号公報(特許文献2)に記載された皿本体の底部に固定される発熱物質の薄膜は、フラックス層で挟まれたフェライト層を転写によって形成するものである。このため、釉薬を施した耐熱容器にしか発熱物質の薄膜を形成することができず、容器の側面を含む容器の内側全体を発熱物質の薄膜で覆うことができない。また、容器の平面には発熱物質の薄膜を固定することができるが、容器の複雑な曲面には薄膜を固定することができないので、使用用途が限定される。さらに、形成される発熱物質としてのフェライト層の厚みは20μm程度と薄いので、短時間で高い発熱温度を得ることができない。   Moreover, the thin film of the exothermic substance fixed to the bottom part of the plate body described in Japanese Patent Application Laid-Open No. 2001-128847 (Patent Document 2) forms a ferrite layer sandwiched between flux layers by transfer. For this reason, a thin film of a pyrogen can be formed only on a heat-resistant container with a glaze, and the entire inside of the container including the side surface of the container cannot be covered with a thin film of a pyrogen. Moreover, although a thin film of a heat generating material can be fixed to the flat surface of the container, the thin film cannot be fixed to a complicated curved surface of the container. Furthermore, since the thickness of the ferrite layer as the exothermic material formed is as thin as about 20 μm, a high exothermic temperature cannot be obtained in a short time.

さらに、特開平7−88032号公報(特許文献3)に記載された電子レンジ用の食器は、発熱体を埋設することによって構成されるので、製造方法が容易ではなく、充分な発熱量を得ることが困難である。   Furthermore, since the tableware for microwave ovens described in JP-A-7-88032 (Patent Document 3) is configured by embedding a heating element, the manufacturing method is not easy and a sufficient calorific value is obtained. Is difficult.

さらにまた、特許第3708225号公報(特許文献4)と特開平8―309276号公報(特許文献5)に記載されたマイクロ波発熱体は、発熱体材料を高分子材料または樹脂の中に分散させているため、塗布後に高温で焼成することができないとともに、実用時に数百℃の高温に耐えることができない。また、これらのマイクロ波発熱体では、充分な発熱量を得ることは困難である。   Furthermore, the microwave heating element described in Japanese Patent No. 3708225 (Patent Document 4) and Japanese Patent Application Laid-Open No. 8-309276 (Patent Document 5) disperses the heating element material in a polymer material or resin. Therefore, it cannot be fired at a high temperature after coating, and cannot withstand a high temperature of several hundred degrees Celsius in practical use. Moreover, it is difficult to obtain a sufficient calorific value with these microwave heating elements.

なお、特開平9−249269号公報(特許文献6)に記載されたマイクロ波吸収発熱性の調理容器では、短時間で高い発熱温度を得ることができない。   In addition, in the microwave absorption exothermic cooking vessel described in JP-A-9-249269 (Patent Document 6), a high exothermic temperature cannot be obtained in a short time.

また、特開平5−21155号公報(特許文献7)に記載された電子レンジ用皿でも、130℃程度の発熱温度しか得られず、充分な発熱量を得ることは困難である。   In addition, even a microwave oven dish described in JP-A-5-21155 (Patent Document 7) can only obtain a heat generation temperature of about 130 ° C., and it is difficult to obtain a sufficient heat generation amount.

そこで、この発明の目的は、容易に製造することができるとともに、柔軟な実用性を有し、短時間で高い発熱温度を得ることが可能な誘電加熱発熱体とその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a dielectric heating heating element that can be easily manufactured, has flexible practicality, and can obtain a high heating temperature in a short time, and a manufacturing method thereof. is there.

上述した背景技術における問題点の検討に基づいて、本発明者は、さまざまな局面から誘電加熱発熱体、特にマイクロ波加熱による発熱体の構成を検討して鋭意研究を重ねた。その結果、発熱材料を四三酸化鉄に限定するとともに、発熱材料を層状の形態で形成することによって、短時間でより高い発熱温度を達成することができることを見出した。このような発明者の知見に基づいて本発明はなされたものである。   Based on the examination of the problems in the background art described above, the present inventor has studied earnestly by examining the configuration of a dielectric heating heating element, particularly a heating element by microwave heating, from various aspects. As a result, it was found that a higher heat generation temperature can be achieved in a short time by limiting the heat generation material to iron trioxide and forming the heat generation material in a layered form. The present invention has been made based on such knowledge of the inventors.

この発明に従った誘電加熱発熱体は、非金属無機材料製の本体と、本体の表面上に形成された、四三酸化鉄と非金属無機材料とを含む発熱層とを備える。   A dielectric heating heating element according to the present invention includes a main body made of a nonmetallic inorganic material, and a heat generating layer formed on the surface of the main body and containing iron trioxide and a nonmetallic inorganic material.

この発明の誘電加熱発熱体は、発熱作用をもたらす発熱要素が、非金属無機材料製の本体の表面上に層状の形態で形成されている。また、発熱要素が四三酸化鉄と非金属無機材料とを含む。これにより、種々の形状の非金属無機材料製の本体の表面上に発熱層を容易に形成することができ、短時間で高い発熱温度を得ることが可能となる。   In the dielectric heating heating element of the present invention, the heating element that generates a heating action is formed in a layered form on the surface of the main body made of a nonmetallic inorganic material. Further, the heating element includes triiron tetroxide and a nonmetallic inorganic material. Thereby, a heat generating layer can be easily formed on the surface of the main body made of non-metallic inorganic materials having various shapes, and a high heat generating temperature can be obtained in a short time.

この発明の誘電加熱発熱体においては、発熱層は、四三酸化鉄を70質量%以上含むことが好ましい。   In the dielectric heating element according to the present invention, the heat generating layer preferably contains 70 mass% or more of iron trioxide.

このようにすることにより、短時間で高い発熱温度を得ることができる。また、発熱層は四三酸化鉄を70質量%以上含むが、焼成後において層の形状を維持することができる。   By doing in this way, a high exothermic temperature can be obtained in a short time. Moreover, although the heat generating layer contains 70 mass% or more of iron trioxide, the shape of the layer can be maintained after firing.

また、この発明の誘電加熱発熱体においては、本体の単位表面積当たりの四三酸化鉄の付着量は、15mg/cm以上であることが好ましい。 In the dielectric heating element of the present invention, the amount of iron trioxide attached per unit surface area of the main body is preferably 15 mg / cm 2 or more.

このようにすることにより、短時間で高い発熱温度を得ることができる。   By doing in this way, a high exothermic temperature can be obtained in a short time.

さらに、この発明の誘電加熱発熱体においては、本体の単位表面積当たりの四三酸化鉄の付着量は、30mg/cm以上70mg/cm以下であることが好ましい。 Furthermore, in the dielectric heating element according to the present invention, the adhesion amount of iron trioxide per unit surface area of the main body is preferably 30 mg / cm 2 or more and 70 mg / cm 2 or less.

このようにすることにより、短時間で高い発熱温度を安定して得ることができる。   By doing in this way, a high exothermic temperature can be stably obtained in a short time.

この発明の誘電加熱発熱体においては、発熱層は、本体の表面上に直接形成されていることが好ましい。   In the dielectric heating element according to the present invention, the heat generating layer is preferably formed directly on the surface of the main body.

この発明の誘電加熱発熱体においては、発熱層は、本体の少なくとも一部分の表面上に形成されていることが好ましい。   In the dielectric heating element according to the present invention, the heating layer is preferably formed on the surface of at least a part of the main body.

この発明の誘電加熱発熱体においては、発熱層は、所定のパターンに従って本体の表面上に形成されていてもよい。   In the dielectric heating heating element of the present invention, the heating layer may be formed on the surface of the main body according to a predetermined pattern.

この発明の誘電加熱発熱体は、発熱層の表面上に形成された非金属無機材料層をさらに備えていてもよい。   The dielectric heating heating element of the present invention may further include a non-metallic inorganic material layer formed on the surface of the heating layer.

また、この発明の誘電加熱発熱体は、発熱層の表面上に形成された釉薬層をさらに備えていてもよい。   Moreover, the dielectric heating heating element of the present invention may further include a glaze layer formed on the surface of the heating layer.

この発明に従った誘電加熱発熱体の製造方法は、非金属無機材料製の本体の表面上に、四三酸化鉄と非金属無機材料とを含むスラリー状の層を塗布した後、乾燥し、焼成することによって発熱層を形成する。   The method for manufacturing a dielectric heating element according to the present invention is a method of applying a slurry-like layer containing triiron tetroxide and a nonmetallic inorganic material on the surface of a main body made of a nonmetallic inorganic material, followed by drying, A heat generating layer is formed by firing.

以上のようにこの発明によれば、種々の形状の非金属無機材料製の本体の表面上に発熱層を容易に形成することができ、短時間で高い発熱温度を得ることが可能となる。   As described above, according to the present invention, the heat generating layer can be easily formed on the surface of the main body made of the nonmetallic inorganic material having various shapes, and a high heat generating temperature can be obtained in a short time.

非金属無機材料製の本体として、たとえば、セラミックス製または陶磁器製の本体の表面上に、発熱層として、四三酸化鉄を主成分とするマイクロ波吸収発熱層を形成する。   As a main body made of a nonmetallic inorganic material, for example, a microwave absorbing heat generation layer mainly composed of iron trioxide is formed as a heat generation layer on the surface of a ceramic or ceramic main body.

マイクロ波吸収発熱層は、次のようにして形成される。まず、四三酸化鉄と、非金属無機材料、たとえば、粘土、長石、珪石及びペタライトなどの一般窯業原料とを混合する。この混合物に、さらにCMC(カルボキシル酸メチルセルロース)やPVA(ポリビニルアルコール)等の粘性成分と糊分を添加したものに水を加え、必要に応じて分散剤を加えて充分に撹拌して均一に分散させる。このようにしてスラリー状の混合物を作製する。ここで、スラリーとは、液体の中に固形物が分散したもので、固形物の質量割合が5〜90質量%のものをいう。その後、このスラリー状の混合物をセラミックス製または陶磁器製の本体の上に塗布し、乾燥させた後、焼成することによって発熱層を形成する。   The microwave absorbing heat generating layer is formed as follows. First, triiron tetroxide and a non-metallic inorganic material such as clay, feldspar, silica, and petalite are mixed. To this mixture, water is added to a mixture of a viscous component such as CMC (methyl cellulose carboxylate) or PVA (polyvinyl alcohol) and paste, and if necessary, a dispersant is added and stirred well to disperse uniformly. Let In this way, a slurry mixture is prepared. Here, the slurry refers to a solid in which a solid is dispersed in a liquid and a mass ratio of the solid is 5 to 90% by mass. Thereafter, the slurry-like mixture is applied onto a ceramic or ceramic body, dried, and then fired to form a heat generating layer.

陶磁器製の本体は、任意の形状の未焼成の成形体、素焼きの成形体、または焼き締めされた素地の成形体でもよい。上記のスラリー状の混合物の塗布方法は特に限定されないが、陶磁器製の本体の表面に沿ってスラリー状の混合物を流し込むこと、スラリー状の混合物の中に陶磁器製の本体を浸けること、何らかの方法でスラリー状の混合物を陶磁器製の本体の表面上に部分的に塗布して模様をつけること、スラリー状の混合物を陶磁器製の本体の上にスプレーによって吹き付けること等によって行ってもよい。このようにして、全く任意の形状の陶磁器製の本体の表面上にスラリー状の混合物を塗布することができる。   The ceramic body may be a green body of any shape, an unfired body, or a sintered body. The method of applying the slurry mixture is not particularly limited, but the slurry mixture is poured along the surface of the ceramic body, the ceramic body is immersed in the slurry mixture, or the like. The slurry-like mixture may be partially applied on the surface of the ceramic body to form a pattern, or the slurry-like mixture may be sprayed onto the ceramic body by spraying. In this way, a slurry-like mixture can be applied onto the surface of a ceramic body of any arbitrary shape.

上述のようにして陶磁器製の本体の表面上に任意の厚みのスラリー状の混合物の層を付着させ、乾燥させた後、通常の陶磁器製品と同様にして焼成することにより、誘電加熱によって発熱可能な陶磁器製の発熱体、たとえば、陶磁器製の容器が得られる。   As described above, a slurry-like mixture layer of any thickness can be deposited on the surface of a ceramic body, dried, and then fired in the same way as a normal ceramic product. A ceramic heating element such as a ceramic container is obtained.

このとき、スラリー状の混合物の層の上に、さらに、非金属無機材料層および/または釉薬層を形成することにより、たとえば、化粧泥、釉薬を付着させることにより、外観上、通常の陶磁器製品と同様の形態のものが得られる。   At this time, by forming a non-metallic inorganic material layer and / or a glaze layer on the slurry-like mixture layer, for example, by applying a cosmetic mud or a glaze, the appearance of a normal ceramic product Is obtained.

また、本発明の発熱体を形成するための焼成雰囲気は、アルゴン、窒素等の不活性雰囲気、水素等の還元雰囲気である必要はなく、空気雰囲気でも問題はない。   Further, the firing atmosphere for forming the heating element of the present invention does not need to be an inert atmosphere such as argon or nitrogen, or a reducing atmosphere such as hydrogen, and there is no problem even in an air atmosphere.

本発明の発熱体の発熱量を制御するために、発熱層に含まれる四三酸化鉄の質量割合、および/または、陶磁器製の本体の単位面積当たりの四三酸化鉄の付着量、すなわち、スラリー状の混合物の層の塗布単位面積当たりの四三酸化鉄の付着量を制御する。   In order to control the heat generation amount of the heating element of the present invention, the mass ratio of iron trioxide contained in the heat generation layer and / or the amount of iron trioxide attached per unit area of the ceramic body, that is, Control the amount of iron tetroxide deposited per unit area of the slurry mixture layer.

高い発熱量、結果として短時間で高い発熱温度を得るためには、四三酸化鉄の質量割合を70質量%以上とする。四三酸化鉄の質量割合が多くなれば、高い発熱量を得ることが可能となるが、四三酸化鉄の質量割合が多くなるほど、スラリー状の混合物を作製した後の工程の実施が困難になる、たとえば、スラリー状の混合物の層の塗布が困難になる、焼成後に層に亀裂が生じる等の問題が生じる。このため、四三酸化鉄の質量割合は70質量%〜90質量%が好ましく、より好ましくは70質量%〜80質量%である。   In order to obtain a high heat generation amount and, as a result, a high heat generation temperature in a short time, the mass ratio of triiron tetroxide is 70 mass% or more. If the mass ratio of triiron tetroxide increases, it becomes possible to obtain a high calorific value. However, the greater the mass ratio of triiron tetroxide, the more difficult it is to carry out the process after preparing the slurry mixture. For example, problems such as difficulty in applying a slurry-like mixture layer and cracks in the layer after firing occur. For this reason, 70 mass%-90 mass% are preferable, and, as for the mass ratio of triiron tetroxide, More preferably, they are 70 mass%-80 mass%.

また、高い発熱量、結果として短時間で高い発熱温度を得るためには、陶磁器製の本体の単位面積当たりの四三酸化鉄の付着量を15mg/cm以上とする。四三酸化鉄の付着量が15mg/cm以上であれば、高い発熱量を得ること、すなわち、短時間で高い発熱温度を達成することが可能となるが、四三酸化鉄の付着量が多くなるほど、スラリー状の混合物を作製した後の工程の実施が困難になる、たとえば、スラリー状の混合物の層の塗布が困難になる、焼成後に層に亀裂が生じる等の問題が生じる。この問題を解消するとともに、短時間で高い発熱温度を安定して得るためには、四三酸化鉄の付着量は30mg/cm〜70mg/cmが好ましい。 Further, in order to obtain a high heat generation amount and, as a result, a high heat generation temperature in a short time, the adhesion amount of iron trioxide per unit area of the ceramic body is set to 15 mg / cm 2 or more. If the adhering amount of triiron tetroxide is 15 mg / cm 2 or more, it is possible to obtain a high calorific value, that is, to achieve a high exothermic temperature in a short time. As the amount increases, it becomes more difficult to carry out the step after the slurry-like mixture is produced, for example, it becomes difficult to apply the layer of the slurry-like mixture, and the layer is cracked after firing. With to solve this problem, in order to stably obtain a short time at high heating temperatures, forty-three deposition amount of the iron oxide 30mg / cm 2 ~70mg / cm 2 is preferred.

電子レンジにて出力されるマイクロ波の作用によって本発明の誘電加熱発熱体を加熱すると、発熱層の付着面積が小さいほど、発熱層の付着箇所の加熱速度は速くなる。   When the dielectric heating heating element of the present invention is heated by the action of microwaves output from a microwave oven, the heating rate of the portion where the heat generating layer is attached increases as the area of the heat generating layer attached decreases.

全体として発熱層の付着面積がほぼ一定になるようにして、一定の領域に連続して重ねてスラリー状の混合物の層を塗布してもよく、付着領域を分割してスラリー状の混合物の層を塗布してもよい。この場合、付着領域を分割してスラリー状の混合物の層を塗布することにより、四三酸化鉄の付着量を容易に制御することができ、発熱層によって得られる発熱量の制御も容易になる。   As a whole, the adhesion area of the heat generation layer may be substantially constant, and the slurry-like mixture layer may be applied continuously on a certain area, or the adhesion area may be divided to form a slurry-like mixture layer. May be applied. In this case, by dividing the adhesion region and applying a slurry-like mixture layer, the amount of iron trioxide attached can be easily controlled, and the amount of heat generated by the heat generation layer can be easily controlled. .

実際の製品の形状と寸法、すなわち、陶磁器製の本体の形状と寸法に応じて、スラリー状の混合物の層の塗布の仕方、つまり、塗布面積、塗布量、塗布形態(連続塗布、分割塗布)等を変えることができる。   Depending on the shape and dimensions of the actual product, that is, the shape and dimensions of the ceramic body, how to apply the slurry-like mixture layer, that is, the application area, the application amount, and the application form (continuous application, divided application) Etc. can be changed.

上述のようにして製造された本発明の誘電加熱発熱体、たとえば、陶磁器製品を電子レンジに入れて加熱すると、陶磁器製品の温度は、たとえば、陶磁器製品に載せられた食品に焦げ目を付けられることが可能な温度まで短時間で上昇する。   When the dielectric heating heating element of the present invention manufactured as described above, for example, a ceramic product is put in a microwave oven and heated, the temperature of the ceramic product can be burnt, for example, on the food placed on the ceramic product. Rises to a possible temperature in a short time.

このように短時間で高い発熱温度が得られることを利用して、用途の一例として本発明の誘電加熱発熱体を食品調理用容器に用いることができる。この場合、陶磁器製容器の内側面に発熱層を形成し、この容器を電子レンジで数分間加熱した後、食品を容器内に設置し、さらに電子レンジで加熱することによって、電子レンジにて出力されるマイクロ波の作用による食品自体の加熱と、電子レンジにて出力されるマイクロ波の作用により発熱することによって加熱された陶磁器製容器を介した遠赤外線による食品の加熱との両方の加熱作用を期待することができる。このような調理方法を行うことにより、今まで電子レンジ単独では調理できなかった料理も可能になる。このような料理としては、たとえば、焼き魚や焼きイモなどが挙げられる。   As described above, the dielectric heating element according to the present invention can be used for a food cooking container by taking advantage of the fact that a high exothermic temperature can be obtained in a short time. In this case, a heating layer is formed on the inner surface of the ceramic container, the container is heated for several minutes in a microwave oven, and then the food is placed in the container and further heated in the microwave to output in the microwave oven. The heating action of both the heating of the food itself by the action of microwaves and the heating of the food by far-infrared rays through a ceramic container heated by generating heat by the action of microwaves output in the microwave oven Can be expected. By performing such a cooking method, cooking that could not be cooked with a microwave oven alone until now is also possible. Examples of such dishes include grilled fish and grilled potatoes.

焼き魚を電子レンジ単独で調理すると、魚の水分だけが加熱されるため、魚の表面に焦げ目はつかない。また、電子レンジ単独によって調理された焼き魚は、食べても美味が不充分である。   When cooking grilled fish in a microwave oven alone, only the moisture of the fish is heated, so the surface of the fish is not burnt. Moreover, the grilled fish cooked by the microwave oven alone is not sufficient even when eaten.

焼きイモを電子レンジ単独で調理すると、イモは柔らかくはなるが、甘みが不充分な状態になる。これは、電子レンジ加熱ではイモの酵素がでんぷんを糖に変える温度を維持することができないために甘みが増さないからである。   When cooked potatoes are cooked in a microwave oven alone, the potatoes become soft but not sweet enough. This is because sweetness does not increase because microwave heating cannot maintain the temperature at which the potato enzyme converts starch into sugar.

この発明の誘電加熱発熱体を適用した調理容器を用いることにより、マイクロ波の作用により発熱することによって加熱された陶磁器製容器を介して、マイクロ波のエネルギーを遠赤外線に変換して調理を行うことができる。陶磁器製容器の余熱等を利用すると、魚の表面に焦げ目を付けることができ、イモの酵素が働く温度を維持できるために甘い焼きイモを調理することができる。   By using the cooking container to which the dielectric heating heating element of the present invention is applied, cooking is performed by converting microwave energy into far-infrared rays through a ceramic container heated by generating heat by the action of microwaves. be able to. If the residual heat of the ceramic container is used, the surface of the fish can be burnt and the temperature at which the potato enzyme works can be maintained, so that the sweet baked potato can be cooked.

本発明の誘電加熱発熱体における発熱層は、陶磁器製の本体の表面上に直接形成されることが好ましいが、陶磁器製の本体の表面上に非金属無機材料層等の介在層等を形成し、この介在層の上に形成してもよい。また、発熱層は、陶磁器製の本体の少なくとも一部分の表面上に形成されればよく、陶磁器製の本体の内側面および/または外側面に形成されてもよい。さらに、発熱層は、所定のパターンに従って陶磁器製の本体の表面上に形成されてもよく、模様、たとえば網状のパターンにして陶磁器製の本体の表面上に形成されてもよい。このようにすると、本発明の誘電加熱発熱体を用いて、食品に焦げ目の模様をつけることができる。また、陶磁器製の本体の表面上に発熱層を模様にして形成した誘電加熱発熱体を電子レンジ内で加熱した後、食品の表面に押し付けることによって食品の表面に焼印を形成することも可能である。この場合、模様は文字等であってもよい。   The heating layer in the dielectric heating element of the present invention is preferably formed directly on the surface of the ceramic body, but an intervening layer such as a non-metallic inorganic material layer is formed on the surface of the ceramic body. It may be formed on this intervening layer. Moreover, the heat generating layer should just be formed on the surface of at least one part of the ceramic main body, and may be formed in the inner surface and / or outer surface of the ceramic main body. Further, the heat generating layer may be formed on the surface of the ceramic body according to a predetermined pattern, or may be formed on the surface of the ceramic body in a pattern, for example, a net pattern. If it does in this way, a burnt pattern can be given to foodstuffs using the dielectric heating heating element of the present invention. It is also possible to form a branding mark on the surface of food by heating a dielectric heating element with a heating layer patterned on the surface of a ceramic body in a microwave oven and then pressing it on the surface of the food. is there. In this case, the pattern may be a character or the like.

なお、本発明の誘電加熱発熱体の用途として調理用容器以外にも多くの用途が考えられる。一例をあげると、陶磁器製アイロンやホットストーン等の健康用具として本発明の誘電加熱発熱体を利用することが考えられる。   In addition, many uses other than the container for cooking can be considered as a use of the dielectric heating heating element of this invention. As an example, it can be considered that the dielectric heating element of the present invention is used as a health device such as a ceramic iron or hot stone.

(実施例1)
本発明の誘電加熱発熱体において発熱層の材料として用いられる四三酸化鉄と他の発熱物質とを比較するために、以下に示す試験を行った。
Example 1
In order to compare iron trioxide used as a material for the heat generating layer in the dielectric heating element of the present invention with other heat generating materials, the following tests were performed.

厚みが12mmで大きさが50mm×45mmの陶器製の試験片(温度800℃で焼成されたもの)の表面上に、各種発熱物質を含むスラリー状の混合物の層を塗布し、乾燥させた後、温度1200℃で焼成した。得られた各種の誘電加熱発熱体を電子レンジ内にて出力500Wで20秒間加熱し、加熱後の到達温度を測定した。到達温度を3回測定し、その平均値を測定結果として表1に示す。   After applying and drying a slurry-like mixture layer containing various exothermic substances on the surface of a ceramic test piece (fired at a temperature of 800 ° C.) having a thickness of 12 mm and a size of 50 mm × 45 mm And firing at a temperature of 1200 ° C. The various dielectric heating elements obtained were heated in an microwave oven at an output of 500 W for 20 seconds, and the temperature reached after heating was measured. The ultimate temperature was measured three times, and the average value is shown in Table 1 as the measurement result.

なお、スラリー状の混合物は、以下の表1に示す各種発熱物質とペタライトとにCMC0.4質量%と水とを加えて混合することによって作製した。表1中の発熱物質[質量%]は発熱物質/(発熱物質+ペタライト)の質量割合を示す。スラリー状の混合物の層の塗布厚みは、約0.3mmとして一定にした。   The slurry mixture was prepared by adding 0.4 mass% CMC and water to various exothermic substances and petalite shown in Table 1 below and mixing them. The exothermic substance [% by mass] in Table 1 represents the mass ratio of exothermic substance / (exothermic substance + petalite). The coating thickness of the slurry mixture layer was kept constant at about 0.3 mm.

本発明の実施例1で用いられた発熱物質としての四三酸化鉄は、キンセイマテック株式会社製の磁砂鉄 #200であった。   The iron trioxide used as the exothermic material used in Example 1 of the present invention was magnetic sand iron # 200 manufactured by Kinsei Matec Co., Ltd.

電子レンジはシャープ株式会社製の型式 RE−15V5を用いた。使用温度計は、本体として日置製の型式 3412−50、プローブとして日置製の型式 9181を用いた。   As the microwave oven, a model RE-15V5 manufactured by Sharp Corporation was used. The thermometer used was Hioki Model 3412-50 as the main body and Hioki Model 9181 as the probe.

Figure 2007227191
Figure 2007227191

表1に示す結果から、陶器の上に層状に発熱物質を形成したとき、四三酸化鉄は他の発熱物質より発熱量が高く、発熱温度が200℃以上に到達することがわかる。   From the results shown in Table 1, it can be seen that when exothermic materials are formed in layers on earthenware, iron trioxide has a higher calorific value than other exothermic materials, and the exothermic temperature reaches 200 ° C. or higher.

(実施例2)
本発明の誘電加熱発熱体において発熱層の材料として用いられる四三酸化鉄の質量割合を変えて、以下に示す試験を行った。
(Example 2)
The following tests were conducted by changing the mass ratio of iron trioxide used as the material of the heat generating layer in the dielectric heating element of the present invention.

厚みが12mmで大きさが50mm×45mmの陶器製の試験片(温度800℃で焼成されたもの)の表面上に、四三酸化鉄を含むスラリー状の混合物の層を塗布し、乾燥させた後、温度1200℃で焼成した。得られた各種の誘電加熱発熱体を電子レンジ内にて出力600Wで20秒間加熱し、加熱後の到達温度を測定した。到達温度を4回測定し、その平均値を測定結果として表2に示す。   A layer of a slurry-like mixture containing triiron tetroxide was applied on the surface of a ceramic test piece (fired at a temperature of 800 ° C.) having a thickness of 12 mm and a size of 50 mm × 45 mm, and dried. Thereafter, it was fired at a temperature of 1200 ° C. The various dielectric heating elements thus obtained were heated in an microwave oven at an output of 600 W for 20 seconds, and the temperature reached after heating was measured. The ultimate temperature was measured four times, and the average value is shown in Table 2 as the measurement result.

なお、スラリー状の混合物は、以下の表2に示す質量割合の四三酸化鉄とペタライトとにCMC0.4質量%と水とを加えて混合することによって作製した。表2中の四三酸化鉄[質量%]は四三酸化鉄/(四三酸化鉄+ペタライト)の質量割合を示す。スラリー状の混合物の層の塗布厚みは、約0.25mmとして一定にした。   The slurry mixture was prepared by adding CMC 0.4% by mass and water to iron trioxide tetraoxide and petalite in the mass ratio shown in Table 2 below and mixing. The triiron tetroxide [mass%] in Table 2 shows the mass ratio of triiron tetroxide / (iron tetroxide + petalite). The coating thickness of the slurry-like mixture layer was kept constant at about 0.25 mm.

本発明の実施例2〜6と比較例14〜17で用いられた四三酸化鉄は、キンセイマテック株式会社製の磁砂鉄 #200であった。   The iron trioxide used in Examples 2 to 6 and Comparative Examples 14 to 17 of the present invention was magnetic sand iron # 200 manufactured by Kinsei Matec Corporation.

電子レンジは松下電器産業株式会社製の型式 NE−S33Fを用いた。使用温度計は、AVIO製の型式 TVS−600のサーモビューを用いた。 As the microwave oven, model NE-S33F manufactured by Matsushita Electric Industrial Co., Ltd. was used. The thermometer used was a thermoview of a model TVS-600 manufactured by AVIO.

Figure 2007227191
Figure 2007227191

表2に示す結果から、四三酸化鉄の質量割合が70質量%以上のとき、発熱量が高く、発熱温度が200℃程度に到達することがわかる。   From the results shown in Table 2, it can be seen that when the mass ratio of triiron tetroxide is 70% by mass or more, the heat generation amount is high and the heat generation temperature reaches about 200 ° C.

(実施例3)
本発明の誘電加熱発熱体において発熱層の材料として用いられる四三酸化鉄の付着量を変えて、以下に示す試験を行った。
(Example 3)
The following tests were conducted by changing the amount of iron trioxide used as the material of the heat generating layer in the dielectric heating element of the present invention.

厚みが8mmで大きさが54mm×48mmの陶器製の試験片(温度800℃で焼成されたもの)の表面上に、四三酸化鉄を75質量%含むスラリー状の混合物の層を塗布し、乾燥させた後、温度1200℃で焼成した。得られた各種の誘電加熱発熱体を電子レンジ内にて出力600Wで10秒間、20秒間加熱し、加熱後の到達温度を測定した。10秒間加熱後と20秒間加熱後の到達温度をそれぞれ3回測定し、その平均値を測定結果として表3に示す。   A layer of a slurry-like mixture containing 75% by mass of iron trioxide is applied on the surface of a test piece made of earthenware having a thickness of 8 mm and a size of 54 mm × 48 mm (baked at a temperature of 800 ° C.), After drying, it was fired at a temperature of 1200 ° C. The obtained various types of dielectric heating elements were heated in an microwave oven at an output of 600 W for 10 seconds for 20 seconds, and the temperature reached after heating was measured. The temperatures reached after heating for 10 seconds and after heating for 20 seconds were measured three times, and the average values are shown in Table 3 as measurement results.

なお、スラリー状の混合物は、以下の表3に示す実施例7〜16では四三酸化鉄75gとペタライト25gにCMC0.5gと水70gを加えて混合することによって作製し、実施例17、18と比較例18、19では四三酸化鉄75gとペタライト25gにCMC3.0gと水360gを加えて混合することによって作製した。   In Examples 7 to 16 shown in Table 3 below, slurry-like mixtures were prepared by adding 75 g of iron trioxide and 25 g of petalite to 0.5 g of CMC and 70 g of water and mixing them. And Comparative Examples 18 and 19 were prepared by adding 3.0 g of CMC and 360 g of water to 75 g of iron trioxide and 25 g of petalite and mixing them.

表3中の単位面積当たり四酸化鉄の付着量[mg/cm]は次のようにして算出した。スラリー状の混合物の層の塗布回数を変えて四三酸化鉄の塗布量を変えるとともに、その塗布面積から単位面積当たりの四三酸化鉄の塗布量を算出し、単位面積当たりの四三酸化鉄の付着量を算出した。 The adhesion amount [mg / cm 2 ] of iron tetroxide per unit area in Table 3 was calculated as follows. By changing the number of times of application of the slurry-like mixture layer and changing the amount of ferric tetroxide, the amount of ferric tetroxide applied per unit area is calculated from the applied area, and the iron tetroxide per unit area is calculated. The amount of adhesion was calculated.

本発明の実施例7〜18と比較例18、19で用いられた四三酸化鉄は、キンセイマテック株式会社製の磁砂鉄 #200であった。   The iron trioxide used in Examples 7 to 18 and Comparative Examples 18 and 19 of the present invention was magnetic sand iron # 200 manufactured by Kinsei Matech Corporation.

電子レンジは松下電器産業株式会社製の型式 NE−S33Fを用いた。使用温度計は、AVIO製の型式 TVS−600のサーモビューを用いた。 As the microwave oven, model NE-S33F manufactured by Matsushita Electric Industrial Co., Ltd. was used. The thermometer used was a thermoview of a model TVS-600 manufactured by AVIO.

Figure 2007227191
表3に示す結果から、四三酸化鉄の付着量が15mg/cm以上のとき、発熱量が高く、加熱開始10秒後に発熱温度が100℃程度以上に到達することがわかる。
Figure 2007227191
From the results shown in Table 3, it can be seen that when the adhesion amount of triiron tetroxide is 15 mg / cm 2 or more, the heat generation amount is high, and the heat generation temperature reaches about 100 ° C. or more 10 seconds after the start of heating.

以上に開示された実施の形態や実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態や実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものと意図される。   It should be considered that the embodiments and examples disclosed above are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the scope of claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the scope of claims. .

Claims (10)

非金属無機材料製の本体と、
前記本体の表面上に形成された、四三酸化鉄と非金属無機材料とを含む発熱層とを備えた、誘電加熱発熱体。
A body made of non-metallic inorganic material;
A dielectric heating heating element comprising a heating layer formed on the surface of the main body and containing iron trioxide and a nonmetallic inorganic material.
前記発熱層は、四三酸化鉄を70質量%以上含む、請求項1に記載の誘電加熱発熱体。   The dielectric heating element according to claim 1, wherein the heat generation layer contains 70 mass% or more of iron trioxide. 前記本体の単位表面積当たりの四三酸化鉄の付着量は、15mg/cm以上である、請求項1または請求項2に記載の誘電加熱発熱体。 The dielectric heating heating element according to claim 1 or 2 , wherein an adhesion amount of iron trioxide per unit surface area of the main body is 15 mg / cm 2 or more. 前記本体の単位表面積当たりの四三酸化鉄の付着量は、30mg/cm以上70mg/cm以下である、請求項1または請求項2に記載の誘電加熱発熱体。 The dielectric heating heating element according to claim 1 or 2, wherein an adhesion amount of triiron tetroxide per unit surface area of the main body is 30 mg / cm 2 or more and 70 mg / cm 2 or less. 前記発熱層は、前記本体の表面上に直接形成されている、請求項1から請求項4までのいずれか1項に記載の誘電加熱発熱体。   The dielectric heating heating element according to any one of claims 1 to 4, wherein the heating layer is directly formed on a surface of the main body. 前記発熱層は、前記本体の少なくとも一部分の表面上に形成されている、請求項1から請求項5までのいずれか1項に記載の誘電加熱発熱体。   The dielectric heating heating element according to any one of claims 1 to 5, wherein the heating layer is formed on a surface of at least a part of the main body. 前記発熱層は、所定のパターンに従って前記本体の表面上に形成されている、請求項1から請求項5までのいずれか1項に記載の誘電加熱発熱体。   The dielectric heating element according to any one of claims 1 to 5, wherein the heat generating layer is formed on a surface of the main body according to a predetermined pattern. 前記発熱層の表面上に形成された非金属無機材料層をさらに備える、請求項1から請求項7までのいずれか1項に記載の誘電加熱発熱体。   The dielectric heating heating element according to any one of claims 1 to 7, further comprising a non-metallic inorganic material layer formed on a surface of the heating layer. 前記発熱層の表面上に形成された釉薬層をさらに備える、請求項1から請求項8までのいずれか1項に記載の誘電加熱発熱体。   The dielectric heating heating element according to any one of claims 1 to 8, further comprising a glaze layer formed on a surface of the heating layer. 非金属無機材料製の本体の表面上に、四三酸化鉄と非金属無機材料とを含むスラリー状の層を塗布した後、乾燥し、焼成することによって発熱層を形成する、誘電加熱発熱体の製造方法。   A dielectric heating heating element in which a heat generating layer is formed by applying a slurry-like layer containing ferric tetroxide and a nonmetallic inorganic material on the surface of a main body made of a nonmetallic inorganic material, followed by drying and firing. Manufacturing method.
JP2006047663A 2006-02-24 2006-02-24 Induction heating element and its manufacturing method Pending JP2007227191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006047663A JP2007227191A (en) 2006-02-24 2006-02-24 Induction heating element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006047663A JP2007227191A (en) 2006-02-24 2006-02-24 Induction heating element and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007227191A true JP2007227191A (en) 2007-09-06
JP2007227191A5 JP2007227191A5 (en) 2008-03-13

Family

ID=38548808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047663A Pending JP2007227191A (en) 2006-02-24 2006-02-24 Induction heating element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007227191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152099A (en) * 2013-02-06 2014-08-25 Elic Corp Heating element composition heated by being coated on surface of heat resistant ceramic ware and by absorbing microwaves, ceramic ware transfer paper containing the same, far infrared ray-radiating and heating ceramic ware containing the same, and preparation method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022337A (en) * 1973-07-02 1975-03-10
JPS5124952A (en) * 1974-08-24 1976-02-28 Tatsumya Kk HICHORIBUTSUNIKOGEMEOTSUKERU DENSHIRENJOHATSUNETSUZARANO SEIHO OYOBI HATSUNETSUZARA
JPH02263018A (en) * 1989-03-31 1990-10-25 Sumitomo Electric Ind Ltd Microwave oven
JPH08299190A (en) * 1995-05-08 1996-11-19 Mitsui Toatsu Chem Inc Microwave heater
JP2001000316A (en) * 1999-06-21 2001-01-09 Miyao Company Limited:Kk Thermal insulating container
JP2001128847A (en) * 1999-11-04 2001-05-15 Totu:Kk Heat generating tray for microwave oven and heating medium material of heat generating tray for microwave oven as well as method for manufacturing heat generating tray for microwave oven
JP2004254737A (en) * 2003-02-24 2004-09-16 Matsushita Electric Ind Co Ltd Browning plate and high frequency heating apparatus using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022337A (en) * 1973-07-02 1975-03-10
JPS5124952A (en) * 1974-08-24 1976-02-28 Tatsumya Kk HICHORIBUTSUNIKOGEMEOTSUKERU DENSHIRENJOHATSUNETSUZARANO SEIHO OYOBI HATSUNETSUZARA
JPH02263018A (en) * 1989-03-31 1990-10-25 Sumitomo Electric Ind Ltd Microwave oven
JPH08299190A (en) * 1995-05-08 1996-11-19 Mitsui Toatsu Chem Inc Microwave heater
JP2001000316A (en) * 1999-06-21 2001-01-09 Miyao Company Limited:Kk Thermal insulating container
JP2001128847A (en) * 1999-11-04 2001-05-15 Totu:Kk Heat generating tray for microwave oven and heating medium material of heat generating tray for microwave oven as well as method for manufacturing heat generating tray for microwave oven
JP2004254737A (en) * 2003-02-24 2004-09-16 Matsushita Electric Ind Co Ltd Browning plate and high frequency heating apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152099A (en) * 2013-02-06 2014-08-25 Elic Corp Heating element composition heated by being coated on surface of heat resistant ceramic ware and by absorbing microwaves, ceramic ware transfer paper containing the same, far infrared ray-radiating and heating ceramic ware containing the same, and preparation method therefor

Similar Documents

Publication Publication Date Title
US5466917A (en) Microwave-absorptive heat-generating body and method for forming a heat-generating layer in a microwave-absorptive heat-generating body
JPH06111934A (en) Sintered-ceramic microwave heating thermosensitive body
CN101803855A (en) Manufacturing method and application method of microwave-absorbing heating non-sticky ceramic container
JP2007227191A (en) Induction heating element and its manufacturing method
JP5850821B2 (en) Powder for microwave-absorbing heating element, microwave-absorbing heating element using the powder, and production method thereof
KR20030091175A (en) Ceramic heating element and method of the same
EP2982614B1 (en) Device for microwave cooking
JP5318146B2 (en) Fever glaze
JP2012115523A (en) Ceramic cooker for microwave oven
JPS5852917A (en) Cooking apparatus for electronic range
JP2012205868A (en) Earthen pot container and method for manufacturing the same
JP2004024347A (en) Electromagnetic cooking vessel and manufacturing method for the same
KR20170121416A (en) Ceramic heating cooker using microwave
JP2005126247A (en) Pottery and its producing method
JPH03295192A (en) Microwave absorption heating element for microwave oven
JP5828812B2 (en) Method for producing powder for microwave absorption heating element, powder for microwave absorption heating element, and microwave absorption heating element using the powder
JP2008132098A (en) Method of manufacturing exothermic eating utensil for microwave oven
JP2008307268A (en) Container for electromagnetic cooker
JP5824411B2 (en) Method for producing powder for microwave-absorbing heating element and method for producing microwave-absorbing heating element using the powder
JPH0631677Y2 (en) Heating element for high frequency heating device
JP2012162404A (en) Microwave-absorbing, self-heating, heat-resistive pottery, and method for manufacturing the same
JP3001622U (en) Induction heating tableware
JPH0613174A (en) Microwave oven
JPH06189849A (en) Heating container for cooking and its production
JP2003325356A (en) Method for producing electromagnetic cooking container

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20080125

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20080125

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Effective date: 20100713

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308