JP2012205868A - Earthen pot container and method for manufacturing the same - Google Patents

Earthen pot container and method for manufacturing the same Download PDF

Info

Publication number
JP2012205868A
JP2012205868A JP2011089571A JP2011089571A JP2012205868A JP 2012205868 A JP2012205868 A JP 2012205868A JP 2011089571 A JP2011089571 A JP 2011089571A JP 2011089571 A JP2011089571 A JP 2011089571A JP 2012205868 A JP2012205868 A JP 2012205868A
Authority
JP
Japan
Prior art keywords
metal
earthenware
earthenware pot
conductive
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011089571A
Other languages
Japanese (ja)
Inventor
Kazumasa Tanaka
一誠 田中
Kenji Kato
健治 加藤
Kazuma Yoshida
一馬 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TMC KK
Original Assignee
TMC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TMC KK filed Critical TMC KK
Priority to JP2011089571A priority Critical patent/JP2012205868A/en
Publication of JP2012205868A publication Critical patent/JP2012205868A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cookers (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earthen pot container that has no metal heating part, is all-in-one design type and excellent in handling property, and can use the induction heating (IH heating); and to provide a method for manufacturing the earthen pot container.SOLUTION: The earthen pot container is flat at a bottom, comprises the electrical conductive ceramics and/or the ceramics centering on the silica alumina that contains the metal and makes the surface a ceramics at least at the bottom part, and can be heated by the induction heating. There is also provided a method for manufacturing the earthen pot container.

Description

本発明は誘導加熱方式(IH方式)に使用できる土鍋状容器及びその製造方法に関するものである。The present invention relates to an earthenware pot that can be used in an induction heating method (IH method) and a method for producing the same.

現在家庭用の全電化システムとして誘導加熱(IH)方式の熱源並びにそれに対応する調理器具が広く使用されるようになっている。ただこの方式の加熱は非常に効率が良いものの、電磁誘導によるために、対象が、金属や強誘電体、強磁性体からなる製品に限られていた。つまり通常の所謂IHヒーターと呼ばれる高周波誘導加熱型の加熱装置の場合は、周波数10MHzから100MHzの電磁波による誘導加熱によっており、これによる加熱では金属の加熱には有効であるが、通常のセラミックスでは電気伝導性又は磁性を持たないために、誘導加熱を生じない事によっているからである。At present, an induction heating (IH) type heat source and a cooking appliance corresponding to the heat source are widely used as an all-electric system for home use. However, although this method of heating is very efficient, due to electromagnetic induction, the target was limited to products made of metal, ferroelectrics, and ferromagnetics. In other words, in the case of a high-frequency induction heating type heating device called an ordinary so-called IH heater, induction heating is performed by electromagnetic waves having a frequency of 10 MHz to 100 MHz, and this heating is effective for heating a metal. This is because induction heating is not caused because it does not have conductivity or magnetism.

一方、最近では保温性の良好なセラミックス製の調理器具、例えば伝統的には土鍋が有り、いわゆる鍋料理では必須のアイテムである。又商品名パイロセラムと呼ばれる結晶化ガラス、あるいは類似のセラミックスも広く使われており、それらを使用したいとする要望が大きくなっている。On the other hand, recently, there are ceramic cooking utensils with good heat retention, such as traditional earthenware pots, which are essential items for so-called pot dishes. Crystallized glass called Pyroceram or similar ceramics is also widely used, and there is a growing demand for using them.

これらのいわゆるセラミックス製の鍋などを使用するためにいくつかの加熱技術の提案がある。これらを以下に示すが、いずれも金属を加熱源として使用している。つまり
特開2005−334351公報、特開2006−116295公報では土鍋の底部分に金属板や金属箔を貼り付けたものが提案されている。これにより合目的に土鍋の加熱が出来るようになるが、土鍋自身の取り扱いは必ずしも良くなく、又通常の熱源での使用では火炎による金属部分の腐食などの問題の出ることがあった。更には、金属とセラミックスとは一般に整合性が悪いために取り扱いによっては剥離してしまうという問題があった。
Several heating techniques have been proposed to use these so-called ceramic pots. These are shown below, but all use metal as a heating source. That is, Japanese Patent Application Laid-Open Nos. 2005-334351 and 2006-116295 have proposed metal plates and metal foils attached to the bottom of a clay pot. As a result, the earthenware pot can be heated for the intended purpose, but the earthenware pot itself is not always handled properly, and when used with a normal heat source, there are cases where problems such as corrosion of metal parts due to flame occur. Furthermore, since metal and ceramics generally have poor consistency, there has been a problem that they may be peeled off depending on handling.

特開平10−137130公報には、発熱部である、網又は板を鍋の内側に置いて、使用中は、鍋の内側で発熱するようにしている。これは上記と同じように取り扱いに問題を残している。
また、特開2005−296761公報には、鍋の内側底面に金属溶射層を設けてその部分を発熱させることが示されている。更に、特開2006−014761公報では容器底面に銅又は銅合金を低温溶射法により100〜300ミクロンの溶射層を設けることが示されており、その部分を誘導により加熱する事が提案されている。これらも上記と同様の問題と共に、溶射層はその特徴から表面が活性であり、酸などに容易に腐食するという問題があり、取り扱い上の問題があった。
In Japanese Patent Laid-Open No. 10-137130, a net or a plate, which is a heat generating portion, is placed inside a pan, and heat is generated inside the pan during use. This leaves a problem in handling as above.
Japanese Patent Application Laid-Open No. 2005-296761 discloses that a metal sprayed layer is provided on the inner bottom surface of a pan to generate heat. Furthermore, Japanese Patent Application Laid-Open No. 2006-014761 discloses that a sprayed layer of 100 to 300 microns is provided on the bottom surface of a container by a low temperature spraying method, and it is proposed to heat the portion by induction. . In addition to the same problems as described above, the sprayed layer has a problem that its surface is active due to its characteristics and it is easily corroded by an acid or the like.

更に、特開2006−061298公報では同様の機能を与えるために容器部を金属とし、金属鍋の底部に発熱部を設けると共に、金属鍋に釉薬をかけることで琺瑯と同様な機能をあたえるようにしている。しかし所謂土鍋とは熱の保持、その他に関しても異なることは明らかである。
これらに示されるように、誘導加熱(IH)で使用できる土鍋はあるが、いずれもが発熱部となる部分は土鍋本体、セラミックス部分では無く、金属によっていた。これらは上記したように固定されているとしても、元々親和性の良くない金属とセラミックスの接合があるために、取扱いが煩雑になると共に、土鍋部分と発熱部分の熱膨張に差があるなど、長期的には剥離が起こる可能性を有しており、必ずしも満足のいくものではなかった。
Furthermore, in Japanese Patent Application Laid-Open No. 2006-061298, the container portion is made of metal to provide the same function, and a heat generating portion is provided at the bottom of the metal pan, and a function similar to that of a bowl is provided by applying a glaze to the metal pan. ing. However, it is clear that so-called clay pots are different in terms of heat retention and others.
As shown in these figures, there are earthenware pots that can be used for induction heating (IH), but the part that becomes the heat generating part is not the earthenware pot body or the ceramic part, but is made of metal. Even though these are fixed as described above, there is a metal-ceramic bond that originally has no good affinity, so the handling becomes complicated and there is a difference in the thermal expansion between the earthenware pot part and the heating part, etc. There was a possibility that peeling occurred in the long term, and it was not always satisfactory.

特開2005−296761公報JP-A-2005-296761 特開2006−116295公報JP 2006-116295 A 特開平10−137130公報JP 10-137130 A 特開2005−296761公報JP-A-2005-296761 特開2006−014761公報JP 2006-014761 A 特開2006−061298公報JP 2006-061298 A

本発明では叙上の問題点を解決して金属発熱部分が無く、一体型で取扱性に優れた、しかも誘導加熱が可能な、土鍋状の容器並びにその製造方法を提供することを課題とした。An object of the present invention is to solve the above problems and to provide a clay pot-like container having no metal heat generating portion, excellent in handleability and capable of induction heating, and a method for producing the same. .

本発明は底部が平坦であり、導電性セラミックス、及び/又は表面をセラミックス化した金属を少なくとも底部に含有するシリカ・アルミナを主とするセラミックスから成る、誘導加熱により加熱することが出来る土鍋状容器であり、またその製造方法であって、通常の土鍋はアルミナ−シリカ系の複合酸化物を主成分とするが、それと親和性が良好でしかも誘導による発熱が効率よく起こる、導電性セラミックス体や、表面を酸化物として土鍋状容器の主成分であるアルミナ−シリカ系複合酸化物との親和性を増大させる事によって、これら導電性酸化物や金属をセラミックス中、特に底面を平坦としてその部分に高濃度に担持させて効率よく加熱が出来る様になった。The present invention is a clay pot-like container that has a flat bottom and is made of conductive ceramics and / or ceramics mainly composed of silica / alumina containing at least a metal whose surface is ceramicized, which can be heated by induction heating. In addition, an ordinary earthenware pot is mainly composed of an alumina-silica composite oxide, and has a good affinity with it and heat generation by induction occurs efficiently. By increasing the affinity with the alumina-silica composite oxide, which is the main component of the earthenware pot, with the surface as an oxide, these conductive oxides and metals are placed in the ceramics, in particular with the bottom surface flat. It became possible to heat efficiently by supporting it at a high concentration.

以下詳細に説明する。
りまり、従来の土鍋は粘土を主体とするシリカ・アルミナ系物質に長石などのセラミックス材料を加えて水分と共に成型する。この成型物を乾燥後、1000〜1300℃程度に加熱焼成して素焼きの土鍋状容器を作る。このものに、釉薬をかけて更に加熱・焼成してガラス化させ表面にガラス化した被覆を有する土鍋状容器とするものである。ここで釉薬の役割は元々多孔性である素焼きは、液透過性を有する場合が有ること、必ずしも目的の色調ではないことからその目止めを行うと共に色彩・見栄えを良くするという効果を有している。本発明ではこの土鍋状容器を形成するセラミックス内に、該セラミックスに親和性を有し、誘電効果が大きく、あるいは導電性に優れ、しかも熱膨張係数がセラミックス物質に近い、セラミックス又は表面をセラミックス化した金属材料を含有させ、一体として安定に保持できる様にすることに成功したものである。更に底面を平坦化することによって、誘導電流が効率よく伝わるようにした。
This will be described in detail below.
In other words, conventional clay pots are molded with moisture by adding a ceramic material such as feldspar to a silica-alumina-based material mainly composed of clay. After drying this molding, it is heated and fired at about 1000 to 1300 ° C. to make an unglazed earthenware pot. This is made into a clay pot-like container having a coating that is vitrified by applying a glaze to the product and further vitrified by vitrification. The role of glaze is inherently porous, so that unglazed porcelain may have liquid permeability, and since it is not necessarily the target color tone, it has the effect of stopping the eye and improving the color and appearance. Yes. In the present invention, the ceramic forming the earthenware container has an affinity for the ceramic, has a large dielectric effect, is excellent in electrical conductivity, and has a thermal expansion coefficient close to that of a ceramic material. It has succeeded in including the above-mentioned metallic material so that it can be stably held as a unit. Further, the induced current is efficiently transmitted by flattening the bottom surface.

つまり、誘導加熱による発熱する物質としては導電性又は強磁性体が上げられるが、これ以外に高周波電磁界中での誘電効果が期待できる強誘電体も考えられる。
一般に強誘電体は金属の酸化物などセラミックス物質の一部である場合が多いが、これらの特性に加えて熱膨張係数がセラミックス物質と大きな隔たりのない、物質を特に鍋状体の内部、特に底部に集中して含められるように配置して本発明を成就するようにしたものである。更に効率を良くするために、鍋状体の底面を平坦にして誘電電源との密着性をより良くする。
In other words, as a substance that generates heat by induction heating, a conductive material or a ferromagnetic material can be raised, but a ferroelectric material that can be expected to have a dielectric effect in a high frequency electromagnetic field is also conceivable.
In general, ferroelectrics are often part of ceramic materials such as metal oxides, but in addition to these properties, the thermal expansion coefficient is not significantly different from ceramic materials. It arrange | positions so that it may be concentrated and contained in the bottom part, and it was made to fulfill this invention. In order to further improve efficiency, the bottom of the pan-like body is flattened to improve the adhesion with the dielectric power source.

ここで誘電物質としては、鍋状容器の基本物質であるシリカ・アルミナセラミックスと親和性の非常に高い、酸化チタン化合物、特にTiO、これは電気伝導率も金属並であり極めて大きく、通常の家庭用の誘導加熱(IH)条件で効率よく発熱することが認められている。又導電性の高い酸化スズ(SnO2)も同様にして非常に有効であることがわかった。更に所謂フェライトとして示される、スピネル型構造を有する金属酸化物、例えばニッケルフェライト、コバルトフェライト等のフェライト類が非常に有効であることがわかった。更にはチタン酸バリウムなどのペロブスカイト形酸化物も誘電性の点から有効である。Here, as the dielectric material, a titanium oxide compound, particularly TiO, which has a very high affinity with the silica / alumina ceramics, which is the basic material of the pot-shaped container, has a very large electrical conductivity, which is similar to that of a metal, and is very large in ordinary households. Efficient heat generation has been observed under induction heating (IH) conditions. It was also found that tin oxide (SnO 2) having high conductivity is also very effective. Furthermore, it has been found that metal oxides having a spinel structure, such as so-called ferrite, such as ferrites such as nickel ferrite and cobalt ferrite are very effective. Furthermore, perovskite oxides such as barium titanate are also effective from the viewpoint of dielectric properties.

一方金属をこの鍋状体内に含めることができればより有効であることは論を待たないが、その場合には、金属とシリカ・アルミナセラミックスとの親和性のために、金属表面を予め酸化物などセラミックス化しておき、それをこのバルクで有るシリカ・アルミナセラミックスに混合する様にする。特にここではニッケル・鉄合金を使った場合表面にニッケルフェライトが形成されるので非常に有効である。金属が鉄の場合も使用できるが、表面が緻密な酸化物である、所謂黒皮と呼ばれる、スピネル構造を有する磁性酸化鉄(Fe3O4)で有ることが特に望ましい。なお金属であっても表面にある程度の厚みを有する酸化物を形成した場合に、表面酸化物と金属基材との親和性の良くない金属では表面酸化物により剥離を生じる事があるので使用に当たっては注意することが必要である。あらかじめ両者に親和性の良いたとえば酸化チタンなどで表面を覆っておくことも有効である。On the other hand, there is no argument that it would be more effective if a metal could be included in the pan-like body, but in that case, the metal surface was previously oxidized or the like because of the affinity between the metal and silica / alumina ceramics. It is made into ceramics and mixed with silica-alumina ceramics in this bulk. In particular, when nickel / iron alloy is used here, nickel ferrite is formed on the surface, which is very effective. Although it can be used when the metal is iron, it is particularly desirable to be magnetic iron oxide (Fe 3 O 4) having a spinel structure, which is a so-called black skin whose surface is a dense oxide. Even if it is a metal, when an oxide having a certain thickness is formed on the surface, the metal with poor affinity between the surface oxide and the metal substrate may cause peeling due to the surface oxide. It is necessary to be careful. It is also effective to cover the surface with titanium oxide or the like having good affinity for both in advance.

これらの発熱体となるべき物質(以後発熱物質と称する)は粒子として加えられる。粒子のサイズは特に指定されないが、通常、セラミックスの素焼きの表面凹凸からは2mm以下が良く、できれば0.5mm〜1mmが適当である。ただ金属を使用する場合には表面から酸化していくと微粒の場合全体が酸化物となってしまうことが有るので注意を要する。このような場合には予め表面に酸化物のコーティングを行う等前処理をしておくことが望ましい。バルク物質との混合の場合に量的に少なくなる可能性があること、焼きしまりに問題の出ることが有る。ただ泥しょう鋳込みでは、セラミックス物質との整合性があり、0.1から0.5mmが適当である。These substances to be heating elements (hereinafter referred to as exothermic substances) are added as particles. The size of the particles is not particularly specified, but usually 2 mm or less is preferable from the surface unevenness of the ceramic unglazed surface, and preferably 0.5 mm to 1 mm. However, when using a metal, care should be taken because if the metal is oxidized from the surface, the whole may become an oxide in the case of fine particles. In such a case, it is desirable to perform a pretreatment such as coating the surface with an oxide in advance. In the case of mixing with a bulk material, there is a possibility that the amount may be reduced, and a problem may occur in the burning. However, in mud casting, there is consistency with the ceramic material, and 0.1 to 0.5 mm is appropriate.

この発熱物質の含有量は特に底部誘電部分に集中して存在させることが望ましく。鍋状体の底部を平坦とすると共に、その平坦部分では、底部構成物質の50%以上が発熱体であることが望ましい。側壁部では殆ど発熱が無いために、より少なく、或いは全く無い様にすることも出来る。この製造方法であるが、通常のセラミックス原材料である粘土鉱物と陶土、長石などを加えて混練したバルク材原料に上記発熱物質を所定量加える。これを更に混練して均一にし、それを成型する。この時に底部には、発熱物質をより大きくした混練物を使う。It is desirable that the content of the exothermic substance is concentrated in the bottom dielectric part. It is desirable that the bottom part of the pan-like body is flat, and 50% or more of the bottom constituent material is a heating element in the flat part. Since there is almost no heat generation at the side wall, it can be made less or not at all. In this manufacturing method, a predetermined amount of the exothermic material is added to a bulk material raw material that is kneaded with clay minerals, porcelain clay, feldspar, etc., which are ordinary ceramic raw materials. This is further kneaded to be uniform and molded. At this time, a kneaded material having a larger exothermic material is used at the bottom.

一方鍋状容器中の発熱物質の含有割合を変えながら整形することも出来る。すなわち、原材料である、アルミナ・シリカセラミックスの原材料と上記発熱物質を分散材と共に攪拌して泥しょう(スリップ)にし所謂泥しょう鋳込み(スリップキャスティング)法によって整形する。なおこの時は発熱物質を0.5mm以下にしておくことが必要である。粒子を大きくすると泥しょう成分より底部への落下速度が大きくなり、底部の発熱物質濃度が高くなりすぎる可能性がある。このために発熱物質とアルミナ・シリカセラミックスの原材料との比重差を加味して粒度を調整することが望ましい。On the other hand, it can be shaped while changing the content ratio of the exothermic substance in the pan-like container. That is, the raw material of alumina / silica ceramics, which is the raw material, and the exothermic substance are stirred together with the dispersion material to form a mud (slip), which is shaped by a so-called mud casting (slip casting) method. At this time, it is necessary to keep the exothermic material to 0.5 mm or less. If the particles are made larger, the falling speed to the bottom is greater than the mud component, and the pyrogen concentration at the bottom may be too high. Therefore, it is desirable to adjust the particle size in consideration of the specific gravity difference between the exothermic substance and the raw material of alumina / silica ceramics.

また泥しょう鋳込み法の場合、一般には壁厚が底部を含めてほぼ同じになるので、あらかじめ同じ厚みにしておき、それから底部のみに発熱物質量を増加した泥しょうを加えることもできる。この場合通常の方法でも良いが、一度成形した後乾燥し、更に底部のみに発熱物質を大きくした、泥しょうを入れ、鍋状体内部に積層するようにしても良い。又このようなケースでも最初からバルク体にある程度の発熱物質を加えて成形しておくことが必要であり、それによってより付着性が良くなると共に、熱膨張による剥離や破損を防ぐことが出来る。In addition, in the case of the mud casting method, the wall thickness is generally the same including the bottom, so that the thickness can be made the same in advance, and then the mud having an increased amount of exothermic material can be added only to the bottom. In this case, a normal method may be used, but it may be molded once and then dried, and a mud containing a large amount of exothermic material is added only to the bottom and laminated inside the pan-like body. Even in such a case, it is necessary to add a certain amount of exothermic material to the bulk body from the beginning, thereby improving adhesion and preventing peeling and breakage due to thermal expansion.

また通常のスタンプ式などでの成形の場合は、あらかじめ混練して作る材料中の発熱物質量を底部では50%或いはそれより多くし、他の部分では段階的に少なくして壁部に相当するところではほとんど入れないようにして、熱膨張率を制御し、加熱、或いは洗浄時にも熱膨張の差による破損などを防ぐようにすることが出来る。Further, in the case of molding by a normal stamp type or the like, the exothermic substance amount in the material kneaded in advance is 50% or more at the bottom, and it is gradually reduced at other parts to correspond to the wall. By the way, it is possible to control the coefficient of thermal expansion and prevent damage due to the difference in thermal expansion even during heating or cleaning.

泥しょう鋳込み法で成形し、その内面底部に発熱物質が過剰な泥しょうを入れる、或いは後から、混練物を入れる場合もあらかじめ素焼きを作るのではなく乾燥状態にしてからそこに発熱物質の多い泥しょうや混練体を加え、再乾燥し、しかる後に焼成処理をすることが必要である。これによって、後から加えた泥しょう中の水分がより能率良く乾燥した鍋状容器に吸収されるようになると共に一体化する様になる。更に、接触部分では一部が相互拡散する結果、より連続的な成分変化となり、熱膨張、収縮が本体内で連続的に起こるようになり、加熱・冷却時にもひび割れなどを防ぐことが出来る。このようにして製造した、発熱物質を底部に包含する、鍋状体は再び乾燥し、必要に応じては形状の修正を行った後に、通常の素焼き工程により、素焼きを行う。素焼きの条件は特には指定されないが、鉄分の少ない粘土を用いた場合は1000℃〜1300℃が適当である。このようにして素焼きを行い、冷却した後更に必要に応じて再修正を加えてから釉薬掛けを行う。この段階では通常の釉薬がけでよい。Molded by the mud casting method, and when the inner part of the inner surface is filled with excessive pyrogens, or when the kneaded material is added later, it is not dried in advance but is dried before it contains a lot of pyrogens. It is necessary to add mud and a kneaded body, re-dry, and then perform a baking treatment. As a result, the moisture in the mud added later is absorbed into the dried pan-like container more efficiently and integrated. Furthermore, as a result of the mutual diffusion at the contact portion, the component changes more continuously, thermal expansion and contraction occur continuously in the main body, and cracks and the like can be prevented during heating and cooling. The pan-like body, which contains the exothermic material at the bottom, thus produced is dried again, and after correcting the shape as necessary, it is baked by a normal baked process. The condition of the unglazed baking is not particularly specified, but 1000 ° C. to 1300 ° C. is appropriate when clay with a small amount of iron is used. In this way, the unglazed baking is performed, and after cooling, re-correction is performed as necessary, and then the glaze is applied. At this stage, normal glaze may be used.

この様にして、土鍋状容器を作り上げるが、通常の使い方であれば土鍋の温度は100℃以下(直接火に当たる部分でもその温度は200−300℃であり、熱膨張係数差が顕著に出てひび割れなどが起こることはないが、直火で鍋の中に何も入れないような場合は800℃程度まで温度が上昇する可能性があるので、その点を考慮して、温度などの確認をし、ひび割れ等の起こらないことを確認しておくことが必要である。In this way, an earthenware pot is made, but if it is used in a normal manner, the temperature of the earthenware pot is 100 ° C. or less (the temperature is 200-300 ° C. even in a portion directly exposed to fire, and the difference in coefficient of thermal expansion is noticeable. Cracks will not occur, but the temperature may rise to about 800 ° C if nothing is put in the pan on an open fire, so check the temperature etc. in consideration of that point. However, it is necessary to confirm that no cracks occur.

底部が平坦で発熱物質が底部に集中した土鍋状容器は発熱部と一体であり、見かけ上は、普通の土鍋と同じで、火に直接かけて加熱することが出来ると共に、底部を主体として発熱物質を含むので誘導加熱によって、底部が発熱し、通常の土鍋を火にかけたと同様の効果を有する。更に熱板を取りつけたような土鍋とは異なり、取扱が容易になる。また誘導加熱でも効率の良い発熱が行われ、誘導加熱器具上に直置きで使うことが出来る。また発熱板を取りつけた土鍋の場合、通常の家庭用の誘導加熱ヒーターでは、装置側からは使うことが禁止される場合が多いが、本土鍋状容器は一体型であるので、自由に使用でき、問題はない。A clay pot-like container with a flat bottom and heat-generating substances concentrated on the bottom is integrated with the heating element.It looks the same as an ordinary clay pot, and can be heated directly by fire and generates heat mainly from the bottom. Since it contains a substance, the bottom is heated by induction heating, and has the same effect as a normal earthenware pan. Furthermore, unlike clay pots with a hot plate attached, handling becomes easy. Moreover, efficient heat generation is also performed by induction heating, and it can be used directly on the induction heating apparatus. In addition, in the case of a clay pot with a heating plate, it is often prohibited to use it from the equipment side with normal household induction heaters, but the mainland pot-shaped container is an integral type, so it can be used freely. ,No problem.

以下、製造方法を説明する。先ず、泥しょう鋳込み(スリップキャスト)法による製造のプロセスを示す。先ず鍋のバルク体となるべき、シリカ・アルミナセラミックス材料である、粘土質を主としこれに長石などを含む所謂陶土を過量の水で練って泥しょうとし、更に陶土より僅かに粒度の大きな発熱物質、例えば表面を酸化物化したニッケル/鉄合金粒などを加えて十分に攪拌し、均一に分散させて石膏型に入れる。すると泥しょう中の水分が石膏に吸収されると共に、これら泥しょう物質が石膏体の壁に沿って沈殿してくる。この時に僅かに大きくて比重の大きな発熱物質は重力により、下方、つまり底部側により濃度が高くなるように沈殿してくる。これによって内部に発熱物質の割合が下方ほど高くなるように分布した、鍋状体が出来る。適当な時間をおいた後、残留する泥しょうを抜いて形状の変化が起こらない程度に乾燥し、更に型を外して完全に乾燥させる。このものをシリカ・アルミナセラミックス原材料に応じて焼成温度を制御して加熱焼成して素焼きを作り、更に彩色、釉薬掛け・焼成を行って鍋状体を完成させる。
これによって製造された土鍋状容器断面の模式図を図1 100に示した。ここで20は発熱物質であり、初期粒子を大きくしたものであるので下方への沈殿速度が大きく、下方に行くに従って高濃度になっていることがわかる。
Hereinafter, the manufacturing method will be described. First, the manufacturing process by the mud casting (slip casting) method is shown. First, the so-called porcelain clay, which is a silica / alumina ceramic material that should be the bulk material of the pot, and so-called porcelain containing mainly feldspar, etc. is kneaded with excess water to make mud, and the heat generation is slightly larger than that of porcelain. A substance, such as nickel / iron alloy particles whose surface is oxidized, is added and stirred well, dispersed uniformly, and placed in a gypsum mold. Then, the water in the mud is absorbed by the gypsum, and these mud substances precipitate along the wall of the gypsum body. At this time, the slightly large heat generating material having a large specific gravity is precipitated by gravity so that the concentration is increased downward, that is, on the bottom side. As a result, a pan-like body is formed in which the ratio of the heat-generating substance is increased in the lower part. After a suitable time, the remaining mud is removed and dried to such an extent that the shape does not change, and the mold is removed and dried completely. This is heated and fired by controlling the firing temperature according to the silica / alumina ceramic raw material to make an unglazed baking, and further, coloring, glaze application and firing are performed to complete a pan-like body.
A schematic diagram of a cross-section of the earthenware pot manufactured in this way is shown in FIG. Here, 20 is an exothermic substance, and the initial particles are enlarged, so that the rate of precipitation downward is high, and it can be seen that the concentration increases as going downward.

上記鍋状体に加えて更に底部に発熱物質を加えることが出来る。つまり上記成型体について発熱物質を主とし、バインダーとしてのシリカ・アルミナセラミックス原料をからなる泥しょう又は混練物を底部のみに加える。この時発熱物質の量は50%以上であれば特には指定されないが、通常60〜90%(質量)である。これによって底部の厚みが増加するが、より効率良く発熱させることが出来るようになる。このような成型体を上記と同様にして、乾燥・焼成・彩色・釉薬掛け・焼成を行って、誘導加熱発熱が最適に行える土鍋状容器を完成することが出来る。
このものの断面模式図を図1 200に示した。ここでは図1 100に加えて、発熱物質21が更に加わっているのがわかる。
In addition to the pan-like body, a heat generating material can be further added to the bottom. That is, a mud or a kneaded material composed mainly of a heat-generating substance and a silica / alumina ceramic raw material as a binder is added only to the bottom of the molded body. At this time, the amount of the exothermic substance is not particularly specified as long as it is 50% or more, but is usually 60 to 90% (mass). As a result, the thickness of the bottom increases, but heat can be generated more efficiently. By performing drying, baking, coloring, glaze application, and baking in the same manner as described above, a clay pot-like container that can optimally generate induction heating can be completed.
A schematic cross-sectional view of this is shown in FIG. Here, it can be seen that in addition to FIG. 100, the exothermic substance 21 is further added.

なお乾燥後の工程は、特に指定はされないが、乾燥後形状を整えると共に、必要な補正・修正を行い、焼成して素焼きとする。素焼きの温度は使用するバルク体によって決めれば良く、通常は1000〜1300℃であり、加熱・冷却は時間をかけて徐々に行うようにする。このようにして製造した素焼きを必要に応じて修正し、釉薬をかけた後に仕上げ焼成を行う。仕上げ焼成の温度は釉薬温度であり、1000℃以下である。これは泥しょう鋳込み法の例であるが、通常の混錬成型でも良い。但し前記したように部位に応じて成分を変えてほぼ連続的に成分を変化させて熱膨張分布を連続的にしておくことが必要である。The process after drying is not particularly specified, but the shape after drying is adjusted, necessary corrections / corrections are performed, and firing is performed to make unbaked. The temperature of the unglazing may be determined depending on the bulk body to be used, and is usually 1000 to 1300 ° C. The heating and cooling are gradually performed over time. The unglazed product thus produced is corrected as necessary, and after the glaze is applied, finish firing is performed. The temperature for finish firing is the glaze temperature, which is 1000 ° C. or lower. This is an example of the mud casting method, but normal kneading molding may be used. However, as described above, it is necessary to change the component according to the site and change the component almost continuously to keep the thermal expansion distribution continuous.

また泥しょう鋳込み法ではなく混練物を成型することによっても製造出来る。この場合は発熱物質の混練量を変えた2種以上の混練物を作り、先ず底面として、最も発熱物質の含有の多い混練物で成型し、次いで、壁部を底部に近い方から、発熱物質量の多い混練物質の多い順に積層し成型する。次いで乾燥し、必要に応じて修正を行い、加熱・焼成して素焼きとする。これに、更に必要に応じて再修正を行い、彩色・釉薬掛け・焼成を行って完成土鍋状容器とする。このようにして作製した土鍋状体の断面模式図を図1 300に示した。ここに示すように底部ほど発熱物質量が多くなっている。ここでは発熱物質含有量を3段に変えたものを使用。底部が31のバルク中の発熱物質量割合が最も大きく、次いで壁部下方32の発熱物質量割合が中間、更に壁部上方33では発熱物質量割合が最小とした。
このように段階的に量比を変えることにより、発熱物質を含むバルク体の熱膨張係数が段階的に変化しているために、加熱時にも熱膨張差に由来する剥離は起こらない。
以下実施例によって説明するが、これに制限されないことは言うまでもない。
Moreover, it can manufacture also by shape | molding a kneaded material instead of a mud casting method. In this case, two or more kinds of kneaded materials having different exothermic substances are prepared, and first, the bottom is molded with the most exothermic substance-containing kneaded material. Laminate and mold in order of increasing amount of kneaded material. Next, it is dried, corrected as necessary, and heated and baked to make unglazed. This is further re-corrected as necessary, and is colored, glazed and fired to make a finished earthenware container. A schematic cross-sectional view of the clay pot produced in this way is shown in FIG. As shown here, the amount of the exothermic material increases toward the bottom. Here, the one with the pyrogen content changed to 3 levels is used. The ratio of the amount of exothermic substance in the bulk having the bottom 31 is the largest, the ratio of the exothermic substance in the lower part 32 of the wall is intermediate, and the ratio of the exothermic substance in the upper part 33 of the wall is minimum.
By changing the quantity ratio stepwise in this way, the thermal expansion coefficient of the bulk body containing the exothermic material is changed stepwise, so that peeling due to the difference in thermal expansion does not occur even during heating.
Hereinafter, the present invention will be described by way of examples, but it goes without saying that the present invention is not limited thereto.

市販の信楽産陶土(主体はカオリンと長石)を水で練ってスラリー状とし、それに平均粒度100μmの表面を加熱酸化させたニッケル/鉄(4/2)合金を混合した。
混合割合は陶土80:合金20(質量比)とした。このものを十分に混合してから界面活性剤として中性洗剤を加え、更に水分を加えて泥しょうとした。2分割した石膏製の土鍋型を組み立て、その型に十分に攪拌した泥しょうを加え、15分静置した後、残りの泥しょうを排出し、自然乾燥した。30分後に型を外し、更に3日間乾燥した。更に陶土20:合金80(質量比)から成る泥しょうを同様の方法で作成し、乾燥した土鍋の内側に底部の厚みが6mm程度となるように流し込んだ。
更に15分後に残留泥しょうを抜いた。このものを再び3日間乾燥した後、加熱炉に入れて、1000℃まで3時間で昇温し、1000℃で3時間保持後徐冷した。取り出したところ後からのスリップも一体化しており、ひび割れは見られなかった。
このものについて通常の条件で釉薬付けを行った。釉薬に鍋の内側に広げると共に、外側底部を除いて均一となるように釉薬をかけ、乾燥後、800℃で加熱した。
加熱・徐冷後取り出したところ、外観は通常の土鍋と変わらなかった。壁の厚みは壁部が8mm、底部は15mmであった。又水を入れて誘導加熱器(IHヒーター)にかけスイッチを入れたところ加熱し沸騰水とすることが出来た。
A commercially available Shigaraki porcelain clay (mainly kaolin and feldspar) was kneaded with water to form a slurry, and a nickel / iron (4/2) alloy whose surface with an average particle size of 100 μm was heated and oxidized was mixed.
The mixing ratio was porcelain 80: alloy 20 (mass ratio). After thoroughly mixing this, a neutral detergent was added as a surfactant, and water was added to make a mud. A two-piece gypsum earthenware mold was assembled, and a well-stirred mud was added to the mold. After standing for 15 minutes, the remaining mud was discharged and air-dried. After 30 minutes, the mold was removed and further dried for 3 days. Furthermore, a mud made of porcelain clay 20: alloy 80 (mass ratio) was prepared in the same manner, and poured into the inside of the dried earthen pot so that the thickness of the bottom became about 6 mm.
Residual mud was removed after another 15 minutes. This was dried again for 3 days, then placed in a heating furnace, heated to 1000 ° C. over 3 hours, held at 1000 ° C. for 3 hours, and then gradually cooled. When it was taken out, the slips from the back were also integrated, and no cracks were seen.
This product was glazed under normal conditions. The glaze was spread on the inside of the pan, and the glaze was applied so as to be uniform except for the bottom of the outside. After drying, it was heated at 800 ° C.
When taken out after heating and slow cooling, the appearance was the same as a normal clay pot. The wall thickness was 8 mm at the wall and 15 mm at the bottom. Moreover, when water was added and it switched to the induction heater (IH heater) and the switch was turned on, it was heated and it was able to be made boiling water.

実施例1と同様にして石膏型に泥しょうを入れて土鍋を製作した。但しニッケル/鉄合金の代わりに、酸化チタン(TiO)の粉末を入れた。陶土への混合比率は実施例1と同じとした。このスリップを使用し、石膏型に入れることによって土鍋形を作り、乾燥した。この土鍋形の乾燥物の底部に、TiO:陶土=90:10(質量比)となるように混練したガム状の混練物をあらかじめ水でしめらせた土鍋の底部に、見かけ厚み8mm程度となるように充填し、乾燥した。乾燥後わずかに混練物を詰めた部分にひび割れが見られたので、陶土を水と合わせた泥しょうをヒビ部分に入れると共に表面を修正して更に乾燥を行った。このものについて、実施例1と同様にして素焼きを作り、更に釉薬をかけて土鍋とした。このもののチタンの鍋の高さ方向の分布を携帯型蛍光エックス線分析装置、NITON(理学電機)で 鍋の壁に沿って外側から計測したところ、底部が極端に高く、上に行くに従って少なくなっていることが分かり、発熱物質である酸化チタン(TiO)に分布のあることが分かった。実施例1と同様にして誘導加熱による加熱を行ったところ、問題なく加熱し水を沸騰することが出来た。In the same manner as in Example 1, mud was put in a gypsum mold to produce a clay pot. However, titanium oxide (TiO) powder was put in place of the nickel / iron alloy. The mixing ratio to the clay was the same as in Example 1. Using this slip, it was put into a plaster mold to make a clay pot shape and dried. An apparent thickness of about 8 mm is formed on the bottom of the earthen pot in which the gum-like kneaded material kneaded so as to be TiO: ceramic clay = 90: 10 (mass ratio) is preliminarily damped with water. Filled and dried. After drying, cracks were observed in the portion where the kneaded material was slightly packed, so that mud mixed with porcelain clay and water was put in the cracked portion, and the surface was corrected and further drying was performed. About this thing, the unglazed baking was made like Example 1, and it further applied the glaze to make a clay pot. The distribution of the titanium pan in the height direction was measured from the outside along the wall of the pan with a portable X-ray fluorescence analyzer, NITON (Rigaku Denki). It was found that there was a distribution in titanium oxide (TiO), which is a heat generating material. When heating by induction heating was performed in the same manner as in Example 1, it was possible to boil water by heating without problems.

市販の瀬戸陶土をバルク材とし、チタン酸バリウムの平均粒径200μmの粒子を発熱物質として、陶土:チタン酸バリウム=20:80,60:40,80:20の三種類の組み合わせの混練物を作成した。混練物は水を媒体とした物であり、ろくろ作業が出来る程度の硬さに調整した。これについてまず20:80の混練体で底部を作り(直径200mm厚さ10mmの板状)、その上に高さ30mm厚み約8mmの壁となる様な立ち上げを作り、40:60の混練体で形成し、更にその上に高さ30mm厚み約7mmの80:20の混練体による壁を積み上げた。これらに対して、瀬戸陶土の泥しょうを使いながらろくろによって周囲をならして平滑な表面を有する底部が平坦な土鍋型に加工を行い、それを乾燥した。3日間の乾燥により一様な形状の土鍋状体となったので底面がより平坦になるようにヤスリがけを行うと共に底部の突起が無くなるように、壁部と底部の間を曲面となるように仕上げ、このものを焼成炉に入れて1200℃で仮焼した。これにより緻密度の高い素焼きが出来た。又ひび割れなどは見られなかった。これについて実施例1と同様に釉薬をかけて焼成を行い土鍋とした。これについては接合部も成型時にろくろ作業により、充分な接合が出来ているために、加熱/冷却を繰り返しても剥離あるいはひび割れが起こるようなことはなかった。なお実施例1と同様の条件でIHによる加熱処理を行ったが、容易に加熱することが出来た。Commercially available Seto porcelain is used as a bulk material, and barium titanate particles with an average particle size of 200 μm are used as exothermic materials, and kneaded materials of three kinds of combinations of porcelain clay: barium titanate = 20: 80, 60:40, 80:20. Created. The kneaded material was a material using water as a medium, and was adjusted to a hardness enough to enable the potter's wheel work. About this, first, a bottom part is formed with a 20:80 kneaded body (plate shape with a diameter of 200 mm and a thickness of 10 mm), and a rise is formed on the bottom so that a wall with a height of 30 mm and a thickness of about 8 mm is formed. Further, a wall of 80:20 kneaded body having a height of 30 mm and a thickness of about 7 mm was stacked thereon. On the other hand, using a clay from Seto porcelain, it was smoothed by a potter's wheel and processed into a clay pot with a smooth bottom and dried. Since it has become a clay pot with a uniform shape after drying for 3 days, file it so that the bottom is flatter and make the curved surface between the wall and bottom so that there is no protrusion on the bottom. Finishing, this thing was put into the kiln and calcined at 1200 degreeC. As a result, high-density unglazed baking was achieved. There were no cracks. About this, the glaze was applied like Example 1 and it baked and it was set as the earthenware pot. With respect to this, since the joining portion was sufficiently joined by the potter's wheel work at the time of molding, peeling or cracking did not occur even when heating / cooling was repeated. In addition, although the heat processing by IH was performed on the conditions similar to Example 1, it was able to heat easily.

近年では卓上コンロにも誘導加熱(IH)ヒーターを使うようになっており、土鍋を使った鍋料理等が事実上出来ないという問題を抱えていた。これらを改良するために土鍋内に発熱体を入れる、あるいは発熱体を土鍋の下に敷くなどの方法が考案されているが、実際には危険性の問題などからヒーターメーカーは使用を禁止しているケースが多い。従い直接土鍋状容器を誘導加熱(IH)ヒーターに使える本発明の技術は広く一般に広く実用化すると予想する。In recent years, induction heating (IH) heaters have also been used for tabletop stoves, and there has been a problem that it is virtually impossible to cook pots using earthen pots. In order to improve these, methods such as putting a heating element in the earthenware pot or laying the heating element under the earthenware pot have been devised. There are many cases. Therefore, it is expected that the technology of the present invention that can directly use the earthenware pot as an induction heating (IH) heater will be widely and generally put into practical use.

本発明にかかる土鍋状容器の断面のモデル図である。  It is a model figure of the section of the earthenware pot container concerning the present invention.

100 泥しょう鋳込みによる模式断面図
200 泥しょう鋳込みに底部沈殿を加えた模式断面図
300 混練体成型による模式断面図
11 発熱物質
21 底部沈殿物質
31 発熱物質の多い混練体
32 発熱物質中間量の混練体
33 発熱物質の少ない混練体
100 Schematic cross-sectional view by mud casting 200 Schematic cross-sectional view by adding bottom sediment to mud casting 300 Schematic cross-sectional view by molding kneaded body 11 Pyrogen 21 Bottom kneaded substance 31 Kneaded body with a large amount of pyrogen 32 Kneading of intermediate amount of pyrogen Body 33 Kneaded body with less heat generation material

Claims (11)

底部が平坦であり、導電性セラミックス、及び/又は表面をセラミックス化した金属を少なくとも底部に含有するシリカ・アルミナを主とするセラミックスから成る、誘導加熱により加熱することが出来る土鍋状容器。A clay pot-like container that has a flat bottom and is made of conductive ceramics and / or ceramics mainly composed of silica / alumina containing at least a metal whose surface is ceramicized at the bottom, and that can be heated by induction heating. 前記導電性セラミックス、及び/又は表面をセラミックス化した金属の含有量が該土鍋状容器の底部において50%以上で有ることを特徴とする請求項1の土鍋状容器。The earthenware pot according to claim 1, wherein the content of the conductive ceramics and / or the metal whose surface has been ceramicized is 50% or more at the bottom of the earthenware pot. 前記土鍋状容器は底部が厚く、壁部が薄い形状をしており、底部の導電性セラミックス、及び/又は表面をセラミックス化した金属の含有率が高く、壁部は底部に近い部分から上部にいくに従って、低くなっていることを特徴とする、請求項1又は2の土鍋状容器。The earthenware pot is thick at the bottom and thin in the wall, and has a high content of conductive ceramics at the bottom and / or metal that has been ceramicized on the surface, and the wall extends from a portion close to the bottom to the top. The earthenware pot according to claim 1 or 2, wherein the container is lowered as it goes. 前記導電性セラミックスが導電性酸化チタンであることを特徴とする請求項1〜3のいずれかの土鍋状容器。The earthenware pot according to any one of claims 1 to 3, wherein the conductive ceramic is conductive titanium oxide. 前記導電性セラミックスが一酸化チタン(TiO)である事を特徴とする請求項1〜4のいずれかの土鍋状容器。The earthenware pot according to any one of claims 1 to 4, wherein the conductive ceramic is titanium monoxide (TiO). 前記導電性セラミックスがペロブスカイト型酸化物であることを特徴とする請求項1〜3のいずれかの土鍋状容器。The earthenware pot according to any one of claims 1 to 3, wherein the conductive ceramic is a perovskite oxide. 前記導電性セラミックスがスピネル型酸化物であることを特徴とする請求項1〜3のいずれかの土鍋状容器。The earthenware pot according to any one of claims 1 to 3, wherein the conductive ceramic is a spinel oxide. 前記表面をセラミックス化した金属が粒径0.1〜2mmの鉄又は鉄合金であり、表面をいわゆる黒皮化した粒子であることを特徴とする請求項1〜3の土鍋状容器。The earthenware pot according to any one of claims 1 to 3, wherein the metal whose surface is ceramicized is iron or an iron alloy having a particle diameter of 0.1 to 2 mm, and the surface is a so-called blackened particle. 前記表面をセラミックス化した金属が粒径0.1〜2mmのニッケル・鉄合金であり、焼成により表面を酸化物としたものであることを特徴とする請求項1〜3又は8のいずれかの土鍋状容器。9. The metal according to claim 1, wherein the metal ceramicized on the surface is a nickel / iron alloy having a particle diameter of 0.1 to 2 mm, and the surface is converted to an oxide by firing. Earthenware container. 底部が平坦であり、導電性セラミックス、及び/又は表面をセラミックス化した金属を少なくとも底部に含有するシリカ・アルミナを主とするセラミックスから成る、誘導加熱により加熱することが出来る土鍋状容器を、粒径のやや大きな導電性セラミックス、及び/又は表面をセラミックス化した金属と粒径の小さなシリカ・アルミナ系原料からなる泥しょうをあらかじめ用意し、泥しょう鋳込み法によって成形し、加熱焼成によって製造する事を特徴とする土鍋状容器の製造方法。An earthenware pot container that has a flat bottom and is composed of conductive ceramics and / or ceramics mainly composed of silica / alumina containing at least a metal whose surface is ceramicized, that can be heated by induction heating. Conductive ceramics with a slightly larger diameter and / or a slurry made of a metal with a ceramic surface and silica / alumina based material with a small particle size are prepared in advance, molded by the slurry casting method, and manufactured by heating and firing. A method for producing an earthenware pot characterized by the following. 底部が平坦であり、導電性セラミックス、及び/又は表面をセラミックス化した金属を少なくとも底部に含有するシリカ・アルミナを主とするセラミックスから成る、誘導加熱により加熱することが出来る土鍋状容器を導電性セラミックス、及び/又は表面をセラミックス化した金属とシリカ・アルミナ系原料混練物の組成を変えて、底部と壁部或いはこのつながり部分をそれぞれとは組成を変えた該混練物で形成することにより、連続的に組成を変化するようにした事を特徴とする土鍋状容器の製造方法。Conductive earthenware pots that have a flat bottom and are made of conductive ceramics and / or ceramics mainly composed of silica / alumina containing at least the bottom metallized metal that can be heated by induction heating. By changing the composition of the ceramic and / or the metalized silica-alumina-based material kneaded material with the surface ceramicized, and forming the bottom part and the wall part or this connected part with the kneaded substance with different composition, A method for producing an earthenware pot characterized in that the composition is continuously changed.
JP2011089571A 2011-03-29 2011-03-29 Earthen pot container and method for manufacturing the same Withdrawn JP2012205868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089571A JP2012205868A (en) 2011-03-29 2011-03-29 Earthen pot container and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089571A JP2012205868A (en) 2011-03-29 2011-03-29 Earthen pot container and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012205868A true JP2012205868A (en) 2012-10-25

Family

ID=47186184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089571A Withdrawn JP2012205868A (en) 2011-03-29 2011-03-29 Earthen pot container and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012205868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017148172A1 (en) * 2016-03-01 2017-09-08 佛山市顺德区美的电热电器制造有限公司 Cooking apparatus
CN107260002A (en) * 2016-04-08 2017-10-20 佛山市顺德区美的电热电器制造有限公司 A kind of cooking ware, electromagnetic heating apparatus and magnetic conductive board
CN112979349A (en) * 2021-03-24 2021-06-18 江西金唯冠建材有限公司 Wear-resistant antifouling ceramic starlight glazed brick and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017148172A1 (en) * 2016-03-01 2017-09-08 佛山市顺德区美的电热电器制造有限公司 Cooking apparatus
CN107260002A (en) * 2016-04-08 2017-10-20 佛山市顺德区美的电热电器制造有限公司 A kind of cooking ware, electromagnetic heating apparatus and magnetic conductive board
CN107260002B (en) * 2016-04-08 2023-10-13 佛山市顺德区美的电热电器制造有限公司 Cooking utensil, electromagnetic heating equipment and magnetic conduction plate
CN112979349A (en) * 2021-03-24 2021-06-18 江西金唯冠建材有限公司 Wear-resistant antifouling ceramic starlight glazed brick and preparation method thereof

Similar Documents

Publication Publication Date Title
CN100427014C (en) High heat-resisting ceramic cooking cook ware suitable for electromagnetic induction furnace
CN105816010B (en) A kind of ceramic pot for induction cooker and its preparation
CN108033768A (en) Ceramic whiteware pot and preparation method thereof with high temperature resistant, explosion-proof glaze paint
CN102795845A (en) Stewing porcelain for electromagnetic oven and production method of porcelain
CN101665350A (en) Ceramic microwave absorbing material and preparation method and application thereof
CN100562508C (en) The making method of pottery that electromagnetic oven is used or porcelain container
JP2012205868A (en) Earthen pot container and method for manufacturing the same
CN106045574B (en) Tea ceramic kettle and preparation method thereof is boiled in health
CN105455614B (en) The manufacturing method of pot in a kind of cooking apparatus
CN105852620A (en) Composite ceramic pot capable of being directly used on induction cooker
CN101913849A (en) Heat-resistant ceramic for kitchen ware
JP6014797B2 (en) Ceramic container
CN104628365B (en) The preparation method of pottery
KR101602574B1 (en) Cookware and Cookware manufacturing method for microwave oven
CN206275575U (en) A kind of temperature automatically controlled electromagnetic stove suitable ceramic pot
EP2982614B1 (en) Device for microwave cooking
JP2007252524A (en) Ceramic container for electromagnetic induction heating cooker
CN201469019U (en) Electric rice cooker inner container
JP5483026B2 (en) Microwave absorption / self-heating heat-resistant ceramics and method for manufacturing the same
JP2004024347A (en) Electromagnetic cooking vessel and manufacturing method for the same
CN207666429U (en) Interior pot and cooking apparatus for cooking apparatus
CN101849763B (en) Production method of porcelain pot for electromagnetic range
KR100719899B1 (en) High density, high strength, no crack earthen bowl manufacture method
JP3001622U (en) Induction heating tableware
JP2008188219A (en) Inner pot for electric rice cooker

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603