JP2007225197A - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
JP2007225197A
JP2007225197A JP2006047328A JP2006047328A JP2007225197A JP 2007225197 A JP2007225197 A JP 2007225197A JP 2006047328 A JP2006047328 A JP 2006047328A JP 2006047328 A JP2006047328 A JP 2006047328A JP 2007225197 A JP2007225197 A JP 2007225197A
Authority
JP
Japan
Prior art keywords
motors
electronic expansion
drive
expansion valve
stm2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006047328A
Other languages
Japanese (ja)
Inventor
Motoshi Matsushita
元士 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006047328A priority Critical patent/JP2007225197A/en
Publication of JP2007225197A publication Critical patent/JP2007225197A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning device capable of reducing driving signal terminals and cost of components even in the case of driving and controlling a plurality of electronic expansion valves. <P>SOLUTION: The air conditioning device is equipped with the plurality of electronic expansion valves each adjusting the supply amount of a refrigerant to a plurality of heat exchangers, a plurality of motors STM1, STM2 each driving the electronic expansion valves, and a driving signal terminal group (25) for giving driving signals to the motor STM1, STM2. The air conditioning device is also equipped with switching means 22, 23 for selectively switching one out of the plurality of motors STM1, STM2 to a drivable state, and a driving/controlling means 20 for driving and controlling only the motor that the switching means 22, 23 switched out of the motors STM1, STM2 by outputting a driving signal. The plurality of motors STM1, STM2 share the driving signal terminal group (25). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の熱交換器への冷媒の供給量をそれぞれ調整する複数の電子膨張弁と、電子膨脹弁をそれぞれ駆動する複数のモータとを備える空気調和装置に関するものである。   The present invention relates to an air conditioner including a plurality of electronic expansion valves that respectively adjust the amount of refrigerant supplied to a plurality of heat exchangers, and a plurality of motors that respectively drive the electronic expansion valves.

一般に、複数台の室内ユニットを並列に配置するとともに、各室内ユニット間に接続されるユニット間配管に、圧縮機、室外熱交換器等を内蔵する複数台の室外ユニットを並列に接続したビル用のマルチ型空気調和装置が知られている。
この種のマルチ型空気調和装置は、複数の室外ユニットを備えるので、それらの組合せにより、大容量の空気調和システムを容易に構成することができるという利点がある。
In general, for multiple buildings, multiple indoor units are arranged in parallel, and multiple outdoor units with built-in compressors, outdoor heat exchangers, etc. are connected in parallel to the inter-unit piping connected between the indoor units. Multi-type air conditioners are known.
Since this type of multi-type air conditioning apparatus includes a plurality of outdoor units, there is an advantage that a large-capacity air conditioning system can be easily configured by combining them.

ところで、このように複数台の室外ユニットを組合わせた空気調和システムを構成する場合に、一つの室外ユニットに内蔵する室外熱交換器を複数とする場合がある。これは、所要容量の熱交換器を構成する場合に、一つの大容量の熱交換器で構成するよりも、複数の熱交換器で構成する方が、効率、制御性の良さ等で勝っているからである。
これらの室外熱交換器には、例えば、暖房時に、凝縮器(室内熱交換器)からの液冷媒を減圧し、各室外熱交換器に供給する冷媒の流量を、空調(暖房)負荷に応じて調整する為の電子膨張弁が設けられている。電子膨張弁は、原理的には、ステッピングモータの回転軸にニードル弁を設けた構成となっており、精密に冷媒の流量を制御することが可能である。
By the way, when configuring an air conditioning system in which a plurality of outdoor units are combined in this way, there may be a plurality of outdoor heat exchangers built in one outdoor unit. This is because, when configuring a heat exchanger with the required capacity, it is better to configure with a plurality of heat exchangers than to configure with one large capacity heat exchanger in terms of efficiency and controllability. Because.
In these outdoor heat exchangers, for example, during heating, the liquid refrigerant from the condenser (indoor heat exchanger) is depressurized, and the flow rate of the refrigerant supplied to each outdoor heat exchanger depends on the air conditioning (heating) load. An electronic expansion valve is provided for adjustment. In principle, the electronic expansion valve has a configuration in which a needle valve is provided on the rotating shaft of the stepping motor, and the flow rate of the refrigerant can be precisely controlled.

図5は、1−2相励磁により電子膨張弁を駆動制御する場合のタイミングチャートである。ここでは、電子膨張弁は4相ステッピングモータを備えているものとし、4相ステッピングモータの各相をA〜Dとする。
4相ステッピングモータは、動作を開始するステップ1では、A相巻線が励磁され、次のステップ2でも、引続きA相巻線のみが励磁される。
ステップ3では、引続きA相巻線が励磁されると共に、新たにB相巻線が励磁され、ステップ4では、A相巻線が非励磁となり、引続きB相巻線が励磁される。
ステップ5では、引続きB相巻線が励磁されると共に、新たにC相巻線が励磁され、ステップ6では、B相巻線が非励磁となり、引続きC相巻線が励磁される。
FIG. 5 is a timing chart when the electronic expansion valve is driven and controlled by 1-2 phase excitation. Here, the electronic expansion valve includes a four-phase stepping motor, and each phase of the four-phase stepping motor is denoted by A to D.
In the four-phase stepping motor, the A-phase winding is excited in Step 1 where the operation starts, and in the next Step 2, only the A-phase winding is continuously excited.
In Step 3, the A phase winding is continuously excited and the B phase winding is newly excited. In Step 4, the A phase winding is de-energized and the B phase winding is continuously excited.
In Step 5, the B-phase winding is continuously excited and the C-phase winding is newly excited. In Step 6, the B-phase winding is de-energized and the C-phase winding is continuously excited.

ステップ7では、引続きC相巻線が励磁されると共に、新たにD相巻線が励磁され、ステップ8では、C相巻線が非励磁となり、引続きD相巻線が励磁される。
2周期目のステップ1では、A相巻線が励磁されると共に、引続きD相巻線が励磁され、次のステップ2では、引続きA相巻線が励磁されると共に、D相巻線が非励磁となり、以下、動作終了迄、同様に1相励磁−2相励磁が交互に行われ駆動制御される。
In Step 7, the C-phase winding is continuously excited and the D-phase winding is newly excited. In Step 8, the C-phase winding is de-energized and the D-phase winding is continuously excited.
In step 1 of the second period, the A phase winding is excited and the D phase winding is continuously excited. In the next step 2, the A phase winding is continuously excited and the D phase winding is not turned on. In the same way, 1-phase excitation and 2-phase excitation are performed alternately until the operation ends, and the drive is controlled.

各電子膨張弁のステッピングモータの各相巻線は、一般的には、特許文献1に開示されているように、ステッピングモータ毎に独立した駆動信号端子に接続され、それぞれのパターンで励磁される。
特開平7−19629号公報
Each phase winding of the stepping motor of each electronic expansion valve is generally connected to an independent drive signal terminal for each stepping motor and is excited in each pattern as disclosed in Patent Document 1. .
JP-A-7-19629

上述したように、従来の空気調和装置では、複数の電子膨張弁を駆動制御する場合は、電子膨張弁毎に各相巻線の駆動信号端子が必要であり、端子数が増加して部品コストが上昇するという問題がある。
本発明は、上述したような事情に鑑みてなされたものであり、複数の電子膨張弁を駆動制御する場合でも、駆動信号端子を削減することが可能であり、部品コストを削減することができる空気調和装置を提供することを目的とする。
As described above, in the conventional air conditioner, when driving and controlling a plurality of electronic expansion valves, a drive signal terminal for each phase winding is required for each electronic expansion valve. There is a problem of rising.
The present invention has been made in view of the above-described circumstances, and even when driving and controlling a plurality of electronic expansion valves, it is possible to reduce drive signal terminals and reduce component costs. An object is to provide an air conditioner.

本発明に係る空気調和装置は、複数の熱交換器への冷媒の供給量をそれぞれ調整する複数の電子膨張弁と、該電子膨脹弁をそれぞれ駆動する複数のモータと、該モータに駆動信号を与える為の駆動信号端子群を備える空気調和装置において、前記複数のモータの内の1台を、駆動可能状態に選択的に切替える切替手段と、該切替手段が切替えたモータのみに駆動信号を出力して駆動制御する駆動制御手段とを備え、前記駆動信号端子群を前記複数のモータが共用するように構成してあることを特徴とする。   An air conditioner according to the present invention includes a plurality of electronic expansion valves that respectively adjust the amount of refrigerant supplied to a plurality of heat exchangers, a plurality of motors that respectively drive the electronic expansion valves, and drive signals to the motors. In an air conditioner having a drive signal terminal group for providing, a switching means for selectively switching one of the plurality of motors to a driveable state, and outputting a drive signal only to the motor switched by the switching means Drive control means for controlling the drive, and the drive signal terminal group is configured to be shared by the plurality of motors.

この空気調和装置では、複数の電子膨張弁が、複数の熱交換器への冷媒の供給量をそれぞれ調整し、複数のモータが、電子膨脹弁をそれぞれ駆動し、駆動信号端子群が、モータに駆動信号を与える。切替手段が、複数のモータの内の1台を、駆動可能状態に選択的に切替え、駆動制御手段は、切替手段が切替えたモータのみに駆動信号を出力して駆動制御し、駆動信号端子群を複数のモータが共用する。   In this air conditioner, the plurality of electronic expansion valves adjust the amount of refrigerant supplied to the plurality of heat exchangers, the plurality of motors drive the electronic expansion valves, respectively, and the drive signal terminal group serves as the motor. Give drive signal. The switching means selectively switches one of the plurality of motors to a driveable state, and the drive control means outputs drive signals only to the motors switched by the switching means to control driving, and a drive signal terminal group Are shared by multiple motors.

本発明に係る空気調和装置は、前記駆動制御手段は、前記切替手段が切替える直前の所定期間、駆動信号の出力を停止するように構成してあることを特徴とする。   The air conditioning apparatus according to the present invention is characterized in that the drive control means is configured to stop outputting the drive signal for a predetermined period immediately before the switching means switches.

本発明に係る空気調和装置によれば、複数の電子膨張弁を駆動制御する場合でも、駆動信号端子を削減することが可能であり、部品コストを削減することができる空気調和装置を実現することができる。   The air conditioner according to the present invention realizes an air conditioner that can reduce drive signal terminals and reduce component costs even when driving and controlling a plurality of electronic expansion valves. Can do.

また、本発明に係る空気調和装置によれば、複数の電子膨張弁を駆動制御する場合でも、駆動信号端子を削減することが可能であり、部品コストを削減することができると共に、電子膨張弁を駆動するモータの巻線の回生電圧を開放することができ、回生エネルギーによりモータの回動性能が低下しない空気調和装置を実現することができる。   In addition, according to the air conditioner of the present invention, it is possible to reduce drive signal terminals even when driving and controlling a plurality of electronic expansion valves, to reduce component costs, and to provide electronic expansion valves. The regenerative voltage of the winding of the motor that drives the motor can be released, and an air conditioner in which the rotational performance of the motor is not deteriorated by regenerative energy can be realized.

以下に、本発明をその実施の形態を示す図面に基づいて説明する。
図1は、本発明に係る空気調和装置の実施の形態の冷凍サイクルを示す配管系統図であり、暖房運転時の冷媒の通流経路を示している。
この冷凍サイクルでは、暖房運転時、室外ユニットの圧縮機6が圧縮して高温高圧にされた気体状の冷媒が、暖房運転用に切り替わっている四方弁3を経由して、室内ユニットの熱交換器であるコンデンサ(凝縮器)7へ送られる。コンデンサ7へ送られた高温高圧の冷媒は、図示しない室内ファンにより室内空気に熱(凝縮熱)を奪われ凝縮して液化し、室内空気の温度は上昇する。
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments thereof.
FIG. 1 is a piping diagram showing a refrigeration cycle of an embodiment of an air conditioner according to the present invention, and shows a refrigerant flow path during heating operation.
In this refrigeration cycle, during heating operation, the gaseous refrigerant compressed to high temperature and high pressure by the compressor 6 of the outdoor unit passes through the four-way valve 3 that is switched for heating operation, and heat exchange of the indoor unit is performed. It is sent to a condenser (condenser) 7 as a condenser. The high-temperature and high-pressure refrigerant sent to the condenser 7 is deprived of heat (condensation heat) to the indoor air by an indoor fan (not shown) and is condensed and liquefied, and the temperature of the indoor air rises.

液化した冷媒は、室外ユニットへ送られる間に減圧され、減圧された冷媒は、電子膨張弁1で空調(暖房)負荷に応じて流量を調節され、流量調節された冷媒の一部は、室外ユニットの熱交換機である蒸発器5に送られ、その残余は、蒸発器5をバイパスする電子膨張弁2で流量調節される。蒸発器5を経由した冷媒、及び電子膨張弁2で流量調節された冷媒は、更に蒸発器4に送られる。   The liquefied refrigerant is decompressed while being sent to the outdoor unit, and the decompressed refrigerant is adjusted in flow rate according to the air conditioning (heating) load by the electronic expansion valve 1, and a part of the refrigerant whose flow rate is adjusted It is sent to the evaporator 5 which is a heat exchanger of the unit, and the flow rate of the remainder is adjusted by the electronic expansion valve 2 that bypasses the evaporator 5. The refrigerant passing through the evaporator 5 and the refrigerant whose flow rate is adjusted by the electronic expansion valve 2 are further sent to the evaporator 4.

蒸発器4,5に送られた冷媒は、図示しない室外ファンにより蒸発器4,5を通過する外気に、気化熱を供給されて蒸発(気化)した後、四方弁3を経由して圧縮機6に戻される。圧縮機6に戻された気体状の冷媒は、再度、圧縮され高温高圧にされて、四方弁3を経由して、室内ユニットのコンデンサ7へ送られる。
冷房運転時は、冷媒は、上述した暖房運転時とは逆経路で流れ、蒸発器4,5及びコンデンサ7の機能が入れ替わる。
The refrigerant sent to the evaporators 4 and 5 is evaporated (vaporized) by supplying vaporization heat to the outside air passing through the evaporators 4 and 5 by an outdoor fan (not shown), and then the compressor passes through the four-way valve 3. Return to 6. The gaseous refrigerant returned to the compressor 6 is compressed again to a high temperature and high pressure, and is sent to the condenser 7 of the indoor unit via the four-way valve 3.
During the cooling operation, the refrigerant flows in the reverse path to that during the heating operation described above, and the functions of the evaporators 4 and 5 and the condenser 7 are switched.

図2は、本発明に係る空気調和装置の室外ユニットの電気系統を示すブロック図である。
この室外ユニットは、交流電源10からの交流電力が、コンバータ回路12により直流電力に変換され、変換された直流電力はインバータ回路16に与えられる。インバータ回路16の出力端子には、圧縮機6を駆動する圧縮機モータ6aが接続されている。
FIG. 2 is a block diagram showing an electrical system of the outdoor unit of the air conditioner according to the present invention.
In the outdoor unit, AC power from the AC power supply 10 is converted into DC power by the converter circuit 12, and the converted DC power is supplied to the inverter circuit 16. A compressor motor 6 a that drives the compressor 6 is connected to the output terminal of the inverter circuit 16.

コンバータ回路12の出力端子間には、マイクロコンピュータを内蔵する制御部13が接続されている。コンバータ回路12の接地側出力端子及び制御部13間に、回転数制御装置内臓の室外ファンモータ14、電子膨張弁1の膨張弁モータ1a、及び電子膨張弁2の膨張弁モータ2aがそれぞれ独立して接続されている。
制御部13は、内蔵するスイッチング電源回路により、コンバータ回路12の出力電圧を変換し駆動電源としている。
交流電源10の出力端子間には、切替回路11及び四方弁アクチュエータ3aが直列接続されている。
A control unit 13 incorporating a microcomputer is connected between the output terminals of the converter circuit 12. Between the ground side output terminal of the converter circuit 12 and the control unit 13, an outdoor fan motor 14 with a built-in rotation speed control device, an expansion valve motor 1a of the electronic expansion valve 1, and an expansion valve motor 2a of the electronic expansion valve 2 are independent of each other. Connected.
The control unit 13 converts the output voltage of the converter circuit 12 with a built-in switching power supply circuit to use as a drive power supply.
Between the output terminals of the AC power supply 10, a switching circuit 11 and a four-way valve actuator 3a are connected in series.

制御部13は、配管温度及び室外温度をサーミスタ17,18からの各電圧に基づき測定し、測定した各温度、及び室内ユニットからの制御信号に基づき、室外ファンモータ14、電子膨張弁1の膨張弁モータ1a及び電子膨張弁2の膨張弁モータ2aを駆動制御する。また、制御部13は、インバータ回路16を介して圧縮機モータ6aを駆動制御し、切替回路11を切替制御して四方弁3(図1)を切替える。
膨張弁モータ1a及び膨張弁モータ2aは、4相巻線を有するステッピングモータである。
The control unit 13 measures the piping temperature and the outdoor temperature based on the voltages from the thermistors 17 and 18, and expands the outdoor fan motor 14 and the electronic expansion valve 1 based on the measured temperatures and the control signal from the indoor unit. The valve motor 1a and the expansion valve motor 2a of the electronic expansion valve 2 are driven and controlled. Further, the control unit 13 drives and controls the compressor motor 6a through the inverter circuit 16, and switches the switching circuit 11 to switch the four-way valve 3 (FIG. 1).
The expansion valve motor 1a and the expansion valve motor 2a are stepping motors having four-phase windings.

図3は、制御部13が内蔵するマイクロコンピュータ、膨張弁モータ1a(STM1)及び膨張弁モータ2a(STM2)の接続構成を示すブロック図である。
制御部13が内蔵するマイクロコンピュータ20は、信号レベルを変換するインタフェース回路21を介して、膨張弁モータ1a(STM1)及び膨張弁モータ2a(STM2)の駆動許可信号P1,P2を出力する。駆動許可信号P1,P2は、インタフェース回路21から抵抗R1,R3を通じて、それぞれPNP型トランジスタ22,23のベースに与えられる。
トランジスタ22,23の各エミッタには、直流電源電圧+Vが与えられ、トランジスタ22,23の各エミッタ−ベース間には、それぞれ抵抗R2,R4が接続されている。
FIG. 3 is a block diagram showing a connection configuration of the microcomputer, the expansion valve motor 1a (STM1), and the expansion valve motor 2a (STM2) built in the control unit 13.
The microcomputer 20 incorporated in the control unit 13 outputs drive permission signals P1 and P2 of the expansion valve motor 1a (STM1) and the expansion valve motor 2a (STM2) via the interface circuit 21 that converts the signal level. The drive permission signals P1 and P2 are given from the interface circuit 21 to the bases of the PNP transistors 22 and 23 through the resistors R1 and R3, respectively.
A DC power supply voltage + V is applied to the emitters of the transistors 22 and 23, and resistors R2 and R4 are connected between the emitters and the bases of the transistors 22 and 23, respectively.

トランジスタ22のコレクタは、端子板25の駆動信号端子を介して、膨張弁モータ1a(STM1)の4相の各巻線A1,B1,C1,D1の各一端に接続されている。
トランジスタ23のコレクタは、端子板25の駆動信号端子を介して、膨張弁モータ2a(STM2)の4相の各巻線A2,B2,C2,D2の各一端に接続されている。
The collector of the transistor 22 is connected to one end of each of the four-phase windings A1, B1, C1, and D1 of the expansion valve motor 1a (STM1) via a drive signal terminal of the terminal plate 25.
The collector of the transistor 23 is connected to one end of each of the four-phase windings A2, B2, C2, D2 of the expansion valve motor 2a (STM2) via a drive signal terminal of the terminal plate 25.

マイクロコンピュータ20は、信号レベルを変換するインタフェース回路24を介して、膨張弁モータ1a(STM1)及び膨張弁モータ2a(STM2)の4相の各巻線に各駆動信号を出力する。
インタフェース回路24は、端子板25の4つの駆動信号端子を介して、膨張弁モータ1a(STM1)の各巻線A1,B1,C1,D1、及び膨張弁モータ2a(STM2)の各巻線A2,B2,C2,D2の各他端に接続されている。つまり、巻線A1,A2の各他端が1つの駆動信号端子に接続され、巻線B1,B2の各他端が1つの駆動信号端子に接続され、巻線C1,C2の各他端が1つの駆動信号端子に接続され、巻線D1,D2の各他端が1つの駆動信号端子に接続されている。
The microcomputer 20 outputs drive signals to the four-phase windings of the expansion valve motor 1a (STM1) and the expansion valve motor 2a (STM2) via the interface circuit 24 that converts the signal level.
The interface circuit 24 is connected to the windings A1, B1, C1, D1 of the expansion valve motor 1a (STM1) and the windings A2, B2 of the expansion valve motor 2a (STM2) via the four drive signal terminals of the terminal plate 25. , C2, D2 are connected to the other ends. That is, the other ends of the windings A1, A2 are connected to one drive signal terminal, the other ends of the windings B1, B2 are connected to one drive signal terminal, and the other ends of the windings C1, C2 are connected to one drive signal terminal. The other ends of the windings D1, D2 are connected to one drive signal terminal.

以下に、このような構成の空気調和装置の電子膨張弁を駆動制御する動作を、それを示す図4のタイミングチャートを参照しながら説明する。
尚、ここでは、膨張弁モータ1a(STM1)及び膨張弁モータ2a(STM2)を1−2相励磁により駆動制御する場合の動作例を説明する。
マイクロコンピュータ20は、動作を開始するステップ1では、膨張弁モータ1a(STM1)の駆動許可信号P1をオンにした後、巻線A1を励磁し、次のステップ2でも、引続き巻線A1のみを励磁する。
Hereinafter, an operation of driving and controlling the electronic expansion valve of the air conditioner having such a configuration will be described with reference to the timing chart of FIG.
Here, an example of operation when the expansion valve motor 1a (STM1) and the expansion valve motor 2a (STM2) are driven and controlled by 1-2 phase excitation will be described.
In step 1, which starts the operation, the microcomputer 20 turns on the drive permission signal P1 of the expansion valve motor 1a (STM1) and then energizes the winding A1. In the next step 2, the microcomputer 20 continues to turn on only the winding A1. Excited.

ステップ3では、引続き巻線A1を励磁すると共に、新たに巻線B1を励磁し、ステップ4では、巻線A1を非励磁とし、引続き巻線B1を励磁する。
ステップ5では、引続き巻線B1を励磁すると共に、新たに巻線C1を励磁し、ステップ6では、巻線B1を非励磁とし、引続き巻線C1を励磁する。
ステップ7では、引続き巻線C1を励磁すると共に、新たに巻線D1を励磁する。
ここで、ステップ7で膨張弁モータ1a(STM1)の開度制御が終了したとすると、ステップ7終了後は、全巻線A1,B1,C1,D1への駆動信号の出力を停止して非励磁とし、膨張弁モータ1a(STM1)の回生モード中の期間、駆動許可信号P1をオンにして、回生電圧を開放する。
In Step 3, the winding A1 is continuously excited and the winding B1 is newly excited. In Step 4, the winding A1 is de-energized and the winding B1 is continuously excited.
In Step 5, the winding B1 is continuously excited and the winding C1 is newly excited. In Step 6, the winding B1 is de-energized and the winding C1 is continuously excited.
In step 7, the winding C1 is continuously excited and the winding D1 is newly excited.
Here, assuming that the opening degree control of the expansion valve motor 1a (STM1) is completed in step 7, after step 7, the output of the drive signals to all windings A1, B1, C1, D1 is stopped and de-excitation is performed. Then, during the period in which the expansion valve motor 1a (STM1) is in the regeneration mode, the drive permission signal P1 is turned on to release the regeneration voltage.

マイクロコンピュータ20は、引続き膨張弁モータ2a(STM2)の駆動制御に移り、駆動許可信号P1をオフにした後、ステップ1では、膨張弁モータ2a(STM2)の駆動許可信号P2をオンにした後、巻線A2を励磁し、次のステップ2でも、引続き巻線A2のみを励磁する。
ステップ3では、引続き巻線A2を励磁すると共に、新たに巻線B2を励磁し、ステップ4では、巻線A2を非励磁とし、引続き巻線B2を励磁する。
The microcomputer 20 then proceeds to drive control of the expansion valve motor 2a (STM2), turns off the drive permission signal P1, and then turns on the drive permission signal P2 of the expansion valve motor 2a (STM2) in step 1 The winding A2 is excited, and in the next step 2, only the winding A2 is continuously excited.
In Step 3, the winding A2 is continuously excited and the winding B2 is newly excited. In Step 4, the winding A2 is de-energized and the winding B2 is continuously excited.

ステップ5では、引続き巻線B2を励磁すると共に、新たに巻線C2を励磁し、ステップ6では、巻線B2を非励磁とし、引続き巻線C2を励磁する。
ここで、ステップ6で膨張弁モータ2a(STM2)の開度制御が終了したとすると、ステップ6終了後は、全巻線A2,B2,C2,D2への駆動信号の出力を停止して非励磁とし、膨張弁モータ2a(STM2)の回生モード中の期間、駆動許可信号P2をオンにして、回生電圧を開放する。その後、駆動許可信号P2をオフにして、開度制御の動作を終了する。
In Step 5, the winding B2 is continuously excited and the winding C2 is newly excited. In Step 6, the winding B2 is de-energized and the winding C2 is continuously excited.
Here, assuming that the opening degree control of the expansion valve motor 2a (STM2) is completed in step 6, after the completion of step 6, the output of drive signals to all windings A2, B2, C2, D2 is stopped and de-excited. Then, during the period in which the expansion valve motor 2a (STM2) is in the regeneration mode, the drive permission signal P2 is turned on to release the regeneration voltage. Thereafter, the drive permission signal P2 is turned off, and the operation of the opening degree control is ended.

上述したようなタイミングチャートにより、ステッピングモータの回生モードを処理することで、複数の電子膨張弁を共通の制御端子を使用して駆動制御することができる。それぞれの電子膨張弁については、駆動許可信号用の駆動信号端子が必要となるが、ステッピングモータの駆動信号端子総数を削減することができる。また、電子膨張弁を1台ずつ駆動制御することになる為、電源容量も削減することができる。   By processing the regeneration mode of the stepping motor according to the timing chart as described above, it is possible to drive and control a plurality of electronic expansion valves using a common control terminal. Each electronic expansion valve requires a drive signal terminal for a drive permission signal, but the total number of drive signal terminals of the stepping motor can be reduced. In addition, since the electronic expansion valves are driven and controlled one by one, the power capacity can be reduced.

本発明に係る空気調和装置の実施の形態の冷凍サイクルを示す配管系統図である。It is a piping system figure showing the refrigerating cycle of an embodiment of an air harmony device concerning the present invention. 本発明に係る空気調和装置の室外ユニットの電気系統を示すブロック図である。It is a block diagram which shows the electric system of the outdoor unit of the air conditioning apparatus which concerns on this invention. 制御部が内蔵するマイクロコンピュータ及び膨張弁モータの接続構成を示すブロック図である。It is a block diagram which shows the connection structure of the microcomputer and expansion valve motor which a control part incorporates. 本発明に係る空気調和装置の電子膨張弁を駆動制御する動作例を示すタイミングチャートである。It is a timing chart which shows the operation example which drives and controls the electronic expansion valve of the air conditioning apparatus which concerns on this invention. 従来の空気調和装置の電子膨張弁を駆動制御する動作例を示すタイミングチャートである。It is a timing chart which shows the operation example which drives and controls the electronic expansion valve of the conventional air conditioning apparatus.

符号の説明Explanation of symbols

1,2 電子膨張弁
1a、2a 膨張弁モータ(STM1,STM2)
4,5 蒸発器
6 圧縮機
7 コンデンサ(凝縮器)
13 制御部
17,18 サーミスタ
20 マイクロコンピュータ
22,23 PNP型トランジスタ
25 端子板
A1,B1,C1,D1,A2,B2,C2,D2 巻線
1, 2 Electronic expansion valve 1a, 2a Expansion valve motor (STM1, STM2)
4,5 Evaporator 6 Compressor 7 Condenser
13 Control Unit 17, 18 Thermistor 20 Microcomputer 22, 23 PNP Transistor 25 Terminal Board A1, B1, C1, D1, A2, B2, C2, D2 Winding

Claims (2)

複数の熱交換器への冷媒の供給量をそれぞれ調整する複数の電子膨張弁と、該電子膨脹弁をそれぞれ駆動する複数のモータと、該モータに駆動信号を与える為の駆動信号端子群を備える空気調和装置において、
前記複数のモータの内の1台を、駆動可能状態に選択的に切替える切替手段と、該切替手段が切替えたモータのみに駆動信号を出力して駆動制御する駆動制御手段とを備え、前記駆動信号端子群を前記複数のモータが共用するように構成してあることを特徴とする空気調和装置。
A plurality of electronic expansion valves that respectively adjust the amount of refrigerant supplied to the plurality of heat exchangers, a plurality of motors that respectively drive the electronic expansion valves, and a drive signal terminal group that provides drive signals to the motors In the air conditioner,
A switching means for selectively switching one of the plurality of motors to a drivable state; and a drive control means for controlling the drive by outputting a drive signal only to the motor switched by the switching means. An air conditioner configured to share a signal terminal group with the plurality of motors.
前記駆動制御手段は、前記切替手段が切替える直前の所定期間、駆動信号の出力を停止するように構成してある請求項1記載の空気調和装置。   The air conditioner according to claim 1, wherein the drive control means is configured to stop outputting the drive signal for a predetermined period immediately before the switching means switches.
JP2006047328A 2006-02-23 2006-02-23 Air conditioning device Pending JP2007225197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006047328A JP2007225197A (en) 2006-02-23 2006-02-23 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006047328A JP2007225197A (en) 2006-02-23 2006-02-23 Air conditioning device

Publications (1)

Publication Number Publication Date
JP2007225197A true JP2007225197A (en) 2007-09-06

Family

ID=38547174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047328A Pending JP2007225197A (en) 2006-02-23 2006-02-23 Air conditioning device

Country Status (1)

Country Link
JP (1) JP2007225197A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130022465A (en) * 2011-08-24 2013-03-07 위니아만도 주식회사 Apparatus and method for operating stepping valve in refrigerator
JP2014126335A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Air conditioner indoor unit
CN107738598A (en) * 2017-11-03 2018-02-27 上海胜华波汽车电器有限公司 Electric seat of car brushless electric machine integrated control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145260U (en) * 1985-02-28 1986-09-08
JPH07231698A (en) * 1994-02-17 1995-08-29 Toyota Motor Corp Motor controller
JP2000047328A (en) * 1998-07-27 2000-02-18 Canon Inc Image projection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145260U (en) * 1985-02-28 1986-09-08
JPH07231698A (en) * 1994-02-17 1995-08-29 Toyota Motor Corp Motor controller
JP2000047328A (en) * 1998-07-27 2000-02-18 Canon Inc Image projection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130022465A (en) * 2011-08-24 2013-03-07 위니아만도 주식회사 Apparatus and method for operating stepping valve in refrigerator
JP2014126335A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Air conditioner indoor unit
CN107738598A (en) * 2017-11-03 2018-02-27 上海胜华波汽车电器有限公司 Electric seat of car brushless electric machine integrated control system

Similar Documents

Publication Publication Date Title
WO2014139201A1 (en) Automatic torque correction method of ecm motor used for replacing psc motor
US11368118B2 (en) Motor driving device and air conditioner
US11509251B2 (en) Motor driving device and air conditioner
JP6084297B2 (en) Air conditioner
JP2011067079A (en) Air conditioner
JP2007225197A (en) Air conditioning device
JP7407836B2 (en) Heating, ventilation, air conditioning and/or refrigeration systems with compressor motor cooling systems
CN100545530C (en) The fan electromotor control device of air conditioner and method thereof
CN102022861B (en) Hybrid type variable frequency air conditioning system with two working modes and control method thereof
JPH07174366A (en) Outdoor machine power supplying mechanism for engine heat pump
JP2009041829A (en) Air conditioner
JP6253731B2 (en) Air conditioner
JP2003240363A (en) Method for controlling multi-chamber type air conditioner
JPS59189243A (en) Defrosting control device of air conditioner
CN115247863B (en) Air conditioner and control method thereof
JP2006250449A (en) Air conditioner
US20210270511A1 (en) Motor driving apparatus and air conditioner including the same
JPH0639981B2 (en) Air conditioner
JPH09145175A (en) Air conditioner
WO2020053986A1 (en) Air conditioning system
JPS5815791Y2 (en) Kuukichiyouwaki
JPS5829792Y2 (en) Multi-room air conditioner
CN112648693A (en) Air conditioner and multi-channel PFC circuit control method
JPS61175453A (en) Heat engine heat-pump type air conditioner
JPH03179186A (en) Capacity controller for air-conditioning motor compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420