JP2007225077A - Sliding bearing and its manufacturing method - Google Patents

Sliding bearing and its manufacturing method Download PDF

Info

Publication number
JP2007225077A
JP2007225077A JP2006049575A JP2006049575A JP2007225077A JP 2007225077 A JP2007225077 A JP 2007225077A JP 2006049575 A JP2006049575 A JP 2006049575A JP 2006049575 A JP2006049575 A JP 2006049575A JP 2007225077 A JP2007225077 A JP 2007225077A
Authority
JP
Japan
Prior art keywords
sliding
bearing
sintered alloy
bush
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006049575A
Other languages
Japanese (ja)
Other versions
JP2007225077A5 (en
JP4619302B2 (en
Inventor
Hideki Akita
秀樹 秋田
Osamu Itsukida
修 五木田
Yoshiaki Sekiguchi
良明 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2006049575A priority Critical patent/JP4619302B2/en
Publication of JP2007225077A publication Critical patent/JP2007225077A/en
Publication of JP2007225077A5 publication Critical patent/JP2007225077A5/ja
Application granted granted Critical
Publication of JP4619302B2 publication Critical patent/JP4619302B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding bearing appropriate for a use environment wherein the sliding bearing is slid at a low speed and receives face pressure varying from low contact pressure to high contact pressure and its manufacturing method. <P>SOLUTION: The sliding bearing 16 is formed by sintering metal powders including copper and iron wherein a sintered alloy layer 30 with a plurality of pores 31 which communicates with each other has a surface regarded as a sliding surface 34 for sliding relative to a shaft 22. The sliding surface 34 is treated with a surface modification by carburizing, nitriding or sulphonitriding treatment method. A recessed part 35 with molybdenum disulfide dispersed and permeated is formed by colliding molybdenum disulfide after the surface modification treatment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は軸を支持するすべり軸受及びその製造方法に関する。   The present invention relates to a plain bearing that supports a shaft and a method of manufacturing the same.

建設機械、土木機械、搬送機械、扛重機械、工作機械、自動車等に代表される各種機械には、すべり軸受装置が用いられる場合がある。すべり軸受装置が使用される環境は様々であり、個々の使用環境に応じた特性を有するものが求められている。例えば、油圧ショベルの掘削装置におけるブーム、アーム、バケットの各連結部分において用いられる軸受装置は、回転機械の駆動軸のように軸が比較的高速で回軸する箇所に使用されるようなものに比べて低速で摺動されるとともに高い面圧がかかる環境下で使用される。   In various machines represented by construction machines, civil engineering machines, conveyance machines, heavy machinery, machine tools, automobiles, etc., plain bearing devices may be used. There are various environments in which the sliding bearing device is used, and there is a demand for a device having characteristics corresponding to each usage environment. For example, the bearing device used in the boom, arm, and bucket connecting portion in the excavator of a hydraulic excavator can be used at a place where the shaft rotates at a relatively high speed, such as a drive shaft of a rotating machine. Compared to sliding at low speed, it is used in an environment where high surface pressure is applied.

このような使用環境に対応するすべり軸受装置の1つとして、鉄系焼結合金によって多孔質の軸受を形成し、これに潤滑油を含浸させることにより、低速・高面圧の環境下でも長期(例えば数年間以上)に渡って無給脂での運用を可能にしたものがある(特許文献1等参照)。   As one of the plain bearing devices corresponding to such usage environments, a porous bearing is formed of an iron-based sintered alloy, and this is impregnated with a lubricating oil, so that it can be used for a long time even in a low speed / high surface pressure environment. There is one that can be operated without grease (for example, several years or more) (see Patent Document 1).

特許第2832800号公報Japanese Patent No. 2832800

しかし、この種のすべり軸受装置におけるすべり軸受は、摺動面の微視的な形状が軸の表面形状となじむまでに時間を要したり、軸受への負荷が比較的低面圧な場合(例えば、油圧ショベルにおいて掘削作業を伴わない動作時等)においてフレッティング等の微少摺動が発生すると、これに起因した異常音が発生したりする等、不具合を生じる場合がある。従って、比較的低速度で摺動されながら、摺動面(すべり面)にかかる面圧が低面圧から高面圧にも変動するような環境で使用するには軸受の特性を更に改善する必要がある。   However, in this type of plain bearing device, the plain bearing requires time until the microscopic shape of the sliding surface becomes compatible with the surface shape of the shaft, or when the load on the bearing is relatively low ( For example, when a slight slide such as fretting occurs in a hydraulic excavator during an operation that does not involve excavation work, a malfunction may occur such as an abnormal noise due to this. Therefore, the bearing characteristics are further improved for use in an environment where the surface pressure applied to the sliding surface (sliding surface) varies from a low surface pressure to a high surface pressure while sliding at a relatively low speed. There is a need.

本発明の目的は、低速で摺動され、かつ、低面圧から高面圧まで変動する面圧を受ける使用環境に適したすべり軸受及びその製造方法を提供することにある。   An object of the present invention is to provide a plain bearing suitable for an operating environment that slides at a low speed and receives a surface pressure that varies from a low surface pressure to a high surface pressure, and a method for manufacturing the same.

(1)本発明は、上記目的を達成するために、銅及び鉄を含む金属粉を焼結し、連通気孔が複数形成された焼結合金層の表面を軸と相対摺動する摺動面とするすべり軸受であって、前記摺動面は、浸炭、窒化、又は浸硫窒化処理法のいずれかによって表面改質処理が施されており、更にこの表面改質処理の後に第1固体潤滑剤の粒子を衝突させることによって形成され前記第1固体潤滑剤が拡散浸透した凹部を有しているものとする。   (1) In order to achieve the above object, the present invention sinters metal powder containing copper and iron and slides the surface of the sintered alloy layer formed with a plurality of continuous air holes relative to the shaft. The sliding surface is subjected to surface modification treatment by any of carburizing, nitriding, or nitrosulphurizing treatment, and after the surface modification treatment, the first solid lubrication is performed. It is assumed that the first solid lubricant has a recess formed by diffusing and penetrating the agent particles.

(2)上記(1)は、好ましくは、前記焼結合金層は前記連通気孔の内部に潤滑剤を含浸しているものとする。   (2) In the above (1), preferably, the sintered alloy layer is impregnated with a lubricant inside the continuous air hole.

(3)上記(2)は、好ましくは、前記潤滑剤は第2固体潤滑剤の粒子を含有しているものとする。   (3) In the above (2), preferably, the lubricant contains particles of a second solid lubricant.

(4)上記(3)は、好ましくは、前記第2固体潤滑剤は前記潤滑剤に2〜10wt%含有されているものとする。   (4) In the above (3), preferably, the second solid lubricant is contained in the lubricant in an amount of 2 to 10 wt%.

(5)上記(2)から(4)いずれかは、好ましくは、前記潤滑剤の粘度は260〜950cStであるものとする。   (5) In any of the above (2) to (4), preferably, the lubricant has a viscosity of 260 to 950 cSt.

(6)上記(1)から(5)いずれかは、好ましくは、前記連通気孔の気孔率は5〜30%であるものとする。   (6) In any one of the above (1) to (5), preferably, the porosity of the continuous air hole is 5 to 30%.

本発明によれば、低速・低面圧の使用環境における軸受のトライボロジ特性を改善することができるので、低速で摺動され、かつ、低面圧から高面圧まで変動する面圧を受ける使用環境に適したすべり軸受を提供することができる。   According to the present invention, it is possible to improve the tribological characteristics of the bearing in a low-speed / low-surface pressure use environment, so that the bearing is slid at a low speed and receives a surface pressure varying from a low surface pressure to a high surface pressure. A plain bearing suitable for the environment can be provided.

以下、本発明の実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明のすべり軸受を備えた機械の一例である油圧ショベルの側面図である。
図1に示す油圧ショベルは、下部走行体1と、この下部走行体1上に旋回可能に取り付けられた上部旋回体2と、この上部旋回体2上の一方側(図1中左側)に設けられた運転室3と、上部旋回体2上の他方側(図1中右側)に設けられたエンジン室4と、上部旋回体2上の運転室3側に設けられたフロント作業機5とを備えている。
FIG. 1 is a side view of a hydraulic excavator which is an example of a machine provided with the slide bearing of the present invention.
The hydraulic excavator shown in FIG. 1 is provided on a lower traveling body 1, an upper revolving body 2 that is turnably mounted on the lower traveling body 1, and one side (left side in FIG. 1) on the upper revolving body 2. The engine room 4 provided on the other side (right side in FIG. 1) on the upper swing body 2 and the front work machine 5 provided on the driver room 3 side on the upper swing body 2 I have.

フロント作業機5は、上部旋回体2に俯仰動可能に設けられたブーム6と、このブーム6を俯仰動させるためのブーム用油圧シリンダ7と、ブーム6の先端に回動可能に設けられたアーム8と、このアーム8を回動させるためのアーム用油圧シリンダ9と、アーム8の先端に回動可能に設けられたバケット10と、このバケット10を回動させるためのバケット用油圧シリンダ11とを備えている。   The front work machine 5 is provided on the upper swing body 2 so as to be able to move up and down, a boom hydraulic cylinder 7 for moving the boom 6 up and down, and rotatably provided at the tip of the boom 6. An arm 8, an arm hydraulic cylinder 9 for rotating the arm 8, a bucket 10 rotatably provided at the tip of the arm 8, and a bucket hydraulic cylinder 11 for rotating the bucket 10 And.

ブーム6、アーム8、バケット10、及び各油圧シリンダ7,9,11は、すべり軸受装置12によって相互に回動可能に連結されている。フロント作業機5に用いられる各すべり軸受装置は設置箇所に応じて大きさや形状等が異なるが、基本的な構成はほぼ同様となっている。   The boom 6, the arm 8, the bucket 10, and the hydraulic cylinders 7, 9, and 11 are connected to each other by a sliding bearing device 12 so as to be rotatable. Although each slide bearing device used for the front work machine 5 has a different size and shape depending on the installation location, the basic configuration is substantially the same.

図2は本発明のすべり軸受を備えたすべり軸受装置の一構成例の断面図である。
図2において、すべり軸受装置12は、ボス15と、このボス15の内部に嵌着された円筒状のブッシュ(すべり軸受。以下適宜、単に軸受とも呼ぶ。)16と、ブッシュ16の両側面に配設された遮油部材17と、この遮油部材17をブッシュ16に向かって当接させるようにボス15内のブッシュ16の両側に圧入されたダストシール18と、ボス15の両側に配置されたブラケット19と、このブラケット19とボス15との隙間にそれぞれ設けられたシム20と、ブラケット19とボス15との隙間の外周側にそれぞれ装着されたO−リング21と、ブラケット19及びブッシュ16を貫通して挿入され、ブッシュ16と摺動可能に設けられている軸22と、回転係止ボルト23とを備えている。
FIG. 2 is a cross-sectional view of a configuration example of a slide bearing device including the slide bearing of the present invention.
In FIG. 2, the sliding bearing device 12 includes a boss 15, a cylindrical bush (sliding bearing; also referred to as simply a bearing hereinafter) 16 fitted in the boss 15, and both sides of the bush 16. The oil shielding member 17 disposed, the dust seal 18 press-fitted on both sides of the bush 16 in the boss 15 so as to abut the oil shielding member 17 toward the bush 16, and disposed on both sides of the boss 15. A bracket 19, a shim 20 provided in the gap between the bracket 19 and the boss 15, an O-ring 21 mounted on the outer peripheral side of the gap between the bracket 19 and the boss 15, the bracket 19 and the bush 16 are provided. A shaft 22 inserted through the bush 16 and slidably provided with the bush 16 and a rotation locking bolt 23 are provided.

軸22は鉄鋼材から成っており、まず、浸炭、窒化及び高周波焼入れをした後、その外表面を化成(例えば、りん酸亜鉛、りん酸マンガンなど)、拡散メッキをはじめとする各種メッキ処理、または浸硫処理法などにより表面改質処理を施すことが好ましい。回転係止ボルト23は、軸22及びブラケット19を貫通して設けられており、軸22とブラケット19とを回転不能にしている。また、ボス15及びブッシュ16は例えば焼ばめ又は冷却ばめ等の収縮ばめによって相互に嵌着固定されている。   The shaft 22 is made of a steel material. First, after carburizing, nitriding and induction hardening, the outer surface is formed (for example, zinc phosphate, manganese phosphate, etc.), various plating processes including diffusion plating, Alternatively, surface modification treatment is preferably performed by a sulfuration treatment method or the like. The rotation locking bolt 23 is provided so as to penetrate the shaft 22 and the bracket 19, and makes the shaft 22 and the bracket 19 unrotatable. Further, the boss 15 and the bush 16 are fitted and fixed to each other by a shrink fit such as shrink fit or cooling fit.

図3は図2で示したすべり軸受装置における本発明の軸受の軸との界面付近を拡大・模式化して示す部分断面図である。
図3において、ブッシュ16は、軸22との界面側(ブッシュ16の内周側)に位置する焼結合金層30と、その径方向外側に位置する裏金層40とを有している。これらは互いに接合されており二層構造を成している。
FIG. 3 is a partial cross-sectional view showing an enlarged and schematic view of the vicinity of the interface with the shaft of the bearing of the present invention in the plain bearing device shown in FIG.
In FIG. 3, the bush 16 has a sintered alloy layer 30 located on the interface side with the shaft 22 (inner circumferential side of the bush 16) and a backing metal layer 40 located on the radially outer side. These are joined together to form a two-layer structure.

焼結合金層30は、10重量%の銅粉、鉄粉、及びその他の微量元素を含む金属粉を焼結することによって形成した多孔質複合焼結合金から成っており、軸22と相対摺動する摺動面である摺動面34と、摺動面34を含むように焼結合金層30の内周側(軸22との界面側)に形成された固体潤滑剤層33と、互いに連通した複数の気孔(連通気孔)31とを有している。なお、焼結合金層30は銅及び鉄を必須元素として含むものであり、これに含まれる銅の量は10重量%のみに限られず3〜98重量%の範囲であれば良い。   The sintered alloy layer 30 is made of a porous composite sintered alloy formed by sintering metal powder containing 10% by weight of copper powder, iron powder, and other trace elements. A sliding surface 34 that is a moving sliding surface, and a solid lubricant layer 33 that is formed on the inner peripheral side of the sintered alloy layer 30 (the interface side with the shaft 22) so as to include the sliding surface 34. A plurality of pores (communication vent holes) 31 communicated with each other are provided. The sintered alloy layer 30 contains copper and iron as essential elements, and the amount of copper contained in the sintered alloy layer 30 is not limited to only 10% by weight, but may be in the range of 3 to 98% by weight.

固体潤滑剤層33は、摺動面34に二硫化モリブデン粒子(MoS)を投射材(ショット)として衝突させることによって焼結合金に二硫化モリブデンを拡散浸透させながら、摺動面34に自己潤滑特性を付与した結果、摺動面34側に事後的に形成したものであり、二硫化モリブデン粒子が衝突する作用によって形成された凹部35を摺動面34上に有している。なお、図3中では、簡略して摺動面34を略平面に表現しているが、摺動面34上には無数の凹部35が形成されているものとする。また、摺動面34には、固体潤滑剤層33を形成する前の段階において、浸炭、窒化又は浸硫処理法などにより表面改質処理が施されており、これにより形成される硬化層(図示せず)がブッシュ16の機械的強度を向上させている。その硬化層の厚さの目安としては1〜8mm程度、好ましくは2mm程度が良く、表面改質処理後の硬化層中の鉄合金相には、例えば、セメンタイト、マルテンサイト、フェライト、又はパーライト等が含まれている。なお、この固体潤滑剤層33の形成方法や作用については、本実施の形態の軸受の製造方法を説明する箇所で別途詳述する。 The solid lubricant layer 33 self-impregnates the sliding surface 34 while allowing molybdenum disulfide to diffuse and penetrate into the sintered alloy by causing the molybdenum disulfide particles (MoS 2 ) to collide with the sliding surface 34 as a projection material (shot). As a result of imparting the lubrication characteristics, it is formed afterwards on the sliding surface 34 side, and has a recess 35 formed on the sliding surface 34 by the action of collision of molybdenum disulfide particles. In FIG. 3, the sliding surface 34 is simply expressed as a substantially flat surface, but it is assumed that innumerable concave portions 35 are formed on the sliding surface 34. Further, the sliding surface 34 is subjected to a surface modification treatment by a carburizing, nitriding, or sulfurating treatment method before the solid lubricant layer 33 is formed, and a hardened layer ( (Not shown) improves the mechanical strength of the bush 16. As a standard of the thickness of the hardened layer, about 1 to 8 mm, preferably about 2 mm is good. Examples of the iron alloy phase in the hardened layer after the surface modification treatment include cementite, martensite, ferrite, pearlite, and the like. It is included. The formation method and operation of the solid lubricant layer 33 will be separately described in detail in the section describing the bearing manufacturing method of the present embodiment.

気孔31は、内部に潤滑油32が含浸されているとともに、摺動面34上の凹部35と連通している。このため、潤滑油32は、気孔31内を流通することによって凹部35に表出し、摺動面34上に油溜まりを形成するようになっている。本実施の形態では気孔31に含浸された潤滑油32は460cStの粘度を有している。なお、この潤滑油の粘度は260〜950cStの範囲内であることが好ましい。これは、粘度が260cSt未満では潤滑油の流動性が高すぎるため、潤滑油を気孔31内に留めさせておくことが困難になり、使用中に“かじり現象”などが発生する恐れがあるからであり、他方、粘度が950cStを超えると潤滑油の流動性が低下するために、摩擦熱によって軸22との摺動面34に滲み出た潤滑油が再び気孔31内に戻るための毛細管現象が起こりにくくなり、長期的に安定した摺動特性を維持できなくなる恐れがあるからである。また、この潤滑油としては、鉱物油あるいは合成油等の一般に市販されている組成の潤滑油全般や、パラフィンをベースとしたワックス等が利用可能であるが、粘度が上記範囲内のものであればその組成自体は特に限定されるものではない。ただし、グリースは繊維を含有しているために気孔31に含浸させることができないので除外される。   The pores 31 are impregnated with lubricating oil 32 and communicate with the recesses 35 on the sliding surface 34. For this reason, the lubricating oil 32 is exposed to the recess 35 by flowing through the pores 31 and forms an oil reservoir on the sliding surface 34. In the present embodiment, the lubricating oil 32 impregnated in the pores 31 has a viscosity of 460 cSt. In addition, it is preferable that the viscosity of this lubricating oil exists in the range of 260-950 cSt. This is because if the viscosity is less than 260 cSt, the fluidity of the lubricating oil is too high, so that it is difficult to keep the lubricating oil in the pores 31 and a “galling phenomenon” may occur during use. On the other hand, when the viscosity exceeds 950 cSt, the fluidity of the lubricating oil decreases, so that the lubricating oil that has oozed into the sliding surface 34 with the shaft 22 due to frictional heat returns to the pores 31 again. This is because there is a possibility that it will become difficult to maintain a stable sliding characteristic in the long term. In addition, as the lubricating oil, general lubricating oils having a commercially available composition such as mineral oil or synthetic oil, and waxes based on paraffin can be used. The composition itself is not particularly limited. However, grease is excluded because it contains fibers and cannot be impregnated into the pores 31.

また、本実施の形態では潤滑油32に、粒径0.5〜50μm程度の自己潤滑特性を有する固体潤滑剤粒子(例えば、黒鉛、MoS、二硫化タングステン(WS)、硫化マンガン(MnS)、フッ化カルシウム(CaF)等)を2〜10重量%含有させてもよい。このような固体潤滑剤粒子を潤滑油32に含有させると、固体潤滑剤粒子自身が滑ることで更なる潤滑特性を得ることができる。 In the present embodiment, the lubricant 32 has solid lubricant particles (eg, graphite, MoS 2 , tungsten disulfide (WS 2 ), manganese sulfide (MnS) having self-lubricating properties with a particle size of about 0.5 to 50 μm. ), Calcium fluoride (CaF 2 ), etc.) may be contained in an amount of 2 to 10% by weight. When such solid lubricant particles are contained in the lubricating oil 32, further lubrication characteristics can be obtained by sliding the solid lubricant particles themselves.

またさらに、気孔31の気孔率は5〜30%程度であることが好ましい。これは、気孔率が5%未満である場合には潤滑油の含浸量が不充分となり、無給脂軸受として充分に機能しない可能性があるためである。一方、気孔率が30%を超える場合には、ブッシュ16自身の機械的強度が低下するためである。   Furthermore, the porosity of the pores 31 is preferably about 5 to 30%. This is because when the porosity is less than 5%, the amount of impregnation of the lubricating oil becomes insufficient, and it may not function sufficiently as a non-greasy bearing. On the other hand, when the porosity exceeds 30%, the mechanical strength of the bush 16 itself is lowered.

裏金層40は鉄系材料から成っている。この裏金層40も、焼結合金層30の摺動面34同様に、浸炭、窒化又は浸硫処理法などにより表面改質が施されており、ブッシュ16の機械的強度を更に向上させている。なお、この硬化層の厚さの目安は1〜3mm程度、好ましくは2mm程度が良い。このように表面改質処理を施した裏金層40は、ブッシュ16の強度を補強し、鉄系焼結合金のみから成る軸受において散見された軸受の破壊防止に寄与する。また、ブッシュ16を裏金層40と焼結合金層30との二層構造とすることにより、焼結合金層のみで構成した場合よりも、軸受全体の弾性率は大きくなる。これによりブッシュ16の弾性変形量を低減させることができ、ブッシュ16の耐フレッティング特性が向上して異音の発生を抑制することができる。   The back metal layer 40 is made of an iron-based material. The back metal layer 40 is also surface-modified by a carburizing, nitriding, or sulfurating treatment method, like the sliding surface 34 of the sintered alloy layer 30, and further improves the mechanical strength of the bush 16. . In addition, the standard of the thickness of this hardened layer is about 1-3 mm, Preferably about 2 mm is good. The back metal layer 40 subjected to the surface modification treatment as described above reinforces the strength of the bushing 16 and contributes to prevention of bearing breakage that is frequently observed in bearings made of only an iron-based sintered alloy. Further, by forming the bush 16 with a two-layer structure of the back metal layer 40 and the sintered alloy layer 30, the elastic modulus of the entire bearing becomes larger than when the bush 16 is constituted only by the sintered alloy layer. Thereby, the amount of elastic deformation of the bush 16 can be reduced, the fretting resistance characteristic of the bush 16 can be improved, and the occurrence of abnormal noise can be suppressed.

次に、上記のように構成される本実施の形態の軸受の製造方法について説明する。   Next, the manufacturing method of the bearing of the present embodiment configured as described above will be described.

まず、鉄系材料から成る裏金を用意する。この裏金の材料には例えば浸炭鋼であるSCM材などを用いることが好ましい。また、この裏金はブッシュ16の外周側の層である裏金層40となるものであり、これを円筒状に巻くとブッシュの外形となるように成形されている。次に、このような裏金の上面に、主に銅粉と鉄粉から成り、これらが均一に混合された金属粉を散布して、これを裏金と同様の板状に成形する。ここで用いる粉末中の銅は少なくとも3重量%以上とし、好ましくは10重量%以上とすると良い。   First, a backing metal made of an iron-based material is prepared. For example, an SCM material that is carburized steel is preferably used as the material of the back metal. Further, this backing metal becomes the backing metal layer 40 which is a layer on the outer peripheral side of the bush 16, and is formed so as to have an outer shape of the bush when wound in a cylindrical shape. Next, a metal powder mainly composed of copper powder and iron powder, which is uniformly mixed, is dispersed on the upper surface of such a back metal, and this is formed into a plate shape similar to the back metal. The copper in the powder used here is at least 3% by weight, preferably 10% by weight or more.

このように成形した粉末と裏金を還元炉などに入れ、約800度の雰囲気で上記の粉末を焼結させて、裏金上に多孔質複合焼結合金を生成する。これはブッシュ16の内周側の層である焼結合金層30となるものである。なお、この手順における焼結は1次焼結を指し、生成後の焼結合金の気孔率が5〜30%の範囲になるように積極的に気孔を残留させるように焼結させる。次いで、この多孔質複合焼結合金を裏金に拡散接合などによって接合させて、二層構造から成る板状の軸受材料を得る。そして、この二層構造に成形された軸受材料をプレス等により巻いて曲げ加工し、軸受として最適の形状である円筒状に加工することにより、ブッシュの概形を成形する。   The powder thus formed and the back metal are put into a reduction furnace or the like, and the above powder is sintered in an atmosphere of about 800 degrees to produce a porous composite sintered alloy on the back metal. This is the sintered alloy layer 30 that is the inner peripheral layer of the bush 16. Sintering in this procedure refers to primary sintering, and sintering is performed so that the pores remain positively so that the porosity of the sintered alloy after generation is in the range of 5 to 30%. Next, this porous composite sintered alloy is bonded to the back metal by diffusion bonding or the like to obtain a plate-shaped bearing material having a two-layer structure. Then, the bearing material formed into the two-layer structure is wound by a press or the like and bent, and is processed into a cylindrical shape which is an optimum shape as a bearing, thereby forming an approximate shape of the bush.

次に、このブッシュに対して浸炭処理法を施し表面改質を行う。この処理は、焼結合金層30及び裏金層40の両者を対象とするものであり、これによりそれぞれの表面硬度が向上し、焼結合金層30における軸22との摺動面34は耐摩耗化され、裏金層40は強度が補強される。なお、この表面改質処理は浸炭処理法に限られず、この他に例えば、窒化、浸硫窒化処理法などの表面硬度を向上させる処理であれば良い。また、この処理の後、必要であれば機械加工やプレスなどによって寸法精度を上げても良い。   Next, carburizing treatment is applied to the bush to modify the surface. This treatment is intended for both the sintered alloy layer 30 and the back metal layer 40, whereby the respective surface hardness is improved, and the sliding surface 34 of the sintered alloy layer 30 with the shaft 22 is wear resistant. Thus, the strength of the back metal layer 40 is reinforced. The surface modification treatment is not limited to the carburizing treatment method, but may be any treatment that improves the surface hardness, such as nitriding or nitronitriding treatment. Further, after this treatment, if necessary, the dimensional accuracy may be increased by machining or pressing.

この表面改質処理に続いて、二硫化モリブデン粒子を摺動面34に衝突させることによって焼結合金層30の軸22との界面側に固体潤滑剤層33を形成する。二硫化モリブデン粒子を摺動面34に衝突させる際には、ショットピーニング技術を応用した打ち込み方法を用いる。その打ち込み方法とは、一般的なショットピーニングで用いる投射材(ショット)と比較して微細な粒子(例えば、粒径50μm程度の二硫化モリブデン粒子)を所定圧力(例えば、0.3MPa以上)の圧縮空気とともなって高速度(例えば、噴射速度80m/秒以上)で打ち込むものである(以下、微粒子ショットピーニングと称する)。この方法によって微粒子を被処理材に打ち込んで衝突させると、一般的なショットピーニングによって被処理材表面に形成される凹部と比較して細かい凹部が形成されるとともに、衝突の際に発生する熱によって被処理材表面の微細化や加工硬化などの表面改質処理が被処理材に施される。   Following this surface modification treatment, the solid lubricant layer 33 is formed on the interface side of the sintered alloy layer 30 with the shaft 22 by causing the molybdenum disulfide particles to collide with the sliding surface 34. When the molybdenum disulfide particles collide with the sliding surface 34, a driving method using a shot peening technique is used. The implantation method means that fine particles (for example, molybdenum disulfide particles having a particle diameter of about 50 μm) are applied at a predetermined pressure (for example, 0.3 MPa or more) as compared with a projection material (shot) used in general shot peening. Along with the compressed air, it is driven at a high speed (for example, an injection speed of 80 m / second or more) (hereinafter referred to as fine particle shot peening). When fine particles are driven into the material to be treated by this method and collide with each other, fine concave portions are formed as compared with the concave portions formed on the surface of the material to be treated by general shot peening, and the heat generated at the time of the collision is used. Surface modification processing such as miniaturization of the surface of the material to be processed and work hardening is performed on the material to be processed.

このような微粒子ショットピーニングを用いて摺動面34に二硫化モリブデン粒子を衝突させると、上記のように摺動面34に微細な凹部35が形成され摺動面34の硬化処理が施されるとともに、更に、摺動面34との衝突の作用によって二硫化モリブデンが摺動面34から拡散浸透し、自己潤滑特性を有する固体潤滑材層33が軸22との界面側に形成される。   When molybdenum disulfide particles are caused to collide with the sliding surface 34 using such fine particle shot peening, fine concave portions 35 are formed on the sliding surface 34 as described above, and the sliding surface 34 is cured. At the same time, molybdenum disulfide diffuses and permeates from the sliding surface 34 due to the collision with the sliding surface 34, and a solid lubricant layer 33 having self-lubricating properties is formed on the interface side with the shaft 22.

なお、上記においては二硫化モリブデン粒子を投射微粒子として衝突させる場合について説明したが、この他にも例えば、黒鉛、WS、MnS、CaF等の固体潤滑剤や、Mo、W等の金属粒子を用いても良い。また、これらのような自己潤滑特性を有する微粒子のみに限らず、一般的なショットピーニングの投射材として用いられる、スチール、硬質粒子、セラミック等の材料から成る微粒子を衝突させることによって、固体潤滑剤層を形成することなく摺動面34の表面改質処理をしても、固体潤滑剤のときと同様に微細な凹部を摺動面34上に形成することができるので、軸受装置の使用開始時における軸受の初期なじみ性を向上させることが可能である。 In the above description, the case where the molybdenum disulfide particles are collided as projection fine particles has been described. However, for example, solid lubricants such as graphite, WS 2 , MnS, and CaF 2 , and metal particles such as Mo and W are also used. May be used. In addition to fine particles having self-lubricating properties such as these, solid lubricants are made by colliding fine particles made of materials such as steel, hard particles, and ceramics, which are used as general shot peening projection materials. Even if the surface modification treatment of the sliding surface 34 is performed without forming a layer, the minute concave portions can be formed on the sliding surface 34 as in the case of the solid lubricant, so the use of the bearing device is started. It is possible to improve the initial conformability of the bearing at the time.

最後に、焼結合金層30内の気孔31に高粘度潤滑油32を含浸させて、最終形状のブッシュ16とする。この含浸処理は以下のように行う。まず、潤滑油を加熱して液状化させて低粘度化する。この液状化した潤滑油内にブッシュを浸漬し、真空雰囲気下で静置する。これにより、ブッシュの気孔31内の空気が気孔31外へ吸い出される一方で、液状化した潤滑油32がブッシュの気孔31内に吸引される。潤滑油32を吸引したブッシュ16を空気中に取り出して室温にまで放冷すると、液状化した潤滑油32はブッシュ16の気孔31内で再び元の高粘度潤滑油に戻り流動性を失う。これにより、高粘度潤滑油32をブッシュ16の気孔31内に留めておくことができる。なお、粘度に応じて加熱温度は変化するので高粘度潤滑油32の加熱温度は特に限定されず、潤滑油32が液状化するまで加熱すればよい。また、液状化した潤滑油32へのブッシュ16の浸漬時間および真空度も特に限定されない。これは、浸漬時間および真空度も、使用する潤滑油の粘度により左右されるからである。ここで重要なことは、ブッシュ16の気孔31が潤滑油32で飽和されるまで、ブッシュ16を液状化した潤滑油内に浸漬させておくことである。例えば、粘度が460cStの潤滑油を60〜80℃になるまで加熱し、2×10−2mmHgの真空下で、ブッシュをこの潤滑油に浸漬させる場合、約1時間でブッシュの気孔が潤滑油で飽和される。 Finally, the pores 31 in the sintered alloy layer 30 are impregnated with the high-viscosity lubricating oil 32 to obtain the final shape bush 16. This impregnation treatment is performed as follows. First, the lubricating oil is heated and liquefied to lower the viscosity. The bush is immersed in the liquefied lubricating oil and left to stand in a vacuum atmosphere. As a result, the air in the air holes 31 of the bush is sucked out of the air holes 31, while the liquefied lubricating oil 32 is sucked into the air holes 31 of the bush. When the bush 16 that has sucked the lubricating oil 32 is taken out into the air and allowed to cool to room temperature, the liquefied lubricating oil 32 returns to the original high-viscosity lubricating oil in the pores 31 of the bush 16 and loses fluidity. Thereby, the high-viscosity lubricating oil 32 can be retained in the pores 31 of the bush 16. In addition, since heating temperature changes according to a viscosity, the heating temperature of the high viscosity lubricating oil 32 is not specifically limited, What is necessary is just to heat until the lubricating oil 32 liquefies. Further, the immersion time and the degree of vacuum of the bush 16 in the liquefied lubricating oil 32 are not particularly limited. This is because the immersion time and the degree of vacuum also depend on the viscosity of the lubricating oil used. What is important here is that the bush 16 is immersed in the liquefied lubricating oil until the pores 31 of the bush 16 are saturated with the lubricating oil 32. For example, when a lubricating oil having a viscosity of 460 cSt is heated to 60 to 80 ° C. and the bush is immersed in this lubricating oil under a vacuum of 2 × 10 −2 mmHg, the pores of the bush will be lubricating in about 1 hour. Saturated with

このようにして気孔31内に含浸された潤滑油32は流動性が極めて低いので、ブッシュ16と軸22が相対的な摺動を繰り返しても流失することが殆どない。その結果、油膜は極めて長期(例えば数年)に渡って安定的に供給され続ける。このような微視的な“油だまり”(油膜)の存在は、駆動する軸22とブッシュ16との間に発生するいわゆる“かじり現象”が両者間のミクロな金属接触によって発生することを防止する。   Since the lubricating oil 32 impregnated in the pores 31 in this manner has extremely low fluidity, it hardly flows out even if the bush 16 and the shaft 22 repeat relative sliding. As a result, the oil film continues to be supplied stably over an extremely long period (for example, several years). The presence of such a microscopic “oil sump” (oil film) prevents the so-called “galling phenomenon” occurring between the driving shaft 22 and the bushing 16 from being caused by micro metal contact between the two. To do.

次に、Ring On Ring型試験機を用いて本実施の形態に係るすべり軸受の耐摩耗特性を評価した。本試験は、作動油環境において、相手材を回転数1200rpmで回転させ、試験片にステップ荷重を与えて荷重を段階的に増加させるものとし、荷重変化に伴う各試験片の摩擦係数の変化を測定するものである。また、相手材と試験片の接触面積は50mmである。試験には下記(a)〜(c)の3種類の材料から成る試験片を用いた。
(a)二硫化モリブデンの微粒子ショットピーニングを施した高粘度油含浸型裏金付き多孔質複合焼結合金(粘度460cStの含浸油,Fe−Cu−C系焼結合金を使用。以下、「本実施の形態に係る試験片」と称する。)
(b)高粘度油含浸型裏金付き多孔質複合焼結合金(粘度460cStの含浸油,Fe−Cu−C系焼結合金を使用。以下、「本実施の形態の母材の試験片」と称する。)
(c)二硫化モリブデンの微粒子ショットピーニングを施した炭素鋼(S45C)の高周波焼入れ材(以下、「S45C試験片」と称する。)
図4に上記試験の結果を示す。図4に示すように、本実施の形態に係る試験片(a)の摩擦係数は、負荷荷重100kgf(980N)付近で上昇して0.03前後を推移することはあるが、試験開始後から250kgf(2451N)付近までは概ね0.01程度を保持し、この後1000kgf(9806N)までは若干の上下変動はあるものの0.02前後を推移した。ここで、上記接触面積値(50mm)を利用して試験片(a)にかかる負荷荷重を面圧に換算すると、摩擦係数は、2〜3kgf/mm(負荷荷重:100〜150kgf)の低面圧域では概ね0.03前後を推移する一方、6kgf/mm(負荷荷重:300kgf)以上の高面圧域では概ね0.02前後を推移し、低面圧域から高面圧域にかけて概ね安定した変動を示した。また、図が示すように、本試験片(a)において、試験片の摺動面の微視的な形状が相手材の表面形状に適した形に摺動によって成形される、いわゆる“なじみ”に至るまでの特性(初期なじみ特性と称する。)は、他の2つの試験片(2),(3)の結果と比較すると著しく良好で、摺動初期における摩擦係数は高くても0.04程度まで上昇するのみであった。さらに、本試験で使用した試験機の特性上1000kgf以上の荷重はかけられなかったが、試験片(a)は更なる荷重を加えても耐久可能であるという知見を発明者らは得ており、本実施の形態に係る試験片(a)は優れた耐荷重特性も有することが判った。
Next, the wear resistance characteristics of the sliding bearing according to the present embodiment were evaluated using a Ring On Ring type testing machine. In this test, in a hydraulic oil environment, the mating material is rotated at 1200 rpm, a step load is applied to the test piece, and the load is increased step by step. Measure. The contact area between the mating member and the test piece is 50 mm 2 . In the test, test pieces made of the following three materials (a) to (c) were used.
(A) High-viscosity oil impregnated porous composite sintered alloy with molybdenum-sulfide fine particle shot peening (impregnated oil with a viscosity of 460 cSt, Fe—Cu—C based sintered alloy. This is referred to as a “test piece according to the form of
(B) Porous composite sintered alloy with high viscosity oil impregnated type back metal (using impregnated oil having a viscosity of 460 cSt, Fe—Cu—C based sintered alloy; hereinafter, “test piece of base material of this embodiment”) Called)
(C) Induction quenching material of carbon steel (S45C) subjected to fine particle shot peening of molybdenum disulfide (hereinafter referred to as “S45C test piece”)
FIG. 4 shows the results of the above test. As shown in FIG. 4, the friction coefficient of the test piece (a) according to the present embodiment may rise around the load of 100 kgf (980 N) and change around 0.03, but after the start of the test. The value of about 0.01 was maintained until about 250 kgf (2451N), and then remained around 0.02 up to 1000 kgf (9806N), although there was some vertical fluctuation. Here, when the load applied to the test piece (a) is converted into the surface pressure using the contact area value (50 mm 2 ), the friction coefficient is 2 to 3 kgf / mm 2 (load load: 100 to 150 kgf). In the low surface pressure range, it is generally around 0.03, while in the high surface pressure region of 6 kgf / mm 2 (load load: 300 kgf) or more, it is generally around 0.02, from the low surface pressure region to the high surface pressure region. In general, stable fluctuations were observed. As shown in the figure, in this test piece (a), the microscopic shape of the sliding surface of the test piece is formed by sliding into a shape suitable for the surface shape of the counterpart material, so-called “familiarity”. The characteristics up to (referred to as initial conformability characteristics) are significantly better than the results of the other two test pieces (2) and (3), and the friction coefficient at the initial stage of sliding is 0.04 at the highest. It only increased to the extent. Furthermore, although the load of 1000 kgf or more could not be applied due to the characteristics of the testing machine used in this test, the inventors have obtained the knowledge that the test piece (a) is durable even when a further load is applied. It was found that the test piece (a) according to the present embodiment also has excellent load bearing characteristics.

一方、微粒子ショットピーニングが未施工の本実施の形態の母材の試験片(b)と微粒子ショットピーニングが施工済のS45C試験片(c)の摩擦係数は、試験開始直後の摩擦係数の上昇の仕方に違いは見られるものの、負荷荷重100kgf(980N)付近までに一旦0.1程度まで上昇した後はほぼ類似した推移を示し、その後250kgf(2451N)付近からなじみの為に0.05付近まで減少し、400kgf(3922N)以降においては材料の耐荷重性能を超えたために急上昇が見られた。ここで、これらの結果についても本実施の形態の試験片(a)同様に面圧換算すると、摩擦係数は、2〜3kgf/mm(負荷荷重:100〜150kgf)の低面圧域では概ね0.1前後を推移しながら、6kgf/mm(負荷荷重:300kgf)以上の高面圧域では概ね0.05前後を推移し、いずれの領域においても試験片(a)と比較して高い値を推移した。中でも、低面圧域での摩擦係数は概ね0.1を示しており、試験片(a)と比較して著しく高い値を示した。また、先にも触れたが、図が示すように、試験片(b),(c)の初期なじみ特性は試験片(a)と比較して著しく劣っている。このように、母材の試験片(b)及びS45C試験片(c)は、荷重変化に伴う摩擦係数の変動が激しく、特に、低面圧域では試験片(a)と比較して高い摩擦係数を示しており、耐荷重特性も本実施の形態に係る試験片(a)の半分以下しか有していない。 On the other hand, the friction coefficient of the base material test piece (b) of the present embodiment in which fine particle shot peening has not been applied and the S45C test piece (c) in which fine particle shot peening has been applied is the increase in the friction coefficient immediately after the start of the test. Although there is a difference in the way, it shows an almost similar transition once it rises to about 0.1 by the load load of 100 kgf (980 N), and then increases from about 250 kgf (2451 N) to about 0.05 for familiarity. After 400 kgf (3922 N), the load resistance performance of the material was exceeded and a rapid increase was observed. Here, when these results are also converted to surface pressure in the same manner as the test piece (a) of the present embodiment, the friction coefficient is approximately in the low surface pressure region of 2 to 3 kgf / mm 2 (load load: 100 to 150 kgf). While changing around 0.1, the high surface pressure region of 6 kgf / mm 2 (load load: 300 kgf) or more changes around 0.05, which is higher than the test piece (a) in any region. The value changed. Among them, the coefficient of friction in the low surface pressure region is generally 0.1, which is significantly higher than that of the test piece (a). As mentioned earlier, as shown in the figure, the initial conformability characteristics of the test pieces (b) and (c) are significantly inferior to those of the test piece (a). As described above, the base material test piece (b) and the S45C test piece (c) have large fluctuations in the friction coefficient due to the load change, and particularly higher friction than the test piece (a) in the low surface pressure region. The coefficient is shown, and the load-bearing characteristics also have less than half of the test piece (a) according to the present embodiment.

以上のような試験結果から、発明者らは、摺動面に形成された二硫化モリブデンによる固体潤滑剤層と、その径方向外側に設けられた高粘度油含浸型焼結合金層との相乗効果によって、本実施の形態に係るすべり軸受が著しく良好なトライボロジ特性を有することを知見した。   From the above test results, the inventors have found that the solid lubricant layer made of molybdenum disulfide formed on the sliding surface and the high-viscosity oil-impregnated sintered alloy layer provided on the radially outer side are synergistic. It has been found that due to the effect, the plain bearing according to the present embodiment has remarkably good tribological characteristics.

次に、本実施の形態の効果について説明する。   Next, the effect of this embodiment will be described.

高粘度油含浸型裏金付き多孔質複合焼結合金を用いて、その摺動面に二硫化モリブデンによる微粒子ショットピーニングを施すことなく形成していた従来のすべり軸受では、使用開始時から、摺動面の微視的な形状が相手材たる軸の表面形状に適した形に形成される(いわゆる、なじみの状態)までに時間を要し、初期なじみ特性が芳しくないとともに、軸受への負荷が比較的低面圧な場合(例えば、油圧ショベルにおいて、バケットが空のままで掘削装置を微少動作させる等、実質的な掘削作業を伴わない動作時等)において、微少揺動等をすることによって軸と軸受がわずか数mm程度相対摺動するような現象(いわゆる、フレッティング現象)が発生すると、これに起因した異常音が発生する等の不具合が生じる場合があった。従って、比較的低速度で摺動されながら、摺動面(すべり面)にかかる面圧が低面圧(例えば、2〜3kgf/mm程度)から高面圧(例えば、6kgf/mm以上)にも変動するような環境で使用するには軸受の特性を更に改善する必要があった。 The conventional sliding bearing, which is made of a high-viscosity oil-impregnated porous composite sintered alloy with a backing metal, without subjecting the sliding surface to fine particle shot peening with molybdenum disulfide, is slid from the beginning of use. It takes time for the microscopic shape of the surface to be formed into a shape suitable for the surface shape of the shaft that is the counterpart material (so-called familiarity), the initial familiarity is not good, and the load on the bearing is not good. When the surface pressure is relatively low (for example, in a hydraulic excavator, when the excavator is slightly operated while the bucket is empty, for example, when the operation is not accompanied by substantial excavation work), When a phenomenon (so-called fretting phenomenon) occurs in which the shaft and the bearing slide relative to each other by only a few millimeters, there may be a problem such as an abnormal sound due to the phenomenon. Therefore, the surface pressure applied to the sliding surface (sliding surface) while being slid at a relatively low speed is changed from a low surface pressure (for example, about 2 to 3 kgf / mm 2 ) to a high surface pressure (for example, 6 kgf / mm 2 or more). However, it was necessary to further improve the characteristics of the bearing in order to use it in an environment that fluctuates.

このような技術に対して、本実施の形態は、高粘度油含浸型裏金付き多孔質複合焼結合金を母材として、これの軸との摺動面34に二硫化モリブデン粒子を微粒子ショットピーニングすることによって、二硫化モリブデンが拡散浸透して形成された固体潤滑剤層33と、衝突の作用によって形成された微細な凹部35とを摺動面34上に形成し、潤滑油32が気孔31から凹部35へ表出することによって自己潤滑特性を有する摺動面34に油溜まりを形成するように構成している。   In contrast to such a technique, this embodiment uses a high-viscosity oil-impregnated porous composite sintered alloy with a backing as a base material, and molybdenum disulfide particles are finely shot peened on a sliding surface 34 with the shaft. By doing so, a solid lubricant layer 33 formed by diffusion and permeation of molybdenum disulfide and a fine concave portion 35 formed by the action of a collision are formed on the sliding surface 34, and the lubricating oil 32 is provided in the pores 31. The oil reservoir is formed on the sliding surface 34 having self-lubricating characteristics by being exposed to the concave portion 35.

このように構成することによって、本実施の形態の軸受は、摺動面34上の微細な凹部35を介して軸22と相対摺動することによって、軸22の表面と最適な表面形状を摺動面34上に容易に形成するので、優れた初期なじみ特性を得ることができ、使用開始時からならし摺動をすることなく低摩擦で用いることができる。また、摺動面34は固体潤滑材層33となることによって自己潤滑特性を付与されるので、低速・低面圧の使用環境下においてフレッティング等の微少摺動が起こっても、その自己潤滑特性によってブッシュ16を軸22に対して滑らかに摺動させることが可能になるので、異音の発生を抑制する優れた耐フレッティング特性を得ることができる。そして、さらに、潤滑油32が気孔31から凹部35へ表出することにより自己潤滑特性を有する摺動面34上に良好な油溜まりが形成されるので、比較的低速度で摺動されながら、軸受にかかる圧力が低面圧から高面圧まで変動するような環境でも、低摩擦を維持することができる優れたトライボロジ特性が得られる。なお、この効果は、図4で示した試験結果が表すように、炭素鋼等によって形成された軸受に二硫化モリブデンを微粒子ショットピーニングしても容易に得られるものではない。即ち、高粘度油含浸型裏金付き多孔質複合焼結合金から成る軸受に微粒子ショットピーニングを施すことによって初めて得られるものであり、高粘度油含浸型裏金付き多孔質複合焼結合金の奏する給脂効果と微粒子ショットピーニングの奏する表面改質効果との著しい相乗効果によって初めて得られるものである。   With this configuration, the bearing according to the present embodiment slides relative to the shaft 22 via the fine recess 35 on the sliding surface 34, thereby sliding the surface of the shaft 22 and the optimum surface shape. Since it is easily formed on the moving surface 34, excellent initial conformability characteristics can be obtained, and it can be used with low friction without sliding-in from the beginning of use. Further, since the sliding surface 34 becomes a solid lubricant layer 33, self-lubricating properties are imparted, so that even if a slight sliding such as fretting occurs in a low-speed / low-surface pressure environment, the self-lubricating property is provided. Since the bush 16 can be smoothly slid with respect to the shaft 22 depending on the characteristics, excellent anti-fretting characteristics that suppress the generation of abnormal noise can be obtained. Further, since the lubricating oil 32 is exposed from the pores 31 to the recesses 35, a good oil sump is formed on the sliding surface 34 having self-lubricating characteristics, so that while sliding at a relatively low speed, Even in an environment where the pressure applied to the bearing fluctuates from a low surface pressure to a high surface pressure, excellent tribological characteristics capable of maintaining low friction can be obtained. Note that this effect is not easily obtained by fine particle shot peening of molybdenum disulfide on a bearing formed of carbon steel or the like, as indicated by the test results shown in FIG. That is, it is obtained for the first time by performing fine particle shot peening on a bearing made of a porous composite sintered alloy with a high viscosity oil-impregnated back metal backing, and the lubrication provided by the porous composite sintered alloy with a high viscosity oil-impregnated back metal It is obtained for the first time by a remarkable synergistic effect between the effect and the surface modification effect of fine particle shot peening.

また、上記のように微粒子ショットピーニングによって摺動面34に凹部35が形成される際に、摺動面34には圧縮残留応力が付与される。これにより摺動面34の繰り返し荷重の環境下における疲労強度をさらに向上させることができる。また、この凹部35は、含浸された潤滑油32を保持するのみならず、保守等の為に定期的に給脂されるグリースの保持効果も有するので、グリースの給脂間隔を延長することができるのも、本実施の形態のメリットの1つである。なお、以上の説明においては、微粒子ショットピーニングの投射材として固体潤滑剤である二硫化モリブデン粒子を用いる場合を主に取り上げて説明したが、製造方法についての説明箇所においても触れたように、スチール、硬質粒子、セラミック等の材料から成る微粒子を用いれば凹部35が形成される表面処理が摺動面34に為されるので、初期なじみ特性に優れた軸受を得ることができる。   Further, when the concave portion 35 is formed on the sliding surface 34 by fine particle shot peening as described above, compressive residual stress is applied to the sliding surface 34. Thereby, the fatigue strength in the environment of the repeated load of the sliding face 34 can further be improved. Further, the recess 35 not only holds the impregnated lubricating oil 32 but also has a holding effect of grease periodically supplied for maintenance or the like, so that the grease supply interval can be extended. One of the merits of the present embodiment is also possible. In the above description, the case where molybdenum disulfide particles, which are solid lubricants, are mainly used as the projection material for fine particle shot peening has been described. However, as mentioned in the explanation of the manufacturing method, If fine particles made of a material such as hard particles or ceramic are used, the surface treatment for forming the recesses 35 is performed on the sliding surface 34, so that a bearing having excellent initial conformability can be obtained.

さらに、本実施の形態は、円筒形状から成る軸受の成形方法として、はじめに裏金層及び焼結合金層の二層構造を有する板状の軸受材料を製造しておき、その後にこの軸受材料を円筒状に巻くという方法を採用している。これにより、製造が容易な二層構造の板状の軸受材料を巻くだけで円筒状の二層構造軸受を製造することができるので、精度の良い2種類の円筒を予め作成しておいた上でこれらを接合して二層構造軸受を得る方法と比較して容易に製造することができる。また、微粒子ショットピーニングによって付与された凹部35の圧縮残留応力は、このように製造された二層構造軸受が円筒形状を保持するように作用するので、軸受が使用時に受ける荷重等によって変形することを抑制し、軸受の耐変形性に寄与することも本実施の形態のメリットの1つである。なお、上記の焼結合金層の製造方法の説明では、裏金の上面に銅粉と鉄粉を散布して成形した後に還元炉に入れて裏金の上部に焼結合金を生成するように説明したが、焼結合金の生成方法はこれに限られるものではない。例えば、あらかじめ板状の裏金と板状の焼結合金をそれぞれ幅と長さの寸法を等しくして別々に製造しておき、その後に、これらを接合して二層構造から成る板状の軸受材料を得ても良い。すなわち、二層構造から成る板状の軸受材料を作成した後に、これを円筒状に巻いて軸受を製造する手順を経る製造方法であれば、焼結合金層の製造方法によらず、二層構造を有する軸受を容易に製造することができるという効果が得られる。   Furthermore, in this embodiment, as a method for forming a cylindrical bearing, a plate-shaped bearing material having a two-layer structure of a back metal layer and a sintered alloy layer is first manufactured, and then the bearing material is converted into a cylindrical shape. The method of winding in the shape is adopted. As a result, a cylindrical two-layer structure bearing can be manufactured simply by winding a plate-shaped bearing material having a two-layer structure that is easy to manufacture. Thus, they can be easily manufactured as compared with the method of joining them to obtain a two-layer structure bearing. Further, the compressive residual stress of the concave portion 35 imparted by the fine particle shot peening acts so that the two-layer structure bearing manufactured in this way maintains a cylindrical shape, so that the bearing is deformed by a load received during use. It is one of the merits of this embodiment to suppress the above and contribute to the deformation resistance of the bearing. In the description of the method for producing a sintered alloy layer, it was explained that copper powder and iron powder were sprayed and formed on the upper surface of the back metal, and then placed in a reduction furnace to produce a sintered alloy on the upper side of the back metal. However, the production method of the sintered alloy is not limited to this. For example, the plate-shaped backing metal and the plate-shaped sintered alloy are prepared separately with the same width and length dimensions, and then joined together to form a plate-shaped bearing having a two-layer structure. Material may be obtained. That is, if a manufacturing method that passes through a procedure of manufacturing a bearing by manufacturing a plate-shaped bearing material having a two-layer structure and then winding it into a cylindrical shape, the two-layer structure is used regardless of the manufacturing method of the sintered alloy layer. The effect that the bearing which has a structure can be manufactured easily is acquired.

本実施の形態のすべり軸受を備えた機械の一例である油圧ショベルの側面図である。It is a side view of the hydraulic excavator which is an example of the machine provided with the slide bearing of this Embodiment. 本実施の形態のすべり軸受を備えたすべり軸受装置の一構成例の断面図である。It is sectional drawing of the example of 1 structure of the slide bearing apparatus provided with the slide bearing of this Embodiment. 図2で示したすべり軸受装置における本発明のすべり軸受の軸との界面付近を拡大・模式化して示す部分断面図である。FIG. 3 is a partial cross-sectional view showing an enlarged and schematic view of the vicinity of the interface with the shaft of the slide bearing of the present invention in the slide bearing device shown in FIG. 2. 本実施の形態のすべり軸受の荷重変化に伴う摩擦係数の変化を示す図である。It is a figure which shows the change of the friction coefficient accompanying the load change of the slide bearing of this Embodiment.

符号の説明Explanation of symbols

12 すべり軸受装置
16 ブッシュ(すべり軸受)
22 軸
30 焼結合金層
31 気孔
32 潤滑油
33 固体潤滑剤層
34 摺動面
35 凹部
40 裏金層
12 Slide bearing device 16 Bush (Slide bearing)
22 Shaft 30 Sintered alloy layer 31 Pore 32 Lubricating oil 33 Solid lubricant layer 34 Sliding surface 35 Recessed portion 40 Back metal layer

Claims (6)

銅及び鉄を含む金属粉を焼結し、連通気孔が複数形成された焼結合金層の表面を軸と相対摺動する摺動面とするすべり軸受であって、
前記摺動面は、浸炭、窒化、又は浸硫窒化処理法のいずれかによって表面改質処理が施されており、更にこの表面改質処理の後に第1固体潤滑剤の粒子を衝突させることによって形成され前記第1固体潤滑剤が拡散浸透した凹部を有していることを特徴とするすべり軸受。
A sliding bearing that sinters metal powder containing copper and iron and has a sliding surface that slides relative to the shaft on the surface of a sintered alloy layer in which a plurality of continuous air holes are formed,
The sliding surface is subjected to a surface modification treatment by any of carburizing, nitriding, or nitrosulphurizing treatment, and further, by colliding particles of the first solid lubricant after the surface modification treatment. A plain bearing having a concave portion formed and diffused and penetrated by the first solid lubricant.
請求項1記載のすべり軸受において、
前記焼結合金層は前記連通気孔の内部に潤滑剤を含浸していることを特徴とするすべり軸受。
The plain bearing according to claim 1,
A sliding bearing, wherein the sintered alloy layer is impregnated with a lubricant inside the continuous air hole.
請求項2記載のすべり軸受において、
前記潤滑剤は第2固体潤滑剤の粒子を含有していることを特徴とするすべり軸受。
The plain bearing according to claim 2,
The sliding bearing, wherein the lubricant contains particles of a second solid lubricant.
請求項3記載のすべり軸受において、
前記第2固体潤滑剤は前記潤滑剤に2〜10wt%含有されていることを特徴とするすべり軸受。
The plain bearing according to claim 3,
The slide bearing according to claim 2, wherein the second solid lubricant is contained in the lubricant in an amount of 2 to 10 wt%.
請求項2乃至4いずれか記載のすべり軸受において、
前記潤滑剤の粘度は260〜950cStであることを特徴とするすべり軸受。
In the slide bearing in any one of Claims 2 thru | or 4,
The sliding bearing according to claim 1, wherein the lubricant has a viscosity of 260 to 950 cSt.
請求項1乃至5いずれか記載のすべり軸受において、
前記連通気孔の気孔率は5〜30%であることを特徴とするすべり軸受。
In the slide bearing in any one of Claims 1 thru | or 5,
The sliding bearing according to claim 1, wherein a porosity of the continuous air hole is 5 to 30%.
JP2006049575A 2006-02-27 2006-02-27 Slide bearing and manufacturing method thereof Expired - Fee Related JP4619302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049575A JP4619302B2 (en) 2006-02-27 2006-02-27 Slide bearing and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049575A JP4619302B2 (en) 2006-02-27 2006-02-27 Slide bearing and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2007225077A true JP2007225077A (en) 2007-09-06
JP2007225077A5 JP2007225077A5 (en) 2008-04-24
JP4619302B2 JP4619302B2 (en) 2011-01-26

Family

ID=38547070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049575A Expired - Fee Related JP4619302B2 (en) 2006-02-27 2006-02-27 Slide bearing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4619302B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185645A (en) * 2008-02-05 2009-08-20 Panasonic Corp Sliding member and fluid machine
JP2016180465A (en) * 2015-03-24 2016-10-13 三菱マテリアル株式会社 Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member
CN111566366A (en) * 2017-11-15 2020-08-21 三菱综合材料株式会社 Sintered oil-retaining bearing and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117940A (en) * 1997-04-19 1999-04-27 Woo Chun Lee Sliding bearing and its manufacture
JP2004255522A (en) * 2003-02-26 2004-09-16 Toyota Motor Corp Method of surface treatment and sintered part
WO2005019664A1 (en) * 2003-08-25 2005-03-03 Hitachi Construction Machinery Co., Ltd. Sliding bearing assembly and sliding bearing
JP2005233267A (en) * 2004-02-18 2005-09-02 Daido Metal Co Ltd Slide bearing for internal combustion engine
JP2005307903A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Scroll compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117940A (en) * 1997-04-19 1999-04-27 Woo Chun Lee Sliding bearing and its manufacture
JP2004255522A (en) * 2003-02-26 2004-09-16 Toyota Motor Corp Method of surface treatment and sintered part
WO2005019664A1 (en) * 2003-08-25 2005-03-03 Hitachi Construction Machinery Co., Ltd. Sliding bearing assembly and sliding bearing
JP2005233267A (en) * 2004-02-18 2005-09-02 Daido Metal Co Ltd Slide bearing for internal combustion engine
JP2005307903A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Scroll compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185645A (en) * 2008-02-05 2009-08-20 Panasonic Corp Sliding member and fluid machine
JP2016180465A (en) * 2015-03-24 2016-10-13 三菱マテリアル株式会社 Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member
CN111566366A (en) * 2017-11-15 2020-08-21 三菱综合材料株式会社 Sintered oil-retaining bearing and method for manufacturing same
CN111566366B (en) * 2017-11-15 2022-03-25 大冶美有限公司 Sintered oil-retaining bearing and method for manufacturing same

Also Published As

Publication number Publication date
JP4619302B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
US9631263B2 (en) Sliding bearing with improved wear resistance and method of manufacturing same
KR101222882B1 (en) Sintered sliding material, sliding member, connection device and device provided with sliding member
JP3168538B2 (en) Sliding bearing and method of manufacturing the same
US7648773B2 (en) Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
JPWO2005019664A1 (en) Slide bearing assembly and slide bearing
CN103221702B (en) The sliding bearing that lubrication property improves
KR20030028722A (en) Powder metal valve guide
CN1961162A (en) Grease for sliding bearing
JP4619302B2 (en) Slide bearing and manufacturing method thereof
JP2009180376A (en) Sliding bearing, and working machine connecting device using the same
JP2007085363A (en) Bearing and its manufacturing method
JP4236665B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
KR20030074648A (en) Rolling bearing comprising a powder metallurgical component
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
CN1245582C (en) Sintered slide bearing for construction equipment
JP2008057626A (en) Bush for bearing device
JP2005069365A (en) Plain bearing assembly and plain bearing
JP2008281146A (en) Sliding member
JP2020183568A (en) Joint bushing of construction machine
JP2006125568A (en) Sliding bearing grease

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4619302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees