JP2007224982A - Constant speed universal joint, and its cage - Google Patents

Constant speed universal joint, and its cage Download PDF

Info

Publication number
JP2007224982A
JP2007224982A JP2006045222A JP2006045222A JP2007224982A JP 2007224982 A JP2007224982 A JP 2007224982A JP 2006045222 A JP2006045222 A JP 2006045222A JP 2006045222 A JP2006045222 A JP 2006045222A JP 2007224982 A JP2007224982 A JP 2007224982A
Authority
JP
Japan
Prior art keywords
joint member
cage
constant velocity
universal joint
velocity universal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006045222A
Other languages
Japanese (ja)
Inventor
Kisao Yamazaki
起佐雄 山崎
Masazumi Kobayashi
正純 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006045222A priority Critical patent/JP2007224982A/en
Priority to PCT/JP2007/051189 priority patent/WO2007097156A1/en
Publication of JP2007224982A publication Critical patent/JP2007224982A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/226Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part
    • F16D3/227Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part the joints being telescopic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22303Details of ball cages

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a constant speed universal joint and its cage, which constant speed universal joint can secure the required depth and surface hardness of a heat treated hardened layer and can prevent the drop of its strength, and can reduce a cost of heat treatment even when the machining of a large allowance should be carried out after heat treatment. <P>SOLUTION: The short cylindrical shape cage 40 is arranged between the inner spherical surface of the outer race and the outer spherical surface of the inner race of the constant speed universal joint, and has a plurality of pockets formed at equal intervals in the circumference so as to retain balls arranged on the ball track between the outer race and the inner race. A heat-treated hardened layer M is formed by induction hardening over the whole range in the thickness direction on the portion including the peripheral portion of the pockets 41 and beam portions 42 between the pockets 41 except both end face portions 43. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車や各種産業機械の動力伝達機構において使用され、例えば4WD車やFR車などで使用されるドライブシャフトやプロペラシャフトに組み込まれる等速自在継手、並びにその等速自在継手の構成部品の一つであるケージに関する。   The present invention is used in power transmission mechanisms of automobiles and various industrial machines, and is, for example, a constant velocity universal joint incorporated in a drive shaft or a propeller shaft used in a 4WD vehicle or an FR vehicle, and components of the constant velocity universal joint This is one of the cages.

等速自在継手は、自動車や各種産業機械の動力伝達系において、駆動側の回転軸と従動側の回転軸を連結して等角速度でトルクを伝達するもので、トルク伝達要素であるボールを用いたボールタイプの等速自在継手として、バーフィールド型等速自在継手(BJ)、ダブルオフセット型等速自在継手(DOJ)やレブロ(クロスグルーブ)型等速自在継手(LJ)など種々のものがある。   Constant velocity universal joints are used to transmit torque at a constant angular speed by connecting the rotating shaft on the drive side and the rotating shaft on the driven side in the power transmission system of automobiles and various industrial machines. Various types of ball-type constant velocity universal joints such as Barfield type constant velocity universal joints (BJ), double offset type constant velocity universal joints (DOJ) and Lebro (cross groove) type constant velocity universal joints (LJ) is there.

これら等速自在継手は、外側継手部材、内側継手部材、ボールおよびケージを主要な構成要素として成り立っている。外側継手部材の内周面には軸方向に延びるトラック溝が形成され、また、内側継手部材の外周面にも軸方向に延びるトラック溝が形成されている。これら外側継手部材と内側継手部材に、駆動側の回転軸と従動側の回転軸がそれぞれ連結されている。外側継手部材のトラック溝と内側継手部材のトラック溝とが対をなしてボールトラックを形成し、各ボールトラックにボールが組み込んである。ボールは、ケージの円周方向に形成されたポケット内に収容されて転動自在に保持されている。   These constant velocity universal joints include an outer joint member, an inner joint member, a ball, and a cage as main components. Track grooves extending in the axial direction are formed on the inner peripheral surface of the outer joint member, and track grooves extending in the axial direction are also formed on the outer peripheral surface of the inner joint member. A drive-side rotary shaft and a driven-side rotary shaft are connected to the outer joint member and the inner joint member, respectively. The track groove of the outer joint member and the track groove of the inner joint member make a pair to form a ball track, and the ball is incorporated in each ball track. The balls are housed in pockets formed in the circumferential direction of the cage and are held so as to roll freely.

従って、継手が作動角をとった状態でトルクを伝達するとき、ボールは、常に、外側継手部材の回転軸と内側継手部材の回転軸とがなす角を二等分する平面内に位置するようにケージによって規制され、これにより、継手の等速性が確保される。このように等速自在継手の一つの構成部品であるケージは、外側継手部材と内側継手部材の間に組み込まれ、大きな負荷に耐えてボールを等速二等面上に保持する重要な部品の一つであり、高強度であることが望まれている。   Therefore, when torque is transmitted with the joint at an operating angle, the ball is always positioned in a plane that bisects the angle formed by the rotation shaft of the outer joint member and the rotation shaft of the inner joint member. Therefore, the constant velocity of the joint is ensured. As described above, the cage, which is one component of the constant velocity universal joint, is incorporated between the outer joint member and the inner joint member, and is an important component that can withstand a large load and hold the ball on the isobaric surface. One is desired to have high strength.

このケージの高強度を確保するために、ケージに熱処理が施されるが、一般的にその熱処理として浸炭焼入れが用いられている。この浸炭焼入れは、ケージのような複雑で薄いものに適した熱処理技術であるが、その浸炭焼入れに処理時間を要するため、生産性が悪い点が挙げられる。また、浸炭焼入れでは、その性質上、熱処理硬化層をあまり深く形成することが困難である。そのため、浸炭焼入れ後に加工を要する場合、特に、表面を大きく削り取るような加工においては、熱処理硬化層の深さと必要な表面硬さを確保することが困難となって強度の低下を招くことになる。   In order to ensure the high strength of the cage, the cage is subjected to a heat treatment. Generally, carburizing and quenching is used as the heat treatment. This carburizing and quenching is a heat treatment technique suitable for a complicated and thin material such as a cage, but the carburizing and quenching requires a processing time, and thus has poor productivity. In carburizing and quenching, it is difficult to form a heat-treated hardened layer too deep due to its properties. Therefore, when processing is required after carburizing and quenching, particularly in processing that greatly scrapes the surface, it is difficult to ensure the depth of the heat-treated cured layer and the required surface hardness, leading to a decrease in strength. .

そこで、取り代の大きな切削加工などが必要な場合、浸炭焼入れ前に前加工として切削加工を行い、浸炭焼入れ後にさらに最終仕上げ寸法となるように加工する二段式の加工を行う必要があった。このような浸炭焼入れとケージポケットの加工については、ケージポケットにハードミーリングを適用していた(例えば、特許文献1参照)。   Therefore, when machining with a large machining allowance is required, it was necessary to perform two-stage machining that performs cutting as pre-processing before carburizing and quenching, and further processes to the final finished dimensions after carburizing and quenching. . For such carburizing and quenching and processing of the cage pocket, hard milling has been applied to the cage pocket (see, for example, Patent Document 1).

つまり、この特許文献1に開示された手法は、ケージの短円筒状素形材からポケットをプレス加工により打ち抜いた後、シェービング加工でそのポケット寸法をある程度まで加工し、さらに熱処理後に熱処理変形で寸法精度が悪くなったポケットを最終仕上げ寸法にハードミーリング等で加工するようにしている。
特開2003−49861号公報
In other words, the method disclosed in Patent Document 1 is such that after punching a pocket from a short cylindrical shaped member of a cage by press processing, the pocket size is processed to some extent by shaving processing, and further, heat treatment deformation is performed after heat treatment. Pockets that have become inaccurate are processed to the final finished dimensions by hard milling.
JP 2003-49861 A

ところで、従来の浸炭焼入れでは、熱処理に時間がかかり、また、炉によるバッチ処理のためにインライン化が困難である。また、浸炭焼入れでは、深い熱処理硬化層を形成することが困難である。従って、浸炭焼入れ後に取り代の大きな切削加工などを施す場合、必要な熱処理硬化層の深さと表面硬さを確保することが困難となる。   By the way, in the conventional carburizing and quenching, it takes time for heat treatment, and it is difficult to make in-line because of batch processing by a furnace. In carburizing and quenching, it is difficult to form a deep heat-treated hardened layer. Therefore, when performing cutting with a large allowance after carburizing and quenching, it is difficult to ensure the necessary depth and surface hardness of the heat-treated hardened layer.

このような加工が必要な場合は、特許文献1のように浸炭焼入れ前の前加工(シェービング加工)と浸炭焼入れ後の後加工(ハードミーリング加工)からなる二段階の加工を施せばよい。このようにすれば、浸炭焼入れ後に熱処理硬化層を切削しすぎることによるケージの強度低下を未然に防止することができる。   When such a process is required, a two-stage process including a pre-process before carburizing and quenching (shaving process) and a post-process after carburizing and quenching (hard milling process) may be performed as in Patent Document 1. By doing so, it is possible to prevent a reduction in cage strength due to excessive cutting of the heat-treated hardened layer after carburizing and quenching.

しかしながら、浸炭焼入れ前の前加工と浸炭焼入れ後の後加工からなる二段階の加工の場合、浸炭焼入れの前後二回に分けて加工を行わなければならないため、加工に手間がかかり、全体の処理時間が長くなり、ひいては製品のコストアップを招くことになるという問題がある。   However, in the case of two-stage processing consisting of pre-processing before carburizing and quenching and post-processing after carburizing and quenching, the processing must be performed twice before and after carburizing and quenching. There is a problem that the time is increased and the cost of the product is increased.

そこで、本発明は前述した問題点に鑑みて提案されたもので、その目的とするところは、熱処理後に取り代の大きな加工を施す場合でも、必要な熱処理硬化層の深さと表面硬さを確保することができて強度低下を未然に防止でき、熱処理コストの低減を図り得る等速自在継手及びそのケージを提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object is to ensure the necessary depth and surface hardness of the heat-treated hardened layer even when a large machining allowance is applied after heat treatment. It is an object of the present invention to provide a constant velocity universal joint and its cage that can prevent a decrease in strength and can reduce heat treatment costs.

前述の目的を達成するための技術的手段として、本発明は、等速自在継手の外側継手部材の内球面と内側継手部材の外球面との間に配置され、外側継手部材と内側継手部材間のボールトラックに配されたボールを収容する複数のポケットが円周方向等間隔に形成された短円筒形状のケージであって、ポケット周縁部およびそのポケット間の柱部を含み、かつ、両端面部を除く部位に、厚み方向全域に亘って熱処理硬化層を形成したことを特徴とする。   As a technical means for achieving the above-mentioned object, the present invention is arranged between the inner spherical surface of the outer joint member of the constant velocity universal joint and the outer spherical surface of the inner joint member, and between the outer joint member and the inner joint member. A cage having a short cylindrical shape in which a plurality of pockets for accommodating balls arranged on the ball track are formed at equal intervals in the circumferential direction, including a pocket peripheral portion and a column portion between the pockets, and both end surface portions. A heat-treated hardened layer is formed over the entire region in the thickness direction at a portion excluding.

本発明では、ケージの厚み方向全域に亘って熱処理硬化層を形成したことにより、その熱処理後に取り代の大きな加工を施す場合でも、必要な熱処理硬化層の深さと表面硬さを確保することができて強度低下を未然に防止できる。   In the present invention, by forming the heat treatment hardened layer over the entire thickness direction of the cage, it is possible to ensure the necessary depth and surface hardness of the heat treated hardened layer even when a large machining allowance is applied after the heat treatment. It is possible to prevent the strength from being lowered.

この熱処理硬化層を形成する部位として、ポケット周縁部およびそのポケット間の柱部を含む部位としたのは、ボールと接触することにより最も荷重が大きいためであり、この熱処理硬化層の形成により必要な強度を確保する。また、ケージの両端面部に熱処理硬化層を形成しないのは、その端面部での亀裂敏感性を緩和するためであり、これにより、ケージの強度を向上させている。   The reason why the heat treatment hardened layer is formed is that the peripheral portion of the pocket and the part including the pillars between the pockets are the largest load due to contact with the ball. To ensure proper strength. Further, the reason why the heat-treated hardened layer is not formed on the both end surface portions of the cage is to alleviate the crack sensitivity at the end surface portions, thereby improving the strength of the cage.

本発明における熱処理硬化層は、高周波焼入れにより形成することが望ましい。熱処理として高周波焼入れを使用することにより、深い熱処理硬化層を形成することができることから、厚み方向全領域に亘って熱処理硬化層を容易に形成することができる。   The heat-treated cured layer in the present invention is desirably formed by induction hardening. By using induction hardening as the heat treatment, a deep heat treatment hardened layer can be formed, so that the heat treatment hardened layer can be easily formed over the entire region in the thickness direction.

本発明のケージは、中炭素鋼からなる素形材を使用することが望ましい。中炭素鋼は、所定量の炭素を含有することから、高周波焼入れにより深い熱処理硬化層を形成することが容易である。   The cage of the present invention preferably uses a material made of medium carbon steel. Since the medium carbon steel contains a predetermined amount of carbon, it is easy to form a deep heat treatment hardened layer by induction hardening.

本発明は、前述の構成からなるケージに、外側継手部材と、内側継手部材と、外側継手部材と内側継手部材の間でケージにより回転自在に保持されてトルクを伝達するボールとを付加すれば、等速自在継手を構成することが可能である。   According to the present invention, an outer joint member, an inner joint member, and a ball that is rotatably held by the cage and transmits torque between the outer joint member and the inner joint member are added to the cage configured as described above. It is possible to configure a constant velocity universal joint.

本発明は、内周面に複数の直線状トラック溝を軸線に対して傾斜させた状態で軸方向に形成した外側継手部材と、外周面に複数の直線状トラック溝を軸線に対して外側継手部材のトラック溝と反対方向に傾斜させた状態で軸方向に形成した内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝との交叉部に組み込まれたボールと、外側継手部材の内周面と内側継手部材の外周面との間に配されてボールを外側継手部材のトラック溝と内側継手部材のトラック溝との間で保持するケージとを備えた等速自在継手、つまり、レブロ(クロスグルーブ)型等速自在継手に適用することが好適である。   The present invention includes an outer joint member formed in the axial direction in a state where a plurality of linear track grooves are inclined with respect to the axis on the inner peripheral surface, and an outer joint with a plurality of linear track grooves on the outer peripheral surface with respect to the axis. An inner joint member formed in the axial direction in a state inclined in the opposite direction to the track groove of the member, a ball incorporated in a crossing portion of the track groove of the outer joint member and the track groove of the inner joint member, and the outer joint member A constant velocity universal joint provided with a cage disposed between the inner peripheral surface of the inner joint member and the outer peripheral surface of the inner joint member and holding the ball between the track groove of the outer joint member and the track groove of the inner joint member, It is preferable to apply to a Lebro (cross groove) type constant velocity universal joint.

本発明によれば、ケージの厚み方向全域に亘って高周波焼入れによる熱処理硬化層を形成したことにより、その熱処理後に取り代の大きな加工を施す場合でも、必要な熱処理硬化層の深さと表面硬さを確保することができて強度低下を未然に防止できる。また、熱処理硬化層は、ケージの両端面部に形成させないことから、その端面部の亀裂敏感性を緩和することができるためにケージの強度を向上させることができる。さらに、高周波焼入れを使用することにより、熱処理時間の短縮化が図れて熱処理コストを低減することができ、工程のインライン化も実現可能である。   According to the present invention, since the heat-treated hardened layer is formed by induction hardening over the entire thickness direction of the cage, the required depth and surface hardness of the heat-treated hardened layer even when a large machining allowance is applied after the heat treatment. Can be ensured, and strength reduction can be prevented. In addition, since the heat-treated hardened layer is not formed on both end surface portions of the cage, the sensitivity of the end surface portion to cracks can be alleviated, so that the strength of the cage can be improved. Furthermore, by using induction hardening, the heat treatment time can be shortened, the heat treatment cost can be reduced, and the in-line process can be realized.

図5〜図7は本発明に係る等速自在継手のケージの実施形態で、そのケージを組み込んだレブロ(クロスグルーブ)型等速自在継手(LJ)を例示する。なお、本発明は、ダブルオフセット型等速自在継手(DOJ)やバーフィールド型等速自在継手(BJ)など、他のタイプの等速自在継手にも適用可能である。   5 to 7 show an embodiment of a constant velocity universal joint cage according to the present invention, and illustrate a Lebro (cross groove) type constant velocity universal joint (LJ) incorporating the cage. The present invention is also applicable to other types of constant velocity universal joints such as a double offset type constant velocity universal joint (DOJ) and a Barfield type constant velocity universal joint (BJ).

この等速自在継手は、図5および図6に示すように内側継手部材としての内輪10、外側継手部材としての外輪20、複数のボール30およびケージ40を主要な構成要素としている。内輪10は、その中心孔11にシャフト(図示せず)がスプライン嵌合により連結され、外周面に複数の直線状トラック溝12が軸方向に形成されている。外輪20は内輪10の外周に位置し、内周面に内輪10のトラック溝12と同数の直線状トラック溝22が軸方向に形成されている。内輪10と外輪20の間に、軸方向に短い円筒状のケージ40が配置されている。複数のボール30は、ケージ40の円周方向等間隔に形成された複数のポケット41内にそれぞれ収容されている。   As shown in FIGS. 5 and 6, the constant velocity universal joint includes an inner ring 10 as an inner joint member, an outer ring 20 as an outer joint member, a plurality of balls 30 and a cage 40 as main components. The inner ring 10 has a shaft (not shown) connected to the center hole 11 thereof by spline fitting, and a plurality of linear track grooves 12 are formed in the axial direction on the outer peripheral surface. The outer ring 20 is positioned on the outer periphery of the inner ring 10, and the same number of linear track grooves 22 as the track grooves 12 of the inner ring 10 are formed in the axial direction on the inner peripheral surface. A cylindrical cage 40 that is short in the axial direction is disposed between the inner ring 10 and the outer ring 20. The plurality of balls 30 are respectively accommodated in a plurality of pockets 41 formed at equal intervals in the circumferential direction of the cage 40.

内輪10のトラック溝12と外輪20のトラック溝22は、図7(ケージ40については図示省略)に示すように軸線Lに対して反対方向に傾斜した角度(トラック交叉角α)をなし、対をなす内輪10のトラック溝12と外輪20のトラック溝22との交叉部にボール30が組み込まれている。   The track groove 12 of the inner ring 10 and the track groove 22 of the outer ring 20 form an angle (track crossing angle α) inclined in the opposite direction with respect to the axis L as shown in FIG. 7 (the cage 40 is not shown). A ball 30 is incorporated at the intersection of the track groove 12 of the inner ring 10 and the track groove 22 of the outer ring 20.

このレブロ(クロスグルーブ)型等速自在継手に組み込まれたケージ40は、ボール30と接触するポケット41の周縁部およびそのポケット40間の柱部42を含む部位が最も大きな荷重を受けることから、その部位に熱処理を施す。この熱処理としては、深い熱処理硬化層を形成することが可能な高周波焼入れを採用する。   Since the cage 40 incorporated in the Lebro (cross groove) type constant velocity universal joint receives the greatest load at the peripheral portion of the pocket 41 that contacts the ball 30 and the portion including the column portion 42 between the pockets 40, Heat treatment is applied to the part. As this heat treatment, induction hardening capable of forming a deep heat treatment hardened layer is employed.

従来の浸炭焼入れでは、ケージの全ての部分が硬化処理され、その処理後に粒界酸化層が表面異常層として表層部に生成され、強度のばらつきを招く問題がある。また、浸炭焼入れは、表面に高濃度の炭素を拡散させるため、炭化物が多く粒界に析出する結晶粒の粗大化が発生し変形を招き強度が低下する問題もある。粒界酸化層は後工程で加工により取り除くことはできるが、通常、加工を伴わないポケットの周縁部やケージの端面部には残ってしまうことになる。   In the conventional carburizing and quenching, all the parts of the cage are hardened, and after that treatment, a grain boundary oxide layer is generated as a surface abnormal layer on the surface layer part, which causes a problem of strength variation. In addition, since carburizing and quenching diffuses a high concentration of carbon on the surface, there is a problem in that a large amount of carbides cause coarsening of crystal grains that precipitate at grain boundaries, causing deformation and reducing strength. Although the grain boundary oxide layer can be removed by processing in a later step, it usually remains on the peripheral edge of the pocket and the end surface of the cage without processing.

そこで、この実施形態では、高周波焼入れを採用することにより、ケージ40の全領域で粒界酸化層の発生を抑止することができるため、その粒界酸化層によるケージ40の強度低下がなくなり、ケージ40の強度を向上させることができる。また、高周波焼入れを採用したことにより、熱処理時間の短縮化が図れて熱処理コストを低減することができ、工程のインライン化も実現可能で製品コストの低減化が図れる。   Therefore, in this embodiment, by adopting induction hardening, it is possible to suppress the generation of the grain boundary oxide layer in the entire region of the cage 40. Therefore, the strength of the cage 40 is not reduced by the grain boundary oxide layer, and the cage The strength of 40 can be improved. In addition, by adopting induction hardening, the heat treatment time can be shortened and the heat treatment cost can be reduced, the process can be inlined, and the product cost can be reduced.

図1および図2は図5および図6の等速自在継手に組み込まれたケージ40における熱処理パターンの二例を示す。図3(a)は図1のA−A線に沿う断面、図3(b)は図1のB−B線に沿う断面であり、図4(a)は図2のC−C線に沿う断面、図4(b)は図2のD−D線に沿う断面である。なお、ケージ40の素形材としては、中炭素鋼を使用する。この中炭素鋼は、所定量の炭素を含有することから、高周波焼入れにより深い熱処理硬化層を形成することが容易である。   FIGS. 1 and 2 show two examples of heat treatment patterns in the cage 40 incorporated in the constant velocity universal joint of FIGS. 3A is a cross section taken along line AA in FIG. 1, FIG. 3B is a cross section taken along line BB in FIG. 1, and FIG. 4A is taken along line CC in FIG. 4B is a cross section taken along the line DD of FIG. In addition, as a raw material of the cage 40, medium carbon steel is used. Since this medium carbon steel contains a predetermined amount of carbon, it is easy to form a deep heat treatment hardened layer by induction hardening.

図1および図2に示すケージ40について、ボール30との接触で最も大きな荷重を受ける部位、つまり、ポケット41の周縁部およびそのポケット41間の柱部42を含む部位を高周波焼入れにより熱処理硬化層M,Nを形成する。この熱処理硬化層M,Nは、高周波焼入れを採用したことにより深く形成し、図3および図4に示すようにケージ40の厚み方向全領域に亘って形成する。なお、図中の斜線部が熱処理硬化層M,Nの形成部分を示す。   In the cage 40 shown in FIG. 1 and FIG. 2, a portion subjected to the largest load in contact with the ball 30, that is, a portion including the peripheral portion of the pocket 41 and the column portion 42 between the pockets 41 is heat-treated and hardened by induction hardening. M and N are formed. The heat treatment hardened layers M and N are formed deeply by adopting induction hardening, and are formed over the entire region in the thickness direction of the cage 40 as shown in FIGS. The hatched portion in the figure indicates the portion where the heat-treated hardened layers M and N are formed.

このようにケージ40の厚み方向全領域に亘って熱処理硬化層M,Nを形成したことにより、その高周波焼入れ後に取り代の大きな切削加工などを施す場合であっても、必要な熱処理硬化層の深さと表面硬さを確保することができて強度低下を未然に防止することができる。   Thus, by forming the heat treatment hardened layers M and N over the entire region in the thickness direction of the cage 40, the necessary heat treatment hardened layer of the heat treatment hardened layer can be obtained even when a large machining allowance is applied after the induction hardening. Depth and surface hardness can be ensured and strength reduction can be prevented.

ここで、熱処理後に取り代の大きな加工を施す場合、従来では、ケージの短円筒状素形材からポケットをプレス加工により打ち抜いた後、シェービング加工でそのポケット寸法をある程度まで加工し、さらに熱処理後に熱処理変形で寸法精度が悪くなったポケットを最終仕上げ寸法にハードミーリング等で加工していた(特許文献1参照)。   Here, when processing with a large allowance after heat treatment is performed, conventionally, after punching a pocket from a short cylindrical shaped material of a cage by press processing, the pocket size is processed to a certain extent by shaving processing, and further after heat treatment A pocket whose dimensional accuracy has deteriorated due to heat treatment deformation has been processed into a final finished dimension by hard milling or the like (see Patent Document 1).

これに対して、この実施形態では、高周波焼入れにより熱処理硬化層M,Nを深く形成できることから、高周波焼入れ後に取り代の大きな加工を施す場合でも、最終工程で一気にハードミーリングで加工しても、必要な熱処理硬化層の深さと表面硬さを確保することができる。従って、ハードミーリングで高いポケットの寸法精度を確保しつつ、シェービング加工を廃止することができ、熱処理コストの低減化が図れる。   On the other hand, in this embodiment, since the heat treatment hardened layers M and N can be formed deeply by induction hardening, even when processing a large machining allowance after induction hardening, even if processing at a stretch by hard milling, The necessary depth and surface hardness of the heat-treated cured layer can be ensured. Therefore, the shaving process can be abolished while ensuring high pocket dimensional accuracy by hard milling, and the heat treatment cost can be reduced.

この熱処理硬化層M,Nを形成する部位として、ポケット41の周縁部およびそのポケット41間の柱部42を含む部位としたのは、前述したようにボール30と接触することにより最も荷重が大きいためである。従って、ケージ40の両端面部43には、ボール30との接触による大きな荷重を受けないことから、高周波焼入れによる熱処理硬化層M,Nを形成する必要はない(図1および図2参照)。ケージ40の両端面部43に熱処理硬化層M,Nを形成しないことにより、その端面部43での亀裂敏感性を緩和することができ、ケージ40の強度が向上する。   The portion that includes the peripheral portion of the pocket 41 and the column portion 42 between the pockets 41 as the portion for forming the heat treatment hardened layers M and N has the largest load due to contact with the ball 30 as described above. Because. Therefore, it is not necessary to form the heat treatment hardened layers M and N by induction hardening on the both end surface portions 43 of the cage 40 because they do not receive a large load due to contact with the balls 30 (see FIGS. 1 and 2). By not forming the heat treatment hardened layers M and N on the both end face portions 43 of the cage 40, the crack sensitivity at the end face portion 43 can be reduced, and the strength of the cage 40 is improved.

以上の実施形態では、レブロ(クロスグルーブ)型等速自在継手に適用した場合について説明したが、本発明は、ダブルオフセット型等速自在継手(DOJ)やバーフィールド型等速自在継手(BJ)にも適用可能である。但し、本発明の適用は、レブロ(クロスグルーブ)型等速自在継手が最適である。その理由は次のとおりである。   In the above embodiment, the case where the present invention is applied to a Lebro (cross groove) type constant velocity universal joint has been described. However, the present invention is not limited to a double offset type constant velocity universal joint (DOJ) or a Barfield type constant velocity universal joint (BJ). It is also applicable to. However, the application of the present invention is optimally a Lebro (cross groove) type constant velocity universal joint. The reason is as follows.

ダブルオフセット型等速自在継手(DOJ)やバーフィールド型等速自在継手(BJ)では、継手が作動角をとった場合、内輪外径がケージ内径に接触案内されながら傾く。そのため、ケージ内径と内輪外径間では球面すきまを小さくする必要がある。それに対して、レブロ(クロスグルーブ)型等速自在継手では、ケージ内径と内輪外径間が非接触である。従って、ケージの内外径を完全に熱処理する必要はなく、ケージの両端面部に未硬化部分を残すような熱処理が可能となる。   In the double offset type constant velocity universal joint (DOJ) and the barfield type constant velocity universal joint (BJ), when the joint takes an operating angle, the outer diameter of the inner ring is tilted while being in contact with the inner diameter of the cage. Therefore, it is necessary to reduce the spherical clearance between the cage inner diameter and the inner ring outer diameter. On the other hand, in a Lebro (cross groove) type constant velocity universal joint, there is no contact between the cage inner diameter and the inner ring outer diameter. Therefore, it is not necessary to completely heat-treat the inner and outer diameters of the cage, and heat treatment that leaves uncured portions on both end surfaces of the cage is possible.

本発明の実施形態で、ケージにおける熱処理パターンの一例を示す断面図である。In embodiment of this invention, it is sectional drawing which shows an example of the heat processing pattern in a cage. 本発明の他の実施形態で、ケージにおける熱処理パターンの他例を示す断面図である。In other embodiment of this invention, it is sectional drawing which shows the other example of the heat processing pattern in a cage. (a)は図1のA−A線に沿う断面図、(b)は図1のB−B線に沿う断面図である。(A) is sectional drawing which follows the AA line of FIG. 1, (b) is sectional drawing which follows the BB line of FIG. (a)は図2のC−C線に沿う断面図、(b)は図2のD−D線に沿う断面図である。(A) is sectional drawing which follows the CC line of FIG. 2, (b) is sectional drawing which follows the DD line | wire of FIG. 本発明を適用するレブロ(クロスグルーブ)型等速自在継手の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the Lebro (cross groove) type constant velocity universal joint to which this invention is applied. 図5の側面図である。FIG. 6 is a side view of FIG. 5. 図5の内輪および外輪におけるトラック交叉角αを説明するための部分正面図である。FIG. 6 is a partial front view for explaining a track crossing angle α in the inner ring and the outer ring in FIG. 5.

符号の説明Explanation of symbols

10 外輪
12 トラック溝
20 内輪
22 トラック溝
30 ボール
40 ケージ
41 ポケット
42 柱部
43 端面部
DESCRIPTION OF SYMBOLS 10 Outer ring 12 Track groove 20 Inner ring 22 Track groove 30 Ball 40 Cage 41 Pocket 42 Column part 43 End surface part

Claims (5)

等速自在継手の外側継手部材の内球面と内側継手部材の外球面との間に配置され、前記外側継手部材と内側継手部材間のボールトラックに配されたボールを収容する複数のポケットが円周方向等間隔に形成された短円筒形状のケージであって、前記ポケット周縁部およびそのポケット間の柱部を含み、かつ、両端面部を除く部位に、厚み方向全域に亘って熱処理硬化層を形成したことを特徴とする等速自在継手のケージ。   A plurality of pockets that are disposed between the inner spherical surface of the outer joint member of the constant velocity universal joint and the outer spherical surface of the inner joint member, and that contain balls disposed on the ball track between the outer joint member and the inner joint member, are circular. A short cylindrical cage formed at equal intervals in the circumferential direction, including a pocket peripheral portion and a column portion between the pockets, and a heat treatment hardened layer over the entire thickness direction at a portion excluding both end surface portions. A constant velocity universal joint cage characterized by being formed. 前記熱処理硬化層は、高周波焼入れにより形成されている請求項1に記載の等速自在継手のケージ。   The constant velocity universal joint cage according to claim 1, wherein the heat-treated hardened layer is formed by induction hardening. 中炭素鋼からなる請求項1又は2に記載の等速自在継手のケージ。   The constant velocity universal joint cage according to claim 1 or 2, comprising medium carbon steel. 前記外側継手部材と、内側継手部材と、請求項1〜3のいずれか一項に記載のケージと、前記外側継手部材と内側継手部材の間で前記ケージにより回転自在に保持されてトルクを伝達するボールとを具備した等速自在継手。   The outer joint member, the inner joint member, the cage according to any one of claims 1 to 3, and the outer joint member and the inner joint member are rotatably held by the cage and transmit torque. A constant velocity universal joint provided with 内周面に複数の直線状トラック溝を軸線に対して傾斜させた状態で軸方向に形成した前記外側継手部材と、外周面に複数の直線状トラック溝を軸線に対して前記外側継手部材のトラック溝と反対方向に傾斜させた状態で軸方向に形成した内側継手部材と、前記外側継手部材のトラック溝と内側継手部材のトラック溝との交叉部に組み込まれたボールと、前記外側継手部材の内周面と内側継手部材の外周面との間に配されて前記ボールを外側継手部材のトラック溝と内側継手部材のトラック溝との間で保持するケージとを備えた請求項4に記載の等速自在継手。   The outer joint member formed in the axial direction with a plurality of linear track grooves inclined with respect to the axis on the inner peripheral surface, and the outer joint member formed with the plurality of linear track grooves on the outer peripheral surface with respect to the axis. An inner joint member formed in an axial direction in a state inclined in the opposite direction to the track groove, a ball incorporated in a crossing portion of the track groove of the outer joint member and the track groove of the inner joint member, and the outer joint member And a cage that is disposed between the inner peripheral surface of the inner joint member and the outer peripheral surface of the inner joint member and holds the ball between the track groove of the outer joint member and the track groove of the inner joint member. Constant velocity universal joint.
JP2006045222A 2006-02-22 2006-02-22 Constant speed universal joint, and its cage Withdrawn JP2007224982A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006045222A JP2007224982A (en) 2006-02-22 2006-02-22 Constant speed universal joint, and its cage
PCT/JP2007/051189 WO2007097156A1 (en) 2006-02-22 2007-01-25 Constant velocity universal joint and its cage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006045222A JP2007224982A (en) 2006-02-22 2006-02-22 Constant speed universal joint, and its cage

Publications (1)

Publication Number Publication Date
JP2007224982A true JP2007224982A (en) 2007-09-06

Family

ID=38437197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006045222A Withdrawn JP2007224982A (en) 2006-02-22 2006-02-22 Constant speed universal joint, and its cage

Country Status (2)

Country Link
JP (1) JP2007224982A (en)
WO (1) WO2007097156A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125054U (en) * 1990-03-27 1991-12-18
JP2000230570A (en) * 1999-02-10 2000-08-22 Ntn Corp Constant velocity universal joint
JP2001323945A (en) * 2000-05-15 2001-11-22 Ntn Corp Constant velocity joint
JP4651233B2 (en) * 2001-08-03 2011-03-16 Ntn株式会社 Cage of fixed type constant velocity universal joint, manufacturing method thereof, and fixed type constant velocity universal joint

Also Published As

Publication number Publication date
WO2007097156A1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP4731945B2 (en) Constant velocity universal joint, cage for constant velocity universal joint, and manufacturing method thereof
JP5214336B2 (en) Fixed constant velocity universal joint
EP2881605B1 (en) Cage for constant-velocity universal joint, fixed type constant-velocity universal joint incorporating same, and drive shaft incorporating said fixed type constant-velocity universal joint
US8226489B2 (en) Constant velocity universal joint
US9121453B2 (en) Double-offset constant velocity universal joint
EP2749783B1 (en) Constant velocity universal joint and method for producing same
JP2010043691A (en) Constant velocity universal joint and method for manufacturing the same
JP2020079630A (en) Cage for constant velocity universal joint, and constant velocity universal joint
JP2007224982A (en) Constant speed universal joint, and its cage
EP2251559B1 (en) Inner joint member for constant velocity universal joint, method of producing the same, and constant velocity universal joint
JP2003049861A (en) Cage of fixed constant velocity universal joint and its manufacturing method and fixed constant velocity universal joint
JP4559276B2 (en) Cage for constant velocity universal joint
JP4795271B2 (en) Cage for constant velocity universal joint and assembly method thereof
JP5467710B2 (en) Method for manufacturing fixed type constant velocity universal joint and outer ring thereof
CN111133211B (en) Constant velocity universal joint and spacer thereof
JP2009191901A (en) Cage of constant speed universal joint, propeller shaft assembly, and drive shaft assembly
JP2008298270A (en) Fixed type constant velocity universal joint
JP2007315578A (en) Cage for constant velocity universal joint
JP2022020804A (en) Constant velocity universal joint and cage thereof
JP2009085327A (en) Sliding type constant velocity universal joint and its outer side joint member
JP2017106572A (en) Constant velocity joint and manufacturing method of constant velocity joint
JP2007064265A (en) Constant velocity universal joint and its inner member
JP2007010028A (en) Tripod type constant velocity universal joint
JP2011208674A (en) Constant velocity universal joint
JP2008038960A (en) Outside joint member for constant velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512