JP2007223963A - Method for producing aniline compound - Google Patents

Method for producing aniline compound Download PDF

Info

Publication number
JP2007223963A
JP2007223963A JP2006048434A JP2006048434A JP2007223963A JP 2007223963 A JP2007223963 A JP 2007223963A JP 2006048434 A JP2006048434 A JP 2006048434A JP 2006048434 A JP2006048434 A JP 2006048434A JP 2007223963 A JP2007223963 A JP 2007223963A
Authority
JP
Japan
Prior art keywords
zirconia
catalyst
compound
phosphorus
xylenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006048434A
Other languages
Japanese (ja)
Inventor
Takahiro Yokota
隆洋 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP2006048434A priority Critical patent/JP2007223963A/en
Publication of JP2007223963A publication Critical patent/JP2007223963A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for an aniline compound in higher yield than a conventional method using a zirconia-based catalyst. <P>SOLUTION: The method for producing the aniline compound comprises carrying out a reaction between a phenolic compound and an aminating agent in the presence of a catalyst preferably under vapor-phase reaction conditions, wherein the catalyst to be used is e.g. a compound oxide of phosphorus oxide and zirconia, or a phosphorus compound-containing zirconia such as a zirconia containing phosphate group(PO<SB>4</SB>) or phosphorus oxide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は工業用化学薬品として有用なアニリン類の製造方法に関する。   The present invention relates to a method for producing anilines useful as industrial chemicals.

アニリン類は、芳香族ニトロ化合物を接触還元する方法、芳香族ハロゲン化物を高温高圧下にアミノ化剤と反応させる方法、又はフェノール類とアミノ化剤とを反応させる方法等により製造されている。   Anilines are produced by a method of catalytic reduction of an aromatic nitro compound, a method of reacting an aromatic halide with an aminating agent under high temperature and high pressure, or a method of reacting a phenol with an aminating agent.

しかしながら、芳香族ニトロ化合物を接触還元する方法では、芳香族ニトロ化合物の合成工程において、硝酸及び硫酸を多量に必要とする。そのため、反応終了後のこれら酸(即ち廃酸)の中和工程で多量のアルカリ物質が使用され、その高濃度の塩類を含む排水が多量に生ずる。また、これら酸による装置腐食が問題となり、高価な材質等が必要となり、さらに窒素酸化物が飛散することによる大気汚染等、好ましくない問題点がある。   However, the method of catalytic reduction of an aromatic nitro compound requires a large amount of nitric acid and sulfuric acid in the synthesis process of the aromatic nitro compound. Therefore, a large amount of alkaline substance is used in the neutralization step of these acids (that is, waste acid) after the reaction is completed, and a large amount of waste water containing high-concentration salts is generated. In addition, corrosion of the apparatus due to these acids becomes a problem, and expensive materials are required, and there are also undesirable problems such as air pollution due to scattering of nitrogen oxides.

芳香族ハロゲン化物を用いる方法は、腐食性の高いハロゲン化水素が副生し、高価な耐食性材料を使用する必要が生ずる。また芳香族ハロゲン化物を、高温、高圧下でアミノ化剤、例えばアンモニアと反応させても、収率が低く工業的にはほとんど実用化されていない。   In the method using an aromatic halide, highly corrosive hydrogen halide is produced as a by-product, and it is necessary to use an expensive corrosion-resistant material. Further, even when an aromatic halide is reacted with an aminating agent such as ammonia at a high temperature and a high pressure, the yield is low and practically practically not used.

これらの問題点を解決するため、フェノール類とアミノ化剤とを反応させ、アニリン類を得るプロセスが注目されている。このプロセスは、フェノール類とアミノ化剤を固体触媒に接触させるだけでアニリン類を製造できるために、製造プロセスも極めて簡略化できるほか、多量の廃酸やその中和に伴う排水もなく、また窒素酸化物による大気汚染も無い等利点が認められる。   In order to solve these problems, attention has been paid to a process of obtaining anilines by reacting phenols with an aminating agent. This process can produce anilines simply by bringing phenols and aminating agent into contact with a solid catalyst, so that the production process can be greatly simplified, and there is no waste acid or waste water accompanying its neutralization. There are advantages such as no air pollution caused by nitrogen oxides.

それ故、フェノール類とアミノ化剤とを反応させアニリン類を製造するための触媒研究が行われ、ジルコニウム−ニオブ、ジルコニウム−ホウ素、ジルコニウム−タングステン等のジルコニア系触媒が提案されている(例えば、特許文献1参照)。
特公昭55−039369号
Therefore, catalytic research for producing anilines by reacting phenols with an aminating agent has been conducted, and zirconia-based catalysts such as zirconium-niobium, zirconium-boron, zirconium-tungsten have been proposed (for example, Patent Document 1).
Japanese Patent Publication No.55-039369

しかし、かかるジルコニア系触媒を用いたアニリン類の製造の収率は、7.8%〜9.3%と非常に低いものである。   However, the yield of production of anilines using such a zirconia-based catalyst is as very low as 7.8% to 9.3%.

本発明は、従来のジルコニア系触媒を用いた方法に比べて、高収率でアニリン類を製造する方法を提供することを課題とする。   An object of the present invention is to provide a method for producing anilines in a high yield as compared with a method using a conventional zirconia-based catalyst.

本発明は、触媒の存在下で、フェノール類とアミノ化剤を反応させてアニリン類を製造するにあたり、触媒としてリン化合物を有するジルコニアを用いることを特徴とするアニリン類の製造方法に関する。   The present invention relates to a method for producing anilines characterized by using zirconia having a phosphorus compound as a catalyst in producing anilines by reacting phenols with an aminating agent in the presence of a catalyst.

本発明の製造方法によれば、従来方法に比べて高収率でアニリン類を製造することができる。   According to the production method of the present invention, anilines can be produced at a higher yield than conventional methods.

以下、本発明を詳細に説明する。
本発明の製造方法は、フェノール類とアミノ化剤を、触媒であるリン化合物を有するジルコニア(以下、本触媒という。)に接触させることで実施される。本発明の製造方法では、脱水酸基等の副反応が起こりにくく、優先的に所望のアニリン類を得ることができる。
Hereinafter, the present invention will be described in detail.
The production method of the present invention is carried out by bringing a phenol and an aminating agent into contact with zirconia having a phosphorus compound as a catalyst (hereinafter referred to as the present catalyst). In the production method of the present invention, side reactions such as dehydroxylation hardly occur and desired anilines can be obtained preferentially.

本触媒は、リン化合物を有するジルコニアを触媒活性成分とするものである。ここでいう「リン化合物を有するジルコニア」とは、例えば、リン酸化物とジルコニアの複酸化物、或いはPOで示されるリン酸根又はリン酸化物を含有するジルコニア等が挙げられる。本触媒は市販品をそのまま触媒として用いることができる。そして本触媒は、リン化合物を有するジルコニアの粉末を、そのまま或いはシリカ、アルミナ、シリカアルミナ等の担体、シリカ、硅藻土、カオリン、ベントナイト、アルミナ、シリカアルミナ等のバインダー、水等を加えた後、打錠機又は押し出し機で円柱状、円筒状等の所望の形状に成型して固定床触媒として用いてもよい。また本触媒は、リン化合物を有するジルコニアの粉末を、シリカ、硅藻土、カオリン、ベントナイト、アルミナシリカアルミナ等のバインダー及び水と混合してスラリーとし、これを噴霧乾燥して、球状のマイクロビーズにして流動床触媒として用いることもできる。 This catalyst uses zirconia having a phosphorus compound as a catalytically active component. Examples of the “zirconia having a phosphorus compound” include a double oxide of phosphorus oxide and zirconia, or a zirconia containing a phosphate group or a phosphate represented by PO 4 . This catalyst can use a commercial item as a catalyst as it is. The catalyst is obtained by adding a zirconia powder having a phosphorus compound as it is or after adding a carrier such as silica, alumina, silica alumina, a binder such as silica, diatomaceous earth, kaolin, bentonite, alumina, silica alumina, water, or the like. Alternatively, it may be molded into a desired shape such as a columnar shape or a cylindrical shape by a tableting machine or an extruder, and used as a fixed bed catalyst. In addition, this catalyst is prepared by mixing a powder of zirconia having a phosphorus compound with a binder such as silica, diatomaceous earth, kaolin, bentonite, alumina silica alumina, and water to form a slurry, which is spray-dried to obtain spherical microbeads. Thus, it can also be used as a fluidized bed catalyst.

また、本触媒は、ジルコニア自体及び/又は酸素存在下で焼成することによりジルコニアとなる難溶性ジルコニウム含有化合物(以下、ジルコニア前駆体という。)と、リンの酸化物、ハロゲン化物、リン酸とその塩、有機リン酸とその塩、有機リン化合物等のリン化合物から選ばれる1種或いは2種以上を用いて、混練法、浸漬法、沈着法又は蒸発乾固法等によって調整することができるが、これらの方法に限定されるものではない。具体的には、1)混練法によるときは、上記リン化合物を、粉末或いは所望の形状成型したジルコニア及び/又はジルコニア前駆体と、必要に応じて水と共に混練した後、乾燥し、必要ならば焼成すればよい。2)浸漬法によるときは、上記の可溶性リン化合物を水に溶解し、得られた溶液に、粉末或いは所望の形状成型したジルコニア及び/又はジルコニア前駆体を浸した後、乾燥し、必要ならば焼成すればよい。3)沈着法によるときは、上記の可溶性リン化合物塩の水溶液に、粉末或いは所望の形状成型したジルコニア及び/又はジルコニア前駆体を分散させ、この混合物中にアンモニア水溶液を加えることにより本触媒の表面に上記元素の水酸化物を沈着させ、濾過した後、水で洗浄して乾燥し、必要ならば焼成すればよい。4)蒸発乾固法によるときは、上記リン化合物並びに粉末或いは所望の形状成型したジルコニア及び/又はジルコニア前駆体を水中で攪拌、混合し、蒸発乾固した後、必要ならば焼成すればよい。いずれの方法においても、ジルコニア前駆体を用いて調製し焼成を行うときには通常空気雰囲気下に、ジルコニアを用いて調製し焼成を行うときには通常空気、窒素及び/又は二酸化炭素等の雰囲気下に、350〜1100℃で数時間行われるが、ジルコニアを用いた場合には触媒は気相接触反応時に反応器内で加熱されるため必ずしも触媒の焼成は必要でない。   Further, the present catalyst comprises a zirconia itself and / or a hardly soluble zirconium-containing compound (hereinafter referred to as a zirconia precursor) that becomes zirconia when calcined in the presence of oxygen, a phosphorus oxide, a halide, phosphoric acid and its It can be adjusted by kneading method, dipping method, deposition method or evaporation to dryness method using one or more selected from salts, organic phosphoric acid and salts thereof, and phosphorus compounds such as organic phosphorus compounds. However, it is not limited to these methods. Specifically, 1) When the kneading method is used, the above phosphorus compound is kneaded with powder or a zirconia and / or zirconia precursor formed in a desired shape together with water as necessary, and then dried, if necessary. What is necessary is just to bake. 2) When using the dipping method, dissolve the above-mentioned soluble phosphorus compound in water, soak the powder or zirconia and / or zirconia precursor in the desired shape in the resulting solution, and dry, if necessary. What is necessary is just to bake. 3) When the deposition method is used, the surface of the catalyst is obtained by dispersing zirconia and / or a zirconia precursor in a powder or a desired shape into an aqueous solution of the above soluble phosphorus compound salt and adding an aqueous ammonia solution to the mixture. The hydroxides of the above elements are deposited on, filtered, washed with water, dried, and calcined if necessary. 4) When the evaporation to dryness method is used, the above phosphorus compound and powder or zirconia and / or zirconia precursor formed into a desired shape are stirred and mixed in water, evaporated to dryness, and then calcined if necessary. In any of the methods, when preparing and firing using a zirconia precursor, it is usually in an air atmosphere, and when preparing and firing using zirconia, it is usually under an atmosphere of air, nitrogen and / or carbon dioxide, etc. Although it is performed at ˜1100 ° C. for several hours, when zirconia is used, the catalyst is not necessarily required to be calcined because it is heated in the reactor during the gas phase contact reaction.

本触媒におけるリン化合物とジルコニアの重量割合は、ジルコニア及びジルコニア前駆体によって或いは含有させるリン化合物の種類又はその形態によって好ましい範囲が異なり特に限定されるものではないが、ジルコニア1モルに対して、リン化合物がリン元素換算で通常0.01〜1モルである。   The weight ratio of the phosphorus compound and zirconia in the present catalyst is not particularly limited and varies depending on the type of phosphonic compound or the form of the phosphorus compound to be contained or its form, but is not particularly limited. A compound is 0.01-1 mol normally in phosphorus element conversion.

本発明の製造方法で原料として使用できるフェノール類は、ベンゼン環に水酸基を有する化合物であれば特に限定されず、置換基を有していてもよいが、フェノール及び低級アルキル基を有するフェノール類がより好ましい。低級アルキル基としては、炭素数1〜4の直鎖又は分岐鎖のアルキル基が挙げられ、具体的には、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等が挙げられる。フェノール類の具体例としては、例えばフェノール、o−クレゾール、m−クレゾール、p−クレゾール、2−エチルフェノール、3−エチルフェノール、4−エチルフェノール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,5−キシレノール等の1価フェノール類、或いは1,4−ヒドロキノン、カテコール、レゾルシン等の多価フェノール類等が挙げられる。   The phenols that can be used as a raw material in the production method of the present invention are not particularly limited as long as they are compounds having a hydroxyl group on the benzene ring, and may have a substituent, but phenols having a phenol and a lower alkyl group may be used. More preferred. Examples of the lower alkyl group include linear or branched alkyl groups having 1 to 4 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group. It is done. Specific examples of phenols include, for example, phenol, o-cresol, m-cresol, p-cresol, 2-ethylphenol, 3-ethylphenol, 4-ethylphenol, 2,3-xylenol, 2,4-xylenol, Examples include monohydric phenols such as 2,5-xylenol, 2,6-xylenol, and 3,5-xylenol, and polyhydric phenols such as 1,4-hydroquinone, catechol, and resorcin.

本発明の製造方法で使用するアミノ化剤は、アンモニア、アンモニアを発生する化合物及び/又は有機アミン類である。アンモニアを発生する化合物とは、例えば熱分解等によりアンモニアガスを発生する無機化合物が挙げられ、具体的には例えば炭酸アンモニウム、硫酸アンモニウム等が挙げられる。また有機アミン類としては、例えばメチルアミン、エチルアミン、プロピルアミン、ブチルアミン、アニリン、シクロヘキシルアミン等の1級アミン類、ジメチルアミン、ジエチルアミン等の2級アミン類等が挙げられる。これらのうち、特にアンモニアが好ましく用いられる。アミノ化剤の使用量はフェノール類1モルに対して、通常1〜50モル、好ましくは5〜30モルである。   The aminating agent used in the production method of the present invention is ammonia, a compound that generates ammonia, and / or an organic amine. Examples of the compound that generates ammonia include inorganic compounds that generate ammonia gas by, for example, thermal decomposition, and specific examples include ammonium carbonate and ammonium sulfate. Examples of the organic amines include primary amines such as methylamine, ethylamine, propylamine, butylamine, aniline and cyclohexylamine, and secondary amines such as dimethylamine and diethylamine. Of these, ammonia is particularly preferably used. The amount of the aminating agent to be used is generally 1 to 50 mol, preferably 5 to 30 mol, per 1 mol of phenols.

本発明の製造方法は、気相反応によるものが好ましい。フェノール類又はフェノール類と溶媒との混合物を、液体アンモニアと一緒に或いは別々に気化させて混合するか、又はフェノール類とアンモニアの混合物を気化させる。これら原料ガスを、触媒を充填した反応器中に供給する。かかる原料ガスは必要に応じて不活性な気体、例えば窒素、アルゴン、スチーム等を用いて希釈することもできる。原料ガスの供給速度は、重量空間速度(WHSV)として通常0.01〜0.2g/cc・hrであり、好ましくは0.05〜0.15g/cc・hrである。ここで重量空間速度とは、単位時間当たりのフェノール類の供給重量(g/hr)を、反応塔又は管に充填された触媒容積(cc)で割ることにより求められる値である。反応は連続法、回分法のいずれの方式であってもよいが、工業的見地から連続法で行うことが好ましい。反応温度は通常250〜600℃、好ましくは350〜500℃である。また、反応圧力は通常1気圧以上、好ましくは1〜50気圧、より好ましくは1〜5気圧である。   The production method of the present invention is preferably based on a gas phase reaction. Phenols or a mixture of phenols and a solvent are vaporized together with liquid ammonia or separately, or a mixture of phenols and ammonia is vaporized. These source gases are fed into a reactor filled with a catalyst. Such a raw material gas can be diluted with an inert gas such as nitrogen, argon, steam or the like, if necessary. The feed rate of the raw material gas is usually 0.01 to 0.2 g / cc · hr, preferably 0.05 to 0.15 g / cc · hr as the weight space velocity (WHSV). Here, the weight space velocity is a value obtained by dividing the feed weight (g / hr) of phenols per unit time by the catalyst volume (cc) packed in the reaction tower or tube. The reaction may be either a continuous method or a batch method, but it is preferably performed by a continuous method from an industrial standpoint. The reaction temperature is usually 250 to 600 ° C, preferably 350 to 500 ° C. Moreover, reaction pressure is 1 atmosphere or more normally, Preferably it is 1-50 atmospheres, More preferably, it is 1-5 atmospheres.

反応器から流出する反応混合ガスを、加圧であれば圧力を常圧に戻し、冷却するか又は適当な溶剤に吹き込むことで捕集し、反応混合物を得る。捕集後、抽出、蒸留等の所望の分離操作により、アニリン類を得ることができる。   If the reaction mixture gas flowing out from the reactor is pressurized, the pressure is returned to normal pressure, and the reaction mixture gas is collected by cooling or blowing into a suitable solvent to obtain a reaction mixture. After collection, anilines can be obtained by a desired separation operation such as extraction or distillation.

以下に実施例を示し、本発明をより具体的に説明するが、本発明が実施例により限定されるものでない。尚、分析には株式会社島津製作所製ガスクロマトグラフィー(以下、GCと略する。)分析装置GC−17A型を用いた。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the examples. For analysis, a gas chromatography (hereinafter abbreviated as GC) analyzer GC-17A manufactured by Shimadzu Corporation was used.

また、3,5−キシレノールの転化率並びに反応生成物の選択率及び収率は以下の式を用いてGC分析の結果から算出した。
[3,5−キシレノール]
転化率(%)=(単位時間に反応した3,5−キシレノールのモル数/単位時間に供給した3,5−キシレノールのモル数)×100
[3,5−キシリジン]
選択率(%)=(単位時間に生成した3,5−キシリジンのモル数/単位時間に反応した3,5−キシレノールのモル数)×100
収率(%)=(単位時間に生成した3,5−キシリジンのモル数/単位時間に供給した3,5−キシレノールのモル数)×100
[m−キシレン]
選択率(%)=(単位時間に生成したm−キシレンのモル数/単位時間に反応した3,5−キシレノールのモル数)×100
収率(%)=(単位時間に生成したm−キシレンのモル数/単位時間に供給した3,5−キシレノールのモル数)×100
The conversion of 3,5-xylenol and the selectivity and yield of the reaction product were calculated from the results of GC analysis using the following equations.
[3,5-xylenol]
Conversion (%) = (number of moles of 3,5-xylenol reacted per unit time / number of moles of 3,5-xylenol fed per unit time) × 100
[3,5-Xylidine]
Selectivity (%) = (number of moles of 3,5-xylidine produced per unit time / number of moles of 3,5-xylenol reacted per unit time) × 100
Yield (%) = (number of moles of 3,5-xylidine produced per unit time / number of moles of 3,5-xylenol fed per unit time) × 100
[M-xylene]
Selectivity (%) = (mole number of m-xylene produced per unit time / mole number of 3,5-xylenol reacted per unit time) × 100
Yield (%) = (number of moles of m-xylene produced per unit time / number of moles of 3,5-xylenol fed per unit time) × 100

参考例1
10重量%PO/ジルコニア(第一稀元素化学工業株式会社製、ジルコニア1モルに対して、リン酸根0.13モル含有)の粉末を60MPaでプレスし,粉砕後,10−16メッシュに分級して、成型された10重量%PO/ジルコニアを得た。
Reference example 1
10 wt% PO 4 / zirconia (Daiichi Rare Element Chemical Co., Ltd., containing 0.13 mol of phosphate radicals per mol of zirconia) is pressed at 60 MPa, pulverized, and classified to 10-16 mesh Thus, a molded 10 wt% PO 4 / zirconia was obtained.

実施例1
参考例1で得られた成型された10重量%PO/ジルコニア30cmを、を内径19.0mmφのガラス反応管に充填した。66.7wt%の3,5−キシレノールのピリジン溶液を気化させ予熱したアンモニアガス20モル倍と混合し、3,5−キシレノールのWHSV=0.1g/cc・hrで450℃に保った反応管に常圧で通じた。得られた反応混合ガスをアセトニトリルに吸収させて反応混合物を得た。得られた反応混合物のGC分析の結果を以下に示す。
3,5−キシレノールの転化率 ;99.4%
3,5−キシリジンの選択率 ;42.6%
3,5−キシリジンの収率 ;42.4%
m−キシレンの選択率 ; 0.6%
m−キシレンの収率 ; 0.6%
Example 1
The molded 10 wt% PO 4 / zirconia 30 cm 3 obtained in Reference Example 1 was filled into a glass reaction tube having an inner diameter of 19.0 mmφ. A 66.7 wt% 3,5-xylenol pyridine solution mixed with 20 moles of vaporized preheated ammonia gas and maintained at 450 ° C. with WHSV of 3,5-xylenol = 0.1 g / cc · hr At normal pressure. The obtained reaction mixture gas was absorbed into acetonitrile to obtain a reaction mixture. The result of GC analysis of the obtained reaction mixture is shown below.
Conversion of 3,5-xylenol; 99.4%
Selectivity of 3,5-xylidine; 42.6%
Yield of 3,5-xylidine; 42.4%
m-Xylene selectivity; 0.6%
The yield of m-xylene; 0.6%

実施例2
実施例1の反応温度を450℃から425℃にかえた以外は実施例1と同様にして行い、反応混合物を得た。得られた反応混合物のGC分析の結果を以下に示す。
3,5−キシレノールの転化率 ;99.0%
3,5−キシリジンの選択率 ;50.3%
3,5−キシリジンの収率 ;51.8%
m−キシレンの選択率 ; 0.2%
m−キシレンの収率 ; 0.2%
Example 2
A reaction mixture was obtained in the same manner as in Example 1 except that the reaction temperature in Example 1 was changed from 450 ° C to 425 ° C. The result of GC analysis of the obtained reaction mixture is shown below.
Conversion of 3,5-xylenol; 99.0%
Selectivity of 3,5-xylidine; 50.3%
Yield of 3,5-xylidine; 51.8%
Selectivity of m-xylene; 0.2%
yield of m-xylene; 0.2%

Claims (3)

触媒の存在下で、フェノール類とアミノ化剤を反応させてアニリン類を製造するにあたり、触媒としてリン化合物を有するジルコニアを用いることを特徴とするアニリン類の製造方法。 A method for producing anilines characterized in that zirconia having a phosphorus compound is used as a catalyst in producing anilines by reacting phenols with an aminating agent in the presence of a catalyst. リン化合物を有するジルコニアがリン酸根又はリン酸化物を含有するジルコニアである、請求項1に記載の方法。 The method according to claim 1, wherein the zirconia having a phosphorus compound is zirconia containing a phosphate group or a phosphorus oxide. リン化合物を有するジルコニアがリン酸化物とジルコニアの複酸化物である、請求項1に記載の方法。

The method according to claim 1, wherein the zirconia having a phosphorus compound is a double oxide of phosphorus oxide and zirconia.

JP2006048434A 2006-02-24 2006-02-24 Method for producing aniline compound Pending JP2007223963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006048434A JP2007223963A (en) 2006-02-24 2006-02-24 Method for producing aniline compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006048434A JP2007223963A (en) 2006-02-24 2006-02-24 Method for producing aniline compound

Publications (1)

Publication Number Publication Date
JP2007223963A true JP2007223963A (en) 2007-09-06

Family

ID=38546101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006048434A Pending JP2007223963A (en) 2006-02-24 2006-02-24 Method for producing aniline compound

Country Status (1)

Country Link
JP (1) JP2007223963A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896475A (en) * 1972-02-08 1973-12-10
JPH01265065A (en) * 1988-04-14 1989-10-23 Mitsui Toatsu Chem Inc Method for aminating dihydric phenols
JPH03112946A (en) * 1989-09-27 1991-05-14 Mitsui Toatsu Chem Inc Amination of dihydric phenol
JP2002234732A (en) * 2001-02-02 2002-08-23 Daiichi Kigensokagaku Kogyo Co Ltd Zirconia-base composite material and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896475A (en) * 1972-02-08 1973-12-10
JPH01265065A (en) * 1988-04-14 1989-10-23 Mitsui Toatsu Chem Inc Method for aminating dihydric phenols
JPH03112946A (en) * 1989-09-27 1991-05-14 Mitsui Toatsu Chem Inc Amination of dihydric phenol
JP2002234732A (en) * 2001-02-02 2002-08-23 Daiichi Kigensokagaku Kogyo Co Ltd Zirconia-base composite material and method for producing the same

Similar Documents

Publication Publication Date Title
WO2015099053A1 (en) Cyanopyridine manufacturing method, benzonitrile manufacturing method, carbonate ester manufacturing method, and carbonate ester manufacturing apparatus
Mao et al. Heterogeneous cobalt catalysts for reductive amination with H 2: general synthesis of secondary and tertiary amines
Tayebee et al. An efficient and green synthetic protocol for the preparation of bis (indolyl) methanes catalyzed by H6P2W18O62· 24H2O, with emphasis on the catalytic proficiency of Wells-Dawson versus Keggin heteropolyacids
EA025024B1 (en) Solid base catalyst
CN113061091B (en) Preparation method of N-alkylated derivative of primary amine compound
Kim et al. Heterogeneously catalyzed self-condensation of primary amines to secondary amines by supported copper catalysts
JPS5822088B2 (en) Selective orthoalkylation method for phenolic compounds
Zhang et al. Silver catalyzed bromination of aromatics with N-bromosuccinimide
CN103998408B (en) For the method for dehydration of alcohols
Ramdar et al. Visible light active CdS nanorods: one-pot synthesis of aldonitrones
US9452970B2 (en) Method for hydrogenating nitroaromatic systems with selected platinum catalysts
Song et al. Organotin-oxomolybdate coordination polymer as catalyst for synthesis of unsymmetrical organic carbonates
CN110732347B (en) Binuclear ionic liquid type heteropoly acid salt solid acid catalyst for synthesizing chalcone derivatives, preparation method and application
US5817886A (en) Process for production of alkyl ether of phenol and catalyst used therein
Zeng et al. Ba-doped Pd/Al2O3 for continuous synthesis of diphenylamine via dehydrogenative aromatization
US4361709A (en) Process for the production of o-alkylated phenols
JP2007223963A (en) Method for producing aniline compound
Singh et al. The cooperative effect of Co and CoO in Co/CoO enabled efficient catalytic hydrogenation and demethoxylation of guaiacol to cyclohexanol
CN108025284B (en) Catalyst for dehydration of glycerin, method for preparing the same, and method for producing acrolein using the same
TWI770091B (en) Method for producing aromatic nitrile compound and method for producing carbonate
US6791000B2 (en) Process for vapor phase nitration of benzene using nitric acid over molybdenum silica catalyst
JP4294209B2 (en) Process for producing ortho-position alkylated hydroxyaromatic compounds
CN111138317A (en) Method for preparing o-hydroxybenzonitrile by using methyl salicylate and urea
JP2004210787A (en) Manufacturing method of aminodiphenylamine
CN111389403B (en) Zn/Co doped carbon material and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605