JP2007223904A - pi-CONJUGATED COMPOUND HAVING CARDO STRUCTURE, PROCESS FOR PREPARING THE SAME AND USE THEREOF - Google Patents

pi-CONJUGATED COMPOUND HAVING CARDO STRUCTURE, PROCESS FOR PREPARING THE SAME AND USE THEREOF Download PDF

Info

Publication number
JP2007223904A
JP2007223904A JP2006036378A JP2006036378A JP2007223904A JP 2007223904 A JP2007223904 A JP 2007223904A JP 2006036378 A JP2006036378 A JP 2006036378A JP 2006036378 A JP2006036378 A JP 2006036378A JP 2007223904 A JP2007223904 A JP 2007223904A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
substituent
independently
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006036378A
Other languages
Japanese (ja)
Other versions
JP5011743B2 (en
Inventor
Shoichi Nishiyama
正一 西山
Naoki Matsumoto
直樹 松本
Takanori Miyazaki
高則 宮崎
Hisao Eguchi
久雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006036378A priority Critical patent/JP5011743B2/en
Publication of JP2007223904A publication Critical patent/JP2007223904A/en
Application granted granted Critical
Publication of JP5011743B2 publication Critical patent/JP5011743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/001Pyrene dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new light-emitting material stably holding a thin film without crystallizing over a long period and forming a film by a coating method such as a spin coating method by high solubility in addition to a vacuum deposition method, especially a blue light-emitting material or an electronic transport material. <P>SOLUTION: A process for preparing the π-conjugated compound is carried out as follows. A fluorene intermediate having a specific structure is reacted with a boronic acid compound A having a specified structure in the presence of a transition metal catalyst. The resultant compound is deprotected in the presence of an acid catalyst, further trifluoromethanesulfonylated and then reacted with a boronic acid compound B having a specific structure again in the presence of the transition metal catalyst. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、カルド構造を有するπ共役化合物並びにその製造方法及び有機エレクトロルミネッセンス(EL)素子に関するものである。カルド構造を有するπ共役化合物は、広く有機半導体材料に使用でき、更に具体的には、平面光源や表示に使用される有機EL素子の発光材料若しくは電子輸送材料、又は有機トランジスタ材料として利用できる。   The present invention relates to a π-conjugated compound having a cardo structure, a production method thereof, and an organic electroluminescence (EL) device. The π-conjugated compound having a cardo structure can be widely used as an organic semiconductor material, and more specifically, can be used as a light emitting material or an electron transport material of an organic EL element used for a flat light source or a display, or an organic transistor material.

近年、自発光、高速応答性、高視野角の特徴を有するフラットパネルディスプレイとして、有機エレクトロルミネッセンス素子等が注目されている。そして、その構成材料として、有機発光材料への関心が高まっている。有機発光材料の第一の利点は、分子設計によって、材料の光学的な性質をある程度コントロールできるところにあり、これによって赤、青、緑の3原色発光をすべてそれぞれの発光材料で作製したフルカラー有機発光素子の実現が可能となるものである。   In recent years, an organic electroluminescence element or the like has attracted attention as a flat panel display having features of self-light emission, high-speed response, and high viewing angle. As a constituent material, interest in organic light emitting materials is increasing. The first advantage of organic light-emitting materials is that the optical properties of the materials can be controlled to some extent by the molecular design, and as a result, full-color organic materials that produce all three primary colors of red, blue, and green with each light-emitting material. A light emitting element can be realized.

これまでに数多くの材料が開発されているが、その多くが有機溶媒に対する低い溶解性と、それ自体の高い結晶性のために、有機EL材料としては必ずしも好適な化合物とはならなかった。例えば、青色発光材料又は電子輸送材料として知られているポリフェニレン化合物、代表的な化合物としてセキシフェニル誘導体又はその類似化合物が挙げられるが、それ自体の高い結晶性のため、真空蒸着により薄膜を形成した時に凝集が起こり、安定な薄膜が得られず、それを有機EL素子等の有機薄膜デバイスに応用した場合、ショート又はダークスポット等が発生する可能性が大きいという問題があった(例えば、特許文献1及び非特許文献1参照)。   Many materials have been developed so far, but many of them are not necessarily suitable compounds as organic EL materials because of their low solubility in organic solvents and their high crystallinity. For example, polyphenylene compounds known as blue light emitting materials or electron transport materials, and representative compounds include sexiphenyl derivatives or similar compounds, but due to their high crystallinity, when a thin film is formed by vacuum deposition, When aggregation occurs and a stable thin film cannot be obtained, and it is applied to an organic thin film device such as an organic EL element, there is a problem that there is a high possibility that a short or dark spot will occur (for example, Patent Document 1). And Non-Patent Document 1).

また、セキシフェニルをスピロ4級炭素で結合させたスピロ−6φは、高いガラス転移温度(Tg)を有し、スピンコート法により作製した有機EL素子中でも長時間結晶化することがなく、青色発光を示すと記載されているものの、十分に満足のいくものではなかった(例えば、特許文献1参照)。   Spiro-6φ in which sexiphenyl is bonded with spiro quaternary carbon has a high glass transition temperature (Tg) and does not crystallize for a long time even in an organic EL device produced by spin coating, and emits blue light. Although described as showing, it was not fully satisfactory (see, for example, Patent Document 1).

更に、電子輸送材料、正孔ブロック材料として有用なバソフェナントロリンは、電子移動度に関しては高い値を示すものの、長期の薄膜安定性が低いため、素子寿命の観点からは問題を有している。そのため、フェナントロリン誘導体の薄膜安定性及び電子親和性を改良するため、9,9−ジアルキルフルオレニレン基を導入したフェナントロリン誘導体が報告されている(例えば、特許文献2参照)。   Furthermore, although bathophenanthroline useful as an electron transport material and a hole blocking material shows a high value in terms of electron mobility, it has a problem from the viewpoint of device lifetime because of its low long-term thin film stability. Therefore, in order to improve the thin film stability and electron affinity of the phenanthroline derivative, a phenanthroline derivative into which a 9,9-dialkylfluorenylene group is introduced has been reported (for example, see Patent Document 2).

特開平7−278537号公報JP-A-7-278537 特開平2004−277377公報Japanese Patent Laid-Open No. 2004-277377 有機EL材料とディスプレー(シー エム シー出版)p195Organic EL materials and displays (CMC Publishing) p195

本発明の目的は、長期に渡り結晶化せずに薄膜が安定に保持され、且つ真空蒸着法に加えて、高い溶解性によるスピンコート法等の塗布法によっても成膜可能な新規な発光材料、特に青色発光材料、正孔ブロック材料又は電子輸送材料を提供することにある。   An object of the present invention is to provide a novel light-emitting material in which a thin film is stably maintained without being crystallized over a long period of time and can be formed by a coating method such as a spin coating method with high solubility in addition to a vacuum deposition method In particular, it is to provide a blue light emitting material, a hole blocking material or an electron transporting material.

本発明者らは鋭意検討した結果、一般式(1)で表されるカルド構造を有する特定のπ共役化合物が、熱安定性の指標であるガラス転移温度が高いこと、そのうちの多くの化合物が結晶性化合物ではなく、非晶質構造をとることから薄膜安定性に優れること、結晶性を示したとしても、カルド構造(カルドとは、ちょうつがいを意味する言葉であり、主鎖に対し環状の基が直接結合したものをいう)のためか、長期に渡って真空蒸着法のみならずスピンコート等の塗布法によっても薄膜が白濁化しないこと、及び特に有機エレクトロルミネッセンス素子において発光材料、正孔ブロック材料、電子輸送材料として有用であることを見出し、本発明を完成するに至った。即ち、本発明は、一般式(1)で表されるカルド構造を有するπ共役化合物並びにその製造方法及び用途に関するものである。   As a result of intensive studies, the present inventors have found that a specific π-conjugated compound having a cardo structure represented by the general formula (1) has a high glass transition temperature, which is an indicator of thermal stability, and many of these compounds Although it is not a crystalline compound, it has an amorphous structure, so it has excellent thin film stability, and even if it shows crystallinity, it has a cardo structure (cardo means a hinge and is cyclic to the main chain. The thin film does not become clouded not only by vacuum deposition but also by a coating method such as spin coating over a long period of time, and particularly in organic electroluminescence devices, It has been found useful as a hole blocking material and an electron transporting material, and the present invention has been completed. That is, the present invention relates to a π-conjugated compound having a cardo structure represented by the general formula (1), and a production method and use thereof.

Figure 2007223904
(式中、R〜Rは各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基を有していてもよいフェニル基、ナフチル基若しくはフェノキシ基、又はハロゲン原子を表し、Arは各々独立して下記一般式(2)又は(3)で表される基を表す。Arは各々独立して置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24のアリール基又は炭素数3〜24のヘテロアリール基を表す。)
Figure 2007223904
(Wherein R 1 and R 2 each independently have a hydrogen atom, a linear, branched or cyclic alkyl group or alkoxy group having 1 to 18 carbon atoms which may have a substituent, or a substituent. which may be a phenyl group, a naphthyl group or a phenoxy group, or a halogen atom, Ar 1 is .Ar 2 each independently represents a group represented by the following general formula (2) or (3) each independently Represents an aryl group having 6 to 24 carbon atoms or a heteroaryl group having 3 to 24 carbon atoms which may have a substituent (excluding an amino group).

Figure 2007223904
(式中、R〜Rは各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24のアリール基若しくはアリールオキシ基、炭素数3〜24のヘテロアリール基、又はハロゲン原子を表す。l,mは0〜3の整数、nは0〜2の整数を表す。)
以下、本発明に関し詳細に説明する。
Figure 2007223904
(In the formula, R 3 to R 6 are each independently a hydrogen atom, a linear, branched or cyclic alkyl group or alkoxy group having 1 to 18 carbon atoms which may have a substituent, a substituent (provided that Represents an aryl group having 6 to 24 carbon atoms or an aryloxy group, a heteroaryl group having 3 to 24 carbon atoms, or a halogen atom, which may have a non-amino group, and l and m are integers of 0 to 3. , N represents an integer of 0-2.)
Hereinafter, the present invention will be described in detail.

一般式(1)で表されるカルド構造を有するπ共役化合物において、Arは各々独立して下記一般式(2)又は(3)で表される基である。 In the π-conjugated compound having a cardo structure represented by the general formula (1), Ar 1 is each independently a group represented by the following general formula (2) or (3).

Figure 2007223904
(式中、R〜Rは各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24のアリール基若しくはアリールオキシ基、炭素数3〜24のヘテロアリール基、又はハロゲン原子を表す。l,mは0〜3の整数、nは0〜2の整数を表す。)
アルキル基としては、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基が挙げられ、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基、トリフルオロメチル基、シクロプロピル基、シクロヘキシル基、1,3−シクロヘキサジエニル基又は2−シクロペンテン−1−イル基等を例示することができる。
Figure 2007223904
(In the formula, R 3 to R 6 are each independently a hydrogen atom, a linear, branched or cyclic alkyl group or alkoxy group having 1 to 18 carbon atoms which may have a substituent, a substituent (provided that Represents an aryl group having 6 to 24 carbon atoms or an aryloxy group, a heteroaryl group having 3 to 24 carbon atoms, or a halogen atom, which may have a non-amino group, and l and m are integers of 0 to 3. , N represents an integer of 0-2.)
Examples of the alkyl group include a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms which may have a substituent. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, Butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, stearyl, trichloromethyl, trifluoromethyl, cyclopropyl, cyclohexyl, 1,3-cyclohexadi Examples include an enyl group and a 2-cyclopenten-1-yl group.

アルコキシ基としては、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルコキシ基が挙げられ、具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ステアリルオキシ基又はトリフルオロメトキシ基等を例示することができる。   Examples of the alkoxy group include linear, branched or cyclic alkoxy groups having 1 to 18 carbon atoms which may have a substituent, and specifically include a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group. , N-butoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, stearyloxy group, trifluoromethoxy group, and the like.

置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24のアリール基としては、具体的には、フェニル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、2−エチルフェニル基、4−n−プロピルフェニル基、4−n−ブチルフェニル基、4−イソブチルフェニル基、4−tert−ブチルフェニル基、4−シクロペンチルフェニル基、4−シクロヘキシルフェニル基、2,4−ジメチルフェニル基、3,5−ジメチルフェニル基、3,4−ジメチルフェニル基、1−ビフェニリル基、1−ナフチル基、2−ナフチル基、9−フェナントリル基、アントリル基、ピレニル基又は9,9−ジメチル−2−フルオレニル基等を挙げることができる。   Specific examples of the aryl group having 6 to 24 carbon atoms which may have a substituent (excluding an amino group) include a phenyl group, a 4-methylphenyl group, a 3-methylphenyl group, 2- Methylphenyl group, 4-ethylphenyl group, 3-ethylphenyl group, 2-ethylphenyl group, 4-n-propylphenyl group, 4-n-butylphenyl group, 4-isobutylphenyl group, 4-tert-butylphenyl Group, 4-cyclopentylphenyl group, 4-cyclohexylphenyl group, 2,4-dimethylphenyl group, 3,5-dimethylphenyl group, 3,4-dimethylphenyl group, 1-biphenylyl group, 1-naphthyl group, 2- A naphthyl group, 9-phenanthryl group, anthryl group, pyrenyl group or 9,9-dimethyl-2-fluorenyl group can be exemplified.

置換基(但し、アミノ基を除く)を有していてもよい炭素数3〜24のヘテロアリール基としては、具体的には、ピリジル基、ビピリジル基又はキノリル基等の含窒素複素環式芳香族基が挙げられる。   Specific examples of the heteroaryl group having 3 to 24 carbon atoms that may have a substituent (excluding an amino group) include nitrogen-containing heterocyclic aromatics such as a pyridyl group, a bipyridyl group, or a quinolyl group. Group.

中でも、フェニル基、ピリジル基がより好ましい。   Among these, a phenyl group and a pyridyl group are more preferable.

置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24のアリールオキシ基としては、具体的には、フェノキシ基、p−tert−ブチルフェノキシ基、3−フルオロフェノキシ基又は4−フルオロフェノキシ基等を挙げることができる。   Specific examples of the aryloxy group having 6 to 24 carbon atoms which may have a substituent (excluding an amino group) include a phenoxy group, a p-tert-butylphenoxy group, and a 3-fluorophenoxy group. Or 4-fluorophenoxy group etc. can be mentioned.

ハロゲン原子としては、弗素、塩素、臭素又はヨウ素原子が挙げられる。   Examples of the halogen atom include a fluorine, chlorine, bromine or iodine atom.

上記一般式(1)で表されるπ共役化合物において、Arは各々独立して置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24のアリール基であり、具体的には、例えば、フェニル基、1−ナフチル基、2−ナフチル基、2−アントリル基、9−アントリル基、2−フルオレニル基、フェナントリル基、ピレニル基、クリセニル基、ペリレニル基、ピセニル基が挙げられる。置換基(但し、アミノ基を除く)を有していてもよい炭素数3〜24のヘテロアリール基は、酸素原子、窒素原子及び硫黄原子のうち少なくとも一つのヘテロ原子を含有する芳香族基であり、例えば、4−キノリル基、4−ピリジル基、3−ピリジル基、2−ピリジル基、2−ジピリジリル基、1,10−フェナントロリニル基、アザフルオレニル基、3−フリル基、2−フリル基、3−チエニル基、2−チエニル基、2−オキサゾリル基、2−チアゾリル基、2−ベンゾオキサゾリル基、2−ベンゾチアゾリル基、2−ベンゾイミダゾリル基等を挙げることができるが、これらに限定されるものではない。置換基としては、上記R〜Rに記載された置換基を例示することができる。 In the π-conjugated compound represented by the general formula (1), each Ar 2 is independently an aryl group having 6 to 24 carbon atoms which may have a substituent (excluding an amino group), Specifically, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 2-anthryl group, 9-anthryl group, 2-fluorenyl group, phenanthryl group, pyrenyl group, chrysenyl group, perylenyl group, and picenyl group are included. Can be mentioned. The heteroaryl group having 3 to 24 carbon atoms which may have a substituent (excluding an amino group) is an aromatic group containing at least one heteroatom among an oxygen atom, a nitrogen atom and a sulfur atom. Yes, for example, 4-quinolyl group, 4-pyridyl group, 3-pyridyl group, 2-pyridyl group, 2-dipyridylyl group, 1,10-phenanthrolinyl group, azafluorenyl group, 3-furyl group, 2-furyl Group, 3-thienyl group, 2-thienyl group, 2-oxazolyl group, 2-thiazolyl group, 2-benzoxazolyl group, 2-benzothiazolyl group, 2-benzimidazolyl group, etc., but are not limited thereto. Is not to be done. The substituent can be exemplified substituents described above R 1 to R 6.

中でも、ナフチル基、フェナントリル基、フルオレニル基の他、アントリル基、ピレニル基、クリセニル基、ピセニル基、ペリレニル基又はベンゾ[c]フルオレニル基等の縮合環式芳香族基、1,10−フェナントロリニル基、アザフルオレニル基等のヘテロアリール基、下記一般式(6a)又は(6b)で表される置換基が好ましい。   Among them, in addition to naphthyl group, phenanthryl group and fluorenyl group, condensed cyclic aromatic groups such as anthryl group, pyrenyl group, chrysenyl group, picenyl group, perylenyl group or benzo [c] fluorenyl group, 1,10-phenanthroli A heteroaryl group such as a nyl group or an azafluorenyl group, or a substituent represented by the following general formula (6a) or (6b) is preferred.

Figure 2007223904
(式中、R13〜R15は、各々独立して水素原子、置換基を有していてもよい炭素数1〜10の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基を有していてもよい炭素数6〜24のアリール基若しくは炭素数3〜24のヘテロアリール基を表す。p及びqは1≦p+q≦3を満たす整数、s,xは0〜2の整数を表す。)
中でも、下記一般式(4a)、(4b)又は(5)で表される縮合環式芳香族基若しくはヘテロアリール基がより好ましい。
Figure 2007223904
(In the formula, each of R 13 to R 15 independently has a hydrogen atom, a linear, branched or cyclic alkyl group or alkoxy group having 1 to 10 carbon atoms which may have a substituent, and a substituent. Represents an aryl group having 6 to 24 carbon atoms or a heteroaryl group having 3 to 24 carbon atoms, p and q are integers satisfying 1 ≦ p + q ≦ 3, and s and x represent integers of 0 to 2. .)
Among these, a condensed cyclic aromatic group or heteroaryl group represented by the following general formula (4a), (4b) or (5) is more preferable.

Figure 2007223904
(式中、R〜Rは、各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基を有していてもよい炭素数6〜24のアリール基若しくはアリールオキシ基、炭素数3〜24のヘテロアリール基、又はハロゲン原子を表す。また、Xは炭素原子又は窒素原子を表す。)
Figure 2007223904
(Wherein R 7 to R 9 each independently have a hydrogen atom, a C 1-18 linear, branched or cyclic alkyl or alkoxy group which may have a substituent, or a substituent. And optionally represents an aryl group or aryloxy group having 6 to 24 carbon atoms, a heteroaryl group having 3 to 24 carbon atoms, or a halogen atom, and X represents a carbon atom or a nitrogen atom.)

Figure 2007223904
(式中、R10〜R12は、各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基を有していてもよい炭素数6〜24のアリール基若しくはアリールオキシ基、炭素数3〜24のヘテロアリール基、又はハロゲン原子を表す。但し、R10とR11は互いに結合して環を形成していてもよい。また、Xは炭素原子又は窒素原子を表す。)
表1〜4に上記一般式(1)で表されるπ共役化合物の具体例を示すが、これら化合物に限定されるものではない。
Figure 2007223904
(Wherein R 10 to R 12 each independently have a hydrogen atom, a C 1-18 linear, branched or cyclic alkyl or alkoxy group which may have a substituent, or a substituent. Represents an optionally substituted aryl group or aryloxy group having 6 to 24 carbon atoms, a heteroaryl group having 3 to 24 carbon atoms, or a halogen atom, provided that R 10 and R 11 are bonded to each other to form a ring. X represents a carbon atom or a nitrogen atom.)
Although the specific example of (pi) conjugated compound represented by the said General formula (1) to Tables 1-4 is shown, it is not limited to these compounds.

Figure 2007223904
Figure 2007223904

Figure 2007223904
Figure 2007223904

Figure 2007223904
Figure 2007223904

Figure 2007223904
前記一般式(1)で表されるπ共役化合物は、公知の反応形式(例えば、Chem. Rev.19955,95,p2457−2483参照)により合成可能である。例えば、下記一般式(7)で表されるフルオレン中間体と下記一般式(8)で表されるボロン酸化合物Aとを遷移金属触媒存在下に反応させ、酸触媒存在下に脱保護し、更にトリフルオロメタンスルホニル化した後、更に遷移金属触媒存在下にボロン酸化合物B(9)と反応させることにより合成することができる。
Figure 2007223904
The π-conjugated compound represented by the general formula (1) can be synthesized by a known reaction format (see, for example, Chem. Rev. 1995, 95, p2457-2483). For example, a fluorene intermediate represented by the following general formula (7) and a boronic acid compound A represented by the following general formula (8) are reacted in the presence of a transition metal catalyst, and deprotected in the presence of an acid catalyst, Furthermore, after trifluoromethanesulfonylation, it can be synthesized by further reacting with boronic acid compound B (9) in the presence of a transition metal catalyst.

遷移金属触媒としては、ニッケル触媒、パラジウム触媒を例示することができる。より具体的には、ニッケル触媒として、1,4−ビス(ジフェニルホスフィノ)ブタンニッケル(II)クロライド、1,1’−ビス(ジフェニルホスフィノ)フェロセンニッケル(II)クロライド、1,2−ビス(ジフェニルホスフィノ)エタンニッケル(II)クロライド、1,3−ビス(ジフェニルホスフィノ)プロパンニッケル(II)クロライド等が挙げられる。また、パラジウム触媒として、テトラキス(トリフェニルホスフィン)パラジウム(0)、ビス(トリフェニルホスフィノ)パラジウム(II)クロライド、1,1’−ビス(ジフェニルホスフィノ)フェロセンパラジウム(II)クロライド、1,2−ビス(ジフェニルホスフィノ)エタンパラジウム(II)クロライド、1,3−ビス(ジフェニルホスフィノ)プロパンパラジウム(II)クロライド、1,4−ビス(ジフェニルホスフィノ)ブタンパラジウム(II)クロライド、ビス(トリ−ターシャリーブチルホスフィン)パラジウム(0)、ポリマー固定型パラジウム触媒、パラジウム炭素等が挙げられる。   Examples of the transition metal catalyst include a nickel catalyst and a palladium catalyst. More specifically, as the nickel catalyst, 1,4-bis (diphenylphosphino) butanenickel (II) chloride, 1,1′-bis (diphenylphosphino) ferrocene nickel (II) chloride, 1,2-bis (Diphenylphosphino) ethane nickel (II) chloride, 1,3-bis (diphenylphosphino) propane nickel (II) chloride and the like. Further, tetrakis (triphenylphosphine) palladium (0), bis (triphenylphosphino) palladium (II) chloride, 1,1′-bis (diphenylphosphino) ferrocene palladium (II) chloride, 1, 2-bis (diphenylphosphino) ethanepalladium (II) chloride, 1,3-bis (diphenylphosphino) propanepalladium (II) chloride, 1,4-bis (diphenylphosphino) butanepalladium (II) chloride, bis (Tri-tertiary butyl phosphine) palladium (0), polymer fixed palladium catalyst, palladium carbon and the like.

Figure 2007223904
(式中、Zはフェノール基の保護基であり、R〜Rは各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基を有していてもよいフェニル基、ナフチル基若しくはフェノキシ基、又はハロゲン原子を表し、Xはヨウ素原子、臭素原子又は塩素原子を表す。)
Figure 2007223904
(In the formula, Z is a protecting group for a phenol group, and R 1 and R 2 are each independently a hydrogen atom, a linear, branched or cyclic alkyl having 1 to 18 carbon atoms which may have a substituent. A group or an alkoxy group, an optionally substituted phenyl group, a naphthyl group or a phenoxy group, or a halogen atom, and X represents an iodine atom, a bromine atom or a chlorine atom.)

Figure 2007223904
(式中、Arは各々独立して下記一般式(2)又は(3)で表される基を表す。Arは各々独立して置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24のアリール基又は炭素数3〜24のヘテロアリール基を表す。)
Figure 2007223904
(In the formula, each Ar 1 independently represents a group represented by the following general formula (2) or (3). Each Ar 2 independently has a substituent (excluding an amino group). Represents an aryl group having 6 to 24 carbon atoms or a heteroaryl group having 3 to 24 carbon atoms.

Figure 2007223904
(式中、R〜Rは各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24のアリール基若しくはアリールオキシ基、炭素数3〜24のヘテロアリール基、又はハロゲン原子を表す。l,mは0〜3の整数、nは0〜2の整数を表す。)
Zは、公知のフェノール性水酸基の保護基(例えば、Protecting Group in Organic Synthesis, John Wiley & Sons)であれば特に制限はないが、脱離の容易さの観点から、エトキシエトキシメチル基、メトキシメチル基等のアルコキシアルキル基が好ましい。
Figure 2007223904
(In the formula, R 3 to R 6 are each independently a hydrogen atom, a linear, branched or cyclic alkyl group or alkoxy group having 1 to 18 carbon atoms which may have a substituent, a substituent (provided that Represents an aryl group having 6 to 24 carbon atoms or an aryloxy group, a heteroaryl group having 3 to 24 carbon atoms, or a halogen atom, which may have a non-amino group, and l and m are integers of 0 to 3. , N represents an integer of 0-2.)
Z is not particularly limited as long as it is a known protecting group for a phenolic hydroxyl group (for example, Protection Group in Organic Synthesis, John Wiley & Sons), but from the viewpoint of ease of elimination, ethoxyethoxymethyl group, methoxymethyl An alkoxyalkyl group such as a group is preferred.

フェノール性水酸基の保護基は、酸触媒存在下に脱離させることができる。酸触媒としては、塩酸、硝酸、硫酸、p−トルエンスルホン酸、メタンスルホン酸、三フッ化ホウ素等が挙げられる。これらの酸触媒中、塩酸が特に好ましい。   The protecting group for the phenolic hydroxyl group can be removed in the presence of an acid catalyst. Examples of the acid catalyst include hydrochloric acid, nitric acid, sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid, boron trifluoride and the like. Of these acid catalysts, hydrochloric acid is particularly preferred.

より具体的な合成法として、Zがメトキシメチル基の場合の合成例を簡単に下記一般式(10)に例示することができる。   As a more specific synthesis method, a synthesis example in which Z is a methoxymethyl group can be simply illustrated by the following general formula (10).

Figure 2007223904
本発明のカルド構造を有するπ共役化合物は、特に有機エレクトロルミネッセンス素子の青色発光材料、正孔ブロック材料、電子輸送材料に使用できる。正孔ブロック材料は、素子に用いられる発光材料、例えば緑色蛍光材料であるアルミニウムトリスキノリノール錯体(Alq)、燐光ホスト材料である4,4’−N,N’−ジカルバゾール−ビフェニル(CBP)のイオン化ポテンシャルより高いほうが好ましい。また、電子輸送材料は、従来のAlq、バソフェナントロリンの電子親和性と同等以上がより好ましい。更に、電子輸送材料は、従来材料のAlqの電子移動度(10−6cm/V・s程度)より大きいことがより好ましい。上記イオン化ポテンシャルは、通常、光電子分光法又はサイクリックボルタンメトリにより測定可能である。更に、電子親和性は、光電子分光法から求められるイオン化ポテンシャル及び吸収スペクトルの吸収末端のエネルギーから求めるか、サイクリックボルタンメトリにより測定可能である。
Figure 2007223904
The π-conjugated compound having a cardo structure of the present invention can be used particularly for a blue light emitting material, a hole blocking material, and an electron transporting material of an organic electroluminescence device. The hole blocking material is a light emitting material used in the device, for example, an aluminum triskinolinol complex (Alq 3 ) which is a green fluorescent material, or 4,4′-N, N′-dicarbazole-biphenyl (CBP) which is a phosphorescent host material. A higher ionization potential is preferable. The electron transport material is more preferably equal to or higher than the electron affinity of conventional Alq 3 and bathophenanthroline. Furthermore, the electron transport material is more preferably larger than the electron mobility (about 10 −6 cm 2 / V · s) of the conventional material Alq 3 . The ionization potential can usually be measured by photoelectron spectroscopy or cyclic voltammetry. Furthermore, the electron affinity can be determined from the ionization potential obtained from photoelectron spectroscopy and the energy at the absorption end of the absorption spectrum, or can be measured by cyclic voltammetry.

また、本発明のカルド構造を有するπ共役化合物は、従来材料とは異なり、薄膜安定性に優れる利点を有する。従って、有機EL素子若しくは電子写真感光体等の発光材料、正孔ブロック材料及び電子輸送材料としてのみでなく、有機トランジスタ材料、光電変換素子、太陽電池、イメージセンサー等の有機半導体材料のいずれの分野においても使用できる。   Further, unlike the conventional materials, the π-conjugated compound having a cardo structure of the present invention has an advantage of excellent thin film stability. Therefore, not only as a light emitting material such as an organic EL element or an electrophotographic photosensitive member, a hole blocking material and an electron transport material, but also in any field of organic semiconductor materials such as organic transistor materials, photoelectric conversion elements, solar cells, and image sensors. Can also be used.

本発明のカルド構造を有するπ共役化合物は、従来の材料と比較して、薄膜安定性及び耐久性に優れた材料であり、有機EL素子若しくは電子写真感光体等の発光材料及び電子輸送材料としてのみでなく、有機トランジスタ材料、光電変換素子、太陽電池、イメージセンサー等の広範な有機半導体材料として有用である。   The π-conjugated compound having a cardo structure of the present invention is a material excellent in thin film stability and durability as compared with conventional materials, and as a light-emitting material and an electron transport material such as an organic EL element or an electrophotographic photosensitive member. In addition, it is useful as a wide range of organic semiconductor materials such as organic transistor materials, photoelectric conversion elements, solar cells, and image sensors.

以下、本発明を実施例に基づき、更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

なお、FDMS(電界脱離質量分析法)測定は、日立製作所製 M−80Bを用いて行った。   In addition, FDMS (field desorption mass spectrometry) measurement was performed using Hitachi, Ltd. M-80B.

NMR測定は、バリアン社製 GEMINI−200を用いて行った。         NMR measurement was performed using GEMINI-200 manufactured by Varian.

GCMS測定は、日本電子(株)製 JMS−K9を用いて行った。         The GCMS measurement was performed using JMS-K9 manufactured by JEOL Ltd.

元素分析測定は、パーキンエルマー(株)製 2400IIを用いて行った。         Elemental analysis measurement was performed using Perkin Elmer 2400II.

合成例1(2,7−ジブロモ−9,9’−ビス[4−(メトキシメチルオキシ)フェニル]−9H−フルオレンの合成)
100mLナス型フラスコに、窒素気流下、水素化ナトリウム0.82g(34.2mmol)及びテトラヒドロフラン25mLを加え、反応液を0℃に冷却した。そこへ、2,7−ジブロモ−4,4’−(9−フルオレニリデン)−ジフェノール 6.5g(14.3mmol)テトラヒドロフラン溶液を滴下し、引き続きクロロメチルメチルエーテル3.44g(42.7mmol)を滴下した後、室温下で12時間攪拌し、メタノールを10mL添加し、水素化ナトリウムを分解した。その後、トルエン20mLを加えて有機相を分離した。水及び飽和食塩水にて洗浄後、有機相を濃縮した。濃縮液をエタノールから再結晶することにより、2,7−ジブロモ−9,9’−ビス[4−(メトキシメチルオキシ)フェニル]−9H−フルオレンを6.7g(収率=80%)単離した。
Synthesis Example 1 (Synthesis of 2,7-dibromo-9,9′-bis [4- (methoxymethyloxy) phenyl] -9H-fluorene)
Under a nitrogen stream, 0.82 g (34.2 mmol) of sodium hydride and 25 mL of tetrahydrofuran were added to a 100 mL eggplant-shaped flask, and the reaction solution was cooled to 0 ° C. Thereto, 6.5 g (14.3 mmol) tetrahydrofuran solution of 2,7-dibromo-4,4 ′-(9-fluorenylidene) -diphenol was added dropwise, followed by 3.44 g (42.7 mmol) of chloromethyl methyl ether. After dropping, the mixture was stirred at room temperature for 12 hours, and 10 mL of methanol was added to decompose sodium hydride. Thereafter, 20 mL of toluene was added to separate the organic phase. After washing with water and saturated brine, the organic phase was concentrated. By recrystallizing the concentrated solution from ethanol, 6.7 g (yield = 80%) of 2,7-dibromo-9,9′-bis [4- (methoxymethyloxy) phenyl] -9H-fluorene was isolated. did.

合成例2(2,7−ジブロモ−9,9−ビス(ビフェニリル)フルオレンの合成)
マグネシウム3.3g(135mmol)、2−ブロモビフェニル 31.4g(135mmol)から別途調製したテトラヒドロフラン溶液0.2Lを40℃に保持しながら、2,7−ジブロモフルオレノン 35g(104mmol)とテトラヒドロフラン280mLの混合溶液に滴下した(反応容器は、1Lのセパラブルフラスコを使用)。滴下終了後、更に同温度で3時間攪拌した。反応終了後、10%塩化アンモニウム水溶液420gを室温下加え、有機層を分離した。有機層は、無水硫酸マグネシウムで乾燥した後、濾過、濃縮し、最終的にトルエンにて再結晶することにより、36gのカルビノール体を得た。次に、1Lセパラブルフラスコに、カルビノール体34g、ビフェニル107g、酢酸480g及び硫酸27gを仕込み、80℃で一晩加熱攪拌した。反応液を室温まで冷却した後、反応液を氷水中に攪拌しながら加え、反応を終了させた。得られた沈殿は、水で洗浄し、更に熱エタノールで洗浄した。最終的に、トルエンにて再結晶することにより、27gの2,7−ジブロモ−9,9−ビス(ビフェニリル)フルオレンを得た(融点=277−282℃、収率=80%)。
Synthesis Example 2 (Synthesis of 2,7-dibromo-9,9-bis (biphenylyl) fluorene)
While maintaining 0.2 L of a tetrahydrofuran solution separately prepared from 3.3 g (135 mmol) of magnesium and 31.4 g (135 mmol) of 2-bromobiphenyl at 40 ° C., mixing of 35 g (104 mmol) of 2,7-dibromofluorenone and 280 mL of tetrahydrofuran The solution was added dropwise (using a 1 L separable flask as the reaction vessel). After completion of dropping, the mixture was further stirred at the same temperature for 3 hours. After completion of the reaction, 420 g of 10% aqueous ammonium chloride solution was added at room temperature, and the organic layer was separated. The organic layer was dried over anhydrous magnesium sulfate, filtered, concentrated, and finally recrystallized from toluene to obtain 36 g of carbinol. Next, 34 g of carbinol, 107 g of biphenyl, 480 g of acetic acid, and 27 g of sulfuric acid were charged into a 1 L separable flask, and heated and stirred overnight at 80 ° C. After cooling the reaction solution to room temperature, the reaction solution was added to ice water with stirring to complete the reaction. The resulting precipitate was washed with water and further washed with hot ethanol. Finally, recrystallization from toluene gave 27 g of 2,7-dibromo-9,9-bis (biphenylyl) fluorene (melting point = 277-282 ° C., yield = 80%).

同定は、FDMS、H−NMR及び13C−NMRにより行った。
・FDMS:628
H−NMR(CDCl,ppm);7.23−7.64(m,24H)
13C−NMR(CDCl,ppm);152.8,143.2,140.4,140.0,138.0,131.0,129.4,128.7,128.3,127.3,127.2,126.9,121.9,121.6,65.2
合成例3(2−ブロモ−9,9−ビス(ビフェニリル)フルオレンの合成)
2,7−ジブロモフルオレノンを2−ブロモフルオレノンに変更した以外は合成例2と同様の操作を行い、2−ブロモ−9,9−ビス(ビフェニリル)フルオレンを得た。
Identification was performed by FDMS, 1 H-NMR and 13 C-NMR.
FDMS: 628
· 1 H-NMR (CDCl 3 , ppm); 7.23-7.64 (m, 24H)
· 13 C-NMR (CDCl 3 , ppm); 152.8,143.2,140.4,140.0,138.0,131.0,129.4,128.7,128.3,127. 3, 127.2, 126.9, 121.9, 121.6, 65.2
Synthesis Example 3 (Synthesis of 2-bromo-9,9-bis (biphenylyl) fluorene)
The same operation as in Synthesis Example 2 was performed except that 2,7-dibromofluorenone was changed to 2-bromofluorenone to obtain 2-bromo-9,9-bis (biphenylyl) fluorene.

同定は、FDMSにより行った。
・FDMS:548
合成例4(2−ブロモ−9,9’−スピロビフルオレンの合成)
2−ブロモフルオレン 15g(40.8mmol)、テトラブチルアンモニウムブロミド329mg(2.5mol%)、48%水酸化ナトリウム3.73g及びトルエン220mLを500mLナス型フラスコに仕込み、空気をバブリングさせながら60℃で一晩加熱攪拌した。濃縮後、水を80mL添加し、析出した沈殿を濾過し、pHが中性になるまで洗浄した。その後、エタノール/テトラヒドロフラン混合溶液から再結晶し、黄色針状晶の2−ブロモフルオレノンを10.5g得た(融点=145−147℃)。
Identification was performed by FDMS.
・ FDMS: 548
Synthesis Example 4 (Synthesis of 2-bromo-9,9′-spirobifluorene)
2-Bromofluorene (15 g, 40.8 mmol), tetrabutylammonium bromide (329 mg, 2.5 mol%), 48% sodium hydroxide (3.73 g), and toluene (220 mL) were charged into a 500 mL eggplant-shaped flask at 60 ° C. while bubbling air. The mixture was heated and stirred overnight. After concentration, 80 mL of water was added, and the deposited precipitate was filtered and washed until the pH became neutral. Thereafter, recrystallization from an ethanol / tetrahydrofuran mixed solution yielded 10.5 g of yellow needle-like 2-bromofluorenone (melting point = 145-147 ° C.).

同定は、H−NMR及び13C−NMRより行った。
H−NMR(CDCl,ppm);7.30−7.76(m,7H)
13C−NMR(CDCl,ppm);192.32,143.68,143.00,137.11,135.79,135.04,133.72,129.45,127.59,124.64,122.95,121.74,120.46
次に、マグネシウム1.0g(42.2mmol)と2−ブロモビフェニル 9.85g(42.2mmol)から調製したグリニヤール溶液を300mLナス型フラスコに仕込み、室温下、2−ブロモフルオレノン 9.9g/テトラヒドロフラン130mL溶液を滴下し、その後14時間加熱還流した。反応終了後、分液し、更に10%塩化アンモニウム溶液にて有機層を洗浄した。濃縮後、トルエンにて再結晶することにより、8.8gの2−ブロモ−9−(2−ビフェニリル)−9−ヒドロキシフルオレンを得た。得られた2−ブロモ−9−(2−ビフェニリル)−9−ヒドロキシフルオレン及び酢酸65mLを100℃に加熱してから、濃塩酸を数滴添加し、1.5時間加熱攪拌した。反応終了後、反応液を氷水120gに加え、得られた沈殿を濾過、洗浄した。沈殿は、クロロホルム/エタノールで再結晶することにより、8.1gの2−ブロモ−9,9’−スピロビフルオレン(融点=181−183℃)を得た。
Identification was performed by 1 H-NMR and 13 C-NMR.
· 1 H-NMR (CDCl 3 , ppm); 7.30-7.76 (m, 7H)
· 13 C-NMR (CDCl 3 , ppm); 192.32,143.68,143.00,137.11,135.79,135.04,133.72,129.45,127.59,124. 64, 122.95, 121.74, 120.46
Next, a Grignard solution prepared from 1.0 g (42.2 mmol) of magnesium and 9.85 g (42.2 mmol) of 2-bromobiphenyl was charged into a 300 mL eggplant type flask, and 9.9 g of 2-bromofluorenone / tetrahydrofuran at room temperature. A 130 mL solution was added dropwise and then heated to reflux for 14 hours. After completion of the reaction, the solution was separated, and the organic layer was washed with a 10% ammonium chloride solution. After concentration, 8.8 g of 2-bromo-9- (2-biphenylyl) -9-hydroxyfluorene was obtained by recrystallization from toluene. The obtained 2-bromo-9- (2-biphenylyl) -9-hydroxyfluorene and 65 mL of acetic acid were heated to 100 ° C., several drops of concentrated hydrochloric acid were added, and the mixture was heated and stirred for 1.5 hours. After completion of the reaction, the reaction solution was added to 120 g of ice water, and the resulting precipitate was filtered and washed. The precipitate was recrystallized from chloroform / ethanol to obtain 8.1 g of 2-bromo-9,9′-spirobifluorene (melting point = 181-183 ° C.).

同定は、FDMS及び13C−NMRにより同定した。
・FDMS:394
13C−NMR(CDCl,ppm);150.75,148.48,147.83,141.66,140.71,140.58,130.84,128.20,127.93,127.89,127.23,124.05,124.01,121.36,121.26,120.09,120.00,65.85
合成例5(9,9−ビス(ビフェニリル)フルオレン−2,7−ビス(4,4,5,5−テトラメチル−[1,3,2]ジオキサボロランの合成)
合成例2で得られた2,7−ジブロモ−9,9−ビス(ビフェニリル)フルオレン(1.68mmol)、ビス(ピナコラート)ジボラン(3.77mmol)、酢酸カリウム(10.1mmol)、ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム(0.034mmol)及び無水ジメチルホルムアミド15mLを100mLナス型フラスコに添加し、80℃で2時間加熱攪拌した。反応終了後、トルエン20mL及び水20mLを加えて抽出した。有機層は、飽和食塩水及び水で洗浄した後、濃縮することで粉体を得た。更にテトラヒドロフラン/エタノールにて再結晶することにより、目的とする化合物を0.61g得た。
Identification was performed by FDMS and 13 C-NMR.
・ FDMS: 394
13 C-NMR (CDCl 3 , ppm); 150.75, 148.48, 147.83, 141.66, 140.71, 140.58, 130.84, 128.20, 127.93, 127. 89, 127.23, 124.05, 124.01, 121.36, 121.26, 120.09, 120.00, 65.85
Synthesis Example 5 (9,9-bis (biphenylyl) fluorene-2,7-bis (synthesis of 4,4,5,5-tetramethyl- [1,3,2] dioxaborolane)
2,7-Dibromo-9,9-bis (biphenylyl) fluorene (1.68 mmol), bis (pinacolato) diborane (3.77 mmol), potassium acetate (10.1 mmol), bis (diphenyl) obtained in Synthesis Example 2 Phosphino) ferrocenedichloropalladium (0.034 mmol) and anhydrous dimethylformamide (15 mL) were added to a 100 mL eggplant-shaped flask, and the mixture was heated and stirred at 80 ° C. for 2 hours. After completion of the reaction, 20 mL of toluene and 20 mL of water were added for extraction. The organic layer was washed with saturated saline and water and then concentrated to obtain a powder. Further, recrystallization with tetrahydrofuran / ethanol gave 0.61 g of the target compound.

同定は、FDMS、H−NMR及び13C−NMRにより行った。
・FDMS:721
H−NMR(CDCl,ppm):1.31(s,24H),7.26〜7.58(m,18H),7.84〜7.88(m,6H)
13C−NMR(CDCl,ppm):25.03,65.10,83.82,119.98,126.96,127.09,128.68,128.85,132.34,134.39,139.28,140.78,142.84,144.69,151.04
合成例6(4,5−ジアザ−2−ブロモ−9,9’−スピロビフルオレンの合成)
マグネシウム0.40g(16.3mmol)、2−ブロモビフェニル 3.82g(16.4mmol)及びテトラヒドロフラン20mLから調製したグリニヤール試薬に、加熱還流下、4,5−ジアザフルオレノン 2.71g(14.9mmol)/テトラヒドロフラン65mL溶液を滴下し、21時間還流した。その後、反応液を室温まで冷却し、水50gを加えて反応を終了した。反応液は、クロロホルム50mLで2回抽出し、更に無水硫酸マグネシウムにて乾燥した。濾過、濃縮及びヘキサンにて洗浄することにより、淡茶褐色の粉末3.75gを得た。得られた粉末、酢酸75mLを200mLナス型フラスコに仕込み、100℃まで昇温してから、濃硫酸4.97gを加え、22時間加熱攪拌した。反応液を、冷水50gに加え、反応を終了した。得られた反応液は、30%水酸化ナトリウム水溶液にてpHを11に調整した。更に、クロロホルム100mLにて2回抽出し、無水硫酸マグネシウムにて乾燥した。濾過、濃縮の後、ヘキサン/エタノールにて再結晶することにより、4,5−ジアザ−9,9’−スピロビフルオレン 1.69g(収率=48%、融点=208−210℃)を合成した。
Identification was performed by FDMS, 1 H-NMR and 13 C-NMR.
・ FDMS: 721
· 1 H-NMR (CDCl 3 , ppm): 1.31 (s, 24H), 7.26~7.58 (m, 18H), 7.84~7.88 (m, 6H)
· 13 C-NMR (CDCl 3 , ppm): 25.03,65.10,83.82,119.98,126.96,127.09,128.68,128.85,132.34,134. 39, 139.28, 140.78, 142.84, 144.69, 151.04
Synthesis Example 6 (Synthesis of 4,5-diaza-2-bromo-9,9′-spirobifluorene)
To a Grignard reagent prepared from 0.40 g (16.3 mmol) of magnesium, 3.82 g (16.4 mmol) of 2-bromobiphenyl and 20 mL of tetrahydrofuran, 2.71 g (14.9 mmol) of 4,5-diazafluorenone was heated under reflux. ) / Tetrahydrofuran 65 mL solution was added dropwise and refluxed for 21 hours. Thereafter, the reaction solution was cooled to room temperature, and 50 g of water was added to complete the reaction. The reaction solution was extracted twice with 50 mL of chloroform and further dried over anhydrous magnesium sulfate. Filtration, concentration, and washing with hexane gave 3.75 g of a light brown powder. The obtained powder, 75 mL of acetic acid, was charged into a 200 mL eggplant-shaped flask, heated to 100 ° C., 4.97 g of concentrated sulfuric acid was added, and the mixture was heated and stirred for 22 hours. The reaction solution was added to 50 g of cold water to complete the reaction. The resulting reaction solution was adjusted to pH 11 with a 30% aqueous sodium hydroxide solution. Furthermore, it extracted twice with 100 mL of chloroform, and dried with anhydrous magnesium sulfate. After filtration and concentration, 1.69 g of 4,5-diaza-9,9′-spirobifluorene (yield = 48%, melting point = 208-210 ° C.) was synthesized by recrystallization from hexane / ethanol. did.

化合物の同定は、FDMS、H−NMR及び13C−NMRにより行った。
・FDMS:318
H−NMR(CDCl,ppm);8.72−8.76(m,2H),7.87(d,J=7.2Hz,2H),7.33−7.41(m,2H),7.11−7.18(m,6H),6.73(d,J=7.2Hz,2H)
13C−NMR(CDCl,ppm);158.3,149.8,145.6,143.1,141.4,131.4,128.0,127.7,123.5,123.3,120.0,61.8
更に、4,5−ジアザ−9,9’−スピロビフルオレン 0.5g(1.57mmol)、塩化鉄0.25g(1.56mmol)及びジクロロメタン5mLを50mLナス型フラスコに加え、氷水浴下、臭素0.25g(1.56mmol)を滴下した後、室温下で一晩攪拌した。飽和炭酸水素ナトリウム水溶液により反応を終了させてから、クロロホルム15mLを加えて目的物を抽出した。抽出を2回行った後、硫酸マグネシウムにより乾燥した。濃縮後トルエンにて再結晶することにより、4,5−ジアザ−2−ブロモ−9,9’−スピロビフルオレンを0.11g得た(収率=18%)。
The compound was identified by FDMS, 1 H-NMR and 13 C-NMR.
・ FDMS: 318
· 1 H-NMR (CDCl 3 , ppm); 8.72-8.76 (m, 2H), 7.87 (d, J = 7.2Hz, 2H), 7.33-7.41 (m, 2H), 7.11-7.18 (m, 6H), 6.73 (d, J = 7.2 Hz, 2H)
13 C-NMR (CDCl 3 , ppm); 158.3, 149.8, 145.6, 143.1, 141.4, 131.4, 128.0, 127.7, 123.5, 123. 3,120.0,61.8
Further, 0.5 g (1.57 mmol) of 4,5-diaza-9,9′-spirobifluorene, 0.25 g (1.56 mmol) of iron chloride and 5 mL of dichloromethane were added to a 50 mL eggplant type flask, After adding 0.25 g (1.56 mmol) of bromine dropwise, the mixture was stirred overnight at room temperature. After the reaction was terminated with a saturated aqueous sodium hydrogen carbonate solution, 15 mL of chloroform was added to extract the target product. After performing extraction twice, it was dried with magnesium sulfate. By concentrating and recrystallizing with toluene, 0.11 g of 4,5-diaza-2-bromo-9,9′-spirobifluorene was obtained (yield = 18%).

モノ臭素化体に特徴的なH−NMR上のピーク(δ=6.86ppm(br s,1H)及び6.73ppm(d,J=7.8Hz,1H))、及びFDMSによりm/e=396のピークが検出されたことから目的物であることを同定した。 1 H-NMR peaks (δ = 6.86 ppm (br s, 1 H) and 6.73 ppm (d, J = 7.8 Hz, 1 H)) characteristic of monobrominated compounds, and m / e by FDMS = 396 peaks were detected and identified as the target product.

合成例7(2−ブロモ−9,9−ジメチル−4,5−ジアザフルオレンの合成)
フェナントロリン18g(99.9mmol)、水酸化カリウム18g(320.8mmol)、水900gを2Lセパラブルフラスコに加え、80℃に加熱した。同温度で攪拌しながら、過マンガン酸カリウム45gと水720gの混合液を滴下した。滴下終了後、更に30分攪拌して反応を終了した。熱時濾過して生成した二酸化マンガンを除去した後、反応液を室温まで冷却した。反応液をクロロホルムにて抽出し、常法処理の後、濃縮することで黄色粉末が得られた。更にアセトンにより再結晶することにより、黄色針状晶が7.54g得られた(収率=41%)。
Synthesis Example 7 (Synthesis of 2-bromo-9,9-dimethyl-4,5-diazafluorene)
18 g (99.9 mmol) of phenanthroline, 18 g (320.8 mmol) of potassium hydroxide and 900 g of water were added to a 2 L separable flask and heated to 80 ° C. While stirring at the same temperature, a mixed solution of 45 g of potassium permanganate and 720 g of water was added dropwise. After completion of the dropwise addition, the reaction was terminated by further stirring for 30 minutes. After removing the produced manganese dioxide by filtration while hot, the reaction solution was cooled to room temperature. The reaction solution was extracted with chloroform, treated in a conventional manner, and concentrated to obtain a yellow powder. Further, recrystallization with acetone gave 7.54 g of yellow needle crystals (yield = 41%).

化合物の同定はH−NMR及び13C−NMRにより行った。
H−NMR(CDCl,ppm);8.80(d,J=5.2,2H),8.05(dd,J=7.6,1.6,2H),7.36(dd,J=7.6,5.2,2H)
13C−NMR(CDCl,ppm);189.42,163.31,155.10,131.45,129.30,124.69
4,5−ジアザフルオレノン 7.5g(41.4mmol)、水酸化ナトリウム7.5g(187.5mmol)、98%ヒドラジン 5.3g(165.4mmol)及びジエチレングリコール130mLを300mLナス型フラスコに加え、160℃で18時間加熱攪拌した。反応終了後、水250mLを加え、クロロホルムにて抽出した。クロロホルム層を硫酸マグネシウムにより乾燥した後、濾過、濃縮した。更に、アルミナカラムにより精製することにより、緑色を帯びた灰色結晶を6.43g単離した。
The compound was identified by 1 H-NMR and 13 C-NMR.
· 1 H-NMR (CDCl 3 , ppm); 8.80 (d, J = 5.2,2H), 8.05 (dd, J = 7.6,1.6,2H), 7.36 ( dd, J = 7.6, 5.2, 2H)
· 13 C-NMR (CDCl 3 , ppm); 189.42,163.31,155.10,131.45,129.30,124.69
4,5-diazafluorenone 7.5 g (41.4 mmol), sodium hydroxide 7.5 g (187.5 mmol), 98% hydrazine 5.3 g (165.4 mmol) and diethylene glycol 130 mL were added to a 300 mL eggplant type flask, The mixture was heated and stirred at 160 ° C. for 18 hours. After completion of the reaction, 250 mL of water was added and extracted with chloroform. The chloroform layer was dried over magnesium sulfate, filtered and concentrated. Furthermore, 6.43 g of greenish gray crystals were isolated by purification with an alumina column.

GCMS及びH−NMRにより目的とする4,5−ジアザフルオレンであることを確認した。
・GCMS:168
H−NMR(CDCl,ppm);8.74(d,J=4.8,2H),7.89(d,J=7.8,2H),7.36(dd,2H),3.88(s,2H)
次に、得られた4,5−ジアザフルオレン 6.4g、ジメチルホルムアミド150mLを300mLナス型フラスコに仕込み、氷浴にて反応液を5℃以下に冷却した。同温度でナトリウムメトキシド4.82gを少量ずつ添加し、引続きヨウ化メチル21.5gを滴下した。添加終了後、室温にて17時間攪拌した。反応終了後、水250mLを加え、クロロホルムにて抽出した。クロロホルム層を硫酸マグネシウムにより乾燥した後、濾過、濃縮した。更に、アルミナカラムにより精製することにより、緑色を帯びた紫色結晶を2.84g単離した(収率=38%)。
・GCMS:196
H−NMR(CDCl,ppm);8.83(d,2H),8.02(d,2H),7.59(dd,2H),1.61(s,6H)
9,9−ジメチル−4,5−ジアザフルオレン 2g(10.2mmol)とニトロベンゼン30mLを三口フラスコに入れ、130℃に加温した。そこへ、臭素1.6gとニトロベンゼン5mLの混合溶液を1時間かけて滴下した。5時間反応させた後、反応液を室温まで冷却し、飽和炭酸水素ナトリウム水溶液を添加して反応を終了した。クロロホルムで抽出した後、無水硫酸マグネシウムにより乾燥させ、アルミナクロマトグラフィーにより、目的物を0.59g(収率=21%)単離した。
It was confirmed to be the desired 4,5-diazafluorene by GCMS and 1 H-NMR.
GCMS: 168
1 H-NMR (CDCl 3 , ppm); 8.74 (d, J = 4.8, 2H), 7.89 (d, J = 7.8, 2H), 7.36 (dd, 2H) , 3.88 (s, 2H)
Next, 6.4 g of the obtained 4,5-diazafluorene and 150 mL of dimethylformamide were charged into a 300 mL eggplant type flask, and the reaction solution was cooled to 5 ° C. or lower in an ice bath. At the same temperature, 4.82 g of sodium methoxide was added little by little, followed by dropwise addition of 21.5 g of methyl iodide. After completion of the addition, the mixture was stirred at room temperature for 17 hours. After completion of the reaction, 250 mL of water was added and extracted with chloroform. The chloroform layer was dried over magnesium sulfate, filtered and concentrated. Further, 2.84 g of a greenish purple crystal was isolated by purification with an alumina column (yield = 38%).
GCMS: 196
1 H-NMR (CDCl 3 , ppm); 8.83 (d, 2H), 8.02 (d, 2H), 7.59 (dd, 2H), 1.61 (s, 6H)
9,9-dimethyl-4,5-diazafluorene (2 g, 10.2 mmol) and nitrobenzene (30 mL) were placed in a three-necked flask and heated to 130 ° C. Thereto, a mixed solution of 1.6 g of bromine and 5 mL of nitrobenzene was added dropwise over 1 hour. After reacting for 5 hours, the reaction solution was cooled to room temperature, and saturated aqueous sodium hydrogen carbonate solution was added to complete the reaction. After extraction with chloroform, it was dried over anhydrous magnesium sulfate, and 0.59 g (yield = 21%) of the target product was isolated by alumina chromatography.

同定は、FDMSにより行った。
・FDMS:274
実施例1(化合物1の合成)
還流冷却器を備えた100mLナス型フラスコに、合成例1で得られた2,7−ジブロモ−9,9’−ビス[4−(メトキシメチルオキシ)フェニル]−9H−フルオレン 2.6g(4.4mmol)、ビフェニルボロン酸1.82g(9.2mmol)、20重量%炭酸ナトリウム14.6g、テトラキス(トリフェニルホスフィン)パラジウム10mg及びテトラヒドロフラン20mLを加え、5時間加熱還流した。所定時間攪拌した後、反応液を冷却して有機層を分離した。有機層は、無水硫酸マグネシウムにて乾燥した後、濃縮することにより、2,7−ビス(4−フェニルフェニル)−9,9’−ビス[4−(メトキシメチルオキシ)フェニル]−9H−フルオレン 2.44g(収率=75%)を単離した。
Identification was performed by FDMS.
・ FDMS: 274
Example 1 (Synthesis of Compound 1)
In a 100 mL eggplant-shaped flask equipped with a reflux condenser, 2,7-dibromo-9,9′-bis [4- (methoxymethyloxy) phenyl] -9H-fluorene obtained in Synthesis Example 1 2.6 g (4 0.4 mmol), 1.82 g (9.2 mmol) of biphenylboronic acid, 14.6 g of 20 wt% sodium carbonate, 10 mg of tetrakis (triphenylphosphine) palladium, and 20 mL of tetrahydrofuran were added, and the mixture was heated to reflux for 5 hours. After stirring for a predetermined time, the reaction solution was cooled and the organic layer was separated. The organic layer was dried over anhydrous magnesium sulfate and concentrated to give 2,7-bis (4-phenylphenyl) -9,9′-bis [4- (methoxymethyloxy) phenyl] -9H-fluorene. 2.44 g (Yield = 75%) was isolated.

次に、得られた2,7−ビス(4−フェニルフェニル)−9,9’−ビス[4−(メトキシメチルオキシ)フェニル]−9H−フルオレンをジクロロメタン20mLに溶解させた反応液に、6N−塩酸水溶液5mL(30mmol)を加え、室温で5時間反応させてから、水を添加して有機相を分離した。得られた有機相は、更にピリジン1.03g(13.0mmol)、トリフルオロメタンスルホン酸無水物3.1g(9.9mmol)を添加して室温下で攪拌した。水を添加して有機相を分離、濃縮することで、目的とする2,7−ビス(4−フェニルフェニル)−9,9’−ビス[4−(トリフルオロメタンスルホニルオキシ)フェニル]−9H−フルオレンを2.7g単離した(収率=90%)。   Next, to the reaction solution obtained by dissolving 2,7-bis (4-phenylphenyl) -9,9′-bis [4- (methoxymethyloxy) phenyl] -9H-fluorene obtained in 20 mL of dichloromethane, -5 mL (30 mmol) of hydrochloric acid aqueous solution was added and reacted at room temperature for 5 hours, and then water was added to separate the organic phase. To the obtained organic phase, 1.03 g (13.0 mmol) of pyridine and 3.1 g (9.9 mmol) of trifluoromethanesulfonic anhydride were added and stirred at room temperature. By adding water and separating and concentrating the organic phase, the desired 2,7-bis (4-phenylphenyl) -9,9'-bis [4- (trifluoromethanesulfonyloxy) phenyl] -9H- 2.7 g of fluorene was isolated (Yield = 90%).

FDMSにより目的物であることを確認した。
・FDMS:918
次に、得られた2,7−ビス(4−フェニルフェニル)−9,9’−ビス[4−(トリフルオロメタンスルホニルオキシ)フェニル]−9H−フルオレン 2.7g、ビフェニルボロン酸1.2g、20重量%炭酸ナトリウム14.6g、テトラキス(トリフェニルホスフィン)パラジウム10mg及びテトラヒドロフラン20mLを還流冷却器を備えた100mLナス型フラスコに加え、4時間加熱還流した。所定時間攪拌した後、反応液を冷却して有機層を分離した。有機層は、無水硫酸マグネシウムにて乾燥した後、濃縮することにより、目的とする2,7−ビス(4−フェニルフェニル)−9,9’−ビス(ターフェニル−1−イル)−9H−フルオレン 1.9g(化合物1、収率=66%)を淡黄色粉末として単離した。
The target product was confirmed by FDMS.
FDMS: 918
Next, 2,7-bis (4-phenylphenyl) -9,9′-bis [4- (trifluoromethanesulfonyloxy) phenyl] -9H-fluorene obtained 2.7 g, biphenylboronic acid 1.2 g, 14.6 g of 20 wt% sodium carbonate, 10 mg of tetrakis (triphenylphosphine) palladium and 20 mL of tetrahydrofuran were added to a 100 mL eggplant-shaped flask equipped with a reflux condenser and heated to reflux for 4 hours. After stirring for a predetermined time, the reaction solution was cooled and the organic layer was separated. The organic layer is dried over anhydrous magnesium sulfate and concentrated to give the desired 2,7-bis (4-phenylphenyl) -9,9'-bis (terphenyl-1-yl) -9H- 1.9 g of fluorene (compound 1, yield = 66%) was isolated as a pale yellow powder.

同定はFDMSにより行った。
・FDMS:926
Identification was performed by FDMS.
FDMS: 926

Figure 2007223904
実施例2(化合物2の合成)
実施例1において、2回目の合成に供したビフェニルボロン酸をターフェニルボロン酸に変更した以外は、実施例1と同様の操作を行い、2,7−ビス(4−フェニルフェニル)−9,9’−ビス(クオーターフェニル−1−イル)−9H−フルオレン 2.0g(化合物2)を単離した。
・FDMS:1078
Figure 2007223904
Example 2 (Synthesis of Compound 2)
In Example 1, except that the biphenylboronic acid subjected to the second synthesis was changed to terphenylboronic acid, the same operation as in Example 1 was performed, and 2,7-bis (4-phenylphenyl) -9, 2.0 g (compound 2) of 9′-bis (quarterphenyl-1-yl) -9H-fluorene was isolated.
FDMS: 1078

Figure 2007223904
実施例3(化合物24の合成)
実施例1において、2回目の合成に供したビフェニルボロン酸を2−ピリジンボロン酸ピナコールエステルに変更した以外は、実施例1と同様の操作を行い、2,7−ビス(4−フェニルフェニル)−9,9’−ビス(2−ピリジルフェニル)−9H−フルオレン 2.0g(化合物24)を単離した。
・FDMS:776
Figure 2007223904
Example 3 (Synthesis of Compound 24)
In Example 1, the same operation as in Example 1 was performed except that biphenylboronic acid subjected to the second synthesis was changed to 2-pyridineboronic acid pinacol ester, and 2,7-bis (4-phenylphenyl) 2.0 g (Compound 24) of -9,9'-bis (2-pyridylphenyl) -9H-fluorene was isolated.
FDMS: 776

Figure 2007223904
実施例4(化合物3の合成)
実施例1において、2回目の合成に供したビフェニルボロン酸をフェニルボロン酸に変更した以外は、実施例1と同様の操作を行い、2,7−ビス(4−フェニルフェニル)−9,9’−ビス(4−フェニルフェニル)−9H−フルオレン 2.0g(化合物3)を単離した。融点、ガラス転移温度は、それぞれ289℃、159℃であった。尚、薄膜での最大蛍光測定において、417nmの青色蛍光を観測した。また、オプテル社製の移動度測定装置を用い、タイムオブフライト法により正孔移動度及び電子移動度を測定(電界強度=約400(V/cm)1/2)すると、各々1.5×10−4cm/V・sec、4.0×10−5cm/V・secであった。バイポーラー性を示すことから、発光材料として利用可能であることがわかった。
・FDMS:774
13C−NMR(CDCl);152.10,144.77,140.60,140.64,140.33,140.13,140.05,139.61,139.14,128.79,128.68,127.49,127.33,127.12,127.00,126.76,124.84,120.68,65.32
Figure 2007223904
Example 4 (Synthesis of Compound 3)
In Example 1, 2,7-bis (4-phenylphenyl) -9,9 was performed in the same manner as in Example 1 except that biphenylboronic acid used for the second synthesis was changed to phenylboronic acid. 2.0 g (compound 3) of '-bis (4-phenylphenyl) -9H-fluorene was isolated. The melting point and glass transition temperature were 289 ° C. and 159 ° C., respectively. In the maximum fluorescence measurement with a thin film, blue fluorescence of 417 nm was observed. In addition, when using a mobility measuring apparatus manufactured by Optel, hole mobility and electron mobility were measured by a time-of-flight method (electric field strength = about 400 (V / cm) 1/2 ), respectively. It was 10 −4 cm 2 / V · sec, 4.0 × 10 −5 cm 2 / V · sec. It was found that it can be used as a light emitting material because of its bipolar property.
・ FDMS: 774
13 C-NMR (CDCl 3 ); 152.10, 144.77, 140.60, 140.64, 140.33, 140.13, 140.05, 139.61, 139.14, 128.79, 128.68, 127.49, 127.33, 127.12, 127.00, 126.76, 124.84, 120.68, 65.32

Figure 2007223904
比較例1
実施例1で得られた2,7−ビス(4−フェニルフェニル)−9,9’−ビス[4−(メトキシメチルオキシ)フェニル]−9H−フルオレンをジクロロメタン20mLに溶解させた反応液に、6N−塩酸水溶液 5mL(30mmol)を加え、室温で5時間反応させてから、水を添加して有機相を分離した。得られた有機相は、ジメチル硫酸にてメチル化することにより、2,7−ビス(4−フェニルフェニル)−9,9’−ビス(4−メトキシフェニル)−9H−フルオレンを単離した。
Figure 2007223904
Comparative Example 1
To the reaction solution obtained by dissolving 2,7-bis (4-phenylphenyl) -9,9′-bis [4- (methoxymethyloxy) phenyl] -9H-fluorene obtained in Example 1 in 20 mL of dichloromethane, After adding 5 mL (30 mmol) of 6N-hydrochloric acid aqueous solution and reacting at room temperature for 5 hours, water was added and the organic phase was separated. The resulting organic phase was methylated with dimethyl sulfate to isolate 2,7-bis (4-phenylphenyl) -9,9′-bis (4-methoxyphenyl) -9H-fluorene.

同定は、FDMSにより行った。
・FDMS:682
実施例5
実施例1、2及び4で得られた化合物1〜3、比較例1で得られた化合物及びSpiro−6Φ 20mgを各々トルエン2mLに溶解させ、1%溶液を調製した。スピンコート法(回転条件=1000rpm(1分間)、真空加熱条件=60℃(1時間)真空加熱)により石英基板上に薄膜を調製し、室温下(1ヶ月)放置して、薄膜の白濁(又は凝集)を観察した。その結果、化合物1〜3は、全く白濁が観察されなかった。
Identification was performed by FDMS.
FDMS: 682
Example 5
The compounds 1 to 3 obtained in Examples 1, 2, and 4, the compound obtained in Comparative Example 1 and 20 mg of Spiro-6Φ were each dissolved in 2 mL of toluene to prepare a 1% solution. A thin film was prepared on a quartz substrate by a spin coating method (rotating condition = 1000 rpm (1 minute), vacuum heating condition = 60 ° C. (1 hour) vacuum heating), and left at room temperature (1 month) to leave the thin film cloudy ( (Or aggregation) was observed. As a result, no turbidity was observed in the compounds 1 to 3.

Figure 2007223904
実施例6(化合物7の合成)
合成例2で得られた2,7−ジブロモ−9,9−ビス(ビフェニリル)フルオレンと2−ブロモ−9,9−ビス(ビフェニリル)フルオレンとを公知のニッケル触媒を用いて、yamamoto coupling反応を行うことにより、化合物7を合成した。
・FDMS:1406
実施例7(化合物6の合成)
100mLナス型フラスコに、合成例4で得られた2−ブロモ−9,9’−スピロビフルオレン 1.1g(2.8mmol)、合成例5で得られた9,9−ビス(ビフェニリル)フルオレン−2,7−ビス(4,4,5,5−テトラメチル−[1,3,2]ジオキサボロラン) 1.0g(1.39mmol)、20%炭酸ナトリウム水溶液5.5g(11.4mmol)、テトラヒドロフラン20mLを加え、触媒としてビス(ジフェニルホスフィノフェロセン)ジクロロパラジウム41mgを窒素雰囲気下添加し、一晩還流した。冷却後、反応液を分液ロートに移し、有機層を分離した。有機層は、飽和塩化アンモニウム水溶液、飽和食塩水で洗浄した後、濃縮することにより結晶を得た。シリカゲルカラムクロマトグラフィー(トルエン/ヘキサン)を用い精製することにより、目的とする化合物6を収率=66%で得た。
Figure 2007223904
Example 6 (Synthesis of Compound 7)
A 2,7-dibromo-9,9-bis (biphenylyl) fluorene obtained in Synthesis Example 2 and 2-bromo-9,9-bis (biphenylyl) fluorene were subjected to a yamamoto coupling reaction using a known nickel catalyst. By doing so, Compound 7 was synthesized.
FDMS: 1406
Example 7 (Synthesis of Compound 6)
In a 100 mL eggplant-shaped flask, 1.1 g (2.8 mmol) of 2-bromo-9,9′-spirobifluorene obtained in Synthesis Example 4 and 9,9-bis (biphenylyl) fluorene obtained in Synthesis Example 5 -2,7-bis (4,4,5,5-tetramethyl- [1,3,2] dioxaborolane) 1.0 g (1.39 mmol), 20% aqueous sodium carbonate solution 5.5 g (11.4 mmol), Tetrahydrofuran (20 mL) was added, and 41 mg of bis (diphenylphosphinoferrocene) dichloropalladium as a catalyst was added under a nitrogen atmosphere and refluxed overnight. After cooling, the reaction solution was transferred to a separatory funnel and the organic layer was separated. The organic layer was washed with a saturated aqueous ammonium chloride solution and saturated brine, and then concentrated to obtain crystals. Purification by silica gel column chromatography (toluene / hexane) gave the target compound 6 in a yield = 66%.

尚、ガラス転移温度は、232℃であった。また、薄膜での最大蛍光測定において、421nmの青色蛍光を観測した。
・FDMS:1098
13H−NMR(CDCl,ppm);6.67−6.76(m,6H),6.89(s,2H),7.04−7.11(t,6H),7.24−7.64(m,34H),7.78−7.85(m,6H)
・元素分析 ; 実測値 C:95.2%, H:4.8%
計算値 C:95.05%,H:4.95%
実施例8(化合物5の合成)
2−ブロモ−9,9’−スピロビフルオレンの代わりに1−ブロモピレン(2.8mmol)を用い、実施例7と同様の操作を行うことにより、目的とする化合物5を0.91g(収率=75%)得た。
The glass transition temperature was 232 ° C. In the maximum fluorescence measurement with a thin film, blue fluorescence of 421 nm was observed.
FDMS: 1098
· 13 H-NMR (CDCl 3 , ppm); 6.67-6.76 (m, 6H), 6.89 (s, 2H), 7.04-7.11 (t, 6H), 7.24 -7.64 (m, 34H), 7.78-7.85 (m, 6H)
Elemental analysis: Measured value C: 95.2%, H: 4.8%
Calculated value C: 95.05%, H: 4.95%
Example 8 (Synthesis of Compound 5)
By using 1-bromopyrene (2.8 mmol) instead of 2-bromo-9,9′-spirobifluorene and carrying out the same operation as in Example 7, 0.91 g (yield) of the target compound 5 was obtained. = 75%).

化合物の同定は、FDMS及び元素分析により行った。
・FDMS:870
・元素分析 ; 実測値 C:95.2%, H:4.8%
計算値 C:95.14%,H:4.86%
実施例9(化合物12の合成)
2−ブロモ−9,9’−スピロビフルオレンの代わりに4,5−ジアザ−2’−ブロモ−9,9’−スピロフルオレン(2.8mmol)を用い、実施例7と同様の操作を行うことにより、目的とする化合物12を0.49g(収率=32%)で得た。
The compound was identified by FDMS and elemental analysis.
・ FDMS: 870
Elemental analysis: Measured value C: 95.2%, H: 4.8%
Calculated value C: 95.14%, H: 4.86%
Example 9 (Synthesis of Compound 12)
The same operation as in Example 7 is carried out using 4,5-diaza-2′-bromo-9,9′-spirofluorene (2.8 mmol) instead of 2-bromo-9,9′-spirobifluorene. As a result, 0.49 g (yield = 32%) of the target compound 12 was obtained.

化合物の同定は、FDMS及び元素分析により行った。
・FDMS:1102
・元素分析 ; 実測値 C:90.3%, H:4.6%, N:5.1%
計算値 C:90.35%,H:4.57%,N:5.08%
実施例10(化合物13の合成)
2−ブロモ−9,9’−スピロビフルオレンの代わりに2−ブロモ−9,9−ジメチル−4,5−ジアザフルオレン(2.8mmol)を用い、実施例7と同様の操作を行うことにより、目的とする化合物13を0.49g(収率=38%)で得た。
The compound was identified by FDMS and elemental analysis.
FDMS: 1102
Elemental analysis: Measured value C: 90.3%, H: 4.6%, N: 5.1%
Calculated value C: 90.35%, H: 4.57%, N: 5.08%
Example 10 (Synthesis of Compound 13)
The same procedure as in Example 7 is performed using 2-bromo-9,9-dimethyl-4,5-diazafluorene (2.8 mmol) instead of 2-bromo-9,9′-spirobifluorene. As a result, 0.49 g (yield = 38%) of the target compound 13 was obtained.

化合物の同定は、FDMS及び元素分析により行った。
・FDMS:858
・元素分析 ; 実測値 C:88.1%, H:5.4%,N:6.5%
計算値 C:88.08%,H:5.4%,N:6.52%
実施例11(化合物10の合成)
2−ブロモ−9,9’−スピロビフルオレンの代わりに5−ブロモ−2,3’−ビピリジン(2.8mmol)を用い、実施例7と同様の操作を行うことにより、目的とする化合物10を0.43g(収率=40%)得た。融点、ガラス転移温度は、それぞれ346℃、164℃であった。
・FDMS:778
13C−NMR(CDCl,ppm);153.38,152.54,149.85,148.48,148.07,144.23,140.40,139.94,139.69,137.23,135.57,135.20,134.39,134.16,128.74,128.50,128.17,127.23,126.92,124.82,123.61,121.25,120.29,65.41
実施例12(化合物11の合成)
2−ブロモ−9,9’−スピロビフルオレンの代わりに2−(4−ブロモフェニル)ピリジン(2.8mmol)を用い、実施例7と同様の操作を行うことにより、目的とする化合物11を0.49g(収率=45%)得た。ガラス転移温度は、174℃であった。
・FDMS:776
H−NMR(CDCl,ppm);7.19−7.57(m,22H),7.69−7.92(m,12H),8.03−8.07(d,4H),8.68−8.70(d,2H)
13C−NMR(CDCl,ppm);156.86,152.16,149.67,144.74,141.61,140.62,140.27,139.67,139.28,138.26,136.70,128.70,127.45,127.27,127.16,126.98,126.90,124.74,122.11,120.75,120.42,65.38
実施例13(化合物17の合成)
2−ブロモ−9,9’−スピロビフルオレンの代わりに4−ブロモ−2,4’−ビピリジン(2.8mmol)を用い、実施例7と同様の操作を行うことにより、目的とする化合物17を0.87g(収率=80%)得た。ガラス転移温度は、176℃であった。
The compound was identified by FDMS and elemental analysis.
・ FDMS: 858
Elemental analysis: Measured value C: 88.1%, H: 5.4%, N: 6.5%
Calculated value C: 88.08%, H: 5.4%, N: 6.52%
Example 11 (Synthesis of Compound 10)
The target compound 10 was prepared by carrying out the same operation as in Example 7 using 5-bromo-2,3′-bipyridine (2.8 mmol) instead of 2-bromo-9,9′-spirobifluorene. 0.43 g (yield = 40%) was obtained. The melting point and glass transition temperature were 346 ° C. and 164 ° C., respectively.
・ FDMS: 778
· 13 C-NMR (CDCl 3 , ppm); 153.38,152.54,149.85,148.48,148.07,144.23,140.40,139.94,139.69,137. 23, 135.57, 135.20, 134.39, 134.16, 128.74, 128.50, 128.17, 127.23, 126.92, 124.82, 123.61, 121.25, 120.29, 65.41
Example 12 (Synthesis of Compound 11)
By using 2- (4-bromophenyl) pyridine (2.8 mmol) instead of 2-bromo-9,9′-spirobifluorene and carrying out the same operation as in Example 7, the target compound 11 was obtained. 0.49 g (yield = 45%) was obtained. The glass transition temperature was 174 ° C.
FDMS: 776
· 1 H-NMR (CDCl 3 , ppm); 7.19-7.57 (m, 22H), 7.69-7.92 (m, 12H), 8.03-8.07 (d, 4H) , 8.68-8.70 (d, 2H)
· 13 C-NMR (CDCl 3 , ppm); 156.86,152.16,149.67,144.74,141.61,140.62,140.27,139.67,139.28,138. 26, 136.70, 128.70, 127.45, 127.27, 127.16, 126.98, 126.90, 124.74, 122.11, 120.75, 120.42, 65.38
Example 13 (Synthesis of Compound 17)
By subjecting 4-bromo-2,4′-bipyridine (2.8 mmol) in place of 2-bromo-9,9′-spirobifluorene to the operation similar to that of Example 7, the target compound 17 0.87 g (yield = 80%) was obtained. The glass transition temperature was 176 ° C.

化合物の同定は、FDMS、H−NMR及び元素分析により行った。
・FDMS:776
H−NMR(CDCl,ppm);8.99(s,2H),8.73(d,4H,J=6.2),7.26−8.03(m,32H)
・元素分析 ; 実測値 C:88.2%,H:4.7%,N:7.1%
計算値 C:87.9%,H:4.9%,N:7.2%
実施例14(化合物18の合成)
3−ブロモ−9,9−ジメチル−4,5−ジアザフルオレン 2.0g(7.3mmol)のテトラヒドロフラン溶液60mLを300mLナス型フラスコに加え、−78℃に冷却した。同温度を保ちながら、n−ブチルリチウムのヘキサン溶液(1.6M)(5mL,8mmol)を滴下し、30分攪拌した。その後、ジクロロ(N,N,N’,N’−テトラメチルエチレンジアミン)亜鉛2.0gを固体のまま加えた後、反応混合物を室温下1時間攪拌した。更に、2,6−ジブロモ−9,9−ジ(ビフェニリル)フルオレン 2.2g(3.5mmol)及びジクロロビス(トリフェニルホスフィン)パラジウム51mgを加え、一晩加熱還流した後、室温まで反応液を冷却した。水30mLを加え、トルエン抽出を2回行った後、有機層を水で洗浄し、得られた有機層は無水硫酸マグネシウムで乾燥してから減圧下で濃縮した。残渣は、シリカゲルクロマトグラフィー(ヘキサン/クロロホルム混合液)にて精製し、黄色の結晶を1.02g得た(収率=34%)。
The compound was identified by FDMS, 1 H-NMR and elemental analysis.
FDMS: 776
· 1 H-NMR (CDCl 3 , ppm); 8.99 (s, 2H), 8.73 (d, 4H, J = 6.2), 7.26-8.03 (m, 32H)
Elemental analysis: Measured value C: 88.2%, H: 4.7%, N: 7.1%
Calculated value C: 87.9%, H: 4.9%, N: 7.2%
Example 14 (Synthesis of Compound 18)
60 mL of a tetrahydrofuran solution of 2.0 g (7.3 mmol) of 3-bromo-9,9-dimethyl-4,5-diazafluorene was added to a 300 mL eggplant-shaped flask and cooled to -78 ° C. While maintaining the same temperature, a hexane solution of n-butyllithium (1.6 M) (5 mL, 8 mmol) was added dropwise and stirred for 30 minutes. Thereafter, 2.0 g of dichloro (N, N, N ′, N′-tetramethylethylenediamine) zinc was added as a solid, and the reaction mixture was stirred at room temperature for 1 hour. Further, 2.2 g (3.5 mmol) of 2,6-dibromo-9,9-di (biphenylyl) fluorene and 51 mg of dichlorobis (triphenylphosphine) palladium were added and heated under reflux overnight, and then the reaction solution was cooled to room temperature. did. After adding 30 mL of water and extracting with toluene twice, the organic layer was washed with water, and the obtained organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane / chloroform mixed solution) to obtain 1.02 g of yellow crystals (yield = 34%).

得られた結晶は、FDMSにより同定した。
・FDMS:858
実施例15(化合物19の合成)
3−ブロモ−9,9−ジメチル−4,5−ジアザフルオレンの代わりに6−ブロモ−2,2’−ビピリジンを用いた以外は、実施例14の方法に準じて化合物19を合成した。
The obtained crystal was identified by FDMS.
・ FDMS: 858
Example 15 (Synthesis of Compound 19)
Compound 19 was synthesized according to the method of Example 14, except that 6-bromo-2,2′-bipyridine was used instead of 3-bromo-9,9-dimethyl-4,5-diazafluorene.

化合物の同定は、FDMSにより行った。
・FDMS:778
実施例16(サイクリックボルタンメトリでの電子親和性及び電子移動度評価)
測定は、ビー・エー・エス(株)製 セルを用い、カウンター電極に白金電極、作用電極にグラッシーカーボン電極、参照電極としてAg/Ag、電解質としてテトラブチルアンモニウムパークロライドを用い、スキャンスピード=100mV/secの条件下で行った。尚、溶媒としては、ジクロロメタン及びテトラヒドロフランを併用した。
The compound was identified by FDMS.
・ FDMS: 778
Example 16 (Evaluation of electron affinity and electron mobility in cyclic voltammetry)
Measurement was performed using a cell manufactured by BAS Co., Ltd., using a platinum electrode as a counter electrode, a glassy carbon electrode as a working electrode, Ag / Ag + as a reference electrode, and tetrabutylammonium perchloride as an electrolyte, and a scan speed = The test was performed under the condition of 100 mV / sec. As a solvent, dichloromethane and tetrahydrofuran were used in combination.

その結果、化合物12及び13は、フェロセン(Fc/Fc)基準で−2.40eV,−2.38eVと、Alq及びバソフェナントロリンの値−2.41eVと同等以上の値を示した。また、株式会社オプテル社製の移動度測定装置を用い、タイムオブフライト法により電子移動度を測定したところ、10−4cm/V・sec程度の値を示し、従来材料であるAlqより高速であることを確認した。 As a result, the compounds 12 and 13 showed −2.40 eV, −2.38 eV on the basis of ferrocene (Fc / Fc + ), and values equal to or higher than the values −2.41 eV of Alq 3 and bathophenanthroline. Further, using the mobility measurement device Co. Optel Co., was subject to electron mobility by the time-of-flight method, 10 -4 cm 2 / V · sec approximately indicate values than Alq 3, which is a conventional material Confirmed that it was fast.

実施例17(サイクリックボルタンメトリによる電気化学的安定性評価)
実施例16と同条件下、サイクリックボルタンメトリによりピークの可逆性を評価した。
Example 17 (Evaluation of electrochemical stability by cyclic voltammetry)
Under the same conditions as in Example 16, the reversibility of the peak was evaluated by cyclic voltammetry.

代表例として化合物10と従来報告されているバソフェナントロリンの結果を図1に示す。その結果、バソフェナントロリンは不可逆性を示す一方、実施例1〜15に示した化合物はすべて可逆性を示すピークが得られた。故に、電気化学的に材料の安定性に優れることから、有機EL素子の耐久性向上が期待される。   As a representative example, FIG. 1 shows the results of compound 10 and bathophenanthroline which has been conventionally reported. As a result, while bathophenanthroline showed irreversibility, the compounds shown in Examples 1 to 15 all showed peaks showing reversibility. Therefore, since the electrochemical stability of the material is excellent, the durability of the organic EL element is expected to be improved.

実施例18(光電子分光法によるイオン化ポテンシャル測定)
理研計器製 AC−3を用い、代表例として化合物17のイオン化ポテンシャルを測定したところ、6.24eVであった。これは、Alq(=5.7eV)、CBP(=5.97eV)の値より大きいことから、正孔ブロック材料として利用可能であることを確認した。
Example 18 (Ionization potential measurement by photoelectron spectroscopy)
As a representative example, the ionization potential of Compound 17 was measured using AC-3 manufactured by Riken Keiki Co., Ltd. and found to be 6.24 eV. Since this is larger than the values of Alq 3 (= 5.7 eV) and CBP (= 5.97 eV), it was confirmed that it can be used as a hole blocking material.

実施例19(化合物17の素子評価)
厚さ130nmのITO透明電極を有するガラス基板をアセトン、イソプロピルアルコールで順次超音波洗浄し、次いで、イソプロピルアルコールで煮沸洗浄した後、乾燥した。更に、UV/オゾン処理したものを透明導電性支持基板として使用した。ITO透明電極上に、銅フタロシアニンを真空蒸着法により20nmの膜厚で成膜した。次に、α−NPDを真空蒸着法により40nmの膜厚で成膜し、正孔輸送層を形成した。次に、アルミニウムトリスキノリノール錯体を真空蒸着法により40nmの膜厚で成膜した。更に、化合物17を20nmになるように成膜し、電子輸送層を形成した。尚、上記有機化合物の蒸着条件は、真空度1.0×10−4Pa、成膜速度0.3nm/secの同一条件で成膜した。
Example 19 (device evaluation of compound 17)
A glass substrate having an ITO transparent electrode having a thickness of 130 nm was ultrasonically washed successively with acetone and isopropyl alcohol, then boiled and washed with isopropyl alcohol, and then dried. Furthermore, what was UV / ozone treated was used as a transparent conductive support substrate. On the ITO transparent electrode, copper phthalocyanine was formed into a film with a thickness of 20 nm by vacuum deposition. Next, α-NPD was formed into a film with a thickness of 40 nm by a vacuum vapor deposition method to form a hole transport layer. Next, an aluminum triskinolinol complex was formed into a film with a thickness of 40 nm by vacuum deposition. Further, Compound 17 was deposited to a thickness of 20 nm to form an electron transport layer. The organic compound was deposited under the same conditions of a vacuum degree of 1.0 × 10 −4 Pa and a deposition rate of 0.3 nm / sec.

次に、陰極としてLiFを0.5nm、Alを150nm蒸着し、金属電極を形成した。   Next, LiF was deposited to 0.5 nm and Al was deposited to 150 nm as a cathode to form a metal electrode.

更に、窒素雰囲気下、保護用ガラス基板を重ね、UV硬化樹脂で封止した。このようにして得られた素子に、ITO電極を正極、LiF−Al電極を負極にして、6Vの直流電圧を印加すると86mA/cmの電流密度が得られ、3400cd/mの輝度で緑色の発光が観測された。電子輸送層をアルミニウムトリスキノリノール錯体(Alq)に変更した素子と比較して、2.7倍の電流密度が得られた。図2に電圧−電流密度、図3に電圧−輝度曲線を示す。尚、輝度半減寿命は、Alqと同程度の値を示した。 Further, a protective glass substrate was stacked in a nitrogen atmosphere and sealed with a UV curable resin. When a DC voltage of 6 V is applied to the device thus obtained with a positive electrode of ITO and a negative electrode of LiF-Al, a current density of 86 mA / cm 2 is obtained, and a green color with a luminance of 3400 cd / m 2 is obtained. Was observed. The electron transport layer as compared to the device which was changed to aluminum tris quinolinol complex (Alq 3), 2.7 times the current density was obtained. FIG. 2 shows a voltage-current density, and FIG. 3 shows a voltage-luminance curve. Incidentally, the luminance half life, indicated a value substantially equal to that of Alq 3.

実施例20
化合物17の代わりに化合物19を用いた以外は、実施例19の方法に準じて素子評価を行ったところ、6Vの印加電圧で95mA/cmの電流密度が得られ、3950cd/mの輝度で緑色の発光が観測された。
Example 20
The device was evaluated according to the method of Example 19 except that Compound 19 was used instead of Compound 17. As a result, a current density of 95 mA / cm 2 was obtained with an applied voltage of 6 V, and a luminance of 3950 cd / m 2 was obtained. A green light emission was observed.

比較例2
化合物17の代わりに4,7−ジフェニル−1,10−フェナントロリン(BCP)を用いて同様の素子を作成した。その結果、6Vの直流電圧を印加すると15mA/cmの電流密度しか得られず、510cd/mの輝度で緑色の発光が観測された。
Comparative Example 2
A similar device was prepared using 4,7-diphenyl-1,10-phenanthroline (BCP) instead of compound 17. As a result, when a DC voltage of 6 V was applied, only a current density of 15 mA / cm 2 was obtained, and green light emission was observed with a luminance of 510 cd / m 2 .

サイクリックボルタンメトリによるピークの可逆性評価を示す。The reversibility evaluation of the peak by cyclic voltammetry is shown. 電圧−電流密度を示す。Voltage-current density is shown. 電圧−輝度曲線を示す。A voltage-luminance curve is shown.

Claims (8)

一般式(1)で表されるカルド構造を有するπ共役化合物。
Figure 2007223904
(式中、R〜Rは各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基を有していてもよいフェニル基、ナフチル基若しくはフェノキシ基、又はハロゲン原子を表し、Arは各々独立して下記一般式(2)又は(3)で表される基を表す。Arは各々独立して置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24のアリール基又は炭素数3〜24のヘテロアリール基を表す。)
Figure 2007223904
(式中、R〜Rは各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24のアリール基若しくはアリールオキシ基、炭素数3〜24のヘテロアリール基、又はハロゲン原子を表す。l,mは0〜3の整数、nは0〜2の整数を表す。)
A π-conjugated compound having a cardo structure represented by the general formula (1).
Figure 2007223904
(Wherein R 1 and R 2 each independently have a hydrogen atom, a linear, branched or cyclic alkyl group or alkoxy group having 1 to 18 carbon atoms which may have a substituent, or a substituent. which may be a phenyl group, a naphthyl group or a phenoxy group, or a halogen atom, Ar 1 is .Ar 2 each independently represents a group represented by the following general formula (2) or (3) each independently Represents an aryl group having 6 to 24 carbon atoms or a heteroaryl group having 3 to 24 carbon atoms which may have a substituent (excluding an amino group).
Figure 2007223904
(In the formula, R 3 to R 6 are each independently a hydrogen atom, a linear, branched or cyclic alkyl group or alkoxy group having 1 to 18 carbon atoms which may have a substituent, a substituent (provided that Represents an aryl group having 6 to 24 carbon atoms or an aryloxy group, a heteroaryl group having 3 to 24 carbon atoms, or a halogen atom, which may have a non-amino group, and l and m are integers of 0 to 3. , N represents an integer of 0-2.)
Arが、各々独立して置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24の縮合環式芳香族基であることを特徴とする請求項1に記載のπ共役化合物。 The Ar 2 is a condensed cyclic aromatic group having 6 to 24 carbon atoms, which may each independently have a substituent (excluding an amino group). π-conjugated compounds. 縮合環式芳香族基が、ナフチル基、アントリル基、フェナントリル基、ピレニル基、フルオレニル基、ベンゾ[c]フルオレニル基、アザフルオレニル基又は1,10−フェナントロリニル基であることを特徴とする請求項2に記載のπ共役化合物。 The condensed cyclic aromatic group is a naphthyl group, anthryl group, phenanthryl group, pyrenyl group, fluorenyl group, benzo [c] fluorenyl group, azafluorenyl group or 1,10-phenanthrolinyl group, Item 3. A π-conjugated compound according to Item 2. 置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24の縮合環式芳香族基が、下記一般式(4a)又は(4b)で表されることを特徴とする請求項2に記載のπ共役化合物。
Figure 2007223904
(式中、R〜Rは、各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基を有していてもよい炭素数6〜24のアリール基若しくはアリールオキシ基、炭素数3〜24のヘテロアリール基、又はハロゲン原子を表す。また、Xは炭素原子又は窒素原子を表す。)
The condensed cyclic aromatic group having 6 to 24 carbon atoms which may have a substituent (excluding an amino group) is represented by the following general formula (4a) or (4b). The π-conjugated compound according to claim 2.
Figure 2007223904
(Wherein R 7 to R 9 each independently have a hydrogen atom, a C 1-18 linear, branched or cyclic alkyl group or alkoxy group which may have a substituent, or a substituent. And optionally represents an aryl group or aryloxy group having 6 to 24 carbon atoms, a heteroaryl group having 3 to 24 carbon atoms, or a halogen atom, and X represents a carbon atom or a nitrogen atom.)
置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24の縮合環式芳香族基が、下記一般式(5)で表されることを特徴とする請求項2に記載のπ共役化合物。
Figure 2007223904
(式中、R10〜R12は、各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基を有していてもよい炭素数6〜24のアリール基若しくはアリールオキシ基、炭素数3〜24のヘテロアリール基、又はハロゲン原子を表す。但し、R10とR11は互いに結合して環を形成していてもよい。また、Xは炭素原子又は窒素原子を表す。)
The condensed cyclic aromatic group having 6 to 24 carbon atoms which may have a substituent (excluding an amino group) is represented by the following general formula (5): The π-conjugated compound described.
Figure 2007223904
(Wherein R 10 to R 12 each independently have a hydrogen atom, a C 1-18 linear, branched or cyclic alkyl or alkoxy group which may have a substituent, or a substituent. Represents an optionally substituted aryl group or aryloxy group having 6 to 24 carbon atoms, a heteroaryl group having 3 to 24 carbon atoms, or a halogen atom, provided that R 10 and R 11 are bonded to each other to form a ring. X represents a carbon atom or a nitrogen atom.)
Arが、各々独立して下記一般式(6a)又は(6b)で表される基であることを特徴とする請求項1に記載のπ共役化合物。
Figure 2007223904
(式中、R13〜R15は、各々独立して水素原子、置換基を有していてもよい炭素数1〜10の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基を有していてもよい炭素数6〜24のアリール基若しくは炭素数3〜24のヘテロアリール基を表す。p及びqは1≦p+q≦3を満たす整数、s,xは0〜2の整数を表す。)
The π-conjugated compound according to claim 1, wherein Ar 2 is each independently a group represented by the following general formula (6a) or (6b).
Figure 2007223904
(In the formula, each of R 13 to R 15 independently has a hydrogen atom, a linear, branched or cyclic alkyl group or alkoxy group having 1 to 10 carbon atoms which may have a substituent, and a substituent. Represents an aryl group having 6 to 24 carbon atoms or a heteroaryl group having 3 to 24 carbon atoms, p and q are integers satisfying 1 ≦ p + q ≦ 3, and s and x represent integers of 0 to 2. .)
下記一般式(7)で表されるフルオレン中間体と下記一般式(8)で表されるボロン酸化合物Aとを遷移金属触媒存在下に反応させ、酸触媒存在下に脱保護し、更にトリフルオロメタンスルホニル化した後、再度遷移金属触媒存在下に下記一般式(9)で表されるボロン酸化合物Bと反応させることを特徴とする請求項1乃至6のいずれか1項に記載のπ共役化合物の製造方法。
Figure 2007223904
(式中、Zはフェノール基の保護基であり、R〜Rは各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基を有していてもよいフェニル基、ナフチル基若しくはフェノキシ基、又はハロゲン原子を表し、Xはヨウ素原子、臭素原子又は塩素原子を表す。)
Figure 2007223904
(式中、Arは各々独立して下記一般式(2)又は(3)で表される基を表す。Arは各々独立して置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24のアリール基又は炭素数3〜24のヘテロアリール基を表す。)
Figure 2007223904
(式中、R〜Rは各々独立して水素原子、置換基を有していてもよい炭素数1〜18の直鎖,分岐若しくは環状のアルキル基若しくはアルコキシ基、置換基(但し、アミノ基を除く)を有していてもよい炭素数6〜24のアリール基若しくはアリールオキシ基、炭素数3〜24のヘテロアリール基、又はハロゲン原子を表す。l,mは0〜3の整数、nは0〜2の整数を表す。)
A fluorene intermediate represented by the following general formula (7) and a boronic acid compound A represented by the following general formula (8) are reacted in the presence of a transition metal catalyst, deprotected in the presence of an acid catalyst, and further trifluorinated. The π-conjugate according to any one of claims 1 to 6, which is reacted with a boronic acid compound B represented by the following general formula (9) in the presence of a transition metal catalyst after romethanesulfonylation. Compound production method.
Figure 2007223904
(In the formula, Z is a protecting group for a phenol group, and R 1 and R 2 are each independently a hydrogen atom, a linear, branched or cyclic alkyl having 1 to 18 carbon atoms which may have a substituent. A group or an alkoxy group, an optionally substituted phenyl group, a naphthyl group or a phenoxy group, or a halogen atom, and X represents an iodine atom, a bromine atom or a chlorine atom.)
Figure 2007223904
(In the formula, each Ar 1 independently represents a group represented by the following general formula (2) or (3). Each Ar 2 independently has a substituent (excluding an amino group). Represents an aryl group having 6 to 24 carbon atoms or a heteroaryl group having 3 to 24 carbon atoms.
Figure 2007223904
(In the formula, R 3 to R 6 are each independently a hydrogen atom, a linear, branched or cyclic alkyl group or alkoxy group having 1 to 18 carbon atoms which may have a substituent, a substituent (provided that Represents an aryl group having 6 to 24 carbon atoms or an aryloxy group, a heteroaryl group having 3 to 24 carbon atoms, or a halogen atom, which may have a non-amino group, and l and m are integers of 0 to 3. , N represents an integer of 0-2.)
請求項1乃至6のいずれか1項に記載のπ共役化合物を発光層、正孔ブロック層又は電子輸送層のいずれかに用いることを特徴とする有機エレクトロルミネッセンス素子。
An organic electroluminescence device, wherein the π-conjugated compound according to claim 1 is used in any one of a light emitting layer, a hole blocking layer, and an electron transporting layer.
JP2006036378A 2005-02-15 2006-02-14 Π-conjugated compound having cardo structure, and production method and use thereof Expired - Fee Related JP5011743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036378A JP5011743B2 (en) 2005-02-15 2006-02-14 Π-conjugated compound having cardo structure, and production method and use thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005038241 2005-02-15
JP2005038241 2005-02-15
JP2006017620 2006-01-26
JP2006017620 2006-01-26
JP2006036378A JP5011743B2 (en) 2005-02-15 2006-02-14 Π-conjugated compound having cardo structure, and production method and use thereof

Publications (2)

Publication Number Publication Date
JP2007223904A true JP2007223904A (en) 2007-09-06
JP5011743B2 JP5011743B2 (en) 2012-08-29

Family

ID=38546045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036378A Expired - Fee Related JP5011743B2 (en) 2005-02-15 2006-02-14 Π-conjugated compound having cardo structure, and production method and use thereof

Country Status (1)

Country Link
JP (1) JP5011743B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050529A (en) * 2006-08-28 2008-03-06 Kyoto Univ Organic light emission transistor material, organic light emission transistor element and display device
JP2010138089A (en) * 2008-12-10 2010-06-24 Daikin Ind Ltd Method for producing tricyclic compound
JP2010138088A (en) * 2008-12-10 2010-06-24 Daikin Ind Ltd Method for producing fluorene derivative
CN102585800A (en) * 2012-01-13 2012-07-18 宁波大学 Fluorine pyridine fluorescent material and preparation method thereof
JP2013510889A (en) * 2009-11-17 2013-03-28 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices
JP2014088399A (en) * 2011-02-23 2014-05-15 Hodogaya Chem Co Ltd Compound including substituted triphenylene ring structure, and organic electroluminescent element
JP2014197174A (en) * 2013-03-07 2014-10-16 キヤノン株式会社 Electrophotographic photoreceptor, and electrophotographic apparatus and process cartridge having the electrophotographic photoreceptor
JP2017533893A (en) * 2014-10-30 2017-11-16 エルジー・ケム・リミテッド Ring compound and organic light emitting device including the same
CN111689994A (en) * 2020-06-05 2020-09-22 安徽师范大学 Organic conjugated molecular material with bifluorene Aza-BODIPY as basic skeleton and preparation method and application thereof
CN115124561A (en) * 2021-03-29 2022-09-30 中国科学院化学研究所 Novel seven-membered ring-containing conjugated molecular material based on quinoid structure and preparation and application thereof
WO2023148123A1 (en) 2022-02-01 2023-08-10 Merck Patent Gmbh Composition, cured film, device including the same, and manufacturing method for the cured film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340781A (en) * 1997-04-08 1998-12-22 Nippon Steel Corp Organic electroluminescent element and its manufacture
JP2000504774A (en) * 1996-02-22 2000-04-18 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Partially conjugated polymers having spiro centers and their use as electroluminescent materials
US20020132134A1 (en) * 2001-01-26 2002-09-19 Xerox Corporation Electroluminescent (EL) devices
JP2003347058A (en) * 2002-04-24 2003-12-05 Eastman Kodak Co Organic light emitting device
JP2004315495A (en) * 2002-09-20 2004-11-11 Tosoh Corp New arylamine derivative having fluorene skeleton, synthetic intermediate of the same, method for producing them and organic el element
JP2005035919A (en) * 2003-07-18 2005-02-10 Tosoh Corp New arylvinyl compound having fluorene skeleton, and method for producing the same and organic el element
JP2005085599A (en) * 2003-09-09 2005-03-31 Toyo Ink Mfg Co Ltd Organic electroluminescent element
JP2006131783A (en) * 2004-11-08 2006-05-25 Konica Minolta Holdings Inc Material for organic electroluminescent element, organic electroluminescent element, lighting apparatus and display
JP4810830B2 (en) * 2004-01-15 2011-11-09 東ソー株式会社 Amine compound having fluorene group as mother nucleus and production method and use thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504774A (en) * 1996-02-22 2000-04-18 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Partially conjugated polymers having spiro centers and their use as electroluminescent materials
JPH10340781A (en) * 1997-04-08 1998-12-22 Nippon Steel Corp Organic electroluminescent element and its manufacture
US20020132134A1 (en) * 2001-01-26 2002-09-19 Xerox Corporation Electroluminescent (EL) devices
JP2003347058A (en) * 2002-04-24 2003-12-05 Eastman Kodak Co Organic light emitting device
JP2004315495A (en) * 2002-09-20 2004-11-11 Tosoh Corp New arylamine derivative having fluorene skeleton, synthetic intermediate of the same, method for producing them and organic el element
JP2005035919A (en) * 2003-07-18 2005-02-10 Tosoh Corp New arylvinyl compound having fluorene skeleton, and method for producing the same and organic el element
JP2005085599A (en) * 2003-09-09 2005-03-31 Toyo Ink Mfg Co Ltd Organic electroluminescent element
JP4810830B2 (en) * 2004-01-15 2011-11-09 東ソー株式会社 Amine compound having fluorene group as mother nucleus and production method and use thereof
JP2006131783A (en) * 2004-11-08 2006-05-25 Konica Minolta Holdings Inc Material for organic electroluminescent element, organic electroluminescent element, lighting apparatus and display

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050529A (en) * 2006-08-28 2008-03-06 Kyoto Univ Organic light emission transistor material, organic light emission transistor element and display device
JP2010138089A (en) * 2008-12-10 2010-06-24 Daikin Ind Ltd Method for producing tricyclic compound
JP2010138088A (en) * 2008-12-10 2010-06-24 Daikin Ind Ltd Method for producing fluorene derivative
US9187456B2 (en) 2009-11-17 2015-11-17 Merck Patent Gmbh Materials for organic electroluminescent devices
US10981880B2 (en) 2009-11-17 2021-04-20 Merck Patent Gmbh Materials for organic electroluminescent devices
US11760734B2 (en) 2009-11-17 2023-09-19 Merck Patent Gmbh Materials for organic electroluminescent devices
JP2013510889A (en) * 2009-11-17 2013-03-28 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices
US10233159B2 (en) 2009-11-17 2019-03-19 Merck Patent Gmbh Materials for organic electroluminescent devices
JP2014088399A (en) * 2011-02-23 2014-05-15 Hodogaya Chem Co Ltd Compound including substituted triphenylene ring structure, and organic electroluminescent element
CN102585800A (en) * 2012-01-13 2012-07-18 宁波大学 Fluorine pyridine fluorescent material and preparation method thereof
CN102585800B (en) * 2012-01-13 2014-07-16 宁波大学 Fluorine pyridine fluorescent material and preparation method thereof
JP2014197174A (en) * 2013-03-07 2014-10-16 キヤノン株式会社 Electrophotographic photoreceptor, and electrophotographic apparatus and process cartridge having the electrophotographic photoreceptor
JP2017533893A (en) * 2014-10-30 2017-11-16 エルジー・ケム・リミテッド Ring compound and organic light emitting device including the same
US10431748B2 (en) 2014-10-30 2019-10-01 Lg Chem, Ltd. Cyclic compound and organic light-emitting element comprising same
CN111689994A (en) * 2020-06-05 2020-09-22 安徽师范大学 Organic conjugated molecular material with bifluorene Aza-BODIPY as basic skeleton and preparation method and application thereof
CN115124561A (en) * 2021-03-29 2022-09-30 中国科学院化学研究所 Novel seven-membered ring-containing conjugated molecular material based on quinoid structure and preparation and application thereof
WO2023148123A1 (en) 2022-02-01 2023-08-10 Merck Patent Gmbh Composition, cured film, device including the same, and manufacturing method for the cured film

Also Published As

Publication number Publication date
JP5011743B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5011743B2 (en) Π-conjugated compound having cardo structure, and production method and use thereof
KR101267854B1 (en) π-CONJUGATED COMPOUND HAVING CARDO STRUCTURE, PROCESS FOR PREPARING SAME AND USE OF SAME
EP2371812B1 (en) Indenofluorenedione derivative, material for organic electroluminescent element, and organic electroluminescent element
KR101473019B1 (en) New compounds and organic electronic device using the same
TWI664183B (en) Compound having spiro structure and organic light emitting device comprising the same
TWI490188B (en) Amine derivative and organic electroluminescent element
JP2009215281A (en) Novel organic electroluminescent compound and organic electroluminescent element using the same
TW200932709A (en) Benzophenanthrene derivative and organic electroluminescent device employing the same
KR101567112B1 (en) Compound having substituted pyridyl group and pyridoindole ring structure linked through phenylene group, and organic electroluminescent device
WO2005068413A1 (en) Amine compound having fluorene group as framework, process for producing the amine compound, and use of the amine compound
KR101597865B1 (en) New compounds and organic electronic device using the same
KR20120083243A (en) New compounds and organic electronic device using the same
KR20140076888A (en) aromatic compound having fused cyclic substituent in aromatic ring and organic light-emitting diode including the same
WO2016021815A1 (en) Organic compound, organic optoelectronic element, and display device
JP2018090561A (en) Novel triazine compound, and organic electronic element and plant-growing lighting that use the same
JP2011093825A (en) Compound including 2,2-diphenyladamantyl structure, and organic electroluminescent element
JP5799772B2 (en) Electron transport material and organic electroluminescent device using the same
CN110818675A (en) Organic compound and application thereof
JPWO2009107651A1 (en) Substituted bipyridyl compounds and organic electroluminescent devices
JP2008214339A (en) New dipyrene derivative, electron transport material, luminescent material composed of the same, and organic electroluminescent element containing the same
JP2007084458A (en) 1,8-naphthyridine derivative and organic electroluminescent element comprising the same
JP4852252B2 (en) 1,10-phenanthroline derivative, process for producing the same, and organic electroluminescent device containing the same
CN113429397B (en) Compound, display panel and display device
JP5163853B2 (en) Organic compounds and their uses
KR20140015226A (en) New compounds and organic electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5011743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees