JP2007223388A - Device for state estimation and control of vehicle - Google Patents

Device for state estimation and control of vehicle Download PDF

Info

Publication number
JP2007223388A
JP2007223388A JP2006044678A JP2006044678A JP2007223388A JP 2007223388 A JP2007223388 A JP 2007223388A JP 2006044678 A JP2006044678 A JP 2006044678A JP 2006044678 A JP2006044678 A JP 2006044678A JP 2007223388 A JP2007223388 A JP 2007223388A
Authority
JP
Japan
Prior art keywords
vehicle
lateral force
slip angle
wheel
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006044678A
Other languages
Japanese (ja)
Other versions
JP4862422B2 (en
Inventor
Yoshitaka Deguchi
欣高 出口
Ichiro Yamaguchi
一郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006044678A priority Critical patent/JP4862422B2/en
Publication of JP2007223388A publication Critical patent/JP2007223388A/en
Application granted granted Critical
Publication of JP4862422B2 publication Critical patent/JP4862422B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for state estimation and control of a vehicle capable of estimating a vehicle state before the influence of a road surface friction coefficient appears as a vehicle behavior such as a yaw rate. <P>SOLUTION: This state estimation device is provided with: a first lateral force sum calculation means for calculating the first lateral force sum of front and rear wheels; a vehicle state estimation means for estimating a vehicle body slip angle and a road surface friction coefficient; a first wheel slip angle calculation means for calculating the first wheel slip angle based on the estimated vehicle body slip angle; and an each wheel lateral force calculation means for calculating the lateral force of each wheel based on the first each wheel slip angle and the estimated road surface friction coefficient. The vehicle state estimation means is provided with a second lateral force sum calculation means for calculating the second each wheel slip angle, and for setting the initial value of the vehicle body slip angle and the initial value of the road surface friction coefficient, and for calculating the second lateral force sum of the front and rear wheels based on the initial value of the road surface friction coefficient and the second each wheel slip angle. The estimated body slip angle and the estimated road surface friction coefficient are set so that a difference between the first lateral force sum and the second lateral force sum can be minimized. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、路面摩擦係数の推定装置及び車両挙動を安定させる制御装置に関する。   The present invention relates to a road surface friction coefficient estimating device and a control device for stabilizing vehicle behavior.

従来、路面摩擦係数と車両のすべり角を推定し、この推定値を車両挙動制御に用いる技術が開示されている。この技術にあっては、車両の横加速度およびヨーレートおよび車両運動方程式などに基づいて、路面摩擦係数や車両のすべり角などの車両状態を推定している(例えば、特許文献1、2参照)。
特開2003-118554号公報 特開2003-118612号公報
Conventionally, a technique for estimating a road surface friction coefficient and a slip angle of a vehicle and using the estimated value for vehicle behavior control has been disclosed. In this technique, a vehicle state such as a road surface friction coefficient and a vehicle slip angle is estimated based on a lateral acceleration and a yaw rate of the vehicle, a vehicle motion equation, and the like (see, for example, Patent Documents 1 and 2).
JP 2003-118554 A JP 2003-118612 A

しかしながら上記従来技術にあっては、路面摩擦係数の影響がヨーレートなどの車両挙動として現れた後にはじめて車両状態を推定していたため、推定するまでに時間を要するという問題があった。   However, in the above prior art, since the vehicle state is estimated only after the influence of the road surface friction coefficient appears as the vehicle behavior such as the yaw rate, there is a problem that it takes time to estimate.

本発明は、上記問題に着目してなされたもので、その目的とするところは、路面摩擦係数の影響がヨーレートなどの車両挙動として現れる前に、車両状態を推定可能とする車両の状態推定及び制御装置を提供することにある。   The present invention has been made paying attention to the above-mentioned problem, and its purpose is to estimate the vehicle state before the influence of the road surface friction coefficient appears as a vehicle behavior such as a yaw rate, and to estimate the vehicle state. It is to provide a control device.

上記目的を達成するため、本発明では、車両状態検出値に基づき前輪及び後輪の横力左右横力和の各々を演算する第1のタイヤ和横力演算手段と、各輪荷重を推定する輪荷重推定手段と、各輪の制駆動反力を推定する制駆動反力推定手段と、各輪の推定輪荷重と推定制駆動反力に基づき、路面摩擦係数及び車体すべり角に対する前輪及び後輪の横力左右横力和の各々を演算する第2のタイヤ横力和演算手段と、前記タイヤ横力特性演算手段で演算する路面摩擦係数の探索範囲及び車体すべり角の探索範囲を設定する探索範囲設定手段と、前記探索範囲中であって第2のタイヤ横力特性演算手段にもとづき演算される第2のタイヤ横力和の中から、第1のタイヤ和横力演算手段に基づき演算される第1のタイヤ横力和との差が小さくなる条件をみたす、第2のタイヤ横力和を探索する探索手段と、前記探索された第2のタイヤ横力和から推定車体すべり角と推定路面摩擦係数の組合せを決定する推定車体すべり角及び推定路面摩擦係数推定手段と、を備えることとした。   In order to achieve the above object, in the present invention, a first tire sum lateral force calculation means for calculating each of the lateral force left and right lateral force sums of the front wheels and rear wheels based on the vehicle state detection value, and each wheel load are estimated. Wheel load estimating means, braking / driving reaction force estimating means for estimating the braking / driving reaction force of each wheel, front wheel and rear wheel against the road surface friction coefficient and vehicle slip angle based on the estimated wheel load and estimated braking / driving reaction force of each wheel A second tire lateral force sum calculating means for calculating each of the lateral force sum of the lateral force of the wheel and a search range for the road surface friction coefficient and a vehicle slip angle calculated by the tire lateral force characteristic calculating means are set. Calculation based on the first tire sum lateral force calculation means from the search range setting means and the second tire lateral force sum that is calculated based on the second tire lateral force characteristic calculation means within the search range. The condition that the difference from the first tire lateral force sum is reduced In addition, a search means for searching for the second tire lateral force sum, an estimated vehicle slip angle and an estimated road surface for determining a combination of the estimated vehicle slip angle and the estimated road surface friction coefficient from the searched second tire lateral force sum. A friction coefficient estimating means.

よって、各輪に発生する制駆動路面反力と横力との関係に基づき車両状態を推定することで、路面摩擦係数変化や車体のすべり角変化に伴う横力変化がヨーレート変化などの車両挙動変化となって現れる前にいち早く車両状態を推定することが可能となり、高度な車両運動性能を実現できる。   Therefore, by estimating the vehicle state based on the relationship between the braking / driving road surface reaction force and lateral force generated on each wheel, the lateral force change due to the change in the road surface friction coefficient and the slip angle of the vehicle body can change the vehicle behavior such as the yaw rate change. It becomes possible to estimate the vehicle state immediately before appearing as a change, and it is possible to realize high vehicle motion performance.

以下、本発明の車両の状態推定及び制御装置を実現する最良の形態を、図面に示す実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS The best mode for realizing a vehicle state estimation and control apparatus according to the present invention will be described below based on an embodiment shown in the drawings.

[システム構成]
実施例1につき図1ないし図10に基づき説明する。図1は、4輪を独立の電気モータで駆動する電気自動車のシステム構成図である。電気自動車は、永久磁石をロータに設けた3相同期モータ3fl、3fr、3rl、3rrを備えており、各モータ3fl〜3rrは減速機4fl、4fr、4rl、4rrを介して各車輪2fl、2fr、2rl、2rrに連結されている。各モータ3fl〜3rr、各減速機機4fl〜4rr、各車輪2fl〜2rrの出力特性、減速比、車輪半径はいずれも同一である。
[System configuration]
The first embodiment will be described with reference to FIGS. FIG. 1 is a system configuration diagram of an electric vehicle in which four wheels are driven by independent electric motors. The electric vehicle includes three-phase synchronous motors 3fl, 3fr, 3rl, and 3rr provided with permanent magnets on the rotor. The motors 3fl to 3rr are connected to the wheels 2fl and 2fr via the speed reducers 4fl, 4fr, 4rl, and 4rr, respectively. 2rl and 2rr. The output characteristics, the reduction ratio, and the wheel radius of each motor 3fl to 3rr, each reduction gear 4fl to 4rr, and each wheel 2fl to 2rr are the same.

ステアリングホイール11はシャフトを介してステアリングラック14に接続し、前輪fl、frの操舵が行われる。また、ステアリングホイール11に対する操舵角STRに基づき各輪3fl〜3rrの転舵角δは転舵角センサ21により検出され、統合コントローラ30へ出力される。   The steering wheel 11 is connected to the steering rack 14 via a shaft, and the front wheels fl and fr are steered. Further, the turning angle δ of each of the wheels 3fl to 3rr is detected by the turning angle sensor 21 based on the steering angle STR with respect to the steering wheel 11, and is output to the integrated controller 30.

統合コントローラ30はトルク指令値tTFL(左前輪)、tTFR(右前輪)、tTRL(左後輪)、tTRR(右後輪)を演算する演算装置である。ヨーレイトセンサ8、転舵角センサ21、ブレーキペダルセンサ22、アクセルペダルセンサ23、横加速度センサ24、25、前後加速度センサ26からの各検出値に加え、現在のモータ3fl〜3rrの現在回転数と出力トルクが入力される。これらの入力値に基づき、各モータ3fl〜3rrに対するトルク指令値tTFL(左前輪)、tTFR(右前輪)、tTRL(左後輪)、tTRR(右後輪)を演算する。   The integrated controller 30 is an arithmetic unit that calculates torque command values tTFL (left front wheel), tTFR (right front wheel), tTRL (left rear wheel), and tTRR (right rear wheel). In addition to the detected values from the yaw rate sensor 8, the turning angle sensor 21, the brake pedal sensor 22, the accelerator pedal sensor 23, the lateral acceleration sensors 24 and 25, and the longitudinal acceleration sensor 26, the current rotational speeds of the current motors 3fl to 3rr Output torque is input. Based on these input values, torque command values tTFL (left front wheel), tTFR (right front wheel), tTRL (left rear wheel) and tTRR (right rear wheel) for each motor 3fl-3rr are calculated.

駆動回路5fl〜5rrは、統合コントローラ30からのトルク指令値tTFL〜tTRRに基づき、バッテリ6の電力を制御して各モータ3fl〜3rrの力行および回生トルクを制御する。   The drive circuits 5fl to 5rr control the power running and regenerative torque of the motors 3fl to 3rr by controlling the power of the battery 6 based on the torque command values tTFL to tTRR from the integrated controller 30.

[トルク指令値演算制御]
統合コントローラ30は、ヨーレイトなどの車両挙動が実測値として検出される前に、あらかじめ車両すべり角β、路面摩擦係数μを推定した上でトルク指令値tTFL〜tTRRの演算を行う。推定された車両すべり角β、路面摩擦係数μの値に基づきトルク指令値tTFL〜tTRRを演算することにより、より高精度なモータ制御を行うものである。
[Torque command value calculation control]
The integrated controller 30 calculates the torque command values tTFL to tTRR after estimating the vehicle slip angle β and the road surface friction coefficient μ in advance before the vehicle behavior such as the yaw rate is detected as the actual measurement value. More precise motor control is performed by calculating torque command values tTFL to tTRR based on the estimated vehicle slip angle β and road surface friction coefficient μ.

[トルク指令値演算制御処理]
図2は、統合コントローラ30で実行されるトルク指令値演算制御処理のメインフローチャートである。これらは一定時間毎、例えば5ms毎に実行する。以下、各ステップごとに説明する。
[Torque command value calculation control processing]
FIG. 2 is a main flowchart of a torque command value calculation control process executed by the integrated controller 30. These are executed at regular intervals, for example, every 5 ms. Hereinafter, each step will be described.

ステップS201では、各センサ信号、データを取り込む。すなわち、アクセル開度APS、ブレーキ踏力BRK、操舵角STR、横加速度YG1、YG2、前後加速度XG、ヨーレートγの各検出値を取り込み、また各モータ3fl〜3rrの回転数Nfl〜Nrr及びトルク指令値TFL〜TRRの現在値データを取り込んでステップS202へ移行する。なお、横加速度YG1、YG2は2つの横加速度センサ24、25の2つの検出値である。   In step S201, each sensor signal and data is captured. That is, the detected values of accelerator opening APS, brake pedal force BRK, steering angle STR, lateral acceleration YG1, YG2, longitudinal acceleration XG, and yaw rate γ are taken in, and the rotational speeds Nfl to Nrr and torque command values of the motors 3fl to 3rr are taken. The current value data of TFL to TRR is fetched, and the process proceeds to step S202. Lateral accelerations YG1 and YG2 are two detection values of the two lateral acceleration sensors 24 and 25.

ステップS202では、車速Vを次式で演算し、ステップS203へ移行する。
(数式1)
V = (Nfl/GG*R + Nfr/GG*R + Nrl/GG*R + Nrr/GG*R) /4
ここで、Rは各車輪fl〜rrの半径、GGは減速機4fl〜4rrの減速比である。
In step S202, the vehicle speed V is calculated by the following equation, and the process proceeds to step S203.
(Formula 1)
V = (Nfl / GG * R + Nfr / GG * R + Nrl / GG * R + Nrr / GG * R) / 4
Here, R is the radius of each wheel fl to rr, and GG is the reduction ratio of the reducers 4fl to 4rr.

ステップS203では、後述する車両状態推定ルーチンを用いて車体すべり角β、路面摩擦係数μを推定し、ステップS204へ移行する。   In step S203, the vehicle body slip angle β and the road surface friction coefficient μ are estimated using a vehicle state estimation routine described later, and the process proceeds to step S204.

ステップS204では、推定された車体すべり角β、路面摩擦係数μに基づき、後述するモータトルク指令値演算制御処理ルーチンを用いて各輪2fl〜2rrのモータトルク指令値TFL〜TRRを演算し、駆動回路5fl〜5rrに出力して制御を終了する。   In step S204, based on the estimated vehicle slip angle β and road surface friction coefficient μ, motor torque command values TFL to TRR for each wheel 2fl to 2rr are calculated using a motor torque command value calculation control routine described later, and then driven. Output to the circuits 5fl to 5rr to finish the control.

[車両状態推定ルーチン:車体すべり角及び路面摩擦係数の推定]
図3は、図2ののフローにおけるステップS203での車両状態推定ルーチンにかかる、車体すべり角βと各車両挙動パラメータの関係を示す図である。転舵角センサ21、ブレーキペダルセンサ22、横加速度センサ24、25の検出値である操舵角STR、ブレーキ踏力BRK、横加速度YG1、YG2に基づき、転舵角δ、制駆動路面反力Fx、ヨーモーメントMM及び横力YGを演算し、これに基づき車体すべり角β及び路面摩擦係数μを決定する。
[Vehicle condition estimation routine: estimation of vehicle slip angle and road friction coefficient]
FIG. 3 is a diagram showing the relationship between the vehicle slip angle β and each vehicle behavior parameter in the vehicle state estimation routine in step S203 in the flow of FIG. Based on the steering angle STR, the brake pedal force BRK, and the lateral accelerations YG1 and YG2 detected by the turning angle sensor 21, the brake pedal sensor 22, and the lateral acceleration sensors 24 and 25, the turning angle δ, the braking / driving road surface reaction force Fx, The yaw moment MM and the lateral force YG are calculated, and the vehicle slip angle β and the road surface friction coefficient μ are determined based on the yaw moment MM and the lateral force YG.

(転舵角の演算)
本願における車両は前輪操舵タイプであるため、後輪転舵角は0である。したがって、前輪及び後輪の操舵角−転舵角マップMAP_STRfl及びMAP_STRfrから、操舵角STRに対応する前輪転舵角δfl、δfrの値を読み込み、以下のように演算する。
(数式2)
δfl = MAP_STRfl(STR)
δfr = MAP_STRfr(STR)
δrl = 0
δrr = 0
(Calculation of turning angle)
Since the vehicle in the present application is a front wheel steering type, the rear wheel turning angle is zero. Accordingly, the values of the front wheel turning angles δfl and δfr corresponding to the steering angle STR are read from the steering angle-steering angle maps MAP_STRfl and MAP_STRfr of the front wheels and the rear wheels, and are calculated as follows.
(Formula 2)
δfl = MAP_STRfl (STR)
δfr = MAP_STRfr (STR)
δrl = 0
δrr = 0

(制駆動路面反力の演算)
制駆動路面反力Fxfl〜Fxrrは、モータトルク指令値TFL〜TRRと各輪3fl〜3rrの回転速度変化量から推定する。具体的な推定手法としては、例えば特開平6-98418(数11)に開示される方法を用いる。とりわけ機械式ブレーキを用いる場合、ブレーキ踏力BRKの値から前、後輪制動力マップを読み込んで、ブレーキ制動トルクTBL_FBR(BRK)及びTBL_RBR(BRK)とモータトルクTFL〜TRRとの和に基づき、制駆動路面反力Fxfl〜Fxrrを演算する。また、アンチスキッドブレーキングシステム作動時には、システム作動による制動トルク減少分を検出し、上記制動トルクを補正する。
(Calculation of braking / driving road surface reaction force)
The braking / driving road surface reaction forces Fxfl to Fxrr are estimated from the motor torque command values TFL to TRR and the rotation speed variation of each wheel 3fl to 3rr. As a specific estimation method, for example, a method disclosed in JP-A-6-98418 (Equation 11) is used. In particular, when using a mechanical brake, the front and rear wheel braking force maps are read from the brake pedal force BRK value, and the braking torque TBL_FBR (BRK) and TBL_RBR (BRK) are combined with the motor torque TFL to TRR. The driving road surface reaction forces Fxfl to Fxrr are calculated. Further, when the anti-skid braking system is operated, a braking torque decrease due to the system operation is detected, and the braking torque is corrected.

(横力及びヨーモーメントの演算)
図4は、図2のフローにおけるステップS203での車両状態推定ルーチンにかかる、横加速度と各車両挙動パラメータとの関係を示す図である。横力Fyは車両進行方向左向きを正とする。横加速度センサの取り付け位置を図4の位置とした場合、ヨー角加速度γ'(単位は、rad/s2、反時計回りを正とする)と重心位置の横加速度YG(単位は、m/s2、車両左向きを正とする)は次のように求められる。
(数式3)
γ' = (YG2-YG1)/L2
YG = YG1 + (YG2-YG1)*Lc/L2
(Calculation of lateral force and yaw moment)
FIG. 4 is a diagram showing the relationship between the lateral acceleration and each vehicle behavior parameter in the vehicle state estimation routine in step S203 in the flow of FIG. The lateral force Fy is positive when the vehicle travels to the left. When the installation position of the lateral acceleration sensor is the position shown in FIG. 4, the yaw angular acceleration γ ′ (unit is rad / s 2 , counterclockwise is positive) and the lateral acceleration YG at the center of gravity (unit is m / s 2 , where the left direction of the vehicle is positive) is obtained as follows.
(Formula 3)
γ '= (YG2-YG1) / L2
YG = YG1 + (YG2-YG1) * Lc / L2

上記ヨー角加速度γ'及び横加速度YG値から、車両のヨー慣性設計値Iγ[kgm2]、車両質量設計値M[kg]を用いて、車両に働く横力FyとヨーモーメントMMを次のように演算する。
(数式4)
Fy = M*YG
MM = Iγ*γ'
From the yaw angular acceleration γ 'and lateral acceleration YG value, the lateral force Fy and yaw moment MM acting on the vehicle are calculated using the vehicle yaw inertia design value I γ [kgm 2 ] and vehicle mass design value M [kg]. Calculate as follows.
(Formula 4)
Fy = M * YG
MM = I γ * γ '

(前後輪の左右横力和の演算)
図3に示すように、左前輪で発生する横力をFyfl、右前輪で発生する横力をFyfr、左後輪で発生する横力をFyrl、右後輪で発生する横力をFyrrとし、前輪の左右転舵角が等しく(δfl=δfr=δf)と後輪の左右転舵角が等しい(δrl=δrr=δr)とすると、車両に働く横力FyとヨーモーメントMMについて次の関係式が成り立つ。
(数式5)

Figure 2007223388
ここでLf は前輪軸重心点距離[m]、Lr は後輪軸重心点距離[m]、Lt はトレッドベース距離(前後輪同一)[m]であり、それぞれ設計定数である。
上記数式5の第3項の影響は小さいものとして無視し、(Fyfl+Fyfr)および(Fyrl+Fyrr)を次のように求める。
(数式6)
Figure 2007223388
ここでδfとして(δfl+δfr)/2を用い、δrとして(δrl+δrr)/2を用いることとし、(Fyfl+Fyfr)を第1前輪横力和Fy_f、(Fyrl+Fyrr)を第1後輪横力和Fy_rに代入する。 (Calculation of left and right lateral force sum of front and rear wheels)
As shown in FIG. 3, the lateral force generated at the left front wheel is Fyfl, the lateral force generated at the right front wheel is Fyfr, the lateral force generated at the left rear wheel is Fyrl, and the lateral force generated at the right rear wheel is Fyrr, If the left and right turning angles of the front wheels are equal (δfl = δfr = δf) and the left and right turning angles of the rear wheels are equal (δrl = δrr = δr), the following relational expression is given for the lateral force Fy and yaw moment MM acting on the vehicle: Holds.
(Formula 5)
Figure 2007223388
Here, Lf is the front wheel center of gravity distance [m], Lr is the rear wheel center of gravity center distance [m], and Lt is the tread base distance (same front and rear wheels) [m], which are design constants.
The influence of the third term of Equation 5 is ignored as being small, and (Fyfl + Fyfr) and (Fyrl + Fyrr) are obtained as follows.
(Formula 6)
Figure 2007223388
Here, (δfl + δfr) / 2 is used as δf, (δrl + δrr) / 2 is used as δr, (Fyfl + Fyfr) is the first front wheel lateral force sum Fy_f, and (Fyrl + Fyrr) is the first. Substitute in the rear wheel lateral force sum Fy_r.

(各輪荷重の演算)
車両静止状態での前輪荷重Wfと車両静止状態での後輪荷重Wr(単位はいずれもN)を次式で演算する。
(数式7)
Wf = M*Lr/(Lf+Lr)/2*9.8
Wr = M*Lf/(Lf+Lr)/2*9.8
次に、車両前後加速度XG、および、数式5で求めた重心位置の横加速度YGから、前後輪荷重移動量ΔWdと左右輪荷重移動量ΔWcを次のように演算する。
(数式8)

Figure 2007223388
ここで、hは重心高[m]、Ltはトレッド幅[m]である。そして、これらの値に基づき、以下の式で各輪の輪荷重を演算する。
(数式9)
Figure 2007223388
この方法以外に、センサを用いて検出した輪荷重値を用いても良い。 (Calculation of each wheel load)
The front wheel load Wf when the vehicle is stationary and the rear wheel load Wr (unit is N) when the vehicle is stationary are calculated by the following equations.
(Formula 7)
Wf = M * Lr / (Lf + Lr) /2*9.8
Wr = M * Lf / (Lf + Lr) /2*9.8
Next, the front-rear wheel load movement amount ΔWd and the left-right wheel load movement amount ΔWc are calculated as follows from the vehicle longitudinal acceleration XG and the lateral acceleration YG at the center of gravity obtained by Expression 5.
(Formula 8)
Figure 2007223388
Here, h is the center of gravity height [m], and Lt is the tread width [m]. Based on these values, the wheel load of each wheel is calculated by the following equation.
(Formula 9)
Figure 2007223388
In addition to this method, a wheel load value detected using a sensor may be used.

(車体すべり角探索範囲の設定)
車体すべり角βの推定にあっては、ある一定範囲の中から条件に適合する値を探索して推定する方法を用いるため、あらかじめ探索すべき一定範囲を確定する必要がある。したがって、車両の基準位置を図3の車体基準位置P(図3における後輪軸の左右中央の点)とし、以下のように第1後輪横力和Fy_rの値に基づきすべり角βの探索範囲を決定する。探索範囲の最小値及び最大値は、それぞれ b_min 及び b_maxで示す。
・第1後輪横力和Fy_rが正のとき
最小値b_min = -π/4 最大値b_max = 0
-π/4≦すべり角β探索範囲≦0
・第1後輪横力和Fy_rが負のとき
最小値b_min = 0 最大値b_max = π/4
0≦すべり角β探索範囲≦π/4
・第1後輪横力和Fy_rが0のとき
最小値b_min = 最大値b_max=0
すべり角β探索範囲なし
とする。更に、探索範囲の探索刻み幅Δbは、例えば次式で設定する。
Δb=(b_max- b_min)/10
なお、車体滑り角は単位をrad、車両前向きに対して点Pの進行の向きが時計周りの状況を正の向きにとるものとする。
(Setting of vehicle slip angle search range)
In estimating the vehicle slip angle β, a method of searching for and estimating a value that meets a condition from a certain fixed range is used. Therefore, it is necessary to determine a fixed range to be searched in advance. Therefore, the vehicle reference position is the vehicle body reference position P in FIG. 3 (the center point on the left and right sides of the rear wheel shaft in FIG. 3), and the search range of the slip angle β based on the value of the first rear wheel lateral force sum Fy_r as follows: To decide. The minimum and maximum values of the search range are indicated by b_min and b_max, respectively.
・ When the first rear wheel lateral force sum Fy_r is positive: Minimum value b_min = -π / 4 Maximum value b_max = 0
-π / 4 ≦ slip angle β search range ≦ 0
・ When the first rear wheel lateral force sum Fy_r is negative: Minimum value b_min = 0 Maximum value b_max = π / 4
0 ≦ Slip angle β Search range ≦ π / 4
・ When the first rear wheel lateral force sum Fy_r is 0: Minimum value b_min = Maximum value b_max = 0
No slip angle β search range. Further, the search step width Δb of the search range is set by the following equation, for example.
Δb = (b_max- b_min) / 10
It is assumed that the vehicle body slip angle has a unit of rad, and the forward direction of the point P with respect to the vehicle forward direction is a positive direction.

(路面摩擦係数探索範囲の設定)
路面摩擦係数μについても、車体すべり角βと同様ある一定範囲の中から条件に適合する値を探索して推定する方法を用いる。したがって、探索範囲の最小値をm_minとして0.1を設定し、最大値をm_maxとして1.0を設定する。また、探索範囲の探索刻み幅Δmを例えば0.1に設定する。
(Setting the road friction coefficient search range)
The road surface friction coefficient μ is also estimated by searching for a value that meets the condition from a certain range, similar to the vehicle body slip angle β. Therefore, 0.1 is set as the minimum value of the search range as m_min, and 1.0 is set as the maximum value as m_max. Further, the search step width Δm of the search range is set to 0.1, for example.

(車体すべり角及び路面摩擦係数の探索)
車体すべり角β及び路面摩擦係数μの探索にあたっては、第1前後輪横力和Fy_f、Fy_rの推定値と実測値の差が望ましくは最小であり、要求検出精度を考慮して最小となる(β、μ)の組み合わせを選択し、(β、μ)の推定値(b_opt、m_opt)とする。なお、最適な組み合わせの選択方法については路面μと滑り角βの探索ルーチンにて後述する。
(各輪スリップ率に基づく路面摩擦係数の演算)
各輪のスリップ率Sfl〜Srrおよび制駆動路面反力の関係からスリップ率Sに基づく路面摩擦係数m0を推定する。ここでは車両が「ほぼ直進状態」であることを次の条件から判定する。
判定条件 : |Fy_f|および|Fy_r|がともに所定値a以下
また、ステアリング操舵量STRの絶対値が所定値以内の場合としてもよく特に限定しない。
この判定条件が満たされ、「ほぼ直進状態」ではないと判定された場合にはm0=1に設定し、「ほぼ直進状態」と判定された場合には、以下の式を用いて各輪のスリップ率Sfl〜Srrと路面反力から路面摩擦係数m0を推定する。所定値aは、例えば車両の質量(0.5など)とする。
(数式10)
m0_fl = MAP_FM(|Sfl|、|Fxfl/Wfl|)
m0_fr = MAP_FM(|Sfr|、|Fxfr/Wfr|)
m0_rl = MAP_rlM(|Srl|、|Fxrl/Wrl|)
m0_rr = MAP_FM(|Srr|、|Fxrr/Wrr|)
m0 = min(m0_fl、 m0_fr、 m0_rl、 m0_rr)
ここで各輪のスリップ率Sfl〜Srrは、以下の式で求める。
(数式11)
左前輪: V- ( Nfl / GG*R ) ≧ 0 のとき Sfl = {V-(Nfl/GG*R)}/V
V- ( Nfl / GG*R ) < 0 のとき Sfl = {V-(Nfl/GG*R)}/(Nfl/GG*R)
右前輪: V- ( Nfr / GG*R ) ≧ 0 のとき Sfr = {V-(Nfr/GG*R)}/V
V- ( Nfr / GG*R ) < 0 のとき Sfl = {V-(Nfr/GG*R)}/(Nfr/GG*R)
左後輪: V- ( Nrl / GG*R ) ≧ 0 のとき Srl = {V-(Nrl/GG*R)}/V
V- ( Nrl / GG*R ) < 0 のとき Srl = {V-(Nrl/GG*R)}/(Nrl/GG*R)
右後輪: V- ( Nrr / GG*R ) ≧ 0 のとき Srr = {V-(Nrr/GG*R)}/V
V- ( Nrr / GG*R ) < 0 のとき Srr = {V-(Nrr/GG*R)}/(Nrl/GG*R)
また、MAP_FM、MAP_RMは、それぞれスリップ率Sfl〜Srrと、各輪fl〜rrにおける路面反力と輪荷重の比であり、MAP_FMは前輪、MAP_RMは後輪における特性マップである。図5に、MAP_FMの一例を示す。
(Search for body slip angle and road friction coefficient)
In searching for the vehicle body slip angle β and the road surface friction coefficient μ, the difference between the estimated values of the first front-rear wheel lateral force sums Fy_f and Fy_r and the actual measurement values is preferably the minimum, and the minimum is considered in consideration of the required detection accuracy ( A combination of (β, μ) is selected and used as an estimated value (b_opt, m_opt) of (β, μ). An optimal combination selection method will be described later in the search routine for the road surface μ and the slip angle β.
(Calculation of road surface friction coefficient based on each wheel slip ratio)
The road surface friction coefficient m0 based on the slip ratio S is estimated from the relationship between the slip ratios Sfl to Srr of each wheel and the braking / driving road surface reaction force. Here, it is determined from the following conditions that the vehicle is “almost straight ahead”.
Judgment conditions: | Fy_f | and | Fy_r | are both not more than a predetermined value a, and the absolute value of the steering amount STR may be within a predetermined value.
If this condition is met and it is determined that it is not “almost straight running”, m0 = 1 is set, and if it is determined that it is “almost straight running”, the following formula is used for each wheel. The road surface friction coefficient m0 is estimated from the slip ratios Sfl to Srr and the road surface reaction force. The predetermined value a is, for example, a vehicle mass (0.5 or the like).
(Formula 10)
m0_fl = MAP_FM (| Sfl |, | Fxfl / Wfl |)
m0_fr = MAP_FM (| Sfr |, | Fxfr / Wfr |)
m0_rl = MAP_rlM (| Srl |, | Fxrl / Wrl |)
m0_rr = MAP_FM (| Srr |, | Fxrr / Wrr |)
m0 = min (m0_fl, m0_fr, m0_rl, m0_rr)
Here, the slip ratios Sfl to Srr of each wheel are obtained by the following equations.
(Formula 11)
Left front wheel: When V- (Nfl / GG * R) ≥ 0, Sfl = {V- (Nfl / GG * R)} / V
When V- (Nfl / GG * R) <0, Sfl = {V- (Nfl / GG * R)} / (Nfl / GG * R)
Right front wheel: When V- (Nfr / GG * R) ≥ 0, Sfr = {V- (Nfr / GG * R)} / V
When V- (Nfr / GG * R) <0, Sfl = {V- (Nfr / GG * R)} / (Nfr / GG * R)
Left rear wheel: Srl = {V- (Nrl / GG * R)} / V when V- (Nrl / GG * R) ≥ 0
When V- (Nrl / GG * R) <0, Srl = {V- (Nrl / GG * R)} / (Nrl / GG * R)
Right rear wheel: When V- (Nrr / GG * R) ≥ 0, Srr = {V- (Nrr / GG * R)} / V
When V- (Nrr / GG * R) <0, Srr = {V- (Nrr / GG * R)} / (Nrl / GG * R)
MAP_FM and MAP_RM are slip ratios Sfl to Srr and the ratio of road surface reaction force to wheel load at each wheel fl to rr, respectively. MAP_FM is a characteristic map for the front wheel and MAP_RM is a characteristic map for the rear wheel. FIG. 5 shows an example of MAP_FM.

(各輪滑り角の演算)
車体すべり角及び路面摩擦係数の探索で求めた、(β、μ)の推定値(b_opt、m_opt)の内、すべり角b_optから、各輪のすべり角を演算する。車体すべり角βと各輪のタイヤすべり角αfl〜αrrとの関係がおおよそ次の関係にあることは、「自動車の運動と制御(山海堂、著者:安部正人)」の第3章(p.54)に示されている。また、タイヤ回転面の向きに対してタイヤ中央の進行の向きが時計周りの状況を正の向きにとる(図3参照)。
αfl = (V*b_opt+(Lf+Lr)*γ)/(V-Lt*γ/2) - δfl
αfr = (V*b_opt +(Lf+Lr)*γ)/(V+Lt*γ/2) - δfr
αrl = V*b_opt /(V-Lt*γ/2) - δrl
αrr = V*b_opt /(V+Lt*γ/2) - δrr
(Calculation of each wheel slip angle)
The slip angle of each wheel is calculated from the slip angle b_opt among the estimated values (b_opt, m_opt) of (β, μ) obtained by searching the vehicle body slip angle and the road surface friction coefficient. The relationship between the vehicle slip angle β and the tire slip angles αfl to αrr of each wheel is approximately as follows. Chapter 3 of “Automobile Movement and Control (Sankaido, Author: Masato Abe)” 54). In addition, the traveling direction of the center of the tire is a clockwise direction with respect to the direction of the tire rotation surface (see FIG. 3).
αfl = (V * b_opt + (Lf + Lr) * γ) / (V-Lt * γ / 2)-δfl
αfr = (V * b_opt + (Lf + Lr) * γ) / (V + Lt * γ / 2)-δfr
αrl = V * b_opt / (V-Lt * γ / 2)-δrl
αrr = V * b_opt / (V + Lt * γ / 2)-δrr

(各輪横力の演算)
前述の各輪3fl〜3rrの第1すべり角α1fl〜α1rrと、車体すべり角及び路面摩擦係数の探索で求めた、(β、μ)の推定値(b_opt、m_opt)のうち、推定路面摩擦係数m_optを用い、各輪3fl〜3rrの横力Fyfl〜Fyrr(図3参照)を次式で演算する。演算は前後輪におけるタイヤ特性マップMAP_FT、MAP_RTを使用する。
(数式12)
Fyfl = MAP_FT(Wfl、 Fxfl、 m_opt、 α1fl )
Fyfr = MAP_FT(Wfr、 Fxfr、 m_opt、 α1fr )
Fyrl = MAP_RT(Wrl、 Fxrl、 m_opt、 α1rl )
Fyrr = MAP_RT(Wrr、 Fxrr、 m_opt、 α1rr )
(Calculation of lateral force for each wheel)
Of the estimated values (b_opt, m_opt) of (β, μ) obtained by searching for the first slip angle α1fl to α1rr of each wheel 3fl to 3rr and the vehicle body slip angle and the road surface friction coefficient, the estimated road friction coefficient Using m_opt, the lateral forces Fyfl to Fyrr (see FIG. 3) of the wheels 3fl to 3rr are calculated by the following equation. The calculation uses tire characteristic maps MAP_FT and MAP_RT for the front and rear wheels.
(Formula 12)
Fyfl = MAP_FT (Wfl, Fxfl, m_opt, α1fl)
Fyfr = MAP_FT (Wfr, Fxfr, m_opt, α1fr)
Fyrl = MAP_RT (Wrl, Fxrl, m_opt, α1rl)
Fyrr = MAP_RT (Wrr, Fxrr, m_opt, α1rr)

[車両挙動推定制御処理]
図6は、図2のステップS203で実行される車両挙動制御処理のルーチンである。以下、各ステップにつき説明する。
[Vehicle behavior estimation control processing]
FIG. 6 is a routine of the vehicle behavior control process executed in step S203 of FIG. Hereinafter, each step will be described.

ステップS401では、各輪転舵角δfl〜δrrを演算し、ステップS402へ移行する。   In step S401, each wheel turning angle δfl to δrr is calculated, and the process proceeds to step S402.

ステップS402では、各輪制駆動路面反力Fxfl〜Fxrrを演算し、ステップS403へ移行する。   In step S402, each wheel drive road surface reaction force Fxfl to Fxrr is calculated, and the process proceeds to step S403.

ステップS403では、ヨーモーメントMM、横力YGを演算し、ステップS404へ移行する。   In step S403, yaw moment MM and lateral force YG are calculated, and the process proceeds to step S404.

ステップS404では、第1前後輪横力和Fy_f、Fy_rを求め、ステップS405へ移行する。   In step S404, first front and rear wheel lateral force sums Fy_f and Fy_r are obtained, and the process proceeds to step S405.

ステップS405では、各輪荷重Wfl〜Wrrを演算し、ステップS406へ移行する。   In step S405, the wheel loads Wfl to Wrr are calculated, and the process proceeds to step S406.

ステップS406では、車体すべり角βの探索範囲最小値b_min、最大値b_max、及び探索刻み幅Δbを決定し、ステップS407へ移行する。   In step S406, the search range minimum value b_min, maximum value b_max, and search step width Δb of the vehicle slip angle β are determined, and the process proceeds to step S407.

ステップS407では、路面摩擦係数μの探索範囲の最小値m_minとして0.1を設定し、最大値m_maxとして1.0を設定する。また、探索刻み幅Δmを0.1に設定し、ステップS408へ移行する。   In step S407, 0.1 is set as the minimum value m_min of the search range of the road surface friction coefficient μ, and 1.0 is set as the maximum value m_max. Further, the search step width Δm is set to 0.1, and the process proceeds to step S408.

ステップS408では、推定路面摩擦係数と推定車体すべり角の組み合わせ(m_opt、b_opt)を選択・演算してステップS409へ移行する。   In step S408, a combination (m_opt, b_opt) of the estimated road surface friction coefficient and the estimated vehicle slip angle is selected and calculated, and the process proceeds to step S409.

ステップS409では、各輪スリップ率Sfl〜Srrから、スリップ率を考慮した路面摩擦係数m0を推定し、ステップS411へ移行する。   In step S409, a road surface friction coefficient m0 considering the slip ratio is estimated from each wheel slip ratio Sfl to Srr, and the process proceeds to step S411.

ステップS411では、推定路面摩擦係数m_optがスリップ率を考慮した路面摩擦係数m0よりも大きいかどうかが判断され、YESであればステップS412へ移行し、NOであればステップS414へ移行する。これにより、車両がほぼ直進状態と判断されるときには、スリップ率を考慮した路面摩擦係数m0により車体すべり角βの推定値b_optを再演算することになる。   In step S411, it is determined whether or not the estimated road surface friction coefficient m_opt is larger than the road surface friction coefficient m0 considering the slip ratio. If YES, the process proceeds to step S412. If NO, the process proceeds to step S414. As a result, when it is determined that the vehicle is substantially straight, the estimated value b_opt of the vehicle body slip angle β is recalculated based on the road surface friction coefficient m0 in consideration of the slip ratio.

ステップS412では、m_opt= m0とし、ステップS413へ移行する。   In step S412, m_opt = m0 is set, and the process proceeds to step S413.

ステップS413では、車体すべり角βの推定値b_optを再演算し、ステップS414へ移行する。   In step S413, the estimated value b_opt of the vehicle slip angle β is recalculated, and the process proceeds to step S414.

ステップS414では、各輪の第1タイヤすべり角α1fl〜α1rlを演算し、ステップS415へ移行する。   In step S414, the first tire slip angles α1fl to α1rl of each wheel are calculated, and the process proceeds to step S415.

ステップS415では、各輪横力Fyfl〜Fyrrを演算し、本ルーチンを終了する。   In step S415, each wheel lateral force Fyfl to Fyrr is calculated, and this routine ends.

[路面μと滑り角βの探索ルーチン]
(探索初期値設定)
車体すべり角β及び路面摩擦係数μの推定値m_opt、b_optを探索するため、まず探索開始時点の路面摩擦係数m_minと車体すべり角b_minを設定する。
[Search routine for road surface μ and slip angle β]
(Search initial value setting)
In order to search for the estimated values m_opt and b_opt of the vehicle body slip angle β and the road surface friction coefficient μ, first, the road surface friction coefficient m_min and the vehicle body slip angle b_min at the start of the search are set.

次に、路面摩擦係数の推定値候補m_optの初期値としてm_minを設定し、車体すべり角βの推定値候補b_optの初期値としてb_minを設定する。また、J_opt(後述)として、十分大きな値(例えば1000000)を入力する。   Next, m_min is set as the initial value of the road surface friction coefficient estimated value candidate m_opt, and b_min is set as the initial value of the estimated vehicle body slip angle β estimated value b_opt. Also, a sufficiently large value (for example, 1000000) is input as J_opt (described later).

さらに、前述のS412でm_opt= m0を設定して、S413で車体すべり角βを最演算する場合は、路面摩擦係数の探索範囲の下限値m_minおよび上限値m_maxを共にm_optに設定し、刻みΔmを1に設定する。(ステップS503からステップS512を無限に実行しつづけることを回避するため)   Further, when m_opt = m0 is set in S412 described above and the vehicle slip angle β is most calculated in S413, the lower limit m_min and the upper limit m_max of the search range of the road surface friction coefficient are both set to m_opt, and the increment Δm Is set to 1. (To avoid continuing from step S503 to step S512 infinitely)

(各輪タイヤすべり角演算)
車体すべり角βに対する各輪3fl〜3rrの第2タイヤすべり角α2fl〜α2rrを次式で演算する。車体すべり角βと各輪の第2タイヤすべり角α2fl〜α2rrとの関係がおおよそ次の関係にあることは、「自動車の運動と制御(山海堂、著者:安部正人)」の第3章(p.54)に示されている。また、タイヤ回転面の向きに対してタイヤ中央の進行の向きが時計周りの状況を正の向きにとる(図3参照)。
(数式13)
α2fl = (V*b+(Lf+Lr)*γ)/(V-Lt*γ/2) - δfl
α2fr = (V*b+(Lf+Lr)*γ)/(V+Lt*γ/2) - δfr
α2rl = V*b/(V-Lt*γ/2) - δrl
α2rr = V*b/(V+Lt*γ/2) - δrr
(Each wheel tire slip angle calculation)
The second tire slip angles α2fl to α2rr of the wheels 3fl to 3rr with respect to the vehicle slip angle β are calculated by the following equation. The relationship between the vehicle slip angle β and the second tire slip angle α2fl to α2rr of each wheel is approximately as follows. Chapter 3 of “Motor Movement and Control (Sankaido, Author: Masato Abe)” p.54). In addition, the traveling direction of the center of the tire is a clockwise direction with respect to the direction of the tire rotation surface (see FIG. 3).
(Formula 13)
α2fl = (V * b + (Lf + Lr) * γ) / (V-Lt * γ / 2)-δfl
α2fr = (V * b + (Lf + Lr) * γ) / (V + Lt * γ / 2)-δfr
α2rl = V * b / (V-Lt * γ / 2)-δrl
α2rr = V * b / (V + Lt * γ / 2)-δrr

(前後輪横力和推定値演算)
タイヤの特性マップを用い、上記推定路面摩擦係数mに対応する第2前後輪横力和Fymf、Fymrを次式に基づいて演算する。
(数式14)
第2前輪横力和Fymf = MAP_FT(Wfl Fxfl、 m、 α2fl ) + MAP_FT(Wfr、 Fxfr、 m、 α2fr )
第2後輪横力和Fymr = MAP_RT(Wrl Fxrl、 m、 α2rl ) + MAP_RT(Wrr、 Fxrr、 m、 α2rr )
(Calculated estimated value of lateral force sum of front and rear wheels)
Using the tire characteristic map, the second front and rear wheel lateral force sums Fymf and Fymr corresponding to the estimated road surface friction coefficient m are calculated based on the following equations.
(Formula 14)
Second front wheel lateral force sum Fymf = MAP_FT (Wfl Fxfl, m, α2fl) + MAP_FT (Wfr, Fxfr, m, α2fr)
Second rear wheel lateral force sum Fymr = MAP_RT (Wrl Fxrl, m, α2rl) + MAP_RT (Wrr, Fxrr, m, α2rr)

ここで、MAP_FTは、輪荷重、制駆動路面反力、路面摩擦係数、及び第2タイヤすべり角α2fl〜α2rrに対して、前輪タイヤ3fl、3rrが発生する横力を出力するようにデータが入力された4入力1出力のマップである。また、MAP_RTは、輪荷重W、制駆動路面反力Fx、路面摩擦係数μ、第2タイヤすべり角α2に対して、後輪タイヤrl、rrが発生する横力を出力するようにデータが入力された4入力1出力のマップである。   Here, MAP_FT inputs data so as to output the lateral force generated by the front wheel tires 3fl and 3rr with respect to the wheel load, braking / driving road surface reaction force, road surface friction coefficient, and second tire slip angles α2fl to α2rr. 4 is a map of four inputs and one output. The MAP_RT data is input to output the lateral force generated by the rear wheel tires rl and rr for the wheel load W, braking / driving road surface reaction force Fx, road surface friction coefficient μ, and second tire slip angle α2. 4 is a map of four inputs and one output.

いずれも計測したタイヤの特性のデータマップであり、路面摩擦係数が小さいほど絶対値が小さい特性になっている。また制駆動路面反力が正に大きいあるいは負に大きい時には絶対値が小さい値になる特性を持たせてある。   Both are data maps of measured tire characteristics, and the smaller the road surface friction coefficient, the smaller the absolute value. Further, when the braking / driving road surface reaction force is positively large or negatively large, the absolute value becomes small.

(第1、第2横力和の差の最小化)
第2前後輪横力和Fymf、 Fymrを推定した後、この第2前後輪横力和推定値(Fymf、Fymr)と、第1前後輪横力和(Fy_f、Fy_r)との差が最小となる車体すべり角βと路面摩擦係数μの組み合わせを探索するため、まず、図6のステップS404で検出された第1前輪横力和Fy_fと第2前輪横力和Fymfが近いほど、また第1後輪横力和Fy_rと第2後輪横力和Fymrが近いほど、小さい値を出力する関数の値Jを演算する。ここでは関数として次のものを使用する。
(数式15)
J = | 第2前輪横力和Fymf -第1前輪横力和Fy_f |
+ | 第2後輪横力和Fymr - 第1後輪横力和Fy_r |
他にも
J=(第2前輪横力和Fymf - 第1前輪横力和Fy_f)2
+ (第2後輪横力和Fymr - 第1後輪横力和Fy_r)2などとしてもよい。
(Minimization of the difference between the first and second lateral force sums)
After estimating the second front-rear wheel lateral force sum Fymf, Fymr, the difference between the second front-rear wheel lateral force sum estimated value (Fymf, Fymr) and the first front-rear wheel lateral force sum (Fy_f, Fy_r) is minimized. In order to search for a combination of the vehicle body slip angle β and the road surface friction coefficient μ, first, the closer the first front wheel lateral force sum Fy_f and the second front wheel lateral force sum Fymf detected in step S404 in FIG. The value J of the function that outputs a smaller value is calculated as the rear wheel lateral force sum Fy_r and the second rear wheel lateral force sum Fymr are closer. Here, the following functions are used.
(Formula 15)
J = | 2nd front wheel lateral force sum Fymf-1st front wheel lateral force sum Fy_f |
+ | Second rear wheel lateral force sum Fymr-First rear wheel lateral force sum Fy_r |
Other
J = (2nd front wheel lateral force sum Fymf-1st front wheel lateral force sum Fy_f) 2
+ (Second rear wheel lateral force sum Fymr-first rear wheel lateral force sum Fy_r) 2 or the like.

ここで、Jが既に格納してあるJ_opt以下である場合には、それまでの路面摩擦係数であるmと車体すべり角βの組合せの中で、第2前輪横力和Fymfおよび第2後輪横力和Fymrが、第1前輪横力和Fy_fおよび第1後輪横力和Fy_rに最も近いと判断する。Jが既に格納してあるJ_opt以下の場合は評価値J_opt、路面摩擦係数候補値m_opt、車体すべり角候補値b_optを次のように更新する。J_opt以上であれば更新しない。
(数式16)
J_opt=J、 m_opt=m、 b_opt=b
Here, if J is less than or equal to the stored J_opt, the second front wheel lateral force sum Fymf and the second rear wheel among the combinations of the road surface friction coefficient m and the vehicle body slip angle β. It is determined that the lateral force sum Fymr is closest to the first front wheel lateral force sum Fy_f and the first rear wheel lateral force sum Fy_r. If J is less than or equal to the stored J_opt, the evaluation value J_opt, the road surface friction coefficient candidate value m_opt, and the vehicle slip angle candidate value b_opt are updated as follows. If it is more than J_opt, it is not updated.
(Formula 16)
J_opt = J, m_opt = m, b_opt = b

次に、車体すべり角βの次の探索値b(上述の車両挙動推定制御における車体すべり角探索範囲の設定:図6のステップS406参照)としてΔbを加えた値を設定する。ただし、Δbが0の場合には、ステップS503〜ステップS509の無限ループを回避するため、b=b+1としてb値を演算する。   Next, a value obtained by adding Δb is set as the next search value b of the vehicle slip angle β (setting of the vehicle slip angle search range in the above-described vehicle behavior estimation control: see step S406 in FIG. 6). However, when Δb is 0, in order to avoid the infinite loop of steps S503 to S509, the b value is calculated as b = b + 1.

(推定車体すべり角及び推定路面摩擦係数の候補値設定)
車体すべり角βの次の探索値bが探索範囲の上限値b_maxを越えているか否かを判定する。越えていない場合には、その探索値bにて再度第2各輪タイヤすべり角α2fl〜α2rr、第2前後輪横力和 Fymf、Fymr を演算し、第1、第2横力和の差の漸少化を行って次の探索値b+Δbを設定する。上限値b_maxを越えている場合には、推定車体すべり角βの候補値としてb=b_minを設定する。
(Candidate values for estimated vehicle slip angle and estimated road friction coefficient)
It is determined whether or not the next search value b of the vehicle body slip angle β exceeds the search range upper limit value b_max. If not exceeded, the second wheel tire slip angles α2fl to α2rr and the second front and rear wheel lateral force sums Fymf and Fymr are calculated again with the search value b, and the difference between the first and second lateral force sums is calculated. Decrease and set the next search value b + Δb. When the upper limit value b_max is exceeded, b = b_min is set as a candidate value for the estimated vehicle slip angle β.

また、路面摩擦係数μの次の探索候補値mをΔmを加えた値に更新する。更新後、路面摩擦係数μの探索値mが、探索範囲の上限値m_maxを越えているか否かを判定する。越えていない場合には再度第2各輪タイヤすべり角α2fl〜α2rrからやり直し、上限値m_maxを越えている場合には、路面摩擦係数μの推定値の候補値として、この探索値mをとして設定する。   Further, the next search candidate value m of the road surface friction coefficient μ is updated to a value obtained by adding Δm. After the update, it is determined whether or not the search value m of the road surface friction coefficient μ exceeds the upper limit value m_max of the search range. If not, start again from the second wheel tire slip angles α2fl to α2rr. If the upper limit m_max is exceeded, set this search value m as the estimated value of the road surface friction coefficient μ. To do.

すなわち、この車体すべり角及び路面摩擦係数の探索・推定制御にあっては、車体すべり角範囲b_min〜b_maxと、路面摩擦係数範囲m_min〜m_maxの間で、車体すべり角および路面摩擦係数をそれぞれΔb、Δm刻みで組合せを変更する。変更時におけるmとbの組合せの中で、タイヤ特性マップMAP_FTを用いて演算した第2前後輪横力和Fymf、 Fymrと、第1前後輪横力和Fy_f、 Fy_rとの値が近い組合せ(b_opt、m_opt)を抽出する。   That is, in the search and estimation control of the vehicle slip angle and the road surface friction coefficient, the vehicle slip angle and the road surface friction coefficient are set to Δb between the vehicle slip angle range b_min to b_max and the road surface friction coefficient range m_min to m_max, respectively. Change the combination in increments of Δm. Among the combinations of m and b at the time of change, the combination of the second front and rear wheel lateral force sums Fymf and Fymr calculated using the tire characteristic map MAP_FT and the first front and rear wheel lateral force sums Fy_f and Fy_r are close ( b_opt, m_opt) are extracted.

[車体すべり角及び路面摩擦係数の探索・推定制御処理]
図7は、車体すべり角及び路面摩擦係数の探索・推定制御処理ルーチンである。以下、各ステップにつき説明する。
[Search / estimation control process for vehicle slip angle and road friction coefficient]
FIG. 7 shows a search / estimation control processing routine for a vehicle slip angle and a road surface friction coefficient. Hereinafter, each step will be described.

ステップS501では、探索開始時点の路面摩擦係数μとしてm_min、探索開始時点の車体すべり角βとしてb_minを設定し、ステップS502へ移行する。   In step S501, m_min is set as the road surface friction coefficient μ at the start of the search, and b_min is set as the vehicle body slip angle β at the start of the search, and the process proceeds to step S502.

ステップS502では、m_optの初期値としてm_minを設定し、b_optの初期値としてb_minを設定する。また、J_optに1000000を入力してステップS503へ移行する。   In step S502, m_min is set as the initial value of m_opt, and b_min is set as the initial value of b_opt. Further, 1000000 is input to J_opt, and the process proceeds to step S503.

ステップS503では、車体すべり角βに対する各輪3fl〜3rrの第2タイヤすべり角α2fl〜α2rrを演算し、ステップS504へ移行する。   In step S503, second tire slip angles α2fl to α2rr of the respective wheels 3fl to 3rr with respect to the vehicle slip angle β are calculated, and the process proceeds to step S504.

ステップS504では、探索開始時におけるタイヤすべり角b及び路面摩擦係数mに対応する第2前輪横力和Fymf及び第2後輪横力和Fymrをマップから読み込み、ステップS505へ移行する。   In step S504, the second front wheel lateral force sum Fymf and the second rear wheel lateral force sum Fymr corresponding to the tire slip angle b and the road surface friction coefficient m at the start of the search are read from the map, and the process proceeds to step S505.

ステップS505では、前輪における第1前後輪横力和Fy_f、 Fy_rと第2前後輪横力和Fymf、Fymrが近いほど小さい値を出力する関数の値Jを演算し、ステップS506へ移行する。   In step S505, the value J of the function that outputs a smaller value as the first front and rear wheel lateral force sums Fy_f and Fy_r and the second front and rear wheel lateral force sums Fymf and Fymr in the front wheels are closer is calculated, and the process proceeds to step S506.

ステップS506では、関数Jが既に格納してあるJ_opt以下であるかどうかが判断され、YESであればステップS507へ移行し、NOであればステップS508へ移行する。   In step S506, it is determined whether or not the function J is equal to or less than the stored J_opt. If YES, the process proceeds to step S507, and if NO, the process proceeds to step S508.

ステップS507では、評価値J_opt、路面摩擦係数候補値m_opt、車体すべり角候補値b_optを J_opt=J 、 m_opt=m 、 b_opt=b のように更新し、ステップS508へ移行する。   In step S507, the evaluation value J_opt, the road surface friction coefficient candidate value m_opt, and the vehicle slip angle candidate value b_opt are updated as J_opt = J, m_opt = m, and b_opt = b, and the process proceeds to step S508.

ステップS508では、車体すべり角βの次の探索値bにΔbを加え、ステップS509へ移行する。   In step S508, Δb is added to the next search value b of the vehicle body slip angle β, and the process proceeds to step S509.

ステップS509では、車体すべり角βの次の探索値bが探索範囲の上限値b_maxを越えているか否かを判断し、YESであればステップS510へ移行し、NOであればステップS503へ戻る。   In step S509, it is determined whether or not the next search value b of the vehicle slip angle β exceeds the search range upper limit value b_max. If YES, the process proceeds to step S510, and if NO, the process returns to step S503.

ステップS510では、推定車体すべり角βの候補値としてb=b_minを設定し、ステップS511へ移行する。   In step S510, b = b_min is set as a candidate value for the estimated vehicle slip angle β, and the process proceeds to step S511.

ステップS511では、路面摩擦係数μの次の探索候補値mをΔmを加え、ステップS512へ移行する。   In step S511, Δm is added to the next search candidate value m of the road surface friction coefficient μ, and the process proceeds to step S512.

ステップS512では、路面摩擦係数μの探索値mが、探索範囲の上限値m_maxを越えているか否かを判断し、YESであれば路面摩擦係数μの推定値の候補値としてこの探索値mをとして設定し、NOであればステップS503へ戻る。   In step S512, it is determined whether or not the search value m of the road surface friction coefficient μ exceeds the upper limit value m_max of the search range. If YES, the search value m is used as a candidate value of the estimated value of the road surface friction coefficient μ. If NO, the process returns to step S503.

[モータトルク指令値演算制御]
図2のステップS204におけるモータトルク指令値演算制御では、まず車速-アクセル開度マップMAP_tTD(図8参照)から車両の目標駆動力tTDを読み込む。
[Motor torque command value calculation control]
In the motor torque command value calculation control in step S204 of FIG. 2, first, the target driving force tTD of the vehicle is read from the vehicle speed-accelerator opening degree map MAP_tTD (see FIG. 8).

次に、次式に基づき各輪fl〜rrのモータトルク指令値tTFL〜tTRRを演算する。なお、tUは目標駆動力車速及びステアリング操舵量STRに基づき図9の V- tU マップを読み込むことで決定される。
(数式17)
左前、後輪 tTFL、tTRL = tTD*R/GG/4-tU*R/GG/4
右前、後輪 tTFR、tTRR = tTD*R/GG/4+tU*R/GG/4
ここで、GGとは減速機4fl〜4rrにおける減速比である。なお、ヨーレートγや車両横加速度YGが所望の過渡応答となるよう補正を行ってもよく特に限定しない。補正方法については文献1.8章などを参照。
Next, motor torque command values tTFL to tTRR for the respective wheels fl to rr are calculated based on the following equation. Note that tU is determined by reading the V-tU map of FIG. 9 based on the target driving force vehicle speed and the steering amount STR.
(Formula 17)
Left front, rear wheel tTFL, tTRL = tTD * R / GG / 4-tU * R / GG / 4
Right front, rear wheel tTFR, tTRR = tTD * R / GG / 4 + tU * R / GG / 4
Here, GG is a reduction ratio in the reduction gears 4fl to 4rr. The yaw rate γ and the vehicle lateral acceleration YG may be corrected so as to have a desired transient response, and are not particularly limited. For details on the correction method, see Chapter 1.8.

演算されたモータトルク指令値tTFL〜tTRRに対し、車両の横力Fy、ヨーモーメントMM、及び車両の前後加速度XGが変化しないよう、各輪fl〜rrの駆動トルクを再配分する。具体的には、各輪の推定輪荷重W、第1タイヤすべり角α1、推定転舵角δ、推定路面摩擦係数μに基づき、前後加速度(縦力)XGに対する横力YGの感度kに応じて再配分するものである。再配分を行った後の各輪fl〜rrのモータトルク指令値tTFL〜tTRRをモータ駆動回路へ出力する。   With respect to the calculated motor torque command values tTFL to tTRR, the driving torque of each wheel fl to rr is redistributed so that the lateral force Fy, yaw moment MM, and longitudinal acceleration XG of the vehicle do not change. Specifically, according to the sensitivity k of the lateral force YG to the longitudinal acceleration (longitudinal force) XG based on the estimated wheel load W of each wheel, the first tire slip angle α1, the estimated turning angle δ, and the estimated road friction coefficient μ. Redistribute. Motor torque command values tTFL to tTRR of the respective wheels fl to rr after the redistribution are output to the motor drive circuit.

[モータトルク指令値演算制御処理]
図10は、モータトルク指令値演算制御処理ルーチンである。以下、各ステップにつき説明する。
[Motor torque command value calculation control process]
FIG. 10 is a motor torque command value calculation control processing routine. Hereinafter, each step will be described.

ステップS601では、目標駆動力tTDを演算し、ステップS602へ移行する。   In step S601, the target driving force tTD is calculated, and the process proceeds to step S602.

ステップS602では、各輪3fl〜3rrに対するモータトルク指令値tTFL〜tTRRを演算し、ステップS603へ移行する。   In step S602, motor torque command values tTFL to tTRR for the respective wheels 3fl to 3rr are calculated, and the process proceeds to step S603.

ステップS603では、各輪fl〜rrの駆動トルクを再配分し、ステップS604へ移行する。   In step S603, the drive torque of each wheel fl to rr is reallocated, and the process proceeds to step S604.

ステップS604では、各輪fl〜rrのモータトルク指令値tTFL〜tTRRを出力し、本ルーチンを終了する。   In step S604, motor torque command values tTFL to tTRR for the respective wheels fl to rr are output, and this routine ends.

[本願実施例の効果]
(1)本願実施例では、車両状態に基づき、第1の前輪及び後輪の横力和Fy_f、Fy_rを演算する第1の横力和演算手段と、車体すべり角β及び路面摩擦係数μを推定する車両状態推定手段と、推定された車体すべり角βに基づき、第1の各輪すべり角α1fl〜α1rrを演算する第1の各輪すべり角演算手段と、第1の各輪すべり角α1fl〜α1rr及び推定路面摩擦係数m_optに基づき、各輪の横力Fyfl〜Fyrrを演算する各輪横力演算手段とを備え、車両状態推定手段は、車両状態に基づき第2の各輪すべり角α2fl〜α2rrを演算し、車体すべり角βの初期値b_min及び路面摩擦係数の初期値m_minを設定し、車両状態、路面摩擦係数の初期値m_min、及び第2の各輪すべり角α2fl〜α2rrに基づき、第2の前輪及び後輪の横力和Fymf、Fymrを演算する第2の横力和演算手段を備え、第1の横力和Fy_f、Fy_rと第2の横力和Fymf、Fymrの差が最小となるよう、推定車体すべり角b_opt及び推定路面摩擦係数m_optを設定することとした。
[Effect of the embodiment of the present application]
(1) In the present embodiment, the first lateral force sum calculating means for calculating the lateral force sums Fy_f and Fy_r of the first front wheels and the rear wheels based on the vehicle state, the vehicle body slip angle β and the road surface friction coefficient μ are calculated. Vehicle state estimation means to be estimated, first wheel slip angle calculating means for calculating first wheel slip angles α1fl to α1rr based on the estimated vehicle slip angle β, and first wheel slip angles α1fl ˜α1rr and each road lateral force calculation means for calculating the lateral force Fyfl˜Fyrr of each wheel based on the estimated road surface friction coefficient m_opt, and the vehicle state estimation means includes a second wheel slip angle α2fl based on the vehicle state. ~ Α2rr is calculated, the initial value b_min of the vehicle slip angle β and the initial value m_min of the road surface friction coefficient are set, and based on the vehicle condition, the initial value m_min of the road surface friction coefficient, and the second wheel slip angle α2fl to α2rr , Second lateral force sum calculating means for calculating the lateral force sums Fymf and Fymr of the second front wheel and the rear wheel, Lateral force sum Fy_f of, Fy_r a second lateral force sum Fymf, as the difference between the Fymr is minimized, it was decided to set the estimated vehicle body slip angle b_opt and the estimated road friction coefficient M_opt.

これにより、推定には路面摩擦係数やタイヤのすべり角に応じてタイヤの横力が変化する特性を利用し、路面摩擦係数μの変化や車体のすべり角βの変化に伴う横力Fyの変化が車両挙動変化となって現れる前にいち早く車両状態を推定することが可能となり、高度な車両運動性能を実現できる。   As a result, the estimation uses the characteristic that the lateral force of the tire changes according to the road friction coefficient and the tire slip angle, and changes in the lateral force Fy due to changes in the road friction coefficient μ and vehicle slip angle β. It is possible to quickly estimate the vehicle state before appears as a change in vehicle behavior, so that a high vehicle movement performance can be realized.

(2)車両の横加速度を検出する横加速度センサ24、25と、検出された横加速度YG1、YG2に基づき、車両横力Fxを推定する車両横力推定手段と、検出された横加速度YG1、YG2に基づき、ヨーモーメントγ'を推定するヨーモーメント推定手段と、各輪荷重Wfl〜Wrrを演算する各輪荷重演算手段と、各輪3fl〜3rrの制駆動反力Fxfl〜Fxrrを推定する制駆動反力推定手段と、車両各輪の転舵角δfl〜δrrを演算する転舵角演算手段と、を備え、第1の横力和Fy_f、Fy_rは、推定車両横力Fx及び推定ヨーモーメントγ'に基づき演算され、第2の各輪すべり角α2fl〜α2rrは、車速V、ヨーレイトγ、及び各輪転舵角δfl〜δrrに基づき演算され、第2の横力和Fymf、Fymrは、路面摩擦係数μの初期値m_min、各輪荷重Wfl〜Wrr、各輪制駆動反力Fxfl〜Fxrr、及び第2の各輪すべり角α2fl〜α2rrに基づき演算されることとした。   (2) Lateral acceleration sensors 24 and 25 for detecting the lateral acceleration of the vehicle, vehicle lateral force estimating means for estimating the vehicle lateral force Fx based on the detected lateral accelerations YG1 and YG2, and detected lateral acceleration YG1, Based on YG2, yaw moment estimating means for estimating yaw moment γ ', each wheel load calculating means for calculating each wheel load Wfl to Wrr, and control force Fxfl to Fxrr for estimating each wheel load 3fl to 3rr. Drive reaction force estimating means, and turning angle calculating means for calculating the turning angles δfl to δrr of each vehicle wheel, and the first lateral force sums Fy_f and Fy_r are the estimated vehicle lateral force Fx and the estimated yaw moment, respectively. The second wheel slip angles α2fl to α2rr are calculated based on the vehicle speed V, the yaw rate γ, and the wheel turning angles δfl to δrr. The second lateral force sums Fymf and Fymr are calculated on the road surface. Initial value m_min of friction coefficient μ, each wheel load Wfl to Wrr, each wheel braking / driving reaction force Fxfl to Fxrr, and each second wheel slip angle α2 The calculation is based on fl to α2rr.

これにより、路面摩擦係数μやタイヤすべり角αに応じてタイヤの横力Fyが変化する特性を利用し、推定制駆動路面反力Fxmと横力Fyとの関係に基づき推定を行なうことで、車体すべり角βと路面摩擦係数μを高速度で推定することができる。   By using the characteristic that the lateral force Fy of the tire changes according to the road surface friction coefficient μ and the tire slip angle α, the estimation is performed based on the relationship between the estimated braking / driving road surface reaction force Fxm and the lateral force Fy. The vehicle slip angle β and the road surface friction coefficient μ can be estimated at high speed.

(3)車両がほぼ直進していると判定する直進判定手段と、各輪のスリップ率を検出するスリップ率検出手段と、車両がほぼ直進していると判定した場合、各輪の制駆動路面反力推定値と前記スリップ率との関係から路面摩擦係数を演算する路面摩擦係数推定手段とを有することとした。   (3) A straight travel determination means for determining that the vehicle is traveling substantially straight, a slip ratio detection means for detecting a slip ratio of each wheel, and a braking / driving road surface of each wheel when it is determined that the vehicle is traveling substantially straight. The road surface friction coefficient estimating means for calculating the road surface friction coefficient from the relationship between the reaction force estimated value and the slip ratio is provided.

路面摩擦係数μの違いによる横力Fyの差異が小さい車両直進状態の場合には、上記(2)の方法では路面摩擦係数μの推定精度が悪化する傾向にある(極端な例としては、完全に車両が直進している場合には、路面摩擦係数μによらず、前輪横力和Fyfも後輪横力和Fyrもともに0になり、原理的に路面摩擦係数μを推定できない)。したがって、本短所を補うべく、車両がほぼ直進している状態にあっては、車輪のスリップ率Sと制駆動路面反力Fxとの関係から路面摩擦係数μを推定する。これにより、路面摩擦係数μの推定可能な機会を増やすとともに、ほぼ直進状態における路面摩擦係数μの推定精度を向上させることができる。   When the vehicle is in a straight-ahead state where the difference in the lateral force Fy due to the difference in the road surface friction coefficient μ is small, the above method (2) tends to deteriorate the estimation accuracy of the road surface friction coefficient μ (as an extreme example, When the vehicle is traveling straight ahead, both the front wheel lateral force sum Fyf and the rear wheel lateral force sum Fyr become 0 regardless of the road surface friction coefficient μ, and the road surface friction coefficient μ cannot be estimated in principle). Therefore, to compensate for this disadvantage, the road surface friction coefficient μ is estimated from the relationship between the slip ratio S of the wheel and the braking / driving road surface reaction force Fx when the vehicle is running straight. As a result, the chances of estimating the road surface friction coefficient μ can be increased, and the estimation accuracy of the road surface friction coefficient μ in a substantially straight traveling state can be improved.

(4)直進判定手段は、前輪3fl、3frの第1前輪横力和Fy_fおよび後輪3rl、3rrの第1後輪横力和Fy_rの大きさに基づき、車両がほぼ直進しているか否かを判定することとした。これにより、車輪のスリップ率Sと制駆動路面反力Fxとの関係から路面摩擦係数μを精度良く推定した場合に、車体のすべり角βを再探索し、精度の良い路面摩擦係数μに基づき、車体のすべり角βを一層精度良く求めることができる。   (4) The straight traveling determination means determines whether or not the vehicle is traveling substantially straight based on the magnitudes of the first front wheel lateral force sum Fy_f of the front wheels 3fl and 3fr and the first rear wheel lateral force sum Fy_r of the rear wheels 3rl and 3rr. Was decided. As a result, when the road surface friction coefficient μ is accurately estimated from the relationship between the wheel slip ratio S and the braking / driving road surface reaction force Fx, the vehicle body slip angle β is re-searched and based on the accurate road surface friction coefficient μ. Thus, the slip angle β of the vehicle body can be obtained with higher accuracy.

(5)車両がほぼ直進と判定された場合、探索手段は、横力推定手段に基づき演算される第2横力和Fymと、第1横力和Fyとの差を最小とする車体すべり角βと路面摩擦係数μの組合せを再探索することとした。   (5) When it is determined that the vehicle is traveling substantially straight, the searching means determines the vehicle slip angle that minimizes the difference between the second lateral force sum Fym calculated based on the lateral force estimating means and the first lateral force sum Fy. The combination of β and road friction coefficient μ was re-searched.

これにより、推定した路面摩擦係数μ、車体すべり角β、及びタイヤ特性マップ等に基づき、各輪の第1タイヤすべり角α1fl〜α1rrや横力Fyfl〜Fyrrを推定する作用を実現している。これらのタイヤ状態を表す量を推定できるようになったことで、図10のステップS603に示すような駆動力配分を行なうことが可能となり、路面摩擦係数μやタイヤ状態に適用させて車両挙動を高度に制御することができる。   Thus, the first tire slip angles α1fl to α1rr and the lateral forces Fyfl to Fyrr of each wheel are estimated based on the estimated road surface friction coefficient μ, the vehicle slip angle β, the tire characteristic map, and the like. Since the quantities representing these tire conditions can be estimated, the driving force distribution as shown in step S603 of FIG. 10 can be performed, and the vehicle behavior can be applied to the road surface friction coefficient μ and the tire condition. Highly controllable.

(6)探索手段における車体すべり角βの探索範囲は、車体すべり角βの前回探索値を含む範囲とした。これにより、車両運動特性上、車体すべり角βが不連続的に変化しないことを利用し、車体すべりβの探索範囲を限定し演算負荷を低減することができる。   (6) The search range of the vehicle slip angle β in the search means is a range including the previous search value of the vehicle slip angle β. As a result, the fact that the vehicle slip angle β does not change discontinuously in terms of vehicle motion characteristics can be utilized to limit the search range for the vehicle slip β and reduce the computation load.

(7)車体すべり角βの探索範囲を、車体すべり角βの変化速度が前回探索値のまま持続すると仮定した際の車体すべり角βの値を含む範囲とした。これにより、車体すべり角βの変化情報も利用することが可能となり、探索範囲を更に適正化させることができる。   (7) The search range of the vehicle slip angle β is set to a range including the value of the vehicle slip angle β when the change speed of the vehicle slip angle β is assumed to be maintained at the previous search value. Thereby, the change information of the vehicle body slip angle β can be used, and the search range can be further optimized.

(8)統合コントローラ30は、制動力もしくは駆動力を複数輪に独立に分配できる車両に搭載され、車輪3fl〜3rrのうち、ある車輪が十分制駆動路面反力Fxを得られない場合には、推定された第1タイヤすべり角α1及び路面摩擦係数μの推定値m_optに基づいて制駆動力を再配分することとした。これにより、演算されたモータトルク指令値tTFL〜tTRRに対し、車両の横力Fy、ヨーモーメントMM、及び車両の前後加速度XGが変化しないよう、各輪3fl〜3rrの駆動トルクを再配分することが可能となり、車両挙動をより安定させることができる。   (8) The integrated controller 30 is mounted on a vehicle that can independently distribute braking force or driving force to a plurality of wheels, and when one of the wheels 3fl to 3rr cannot sufficiently obtain the braking / driving road surface reaction force Fx. The braking / driving force is redistributed based on the estimated value m_opt of the estimated first tire slip angle α1 and the road surface friction coefficient μ. Thus, the drive torque of each wheel 3fl to 3rr is redistributed so that the lateral force Fy, yaw moment MM, and longitudinal acceleration XG of the vehicle do not change with respect to the calculated motor torque command values tTFL to tTRR. This makes it possible to further stabilize the vehicle behavior.

(他の実施例)
以上、本発明の操舵装置を実施例に基づき説明してきたが、具体的な構成についてはこれらに限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り設計の変更や追加等は許容される。
(Other examples)
As mentioned above, although the steering device of the present invention has been described based on the embodiments, the specific configuration is not limited to these, and the design of the steering device is not limited unless it deviates from the gist of the invention according to each claim of the claims. Changes and additions are allowed.

例えば、後輪を操舵する車両でもよい。その場合は、図2のステップS401にて演算する後輪舵角δrl、δrrを常に0とするのではなく、後輪舵角検出値に応じて求めるようにする。   For example, a vehicle that steers rear wheels may be used. In this case, the rear wheel steering angles δrl and δrr calculated in step S401 in FIG. 2 are not always set to 0, but are determined according to the detected rear wheel steering angle.

また本発明を適用できる駆動形態としては、図1のように4輪を独立にモータ駆動するものに限られない。駆動源はエンジンであってもよいし、前輪駆動、後輪駆動、4輪駆動のいずれであってもよい。エンジンとモータを併用するハイブリッド車両でもよく、駆動源の駆動形態に応じて、実施例を適宜変更することで同様の作用効果を得ることができる。   Further, the drive mode to which the present invention can be applied is not limited to that in which the four wheels are independently motor driven as shown in FIG. The drive source may be an engine, or any of front wheel drive, rear wheel drive, and four wheel drive. A hybrid vehicle using both an engine and a motor may be used, and similar effects can be obtained by appropriately changing the embodiment according to the drive mode of the drive source.

4輪を独立の電気モータで駆動する電気自動車のシステム構成図である。It is a system block diagram of the electric vehicle which drives 4 wheels with an independent electric motor. トルク指令値演算制御処理のメインフローチャートである。It is a main flowchart of a torque command value calculation control process. 車体すべり角と各車両挙動パラメータの関係を示す図である。It is a figure which shows the relationship between a vehicle body slip angle and each vehicle behavior parameter. 横加速度と各車両挙動パラメータとの関係を示す図である。It is a figure which shows the relationship between a lateral acceleration and each vehicle behavior parameter. スリップ率と路面反力/輪荷重の比のマップである。It is a map of the ratio of slip ratio and road surface reaction force / wheel load. 車両挙動制御処理のルーチンである。It is a routine of a vehicle behavior control process. 車体すべり角及び路面摩擦係数の探索・推定制御処理ルーチンである。It is a search / estimation control processing routine for a vehicle slip angle and a road surface friction coefficient. 車速−アクセル開度マップである。It is a vehicle speed-accelerator opening degree map. 車速−操舵角マップである。It is a vehicle speed-steering angle map. モータトルク指令値演算制御処理ルーチンである。It is a motor torque command value calculation control processing routine.

符号の説明Explanation of symbols

3fl〜3rr 車輪
4fl〜4rr 減速機
5fl〜5rr 駆動回路
6 バッテリ
8 ヨーレイトセンサ
11 ステアリングホイール
14 ステアリングラック
21 転舵角センサ
22 ブレーキペダルセンサ
23 アクセルペダルセンサ
24、25 横加速度センサ
26 前後加速度センサ
30 統合コントローラ
3 fl to 3 rr Wheel 4 fl to 4 rr Reducer 5 fl to 5 rr Drive circuit 6 Battery 8 Yaw rate sensor 11 Steering wheel 14 Steering rack 21 Steering angle sensor 22 Brake pedal sensor 23 Accelerator pedal sensor 24, 25 Lateral acceleration sensor 26 Longitudinal acceleration sensor 30 Integration controller

Claims (8)

車両状態検出値に基づき前輪及び後輪の横力左右横力和の各々を演算する第1のタイヤ和横力演算手段と、
各輪荷重を推定する輪荷重推定手段と、各輪の制駆動反力を推定する制駆動反力推定手段と、各輪の推定輪荷重と推定制駆動反力に基づき、路面摩擦係数及び車体すべり角に対する前輪及び後輪の横力左右横力和の各々を演算する第2のタイヤ横力和演算手段と、
前記タイヤ横力特性演算手段で演算する路面摩擦係数の探索範囲及び車体すべり角の探索範囲を設定する探索範囲設定手段と、
前記探索範囲中であって第2のタイヤ横力特性演算手段にもとづき演算される第2のタイヤ横力和の中から、第1のタイヤ和横力演算手段に基づき演算される第1のタイヤ横力和との差が小さくなる条件をみたす、第2のタイヤ横力和を探索する探索手段と、
前記探索された第2のタイヤ横力和から推定車体すべり角と推定路面摩擦係数の組合せを決定する推定車体すべり角及び推定路面摩擦係数推定手段と、
を備える車両状態推定装置。
First tire sum lateral force calculating means for calculating each of the lateral force sum of the lateral force of the front wheels and the rear wheels based on the vehicle state detection value;
Wheel load estimating means for estimating each wheel load, braking / driving reaction force estimating means for estimating braking / driving reaction force of each wheel, road surface friction coefficient and vehicle body based on estimated wheel load and estimated braking / driving reaction force of each wheel Second tire lateral force sum calculating means for calculating each of the lateral and lateral lateral force sums of the front and rear wheels with respect to the slip angle;
A search range setting means for setting a search range for a road surface friction coefficient calculated by the tire lateral force characteristic calculation means and a search range for a vehicle slip angle;
The first tire that is calculated based on the first tire sum lateral force calculating means from the second tire lateral force sum calculated based on the second tire lateral force characteristic calculating means within the search range. Search means for searching for a second tire lateral force sum that satisfies the condition that the difference from the lateral force sum is reduced;
Estimated vehicle slip angle and estimated road friction coefficient estimating means for determining a combination of an estimated vehicle slip angle and an estimated road friction coefficient from the searched second tire lateral force sum;
A vehicle state estimation device.
請求項1に記載の車両状態推定装置において、
前記第2のタイヤ横力特性演算手段は、車速検出手段と、ヨーレート検出手段と、操舵輪舵角を検出する舵角検出手段と、舵角と車速とヨーレートに応じて、車体基準位置の車体すべり角に対応する各輪タイヤすべり角を演算するタイヤすべり角演算手段とを備えること
を特徴とする車両状態推定装置。
The vehicle state estimation device according to claim 1,
The second tire lateral force characteristic calculating means includes a vehicle speed detection means, a yaw rate detection means, a steering angle detection means for detecting a steering wheel steering angle, and a vehicle body at a vehicle body reference position according to the steering angle, the vehicle speed, and the yaw rate. A vehicle state estimation device comprising: a tire slip angle calculating means for calculating each wheel tire slip angle corresponding to the slip angle.
請求項2に記載の車両の状態推定装置において、
車両がほぼ直進していると判定する直進判定手段と
前記各輪のスリップ率を検出するスリップ率検出手段と、
前記車両がほぼ直進していると判定した場合、前記各輪の制駆動路面反力推定値と前記スリップ率との関係から路面摩擦係数を演算する路面摩擦係数推定手段と
を有することを特徴とする車両の状態推定装置。
The vehicle state estimation device according to claim 2,
Straight-running determining means for determining that the vehicle is traveling substantially straight; slip rate detecting means for detecting the slip ratio of each wheel;
Road friction coefficient estimation means for calculating a road surface friction coefficient from the relationship between the braking / driving road surface reaction force estimated value of each wheel and the slip ratio when it is determined that the vehicle is traveling substantially straight. A vehicle state estimation device.
請求項3に記載の車両の状態推定装置において、
前記直進判定手段は、検出した前記前輪の左右横力和および前記後輪の左右横力和の大きさに基づき、車両がほぼ直進しているか否かを判定すること
を特徴とする車両の状態推定装置。
In the vehicle state estimation device according to claim 3,
The straight traveling determining means determines whether or not the vehicle is traveling substantially straight based on the detected magnitudes of the left and right lateral force sum of the front wheels and the left and right lateral force sum of the rear wheels. Estimating device.
請求項3または請求項4に記載の車両の状態推定装置において、
前記探索手段は、前記車両がほぼ直進と判定された場合、前記横力推定手段に基づき演算される前記横力和演算値と前記左右横力和の検出値との差が小さくなる条件をみたす車体すべり角と路面摩擦係数の組合せを再探索すること
を特徴とする車両の状態推定装置。
In the vehicle state estimation device according to claim 3 or 4,
The search means satisfies a condition that a difference between the calculated lateral force sum calculated based on the lateral force estimating means and the detected value of the left and right lateral force sum is reduced when the vehicle is determined to be substantially straight. A vehicle state estimation device characterized by re-searching a combination of a vehicle slip angle and a road surface friction coefficient.
請求項1ないし請求項5のいずれか1項に記載の車両の状態推定装置において、
前記探索手段は、前記車体すべり角の前回探索値を含む範囲を、前記車体すべり角の探索範囲とすること
を特徴とする車両の状態推定装置。
In the vehicle state estimation device according to any one of claims 1 to 5,
The vehicle state estimation device, wherein the search means uses a range including a previous search value for the vehicle slip angle as the search range for the vehicle slip angle.
請求項6に記載の車両の状態推定装置において、
前記探索手段は、前記車体すべり角の変化速度が前記前回探索値のまま持続すると仮定した際の前記車体すべり角の値を含む範囲とすること
を特徴とする車両の状態推定装置。
The vehicle state estimation device according to claim 6,
The vehicle state estimation device according to claim 1, wherein the search means sets a range including the value of the vehicle slip angle when it is assumed that the change speed of the vehicle slip angle continues with the previous search value.
車両の状態推定値に基づいて各輪に制駆動力を配分する制駆動力配分制御手段を備えた車両の制御装置において、
前記状態推定値を推定する手段として、請求項1ないし請求項7のいずれか1項に記載の車両の状態推定装置を用い、
前記制駆動力配分制御手段は、ある車輪が目標とする制駆動路面反力を得られないとき、前記タイヤすべり角の推定値及び前記路面摩擦係数の推定値に基づいて、各輪の制駆動力を再配分すること
を特徴とする車両の制御装置。
In a vehicle control device comprising braking / driving force distribution control means for distributing braking / driving force to each wheel based on an estimated value of the vehicle state,
The vehicle state estimation device according to any one of claims 1 to 7, as means for estimating the state estimated value,
The braking / driving force distribution control means is configured to control braking / driving of each wheel based on the estimated value of the tire slip angle and the estimated value of the road friction coefficient when a certain wheel cannot obtain a target braking / driving road surface reaction force. A vehicle control device that redistributes power.
JP2006044678A 2006-02-22 2006-02-22 Vehicle state estimation and control device Expired - Fee Related JP4862422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044678A JP4862422B2 (en) 2006-02-22 2006-02-22 Vehicle state estimation and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044678A JP4862422B2 (en) 2006-02-22 2006-02-22 Vehicle state estimation and control device

Publications (2)

Publication Number Publication Date
JP2007223388A true JP2007223388A (en) 2007-09-06
JP4862422B2 JP4862422B2 (en) 2012-01-25

Family

ID=38545604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044678A Expired - Fee Related JP4862422B2 (en) 2006-02-22 2006-02-22 Vehicle state estimation and control device

Country Status (1)

Country Link
JP (1) JP4862422B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221943A (en) * 2009-03-25 2010-10-07 Honda Motor Co Ltd Friction condition estimation device
CN111433699A (en) * 2017-12-05 2020-07-17 日本电产株式会社 Control device for mobile robot and mobile robot system
CN113460055A (en) * 2021-06-11 2021-10-01 吉林大学 Online vehicle driving control area division and area boundary estimation method
CN114148340A (en) * 2021-11-24 2022-03-08 中国煤炭科工集团太原研究院有限公司 Wheel slip rate detection method, device, equipment and storage medium for wheel edge drive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111231976B (en) * 2020-02-19 2021-07-20 江苏大学 Vehicle state estimation method based on variable step length

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224860A (en) * 1990-01-29 1991-10-03 Nec Home Electron Ltd Target slip rate estimating device
JPH07205828A (en) * 1994-01-24 1995-08-08 Toyota Motor Corp Vehicle lateral speed detecting device
JPH09142280A (en) * 1995-11-24 1997-06-03 Toyota Motor Corp Vehicle condition estimating device
JPH11115720A (en) * 1997-10-15 1999-04-27 Hino Motors Ltd Estimation device of road surface friction coefficient
JP2002200927A (en) * 2001-10-29 2002-07-16 Fuji Heavy Ind Ltd Method for estimating road surface friction coefficient
JP2003118612A (en) * 2001-10-11 2003-04-23 Honda Motor Co Ltd Car body slip angle estimating device
JP2003118554A (en) * 2001-10-11 2003-04-23 Honda Motor Co Ltd Calculating device of road surface friction coefficient
JP2004231004A (en) * 2003-01-29 2004-08-19 Toyota Motor Corp Wheel state estimating device for vehicle
JP2007106243A (en) * 2005-10-13 2007-04-26 Toyota Motor Corp Tire information acquisition device and tire information acquisition method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224860A (en) * 1990-01-29 1991-10-03 Nec Home Electron Ltd Target slip rate estimating device
JPH07205828A (en) * 1994-01-24 1995-08-08 Toyota Motor Corp Vehicle lateral speed detecting device
JPH09142280A (en) * 1995-11-24 1997-06-03 Toyota Motor Corp Vehicle condition estimating device
JPH11115720A (en) * 1997-10-15 1999-04-27 Hino Motors Ltd Estimation device of road surface friction coefficient
JP2003118612A (en) * 2001-10-11 2003-04-23 Honda Motor Co Ltd Car body slip angle estimating device
JP2003118554A (en) * 2001-10-11 2003-04-23 Honda Motor Co Ltd Calculating device of road surface friction coefficient
JP2002200927A (en) * 2001-10-29 2002-07-16 Fuji Heavy Ind Ltd Method for estimating road surface friction coefficient
JP2004231004A (en) * 2003-01-29 2004-08-19 Toyota Motor Corp Wheel state estimating device for vehicle
JP2007106243A (en) * 2005-10-13 2007-04-26 Toyota Motor Corp Tire information acquisition device and tire information acquisition method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221943A (en) * 2009-03-25 2010-10-07 Honda Motor Co Ltd Friction condition estimation device
CN111433699A (en) * 2017-12-05 2020-07-17 日本电产株式会社 Control device for mobile robot and mobile robot system
CN113460055A (en) * 2021-06-11 2021-10-01 吉林大学 Online vehicle driving control area division and area boundary estimation method
CN113460055B (en) * 2021-06-11 2022-05-31 吉林大学 Online vehicle driving control area division and area boundary estimation method
CN114148340A (en) * 2021-11-24 2022-03-08 中国煤炭科工集团太原研究院有限公司 Wheel slip rate detection method, device, equipment and storage medium for wheel edge drive
CN114148340B (en) * 2021-11-24 2024-02-13 中国煤炭科工集团太原研究院有限公司 Wheel slip rate detection method, device and equipment for wheel edge driving and storage medium

Also Published As

Publication number Publication date
JP4862422B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
CN101657345B (en) Device and method for estimating frictional condition of ground contact surface of wheel
JP5257923B2 (en) Vehicle motion control device
EP2181903B1 (en) Vehicle stabilization control device
US6862512B2 (en) Method and system for controlling the performance of a motor vehicle
JP4867369B2 (en) Driving force control device for electric vehicle, automobile and driving force control method for electric vehicle
US7234339B2 (en) Road surface frictional coefficient estimating apparatus
CN110239499B (en) Vehicle control device and vehicle control method
JP4862422B2 (en) Vehicle state estimation and control device
JP5206490B2 (en) Vehicle ground contact surface friction state estimation apparatus and method
JP4524597B2 (en) Driving force distribution device for four-wheel independent drive vehicle
CN111348040A (en) Vehicle travel control method and travel control device
JP5211995B2 (en) Vehicle deceleration control apparatus and method
JP4862423B2 (en) Vehicle state estimation and control device
JP4423961B2 (en) Motor output control device for electric vehicle
US8272699B2 (en) Brake apparatus
JP2017100504A (en) Vehicular control device and vehicular control method
JP5572184B2 (en) Vehicle motion control device
JP2006033927A (en) Driving force distributer for four-wheel independent drive vehicle
JP5154397B2 (en) Vehicle motion control device
JP4835198B2 (en) Vehicle behavior control device
JPH11240458A (en) Vehicle movement control unit
JP2009185672A (en) Driving force controller for vehicle
JP5228993B2 (en) Vehicle ground contact surface friction state estimation apparatus and method
JP2014108728A (en) Vehicle body sideslip angle estimation device
JP6237105B2 (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees