JP2007222842A - CATALYST FOR CLARIFYING EMITTED NOx, AND ITS CARRIER - Google Patents

CATALYST FOR CLARIFYING EMITTED NOx, AND ITS CARRIER Download PDF

Info

Publication number
JP2007222842A
JP2007222842A JP2006049798A JP2006049798A JP2007222842A JP 2007222842 A JP2007222842 A JP 2007222842A JP 2006049798 A JP2006049798 A JP 2006049798A JP 2006049798 A JP2006049798 A JP 2006049798A JP 2007222842 A JP2007222842 A JP 2007222842A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
alumina
nox
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006049798A
Other languages
Japanese (ja)
Inventor
Tamikuni Komatsu
民邦 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Noguchi Institute
Original Assignee
Asahi Kasei Corp
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Noguchi Institute filed Critical Asahi Kasei Corp
Priority to JP2006049798A priority Critical patent/JP2007222842A/en
Publication of JP2007222842A publication Critical patent/JP2007222842A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which efficiently clarifies emitted diesel-based NOx, which is heretofore difficult to clarify, in a low-temperature range, and also provide a carrier thereof. <P>SOLUTION: Alumina or zirconia into which a specific functional group is incorporated is used as a carrier for carrying a catalyst for clarification of emitted NOx. In order to increase the activity at a low temperature of the catalyst, a meso porous material into which a specific functional group is incorporated is used as the carrier, the meso porous material having a high specific surface area. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は排NOx浄化用触媒及び触媒を担持するための担体に関するものであり、本発明の触媒を用いることによって自動車排NOx浄化用触媒の低温活性を飛躍的に向上できる。   The present invention relates to an exhaust NOx purification catalyst and a carrier for supporting the catalyst. By using the catalyst of the present invention, the low-temperature activity of the automobile exhaust NOx purification catalyst can be dramatically improved.

ガソリン自動車の排ガス浄化用触媒の主流となっている三元触媒は、触媒支持体としてコージェライト(鉱物名)製のモノリス成形体を用い、該成型体のガス流路内壁に触媒である数100nm〜数μmの大きさの白金-パラジウム-ロジウム粒子を含んだ数μm〜数十μmの大きさの活性アルミナ(=γ-アルミナ)粒子を塗布した構造となっている。活性アルミナ粒子は数10nm〜 数100nmの微粒子の凝集体であり、微粒子間の間隙に触媒粒子が吸着している。しかし、以下に述べるように、活性アルミナは細孔が少なく空間的な広がりもほとんどないので、触媒との接触面積がキーとなるような気相触媒反応には有利ではない。   The three-way catalyst, which is the mainstream of exhaust gas purification catalysts for gasoline automobiles, uses a monolith molded body made of cordierite (mineral name) as a catalyst support, and several hundred nm as a catalyst on the inner wall of the gas flow path of the molded body It has a structure in which activated alumina (= γ-alumina) particles having a size of several μm to several tens of μm containing platinum-palladium-rhodium particles having a size of ˜several μm are applied. The activated alumina particles are agglomerates of fine particles of several tens nm to several hundreds nm, and the catalyst particles are adsorbed in the gaps between the fine particles. However, as will be described below, activated alumina has few pores and little spatial expansion, which is not advantageous for a gas phase catalytic reaction in which the contact area with the catalyst is a key.

一方、ミクロ細孔を有する合成ゼオライトやメソ細孔を有するメソポーラス材料は、主として化学合成用の触媒担体として用いられているが、比表面積が非常に大きくネットワーク状に広がった貫通型の細孔構造(細孔チャンネルという)を有する多孔性材料なので、気相触媒反応には非常に有利である。
一般に、工業的な触媒は多孔性材料に担持した状態で使用されることが多い。多孔性材料の細孔は、IUPAC(国際純正及び応用化学連合)によると、細孔直径が2nm以下のミクロ細孔、2〜50nmのメソ細孔、及び50nm以上のマクロ細孔に分類されている。ミクロからメソの範囲にわたる広い分布をもつような単一の多孔性材料は活性炭以外には知られていない。近年、数nmの位置に細孔ピークをもち、比表面積が400〜1100m2/gという非常に大きな値を有するシリカ、アルミナ、及びシリカアルミナ系メソポーラス分子ふるいが開発された。これらは、例えば、特許文献1、2、及び3等に開示されている。
On the other hand, synthetic zeolites with micropores and mesoporous materials with mesopores are mainly used as catalyst carriers for chemical synthesis, but they have a very large specific surface area and spread through a network. Since it is a porous material having a (pore channel), it is very advantageous for gas phase catalytic reactions.
In general, industrial catalysts are often used in a state where they are supported on a porous material. According to IUPAC (International Pure and Applied Chemical Association), the pores of the porous material are classified into micropores with a pore diameter of 2 nm or less, mesopores with 2 to 50 nm, and macropores with 50 nm or more. Yes. No single porous material other than activated carbon has a wide distribution ranging from the micro to meso range. In recent years, silica, alumina, and silica-alumina mesoporous molecular sieves having a pore peak at a position of several nm and a very large specific surface area of 400 to 1100 m 2 / g have been developed. These are disclosed in, for example, Patent Documents 1, 2, and 3.

触媒反応は表面反応であるので触媒の比表面積が大きいほど触媒活性が高い。また、触媒を担持するための担体は比表面積が大きいほど触媒活性を発現しやすい。このような観点から自動車用三元触媒をみると、支持体としてのモノリス成形体の比表面積が約0.2m2/g、吸着剤としての活性アルミナ粒子の比表面積が110〜340m2/gであり、触媒の比表面積は粒径から推定すると20〜40m2/g程度である。一方、前記のように工業材料として1000m2/g以上の比表面積をもつメソポーラス材料が知られており、触媒粒子は近年の触媒調整法の発達によって数nmの粒子を製造できるようになってきている。数nmの触媒粒子は、それだけで1000m2/g程度の比表面積を有する。従って、従来の活性アルミナ粒子は触媒粒子を担持するのに十分な大きさの比表面積を有してはいるが、触媒効果を最大限発揮するのに十分であるとは言い難い。 Since the catalytic reaction is a surface reaction, the larger the specific surface area of the catalyst, the higher the catalytic activity. Further, the carrier for supporting the catalyst is more likely to exhibit the catalytic activity as the specific surface area is larger. From this point of view, when looking at the three-way catalyst for automobiles, the specific surface area of the monolith molded body as the support is about 0.2 m 2 / g, and the specific surface area of the activated alumina particles as the adsorbent is 110 to 340 m 2 / g. The specific surface area of the catalyst is about 20 to 40 m 2 / g when estimated from the particle size. On the other hand, as described above, mesoporous materials having a specific surface area of 1000 m 2 / g or more are known as industrial materials, and catalyst particles can be produced with a particle size of several nanometers due to the recent development of catalyst preparation methods. Yes. The catalyst particles of several nm alone have a specific surface area of about 1000 m 2 / g. Therefore, although the conventional activated alumina particles have a specific surface area that is large enough to support the catalyst particles, it is difficult to say that they are sufficient to maximize the catalytic effect.

以上のことから、自動車用触媒の担体として高比表面積を有するメソポーラス材料を用いることが考えられるのであるが、従来の活性アルミナの代わりにメソポーラスアルミナを用いても期待したほどの飛躍的な触媒効果は得られていない。これは、自動車触媒の排NOx浄化反応は、担持触媒表面における基質間(NOx、還元剤、及び酸素)の非常に複雑な反応であるので、単に高比表面積を有する材料で置き換えただけで解決できるような単純な問題ではないということを暗に示している。なお、合成ゼオライトが自動車用三元触媒の担体として用いられないのは、排ガスに含まれる高温のNOx及び水蒸気によって合成ゼオライトの成分であるアルミニウムが溶出し担体の細孔構造が破壊されるためである。   From the above, it is conceivable to use a mesoporous material having a high specific surface area as a carrier for automobile catalysts, but the dramatic catalytic effect as expected even when using mesoporous alumina instead of conventional activated alumina Is not obtained. This is solved by simply replacing the exhaust NOx purification reaction of the automobile catalyst with a material having a high specific surface area because it is a very complicated reaction between the substrates (NOx, reducing agent, and oxygen) on the surface of the supported catalyst. It implies that it is not a simple problem that can be done. The reason why synthetic zeolite is not used as a carrier for automobile three-way catalysts is that aluminum, which is a component of synthetic zeolite, is eluted by high-temperature NOx and water vapor contained in the exhaust gas, and the pore structure of the carrier is destroyed. is there.

また、前記三元触媒はガソリン車の排ガス浄化には有効であるが、軽油燃料で走行するディーゼル車の排NOx浄化用には用いられないという問題もある。これは、ガソリン車の排ガスとディーゼル車の排ガスの質的違いと排ガス温度の違いからきている。ガソリン車の排ガスの酸素濃度は1%以下であるが、軽油の空燃比はガソリンの空燃比の数倍以上であるのでディーゼル排ガスに含まれる酸素濃度は通常5%以上である。ガソリン車の場合は、空気と燃料の理論的重量混合比を示す理論空燃比近傍で燃焼させることで共存酸素を1%以下に制御しているので、この燃焼はリッチバーンとよばれているが、ディーゼル燃料の燃焼は吸気量が理論値よりも大過剰であり、燃料供給量が相対的に少ないのでリーンバーンとよばれている。ガソリン車の排ガス温度は通常300〜600℃であるが、ディーゼル排ガスの温度は過渡走行時で120〜200℃、定常走行時で200〜400℃である。上記三元触媒がディーゼル排ガス浄化用触媒として用いることができないのは、排ガス中の比較的高濃度の酸素による触媒の酸化劣化に主原因があるが、この問題以外に過渡走行時に排出される低温領域の排NOxに対する触媒活性が著しく低いという問題もある。ディーゼル車が過渡走行時に排出する120〜200℃の低温領域の排NOx(排出されるNOxの約80%が過渡走行時に排出される。)を浄化するための触媒開発は触媒化学の分野においても未解決であり、現在でも、ディーゼル排ガス処理のための実用的な触媒は知られていない。   In addition, the three-way catalyst is effective for purifying exhaust gas of gasoline vehicles, but there is also a problem that it is not used for purifying exhaust NOx of diesel vehicles that run on light oil fuel. This is due to the difference in qualitative and exhaust gas temperatures between exhaust gas from gasoline vehicles and diesel vehicles. The oxygen concentration of exhaust gas from gasoline vehicles is 1% or less, but since the air-fuel ratio of light oil is several times higher than the air-fuel ratio of gasoline, the oxygen concentration contained in diesel exhaust gas is usually 5% or more. In the case of a gasoline vehicle, co-existing oxygen is controlled to 1% or less by burning near the stoichiometric air-fuel ratio indicating the theoretical weight mixing ratio of air and fuel. This combustion is called rich burn. The combustion of diesel fuel is called lean burn because the intake amount is excessively larger than the theoretical value and the fuel supply amount is relatively small. The exhaust gas temperature of gasoline vehicles is usually 300 to 600 ° C., but the temperature of diesel exhaust gas is 120 to 200 ° C. during transient running and 200 to 400 ° C. during steady running. The reason why the above three-way catalyst cannot be used as a diesel exhaust gas purification catalyst is mainly due to the oxidative degradation of the catalyst due to the relatively high concentration of oxygen in the exhaust gas. There is also a problem that the catalytic activity for NOx in the region is remarkably low. Catalyst development for purifying NOx in the low temperature range of 120 to 200 ° C that diesel vehicles emit during transitional travel (approximately 80% of the exhausted NOx is exhausted during transitional travel) is also in the field of catalytic chemistry It is unsolved, and no practical catalyst for treating diesel exhaust gas is known at present.

特開平5−254827号公報JP-A-5-254827 特表平5−503499号公報Japanese National Patent Publication No. 5-503499 特表平6−509374号公報Japanese National Patent Publication No. 6-509374

本発明の目的は、上記の事情に鑑み、自動車用の排NOx浄化用触媒の浄化性能を飛躍的に向上させるための触媒を提供することである。具体的には、従来困難であった例えば、120〜200℃の低温領域のディーゼル排NOx浄化を効果的に行うことができるリーンバーン排NOx浄化用触媒を提供することである。   In view of the above circumstances, an object of the present invention is to provide a catalyst for dramatically improving the purification performance of an exhaust NOx purification catalyst for automobiles. Specifically, for example, it is to provide a lean burn exhaust NOx purification catalyst that can effectively perform diesel exhaust NOx purification in a low temperature range of 120 to 200 ° C., which has been difficult in the past.

本発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、酸処理を行った酸化物担体が、触媒の低温活性化に対して非常に有効であることを見いだし、この知見に基づいて本発明を完成させるに至ったものである。
すなわち、本発明は、下記(1)〜(3)の発明である。
(1)1000cm-1〜1250cm-1にIRの吸収バンドをもつアルミナ又はジルコニアの少なくとも1つから構成されることを特徴とする排NOx浄化用触媒の担体。
(2)1000cm-1〜1250cm-1にIRの吸収バンドをもつアルミナ又はジルコニアが、1〜50nmの細孔径と100〜1400m2/gの比表面積を有するメソポーラス材料であることを特徴とする請求項1に記載の排NOx浄化用触媒の担体。
(3)上記(1)又は(2)に記載の排NOx浄化用触媒の担体に白金含有触媒を担持した触媒担持体がモノリス成形体のガス流路内壁に付着した構造であることを特徴とする排NOx浄化用モノリス触媒。
As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that the acid-treated oxide support is very effective for low-temperature activation of the catalyst. The present invention has been completed based on the above.
That is, this invention is invention of following (1)-(3).
(1) 1000cm -1 ~1250cm -1 to the carrier of the exhaust NOx purifying catalyst, characterized in that it is composed of at least one of alumina or zirconia with IR absorption bands.
(2) 1000 cm -1 alumina having an absorption band of IR to ~1250Cm -1 or zirconia, characterized in that it is a mesoporous material having a specific surface area of pore size and 100~1400m 2 / g of 1~50nm claims Item 2. A catalyst carrier for exhaust NOx purification according to Item 1.
(3) The catalyst carrier having a platinum-containing catalyst supported on the carrier of the exhaust NOx purification catalyst described in (1) or (2) above is a structure in which the catalyst carrier is attached to the inner wall of the gas flow path of the monolith molded body. Monolith catalyst for purifying exhaust NOx.

本発明の担体に担持された触媒は、従来達成できなかったリーンバーン排NOx処理を例えば、120〜200℃の低温領域でも極めて効率よく行うことができる。例えば、従来の活性アルミナに担持された白金触媒では200℃以下の酸素濃度14%の雰囲気下にある一酸化窒素の浄化率は20%程度であるが、本発明のメソポーラスアルミナを担体として用いた白金触媒は、160〜200℃の温度で一酸化窒素を50%〜100%浄化することができる。   The catalyst supported on the carrier of the present invention can perform lean burn exhaust NOx treatment, which could not be achieved in the past, extremely efficiently, for example, even in a low temperature range of 120 to 200 ° C. For example, a conventional platinum catalyst supported on activated alumina has a purification rate of about 20% of nitric oxide in an atmosphere with an oxygen concentration of 14% or less at 200 ° C. or less, but the mesoporous alumina of the present invention was used as a carrier. The platinum catalyst can purify nitric oxide by 50% to 100% at a temperature of 160 to 200 ° C.

以下、本発明を詳細に説明する。
本発明の特徴の一つは、1000cm-1〜1250cm-1にIRの吸収バンドをもつアルミナ又はジルコニアをNOx浄化用触媒の担体として用いることである。本発明のきっかけはシリカに担持の白金触媒と活性アルミナに担持の白金触媒とで触媒の低温活性能に違いがあることを発見したことにあった。従来、自動車用触媒の担体としては主として活性アルミナ(γ-アルミナ)が用いられている。高温焼成によって製造される活性アルミナは比表面積が通常110〜340m2/gの両性酸化物であり、触媒金属イオンを吸着する吸着力が強いことが知られている。一方、酸性酸化物であるシリカは、活性アルミナと同程度の比表面積を有するが触媒金属イオンに対する吸着力は活性アルミナよりも弱い。この理由は、シリカ表面に存在する特殊官能基に原因していると考えられる。しかし、本発明者らは、触媒金属イオンに対してシリカが持っている適度な吸着力、即ち特殊官能基が触媒の低温活性の向上に大きく寄与していることを見出した。この原理は、シリカ以外の酸化物に対しても該酸化物の表面に特殊官能基を導入することによって応用できることがわかった。このような酸化物としては、アルミナなどのIIIb族酸化物、ジルコニアなどのIVa族酸化物、イットリア、酸化ランタン、セリア、酸化サマリウム、酸化ガドリニウムなどのIIIa族酸化物、ニオビアなどのVa族酸化物、酸化モリブデン、酸化タングステンなどのVIa族酸化物、マグネシア、カルシア、酸化バリウムなどのIIa族酸化物、及びこれらの複合酸化物が挙げられる。これらの中で、特に、特殊官能基を導入したアルミナ、ジルコニア、及びこれらの複合酸化物は好ましい。本発明担体における特殊官能基の存在は、赤外吸収スペクトルにおける1000cm-1〜1250cm-1領域におけるブロードな複数個の吸収バンドによって観測することができる。新規に導入される特殊官能基の帰属は、元々のアルミナ及びジルコニアには存在しないIR吸収バンドであり、該吸収バンドがシリカの吸収バンドと重なることからM-Oイオン(M=金属)と考えられるが、現在の所、その帰属は明らかではない。担体への特殊官能基の導入は、通常、硝酸、硫酸、塩酸、リン酸、無水リン酸、ポリリン酸、ヘテロポリ酸、等の通常の酸を溶解した水溶液中での煮沸処理、該水溶液を担体に含浸した後200〜800℃での焼成処理、塩素、二酸化窒素、亜硫酸などの酸性ガスと水蒸気の混合ガスによる200〜800℃での気相処理、等によって行うことができる。
Hereinafter, the present invention will be described in detail.
One feature of the present invention is the use of alumina or zirconia with IR absorption band at 1000cm -1 ~1250cm -1 as a carrier of a catalyst for NOx purification. The trigger of the present invention was to discover that there is a difference in the low-temperature activity of the catalyst between the platinum catalyst supported on silica and the platinum catalyst supported on activated alumina. Conventionally, activated alumina (γ-alumina) has been mainly used as a carrier for automobile catalysts. Activated alumina produced by high-temperature firing is an amphoteric oxide having a specific surface area of usually 110 to 340 m 2 / g, and is known to have a strong adsorption power for adsorbing catalytic metal ions. On the other hand, silica, which is an acidic oxide, has a specific surface area comparable to that of activated alumina, but has a weaker adsorption power for catalytic metal ions than activated alumina. This reason is considered to be caused by a special functional group present on the silica surface. However, the present inventors have found that an appropriate adsorptive power possessed by silica with respect to catalytic metal ions, that is, a special functional group greatly contributes to the improvement of the low-temperature activity of the catalyst. It has been found that this principle can be applied to oxides other than silica by introducing special functional groups on the surface of the oxide. Examples of such oxides include Group IIIb oxides such as alumina, Group IVa oxides such as zirconia, Group IIIa oxides such as yttria, lanthanum oxide, ceria, samarium oxide, and gadolinium oxide, and Group Va oxides such as Niobia. , Group VIa oxides such as molybdenum oxide and tungsten oxide, Group IIa oxides such as magnesia, calcia, and barium oxide, and composite oxides thereof. Of these, alumina, zirconia, and composite oxides thereof having a special functional group introduced are particularly preferable. The presence of the special functional group in the present invention the carrier can be observed by broad plurality of absorption bands at 1000cm -1 ~1250cm -1 region in the infrared absorption spectrum. The attribution of the newly introduced special functional group is an IR absorption band that does not exist in the original alumina and zirconia, and the absorption band overlaps with the absorption band of silica, so that M—O ion (M = metal) and Though possible, the attribution is not clear at present. The introduction of the special functional group into the carrier is usually performed by boiling in an aqueous solution in which ordinary acids such as nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, phosphoric anhydride, polyphosphoric acid, heteropolyacid, etc. are dissolved, After impregnating, a baking treatment at 200 to 800 ° C., a gas phase treatment at 200 to 800 ° C. with a mixed gas of acidic gas such as chlorine, nitrogen dioxide and sulfurous acid and water vapor, and the like can be performed.

さらに、本発明の特殊官能基を有するアルミナ又はジルコニアは、メソポーラス材料であることが好ましい。その理由は、メソポーラス材料は、貫通型の細孔をもつので触媒の捕捉が強いこと、細孔チャンネルを通じたガス拡散の効果が期待できること、細孔分布を制御することで触媒活性種の好ましい粒径範囲を維持できること、触媒を細孔内に坦持することで触媒粒子の再凝集を抑制し触媒の均一高分散を図れること、などの優れた効果があるからである。以下で述べるように、NOxに対して高活性を示す触媒粒子の粒径はナノサイズであるので、担体であるメソポーラス材料の細孔径は触媒粒子と同程度でなければならない。通常、メソポーラス材料の細孔内に坦持される触媒の粒径は、細孔径とほぼ同程度であるので、メソポーラス材料の細孔径を制御することによって、好ましい粒径を有するナノ触媒を均一に分散坦持することができる。本発明担体であるメソポーラス材料の細孔径は、1〜50nmの範囲にあり、好ましくは2〜20nmの範囲にある。細孔径が1nm未満であってもナノ触媒の坦持は可能であるが不純物等による汚染の影響を考えると1nm以上が好ましい。50nmを越えると分散担持されたナノ触媒が水熱高温条件などによるシンタリングによって巨大粒子に成長しやすくなるので50nm以下が好ましい。ここで、本発明における細孔径とは、BJH法を用いた細孔分布測定法によって測定された細孔分布において、極大値を与える細孔径(直径で示される)の値をいう。比表面積は特別な事情がない限り高ければ高いほどよい。本発明のメソポーラス材料の比表面積は100〜1400m2/gであり、好ましくは200〜1200m2/g、さらに好ましくは、400〜1200m2/gである。触媒の担持量の面から比表面積は100m2/g以上であることが好ましく、一方、材料強度の面から比表面積は1400m2/g以下であることが好ましい。ここで、本発明における比表面積とは、窒素の物理吸着を利用してBET吸着等温式から求められる物質1g当たりの表面積
のことである。
Furthermore, the alumina or zirconia having a special functional group of the present invention is preferably a mesoporous material. The reason is that mesoporous materials have penetrating pores, so that the capture of the catalyst is strong, the effect of gas diffusion through the pore channels can be expected, and the preferred particles of the catalytically active species by controlling the pore distribution. This is because there are excellent effects such as that the diameter range can be maintained and that the catalyst is supported in the pores, thereby preventing reaggregation of the catalyst particles and achieving uniform and high dispersion of the catalyst. As will be described below, since the particle size of the catalyst particles exhibiting high activity with respect to NOx is nano-sized, the pore size of the mesoporous material that is the carrier must be approximately the same as that of the catalyst particles. Normally, the particle size of the catalyst supported in the pores of the mesoporous material is approximately the same as the pore size. Therefore, by controlling the pore size of the mesoporous material, the nano catalyst having a preferable particle size can be made uniform. Can be distributed and carried. The pore diameter of the mesoporous material that is the carrier of the present invention is in the range of 1 to 50 nm, preferably in the range of 2 to 20 nm. Even if the pore diameter is less than 1 nm, the nanocatalyst can be supported, but considering the influence of contamination due to impurities etc., 1 nm or more is preferable. If it exceeds 50 nm, the nanocatalyst dispersed and supported tends to grow into giant particles by sintering under hydrothermal high temperature conditions and the like. Here, the pore diameter in the present invention refers to the value of the pore diameter (indicated by the diameter) that gives the maximum value in the pore distribution measured by the pore distribution measurement method using the BJH method. The specific surface area should be as high as possible unless there are special circumstances. The specific surface area of the mesoporous material of the present invention is 100 to 1400 m 2 / g, preferably 200 to 1200 m 2 / g, more preferably 400 to 1200 m 2 / g. The specific surface area is preferably 100 m 2 / g or more from the viewpoint of the amount of catalyst supported, while the specific surface area is preferably 1400 m 2 / g or less from the viewpoint of material strength. Here, the specific surface area in the present invention is a surface area per 1 g of a substance obtained from a BET adsorption isotherm using physical adsorption of nitrogen.

本発明に用いるメソポーラス材料の合成法は特に限定するものでなく、従来の方法を用いて所望の材料を製造することができる。例えば、界面活性剤をメソ細孔のテンプレートとして用いる従来の方法(例えば、上述の特開平5-254827号公報、特表平5-503499号公報、特表平6-509374号公報)に準じて製造することができる。この方法では、メソポーラス材料の前駆物質には、通常、金属アルコキシドを用いる。界面活性剤は、従来のメソポア分子ふるいの作成に用いられているミセル形成の界面活性剤、例えば、長鎖の4級アンモニウム塩、長鎖のアルキルアミンN−オキシド、長鎖のスルホン酸塩、ポリエチレングリコールアルキルエーテル、ポリエチレングリコール脂肪酸エステル等のいずれであってもよい。溶媒として、通常、水、アルコール類、ジオールの1種以上が用いられるが、中でも水、メタノール、エタノール、プロパノール等の親水性溶媒が好ましい。反応系に金属への配位能を有する化合物を少量添加すると反応系の安定性を著しく高めることができる。このような安定剤としては、アセチルアセトン、テトラメチレンジアミン、エチレンジアミン四酢酸、ピリジン、ピコリンなどの金属配位能を有する化合物が好ましい。前駆物質、界面活性剤、溶媒及び安定剤からなる反応系の組成は、前駆物質の組成に対するモル比が0.01〜0.60、好ましくは0.02〜0.50、前駆物質/界面活性剤のモル比が1〜30、好ましくは1〜10、溶媒/界面活性剤のモル比が1〜1000、好ましくは5〜500、安定化剤/主剤のモル比が0.01〜1.0、好ましくは0.2〜0.6である。反応温度は、20〜180℃、好ましくは20〜100℃の範囲である。反応時間は5〜100時間、好ましくは10〜50時間の範囲である。反応生成物は通常、濾過により分離し、十分に水洗後、乾燥し、次いで、含有している界面活性剤をアルコールなどの有機溶媒により抽出後、500〜1000℃の高温で熱分解することによって完全除去し、メソポーラス材料を得ることができる。得られたメソポーラス材料に特殊官能基を導入する方法は、前記に述べたように、通常、酸の水溶液中での煮沸処理、酸の水溶液を担体に含浸後200〜800℃での焼成処理、塩素、二酸化窒素、亜硫酸などの酸性ガスと水蒸気の混合ガスによる200〜800℃での気相処理によって行うことができる。   The method for synthesizing the mesoporous material used in the present invention is not particularly limited, and a desired material can be produced using a conventional method. For example, in accordance with a conventional method using a surfactant as a template for mesopores (for example, the above-mentioned Japanese Patent Application Laid-Open Nos. 5-2554827, 5-503499, and 6-509374) Can be manufactured. In this method, a metal alkoxide is usually used as the precursor of the mesoporous material. Surfactants include micelle-forming surfactants used to make conventional mesopore molecular sieves, such as long-chain quaternary ammonium salts, long-chain alkylamine N-oxides, long-chain sulfonates, Any of polyethylene glycol alkyl ether, polyethylene glycol fatty acid ester and the like may be used. As the solvent, one or more of water, alcohols, and diols are usually used, and among these, hydrophilic solvents such as water, methanol, ethanol, and propanol are preferable. When a small amount of a compound having a coordination ability to metal is added to the reaction system, the stability of the reaction system can be remarkably enhanced. As such a stabilizer, a compound having a metal coordination ability such as acetylacetone, tetramethylenediamine, ethylenediaminetetraacetic acid, pyridine, picoline and the like is preferable. The composition of the reaction system consisting of the precursor, surfactant, solvent and stabilizer is 0.01 to 0.60, preferably 0.02 to 0.50, and the precursor / surfactant molar ratio is 1 to 30 with respect to the composition of the precursor. The molar ratio of solvent / surfactant is 1-1000, preferably 5-500, and the molar ratio of stabilizer / main agent is 0.01-1.0, preferably 0.2-0.6. The reaction temperature is in the range of 20 to 180 ° C, preferably 20 to 100 ° C. The reaction time ranges from 5 to 100 hours, preferably from 10 to 50 hours. The reaction product is usually separated by filtration, washed thoroughly with water, dried, and then extracted with an organic solvent such as alcohol and then thermally decomposed at a high temperature of 500 to 1000 ° C. It can be completely removed to obtain a mesoporous material. As described above, the method of introducing a special functional group into the obtained mesoporous material is usually boiled in an aqueous acid solution, impregnated with an aqueous acid solution into a carrier, and calcined at 200 to 800 ° C., It can be carried out by gas phase treatment at 200 to 800 ° C. with a mixed gas of acidic gas such as chlorine, nitrogen dioxide, sulfurous acid and water vapor.

つぎに、本発明の担体に担持される触媒は、NOx浄化処理を目的とした既知の触媒及び研究中の触媒のほとんどが対象になる。自動車用としては、通常、従来のガソリン車用三元触媒又は白金を主体とした触媒を用いることができるが、ディーゼル自動車用の触媒としては、白金含有触媒であることが好ましい。また、工場の排NOx処理のためには、銅系又は鉄系触媒が好ましい。
触媒粒子の表面積は粒径の二乗に反比例するので、触媒粒子が小さいほど触媒活性が高くなる。例えば、1nmの触媒粒子の表面積は0.1μmのそれと比べると104倍大きい。また、ナノサイズに微粒化された触媒粒子は、活性を示すエッジ、コーナー、ステップなどの高次数の結晶面を多量にもつので、触媒活性が著しく向上するだけでなく、バルクでは触媒活性を示さないような不活性金属でも予期しなかった触媒活性を発現する場合があることが知られている。したがって、触媒能力の観点からは触媒粒子は細かいほど好ましいのであるが、反面、微粒化による表面酸化、副反応などの好ましくない性質もでてくるので、微粒子の粒子径には最適範囲が存在する。本発明における目的のNOx分解浄化処理に対して効果的な活性を示す触媒粒子の平均粒径は1〜20nmの範囲にあり、特に1〜10nmの範囲が高活性を示すことがわかった。本発明担体に坦持される白金含有触媒の担持量は0.01〜20質量%であり、好ましくは0.1〜10質量%であるが、量的な問題がなければ、通常は、数質量%である。該触媒の担持量は20質量%以上でも可能であるが、担持量が過剰になると反応にほとんど寄与しない細孔深部の触媒が増えるので20質量%以下が好ましい。また、十分な触媒活性を得るためには0.01質量%以上が好ましい。白金触媒に異なる機能をもつ助触媒的成分を添加することによってシナジー効果による触媒性能の向上をはかることもできる。このような成分として、例えば、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、バリウム、スカンジウム、イットリウム、チタン、ジルコニウム、ハ
フニウム、ニオブ、タンタル、モリブデン、タングステン、ランタン、セリウム、バリウム、パラジウム、ロジウム、イリジウム、レニウム及びこれらの化合物をあげることができる。これらの中で、不動態化膜になるクロム、鉄、コバルト、ニッケル、還元剤の吸着力が比較的高い銅、NOx吸蔵性がある酸化バリウム、中程度の酸化力をもつ酸化セリウムと三二酸化マンガン、酸化力を有する酸性酸化物である酸化タングステン、SOx被毒防止に有効な銅-亜鉛、鉄-クロム、酸化モリブデン、シンタリング防止効果のある鉄、タングステン、ロジウム、イリジウム、レニウムなどは好ましい。この成分の添加量は、通常、白金触媒の質量の1/100〜100倍程度であるが、必要に応じて100倍以上であってもよい。
Next, the catalysts supported on the carrier of the present invention are mostly known catalysts for the purpose of NOx purification treatment and catalysts under research. For automobiles, a conventional three-way catalyst for gasoline cars or a catalyst mainly composed of platinum can be used. However, as a catalyst for diesel cars, a platinum-containing catalyst is preferable. Moreover, a copper-type or iron-type catalyst is preferable for the factory exhaust NOx treatment.
Since the surface area of the catalyst particles is inversely proportional to the square of the particle diameter, the smaller the catalyst particles, the higher the catalytic activity. For example, the surface area of the catalyst particles of 1nm is 10 4 times greater than that of 0.1 [mu] m. In addition, catalyst particles atomized into nano-sizes have a large number of high-order crystal planes such as edges, corners, and steps that exhibit activity, so that not only catalytic activity is significantly improved but also catalytic activity is exhibited in bulk. It is known that even an inert metal such as this may exhibit unexpected catalytic activity. Therefore, finer catalyst particles are preferable from the viewpoint of catalytic ability, but on the other hand, there are also undesirable properties such as surface oxidation and side reactions due to atomization, so there is an optimum range for the particle size of the fine particles. . It has been found that the average particle diameter of the catalyst particles exhibiting effective activity for the target NOx decomposition purification treatment in the present invention is in the range of 1 to 20 nm, and particularly in the range of 1 to 10 nm. The supported amount of the platinum-containing catalyst supported on the support of the present invention is 0.01 to 20% by mass, preferably 0.1 to 10% by mass, but is usually several% by mass if there is no quantitative problem. . The supported amount of the catalyst can be 20% by mass or more. However, if the supported amount is excessive, the catalyst in the deep pores that hardly contribute to the reaction increases, so 20% by mass or less is preferable. Moreover, 0.01 mass% or more is preferable in order to obtain sufficient catalytic activity. By adding a co-catalytic component having a different function to the platinum catalyst, the catalytic performance can be improved by the synergy effect. Examples of such components include chromium, manganese, iron, cobalt, nickel, copper, zinc, barium, scandium, yttrium, titanium, zirconium, hafnium, niobium, tantalum, molybdenum, tungsten, lanthanum, cerium, barium, palladium, Examples thereof include rhodium, iridium, rhenium and their compounds. Among these, chromium, iron, cobalt, nickel, which is a passivating film, copper with a relatively high adsorptive power of reducing agents, barium oxide with NOx storage, cerium oxide and trioxide with moderate oxidizing power Preference is given to manganese, tungsten oxide which is an acidic oxide having an oxidizing power, copper-zinc, iron-chromium, molybdenum oxide effective for preventing SOx poisoning, iron, tungsten, rhodium, iridium, rhenium, etc. having an anti-sintering effect . The amount of this component added is usually about 1/100 to 100 times the mass of the platinum catalyst, but may be 100 times or more as required.

本発明の触媒は、自動車用排NOx浄化用触媒として使用する場合、通常、本発明担体を自動車触媒の支持体であるモノリス成形体のガス流路内壁に付着させた後、これに触媒を担持させた形態(便宜上、これをモノリス触媒と記す)で用いる。ここでいうモノリス成形体とは、成形体の断面が網目状で、軸方向に平行に互いに薄い壁によって仕切られたガス流路を設けている成形体のことである。成形体の外形は、特に限定するものではないが、通常は、円柱形である。該モノリス触媒の製造は、通常、担体材料を予めモノリス成形体のガス流路内壁に付着させた後に触媒を担持させる方法と、担体に触媒を予め担持させた後、これをモノリス成形体のガス流路内壁に付着させる方法、とによって行うことができる。また、担体材料のモノリス成形体のガス流路内壁への付着は、担体材料とバインダーとの混合スラリーをモノリス成形体のガス流路内壁に塗布、乾燥、焼成することによって付着させる従来の方法、担体材料の前駆物質をガス流路内壁に化学的蒸着法(CVD法:Chemical Vapor Deposition)などによって付着させた後、乾燥、焼成することによって付着させる方法、等 によって行うことができる。前者の従来方法では、自動車用三元触媒を付着したモノリス成形体の製造方法に準じて製造することができる。例えば、本発明担体とバインダーとしてのアルミナゾル又はコロイダルシリカを、通常、1:(0.01〜0.2)の質量割合で混合した混合物をつくり、これを水分散することによって通常10〜50質量%のスラリーを調整した後、該スラリーにモノリス成形体を浸漬してモノリス成形体のガス流路の内壁にスラリーを付着させ、乾燥後、窒素、ヘリウム、アルゴンなどの不活性雰囲気下500〜1000℃で数時間熱処理することによって担体を塗布したモノリス成形体を製造する。上記以外のバインダーとしては、メチルセルロース、アクリル樹脂、ポリエチレングリコールなどを適宜用いることもできる。また、後者の方法では、モノリス成形体のガス流路内壁に予め界面活性剤と縮合剤を付着させておき、これに担体の前駆物質を含有する気体を接触させることによって薄膜状の中間物質を析出させ、乾燥、焼成することによって薄膜状の担体材料を付着させる。界面活性剤と縮合剤は、メソポーラス材料の製造に用いられている材料を用いることができる。担体の前駆物質としては、常温・常圧状態で揮発性又は昇華性を有する金属アルコキシド、ハロゲン化物、水素化物、有機金属化合物、等を用いることができる。界面活性剤としては、従来のメソポア分子ふるいの作成に用いられているミセル形成の界面活性剤、例えば、長鎖の4級アンモニウム塩、長鎖のアルキルアミンN−オキシド、長鎖のスルホン酸塩、ポリエチレングリコールアルキルエーテル、ポリエチレングリコール脂肪酸エステル等を用いることができる。縮合剤としては、塩酸、硝酸、硫酸、燐酸、ポリ燐酸、無水燐酸、ヘテロポリ酸、酢酸、等の通常の酸性物質を用いることができる。薄膜形成のための反応温度及び反応時間は、マイナス温度から数100℃の範囲で数10秒から数10時間であり、焼成温度は通常500℃から1000℃で数10分から数10時間である。これらの条件は、担体の前駆物質の化学的及び物理的性質にもとづいて適切な条件を選ぶことが好ましい。   When the catalyst of the present invention is used as a catalyst for purifying NOx for automobiles, the carrier of the present invention is usually attached to the inner wall of the gas flow path of the monolith molded body that is a support for the automobile catalyst, and then the catalyst is supported on this. In the form (for convenience, this is referred to as a monolith catalyst). The monolith molded body as used herein refers to a molded body in which the cross section of the molded body is mesh-shaped and provided with gas flow paths partitioned by thin walls parallel to each other in the axial direction. Although the external shape of a molded object is not specifically limited, Usually, it is a cylindrical shape. The monolith catalyst is usually produced by a method in which a support material is previously attached to the inner wall of the gas flow path of the monolith molded body, and then the catalyst is supported. And a method of attaching to the inner wall of the flow path. Further, the adhesion of the carrier material to the inner wall of the gas flow path of the monolith molded body is a conventional method in which the mixed slurry of the carrier material and the binder is applied to the inner wall of the gas flow path of the monolith molded body, dried and fired, The carrier material precursor can be deposited on the inner wall of the gas channel by a chemical vapor deposition (CVD) method or the like, followed by drying and firing. In the former conventional method, it can be manufactured according to a method for manufacturing a monolith molded article to which a three-way catalyst for automobiles is attached. For example, a mixture of the present invention carrier and alumina sol or colloidal silica as a binder is usually mixed at a mass ratio of 1: (0.01 to 0.2), and this is dispersed in water to prepare a slurry of usually 10 to 50% by mass. After the adjustment, the monolith molded body is immersed in the slurry to adhere the slurry to the inner wall of the gas flow path of the monolith molded body, and after drying, for several hours at 500 to 1000 ° C. under an inert atmosphere of nitrogen, helium, argon, etc. A monolith molded body coated with a carrier is produced by heat treatment. As the binder other than the above, methylcellulose, acrylic resin, polyethylene glycol, and the like can be used as appropriate. In the latter method, a surface active agent and a condensing agent are attached in advance to the inner wall of the gas flow path of the monolith molded body, and a gas containing the carrier precursor is brought into contact therewith to thereby form a thin-film intermediate substance. The thin film carrier material is deposited by depositing, drying and baking. As the surfactant and the condensing agent, materials used in the production of mesoporous materials can be used. As the carrier precursor, metal alkoxides, halides, hydrides, organometallic compounds, and the like that are volatile or sublimable at room temperature and pressure can be used. Surfactants include micelle-forming surfactants used to make conventional mesopore molecular sieves, such as long-chain quaternary ammonium salts, long-chain alkylamine N-oxides, long-chain sulfonates , Polyethylene glycol alkyl ether, polyethylene glycol fatty acid ester and the like can be used. As the condensing agent, usual acidic substances such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, phosphoric anhydride, heteropolyacid, acetic acid and the like can be used. The reaction temperature and reaction time for forming a thin film are from several tens of seconds to several tens of hours in the range of minus temperature to several hundreds of degrees centigrade, and the firing temperature is usually from 500 ° C. to 1000 ° C. for several tens of minutes to several tens of hours. These conditions are preferably selected based on the chemical and physical properties of the support precursor.

次に、該モノリス成形体への触媒の担持は、通常、イオン交換法又は含浸法によって行う。これらの二つの方法は、担体への触媒の沈着化について、イオン交換法が担体表面のイオン交換能を利用し、含浸法が担体のもつ毛管作用を利用しているという違いはあるが、基本的なプロセスはほとんど同じである。すなわち、上記本発明担体を塗布したモノリ
ス成形体を触媒原料の水溶液に浸した後、濾過、乾燥し、必要に応じて水洗を行い、還元剤で還元処理することによって製造することができる。白金の触媒原料としては、例えば、H2PtCl4、(NH4)2PtCl4、H2PtCl6、(NH4)2PtCl6、Pt(NH3)4(NO3)2、Pt(NH3)4(OH)2、PtCl4、白金のアセチルアセトナート、等を用いることができる。必要に応じて白金触媒に添加する助触媒的成分の原料としては、例えば、塩化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩などの水溶性塩類を用いることができる。還元剤としては、水素、ヒドラジン水溶液、ホルマリン、等を用いることができる。還元は、それぞれの還元剤について知られている通常の条件で行なえばよい。例えば、水素還元は、ヘリウムなどの不活性ガスで希釈した水素ガス気流下にサンプルを置き、通常、300〜500℃で数時間処理することによって行なうことができる。還元後、必要に応じて、不活性ガス気流下500〜1000℃で数時間熱処理してもよい。他の方法としては、本発明担体に予め触媒を担持し、これをモノリス成形体に塗布することもできる。モノリス成形体当たりの触媒の塗布量は、0.01〜10質量%が好ましい。10%を超える塗布は担体内部に存在する触媒へのガス拡散が遅いので、10%以下が好ましい。また、十分な触媒性能を得るためには0.01%以上が好ましい。成形体に塗布する触媒層の厚みは、通常、1μm〜100μmであるのが好ましく、10μm〜50μmの範囲が特に好ましい。十分な反応ガスの拡散速度を得るには100μm以下が好ましく、触媒性能の劣化防止の点から1μm以上が好ましい。
Next, the catalyst is supported on the monolith molded body usually by an ion exchange method or an impregnation method. These two methods are different in that the catalyst is deposited on the support, although the ion exchange method uses the ion exchange capacity of the support surface and the impregnation method uses the capillary action of the support. The general process is almost the same. That is, the monolith molded body coated with the carrier of the present invention is immersed in an aqueous solution of a catalyst raw material, filtered, dried, washed with water as necessary, and reduced with a reducing agent. Examples of platinum catalyst materials include H 2 PtCl 4 , (NH 4 ) 2 PtCl 4 , H 2 PtCl 6 , (NH 4 ) 2 PtCl 6 , Pt (NH 3 ) 4 (NO 3 ) 2 , Pt (NH 3 ) 4 (OH) 2 , PtCl 4 , platinum acetylacetonate, and the like can be used. As a raw material for the promoter component added to the platinum catalyst as necessary, for example, water-soluble salts such as chloride, nitrate, sulfate, carbonate and acetate can be used. As the reducing agent, hydrogen, an aqueous hydrazine solution, formalin, or the like can be used. The reduction may be performed under normal conditions known for each reducing agent. For example, hydrogen reduction can be performed by placing a sample in a hydrogen gas stream diluted with an inert gas such as helium and treating the sample at 300 to 500 ° C. for several hours. After reduction, if necessary, heat treatment may be performed at 500 to 1000 ° C. for several hours under an inert gas stream. As another method, a catalyst may be supported on the carrier of the present invention in advance and applied to a monolith molded body. The coating amount of the catalyst per monolith molded body is preferably 0.01 to 10% by mass. When the coating exceeds 10%, gas diffusion to the catalyst existing inside the carrier is slow, so 10% or less is preferable. In order to obtain sufficient catalyst performance, 0.01% or more is preferable. The thickness of the catalyst layer applied to the molded body is usually preferably 1 μm to 100 μm, and particularly preferably 10 μm to 50 μm. In order to obtain a sufficient diffusion rate of the reaction gas, it is preferably 100 μm or less, and preferably 1 μm or more from the viewpoint of preventing deterioration of catalyst performance.

上記モノリス触媒は、自動車、特にディーゼル自動車に搭載することによって、自動車が排出するリーンバーン排NOxを150〜700℃の広い温度範囲において極めて効果的に浄化することができる。排NOxの処理には還元剤が必要であるが、乗用車などの小型車の場合には、燃料である軽油に少量含まれている炭素数1から6の低級オレフィン及び低級パラフィンが還元剤となるので、燃料を直接又は改質器を通して触媒上に供給すればよい。リッチバーンの時には酸素濃度が低くリーンバーンの時には酸素濃度が高いので、リッチバーンとリーンバーンを交互に行うことができる小型ディーゼルの排ガス浄化処理のために本発明のモノリス触媒を用いると、150〜700℃の広い温度範囲において効率よく排NOxを浄化処理できる。また、トラックなどの大型車の場合には、通常、尿素水を熱分解して還元剤としてのアンモニアを発生させ触媒上に供給するシステムを利用できるので、尿素供給システムを搭載する大型ディーゼル用の排NOx浄化用触媒としても用いることができる。工場の排NOxに対しては、アンモニアを還元剤として使用する浄化用触媒としても用いることができる。   When the monolith catalyst is mounted on an automobile, particularly a diesel automobile, the lean burn exhaust NOx discharged by the automobile can be extremely effectively purified in a wide temperature range of 150 to 700 ° C. Although a reducing agent is required for the treatment of exhaust NOx, in the case of small cars such as passenger cars, lower olefins and lower paraffins having 1 to 6 carbon atoms contained in a small amount of light oil as fuel become reducing agents. The fuel may be supplied directly or through the reformer onto the catalyst. Since the oxygen concentration is low at the time of rich burn and the oxygen concentration is high at the time of lean burn, when the monolith catalyst of the present invention is used for exhaust gas purification treatment of a small diesel that can perform rich burn and lean burn alternately, 150 to Exhaust NOx can be purified efficiently over a wide temperature range of 700 ° C. Also, in the case of large vehicles such as trucks, it is usually possible to use a system that thermally decomposes urea water to generate ammonia as a reducing agent and supplies it onto the catalyst. It can also be used as an exhaust NOx purification catalyst. For factory exhaust NOx, it can also be used as a purification catalyst using ammonia as a reducing agent.

以下に実施例などを挙げて本発明を具体的に説明する。
比表面積及び細孔分布は、脱吸着の気体として窒素を用い、カルロエルバ社製ソープトマチック1800型装置によって測定した。比表面積はBET法によって求めた。細孔分布は1〜200nmの範囲を測定し、BJH法で求められる微分分布で示した。合成したメソポーラス材料の多くは指数関数的に左肩上がりの分布における特定の細孔直径の位置にピークを示した。この時の細孔直径が細孔径である。表面水酸基は、赤外吸収スペクトル測定装置(JASCO FT-IR460)を用いて測定した。材料の残留界面活性剤を調べるための熱分析は、島津製作所製DTA-50型熱分析装置によって、昇温速度20℃min-1で測定した。自動車排NOxのモデルガスとして、ヘリウム希釈一酸化窒素、酸素、及び還元性ガス(エチレン又はアンモニア)を用いた。一酸化窒素の処理率は、減圧式化学発光法NOx分析計(日本サーモ株式会社製造:モデル42C)によって処理後のガスに含まれるNOxを測定し、以下の式(1)に従って算出した。
The present invention will be specifically described below with reference to examples.
The specific surface area and pore distribution were measured with a Sorpmatic 1800 type apparatus manufactured by Carlo Elba using nitrogen as a desorption gas. The specific surface area was determined by the BET method. The pore distribution was measured in the range of 1 to 200 nm and indicated by a differential distribution obtained by the BJH method. Many of the synthesized mesoporous materials have peaks at specific pore diameter positions in an exponentially increasing distribution. The pore diameter at this time is the pore diameter. The surface hydroxyl group was measured using an infrared absorption spectrum measuring apparatus (JASCO FT-IR460). The thermal analysis for examining the residual surfactant of the material was measured with a DTA-50 type thermal analyzer manufactured by Shimadzu Corporation at a temperature rising rate of 20 ° C. min −1 . Helium-diluted nitric oxide, oxygen, and reducing gas (ethylene or ammonia) were used as model gases for automobile exhaust NOx. The treatment rate of nitric oxide was calculated according to the following equation (1) by measuring NOx contained in the treated gas with a reduced pressure chemiluminescence NOx analyzer (manufactured by Nippon Thermo Co., Ltd .: model 42C).

Figure 2007222842
Figure 2007222842

「比較例1」[Pt-Pd-Rh/γ-アルミナ]触媒の合成
γ-アルミナ(日揮化学株式会社製造:比表面積250m2/g、細孔径6.2nm)10gを0.215gのPtCl4・5H2O、0.106gのPdCl2・2H2O、及び0.162gのRh(NO3)3・2H2Oを溶解した水溶液20gに入れ、蒸発乾固後、120℃で3時間真空乾燥を行った。該試料を石英管に入れヘリウム希釈水素ガス(10%v/v)気流下500℃で3時間還元し、貴金属白金の含有量が約2質量%の触媒を合成した。これを、三元触媒を模した貴金属触媒として比較実験に用いた。
Comparative Example 1 Synthesis of [Pt-Pd-Rh / γ-alumina] catalyst 10 g of γ-alumina (manufactured by JGC Chemical Co., Ltd .: specific surface area 250 m 2 / g, pore diameter 6.2 nm) is 0.215 g of PtCl 4 · 5H 2 O, 0.106 g of PdCl 2 .2H 2 O, and 0.162 g of Rh (NO 3 ) 3 .2H 2 O were dissolved in 20 g of an aqueous solution, evaporated to dryness, and then vacuum dried at 120 ° C. for 3 hours. . The sample was placed in a quartz tube and reduced at 500 ° C. for 3 hours under a helium-diluted hydrogen gas (10% v / v) stream to synthesize a catalyst having a precious metal platinum content of about 2% by mass. This was used in a comparative experiment as a noble metal catalyst simulating a three-way catalyst.

「比較例2」比較サンプル[白金/γ-アルミナ]触媒の合成
γ-アルミナ(日揮化学株式会社製造:比表面積250m2/g、細孔径6.2nm)5gを0.267gのPtCl4・5H2Oを溶解した水溶液10gに入れ、蒸発乾固後、120℃で3時間真空乾燥を行った。該試料を石英管に入れヘリウム希釈水素ガス(10%v/v)気流下500℃で3時間還元し、白金の含有量が約2質量%の触媒を合成した。
Comparative Example 2 Synthesis of Comparative Sample [Platinum / γ-Alumina] Catalyst γ-Alumina (manufactured by JGC Chemical Co., Ltd .: specific surface area 250 m 2 / g, pore diameter 6.2 nm) is 0.267 g of PtCl 4 .5H 2 O The solution was put into 10 g of an aqueous solution in which the solution was dissolved, evaporated to dryness, and then vacuum dried at 120 ° C. for 3 hours. The sample was placed in a quartz tube and reduced at 500 ° C. for 3 hours under a helium-diluted hydrogen gas (10% v / v) stream to synthesize a catalyst having a platinum content of about 2% by mass.

「比較例3」[白金/メソポーラスアルミナ]触媒の合成
1リットルのビーカーに、蒸留水300g、エタノール240g、及びドデシルアミン30gを入れ、溶解させた。攪拌下でトリイソプロポキシアルミニウム120gを加えて室温で22時間攪拌した。生成物を濾過、水洗し、110℃で5時間温風乾燥した後、空気中で550℃-5時間焼成して含有するドデシルアミンを分解除去し、メソポーラスアルミナを得た。細孔分布及び比表面積測定の結果、約3.2 nmの位置に細孔ピークがあり、比表面積が380 m2/g、細孔容積が0.32 cm3/g、2〜50 nmの細孔が占める容積は0.32 cm3/gであった。次に、該試料5gを0.267gのPtCl4・5H2Oを溶解した水溶液10gに入れ、蒸発乾固後、120℃で3時間真空乾燥を行った。この試料を石英管に入れヘリウム希釈水素ガス(10%v/v)気流下500℃で3時間還元し、白金の含有量が約2質量%の触媒を合成した。
Comparative Example 3 Synthesis of [Platinum / Mesoporous Alumina] Catalyst
In a 1 liter beaker, 300 g of distilled water, 240 g of ethanol, and 30 g of dodecylamine were added and dissolved. Under stirring, 120 g of triisopropoxyaluminum was added and stirred at room temperature for 22 hours. The product was filtered, washed with water, dried in warm air at 110 ° C. for 5 hours, and then calcined in air at 550 ° C. for 5 hours to decompose and remove contained dodecylamine to obtain mesoporous alumina. As a result of pore distribution and specific surface area measurement, there is a pore peak at a position of about 3.2 nm, the specific surface area is 380 m 2 / g, the pore volume is 0.32 cm 3 / g, and the pores are 2 to 50 nm. The volume was 0.32 cm 3 / g. Next, 5 g of the sample was placed in 10 g of an aqueous solution in which 0.267 g of PtCl 4 .5H 2 O was dissolved, evaporated to dryness, and then vacuum dried at 120 ° C. for 3 hours. This sample was placed in a quartz tube and reduced at 500 ° C. for 3 hours under a helium-diluted hydrogen gas (10% v / v) stream to synthesize a catalyst having a platinum content of about 2% by mass.

「比較例4」[白金/ジルコニア]触媒の合成
ジルコニア(第一稀元素株式会社製造:比表面積128 m2/g、細孔径7nm)5gを0.267gのPtCl4・5H2Oを溶解した水溶液10gに入れ、蒸発乾固後、120℃で3時間真空乾燥を行った。この試料を石英管に入れヘリウム希釈水素ガス(10%v/v)気流下500℃で3時間還元し、白金の含有量が約2質量%の触媒を合成した。
Comparative Example 4 Synthesis of [Platinum / Zirconia] Catalyst An aqueous solution in which 5 g of zirconia (manufactured by Daiichi Rare Element Co., Ltd .: specific surface area 128 m 2 / g, pore diameter 7 nm) is dissolved in 0.267 g of PtCl 4 .5H 2 O After putting into 10 g and evaporating to dryness, vacuum drying was performed at 120 ° C. for 3 hours. This sample was placed in a quartz tube and reduced at 500 ° C. for 3 hours under a helium-diluted hydrogen gas (10% v / v) stream to synthesize a catalyst having a platinum content of about 2% by mass.

「比較例5」[白金/活性アルミナ/モノリス]触媒の合成
γ-アルミナ(日揮化学株式会社製造:比表面積250m2/g、細孔径6.2nm、粒径2〜3μmの微粒子)10gを10質量%のアルミナゾルの水溶液100gに加え攪拌する。これに市販のコージェライト製モノリス成形体(日本ガイシ株式会社製造、400セル/in2、直径118mm×長さ50mm、重量243g)から切り出したミニ成形体(21セル、直径8mm×長さ9mm、重量0.15g)を5個入れ10分間静置した後、成形体を取り出し300℃で1時間加熱した。この操作を5回繰り返した後、空気中500℃で3時間焼成した。γ-アルミナの塗布量はミニ成形体の約10質量%であり、塗布層の厚みは約100μmであった。次にこの成形体を0.0267gのPtCl4・5H2Oを溶解した水溶液10gに1時間浸漬した後、成形体を取り出し、100℃で3時間真空乾燥を行った。この試料を石英管に入れヘリウム希釈水素ガス(10%v/v)気流下500℃で3時間熱処理し、白金の含有量が約2質量%のモノリス触媒を合成した。
Comparative Example 5 Synthesis of [Platinum / Activated Alumina / Monolith] Catalyst 10 g of 10 g of γ-alumina (manufactured by JGC Chemical Co., Ltd .: specific surface area 250 m 2 / g, fine particles with a pore diameter of 6.2 nm, particle diameter of 2 to 3 μm) Add to 100 g of an alumina sol aqueous solution and stir. A mini-molded body (21 cells, diameter 8 mm × length 9 mm) cut from a commercially available cordierite monolith molded body (manufactured by NGK, 400 cells / in 2 , diameter 118 mm × length 50 mm, weight 243 g), 5 pieces (0.15 g in weight) were placed and allowed to stand for 10 minutes, and then the molded body was taken out and heated at 300 ° C. for 1 hour. This operation was repeated 5 times and then calcined in air at 500 ° C. for 3 hours. The coating amount of γ-alumina was about 10% by mass of the mini-molded body, and the thickness of the coating layer was about 100 μm. Next, this molded body was immersed in 10 g of an aqueous solution in which 0.0267 g of PtCl 4 .5H 2 O was dissolved for 1 hour, and then the molded body was taken out and vacuum dried at 100 ° C. for 3 hours. This sample was put in a quartz tube and heat-treated at 500 ° C. for 3 hours under a helium-diluted hydrogen gas (10% v / v) stream to synthesize a monolith catalyst having a platinum content of about 2% by mass.

「実施例1」[白金/特殊官能基導入γ-アルミナ]触媒の合成
γ-アルミナ(日揮化学株式会社製造:比表面積250m2/g、細孔径6.2nm)10gを硫酸1質量%及び硝酸1質量%含有した水溶液1000gに入れ、3時間煮沸処理、ろ過、水洗、200℃で3時間真空乾燥した。赤外吸収スペクトルを測定した結果、γ-アルミナの吸収バンド以外に1158cm-1及び1077cm-1に新たな吸収バンドが観察された(表1に記載)。次に、該試料5gを0.267gのPtCl4・5H2Oを溶解した水溶液10gに入れ、蒸発乾固後、120℃で3時間真空乾燥を行った。この試料を石英管に入れヘリウム希釈水素ガス(10%v/v)気流下500℃で3時間還元し、白金の含有量が約2質量%の触媒を合成した。
Example 1 Synthesis of [platinum / special functional group-introduced γ-alumina] catalyst 10 g of γ-alumina (manufactured by JGC Chemical Co., Ltd .: specific surface area 250 m 2 / g, pore diameter 6.2 nm) 1% sulfuric acid and 1 nitric acid It was put into 1000 g of an aqueous solution containing 5% by mass, boiled for 3 hours, filtered, washed with water, and vacuum dried at 200 ° C. for 3 hours. As a result of measuring the infrared absorption spectrum, .gamma.-alumina new absorption band in 1158cm -1 and 1077 cm -1 in addition to absorption bands were observed (as shown in Table 1). Next, 5 g of the sample was placed in 10 g of an aqueous solution in which 0.267 g of PtCl 4 .5H 2 O was dissolved, evaporated to dryness, and then vacuum dried at 120 ° C. for 3 hours. This sample was placed in a quartz tube and reduced at 500 ° C. for 3 hours under a helium-diluted hydrogen gas (10% v / v) stream to synthesize a catalyst having a platinum content of about 2% by mass.

「実施例2」[白金/特殊官能基導入メソポーラスアルミナ]触媒の合成
1リットルのビーカーに、蒸留水300g、エタノール240g、及びドデシルアミン30gを入れ、溶解させた。攪拌下でトリイソプロポキシアルミニウム120gを加えて室温で22時間攪拌した。生成物を濾過、水洗し、110℃で5時間温風乾燥した後、空気中で550℃-5時間焼成して含有するドデシルアミンを分解除去し、メソポーラスアルミナを得た。細孔分布及び比表面積測定の結果、約3.2 nmの位置に細孔ピークがあり、比表面積が380 m2/g、細孔容積が0.32 cm3/g、2〜50 nmの細孔が占める容積は0.32 cm3/gであった。次に、得られたメソポーラスアルミナ10gを硫酸0.1質量%及び硝酸0.1質量%含有した水溶液1000gに加え、3時間煮沸処理、ろ過、水洗、200℃で3時間真空乾燥した。赤外吸収スペクトルを測定した結果、メソポーラスアルミナの吸収バンド以外に1158cm-1及び1077cm-1に新たな吸収バンドが観察された(表1に記載)。次に、得られた試料を用いて実施例1と同様の方法で白金の含有量が約2質量%の触媒を合成した。
Example 2 Synthesis of [platinum / special functional group-introduced mesoporous alumina] catalyst
In a 1 liter beaker, 300 g of distilled water, 240 g of ethanol, and 30 g of dodecylamine were added and dissolved. Under stirring, 120 g of triisopropoxyaluminum was added and stirred at room temperature for 22 hours. The product was filtered, washed with water, dried in warm air at 110 ° C. for 5 hours, and then calcined in air at 550 ° C. for 5 hours to decompose and remove contained dodecylamine to obtain mesoporous alumina. As a result of pore distribution and specific surface area measurement, there is a pore peak at a position of about 3.2 nm, the specific surface area is 380 m 2 / g, the pore volume is 0.32 cm 3 / g, and the pores are 2 to 50 nm. The volume was 0.32 cm 3 / g. Next, 10 g of the obtained mesoporous alumina was added to 1000 g of an aqueous solution containing 0.1% by mass of sulfuric acid and 0.1% by mass of nitric acid, followed by boiling treatment for 3 hours, filtration, washing with water, and vacuum drying at 200 ° C. for 3 hours. As a result of measuring the infrared absorption spectrum, a new absorption band in 1158cm -1 and 1077 cm -1 in addition to the absorption band of the mesoporous alumina was observed (as shown in Table 1). Next, a catalyst having a platinum content of about 2% by mass was synthesized by the same method as in Example 1 using the obtained sample.

「実施例3」[白金/特殊官能基導入ジルコニア]触媒の合成
ジルコニア(第一稀元素株式会社製造:比表面積128 m2/g、細孔径7nm)10gを硫酸1質量%及び硝酸1質量%含有した水溶液1000gに入れ、1時間煮沸処理、ろ過、水洗、200℃で3時間真空乾燥した。赤外吸収スペクトルを測定した結果、ジルコニアの吸収バンド以外に1211cm-1、1114cm-1及び1047cm-1に新たな吸収バンドが観察された(表1に記載)。次に、得られた試料を用いて実施例1と同様の方法で白金の含有量が約2質量%の触媒を合成した。
Example 3 Synthesis of [platinum / special functional group-introduced zirconia] catalyst 10 g of zirconia (manufactured by Daiichi Rare Element Co., Ltd .: specific surface area 128 m 2 / g, pore diameter 7 nm) 1% by mass of sulfuric acid and 1% by mass of nitric acid It was put into 1000 g of the aqueous solution contained, and boiled for 1 hour, filtered, washed with water, and vacuum dried at 200 ° C. for 3 hours. As a result of measuring the infrared absorption spectrum, 1211cm -1 in addition to the absorption bands of zirconia, a new absorption band was observed in 1114Cm -1 and 1047cm -1 (according to Table 1). Next, a catalyst having a platinum content of about 2% by mass was synthesized by the same method as in Example 1 using the obtained sample.

「実施例4」[白金/特殊官能基導入メソポーラスアルミナ/モノリス]触媒の合成
実施例2で作成した特殊官能基導入メソポーラスアルミナ10gを10質量%のアルミナゾルの水溶液100gに加え攪拌する。これに市販のコージェライト製モノリス成形体(日本ガイシ株式会社製造、400セル/in2、直径118mm×長さ50mm、重量243g)から切り出したミニ成形体(21セル、直径8mm×長さ9mm、重量0.15g)を5個入れ10分間静置した後、成形体を取り出し300℃で1時間加熱した。この操作を5回繰り返した後、空気中500℃で3時間焼成した。特殊官能基導入メソポーラスアルミナの塗布量はミニ成形体の約10質量%であり、塗布層の厚みは約100μmであった(表1に記載)。次にこの成形体を0.0267gのPtCl4・5H2Oを溶解した水溶液10gに1時間浸漬した後、成形体を取り出し、120℃で3時間真空乾燥を行った。この試料を石英管に入れヘリウム希釈水素ガス(10%v/v)気流下500℃で3時間熱処理し、白金の含有量が約2質量%のモノリス触媒を合成した。
Example 4 Synthesis of [Platinum / Special Functional Group-Introduced Mesoporous Alumina / Monolith] Catalyst 10 g of the special functional group-introduced mesoporous alumina prepared in Example 2 is added to 100 g of an aqueous 10 mass% alumina sol solution and stirred. A mini-molded body (21 cells, diameter 8 mm × length 9 mm) cut from a commercially available cordierite monolith molded body (manufactured by NGK, 400 cells / in 2 , diameter 118 mm × length 50 mm, weight 243 g), 5 pieces (0.15 g in weight) were placed and allowed to stand for 10 minutes, and then the molded body was taken out and heated at 300 ° C. for 1 hour. This operation was repeated 5 times and then calcined in air at 500 ° C. for 3 hours. The coating amount of the special functional group-introduced mesoporous alumina was about 10% by mass of the mini-molded body, and the thickness of the coating layer was about 100 μm (described in Table 1). Next, this molded body was immersed in 10 g of an aqueous solution in which 0.0267 g of PtCl 4 .5H 2 O was dissolved for 1 hour, and then the molded body was taken out and vacuum dried at 120 ° C. for 3 hours. This sample was put in a quartz tube and heat-treated at 500 ° C. for 3 hours under a helium-diluted hydrogen gas (10% v / v) stream to synthesize a monolith catalyst having a platinum content of about 2% by mass.

「比較例6〜10」還元剤としてエチレンを用いたリーンバーン条件でのNOx処理
比較例1〜4の粉末状の触媒サンプルをそれぞれ石英製の連続流通式反応管に0.3 g充填し、比較例5のモノリス触媒のミニ成形体は2個充填し、ヘリウムで濃度調整した一酸化窒素を流通処理した。被処理ガスの成分モル濃度を、一酸化窒素0.1%、酸素14%、水蒸気10%、及びエチレン0.3%とした。反応管へ導入した混合ガスの流量を毎分100 ml、処理温度を160〜300℃とした。処理後のガスに含まれるNOxを測定し、一酸化窒素の処理率を求めた。結果を表2に示した。
“Comparative Examples 6 to 10” NOx treatment under lean burn conditions using ethylene as a reducing agent Each of the powdered catalyst samples of Comparative Examples 1 to 4 was charged in a continuous flow reaction tube made of quartz by 0.3 g. Two monoliths of 5 monolith catalysts were filled and treated with nitrogen monoxide adjusted in concentration with helium. The component molar concentrations of the gas to be treated were 0.1% nitric oxide, 14% oxygen, 10% water vapor, and 0.3% ethylene. The flow rate of the mixed gas introduced into the reaction tube was 100 ml per minute, and the treatment temperature was 160 to 300 ° C. NOx contained in the treated gas was measured to determine the treatment rate of nitric oxide. The results are shown in Table 2.

「実施例5〜8」還元剤としてエチレンを用いたリーンバーンNOx処理
実施例1〜3の粉末状の触媒サンプルをそれぞれ石英製の連続流通式反応管に0.3 g充填し、実施例4のモノリス触媒のミニ成形体は2個充填し、ヘリウムで濃度調整した一酸化窒素を流通処理した。被処理ガスの成分モル濃度を、一酸化窒素0.1%、酸素14%、水蒸気10%、及びエチレン0.3%とした。反応管へ導入した混合ガスの流量を毎分100 ml、処理温度を160〜300℃とした。処理後のガスに含まれるNOxを測定し、一酸化窒素の処理率を求めた。結果を表2に示した。表2から、本発明担体に担持した白金触媒は、エチレンなどの炭化水素を還元剤に用いて高濃度酸素共存下でのNOxを低温領域でも効率よく浄化できることがわかる。特に、特殊官能基導入メソポーラスアルミナに坦持の白金触媒(実施例2、4の触媒)は、かってない160〜200℃での効率的なNOx浄化を可能にした。したがって、小型ディーゼル車の排NOx処理に適していることがわかる。
“Examples 5 to 8” Lean burn NOx treatment using ethylene as a reducing agent Each of the powdery catalyst samples of Examples 1 to 3 was charged in a continuous flow reaction tube made of quartz in an amount of 0.3 g, and the monolith of Example 4 Two catalyst compacts were filled, and nitrogen monoxide adjusted in concentration with helium was flow-treated. The component molar concentrations of the gas to be treated were 0.1% nitric oxide, 14% oxygen, 10% water vapor, and 0.3% ethylene. The flow rate of the mixed gas introduced into the reaction tube was 100 ml per minute, and the treatment temperature was 160 to 300 ° C. NOx contained in the treated gas was measured to determine the treatment rate of nitric oxide. The results are shown in Table 2. Table 2 shows that the platinum catalyst supported on the carrier of the present invention can efficiently purify NOx in the presence of high-concentration oxygen even in a low temperature region by using a hydrocarbon such as ethylene as a reducing agent. In particular, the platinum catalyst supported on the special functional group-introduced mesoporous alumina (catalysts of Examples 2 and 4) enabled efficient NOx purification at 160 to 200 ° C., which has never been achieved. Therefore, it turns out that it is suitable for the exhaust-NOx process of a small diesel vehicle.

「実施例9」還元剤としてエチレンを用いたリッチバーンNOx処理
実施例2のメソポーラスアルミナ担持触媒を0.3g用いて一酸化窒素を処理した。被処理ガスの成分モル濃度比を、一酸化窒素0.1%、酸素1%、エチレン1%とした。該調整ガスの流量を毎分100 ml、処理温度を200〜600℃とした。処理後の排ガスに含まれるNOxを測定し一酸化窒素の浄化処理率を求めた。結果を表3に示した。表3から、本発明担体を用いたメソポーラスアルミナ担持触媒は、炭化水素を還元剤に用いてリッチバーンの条件にあるNOxを250℃から600℃にわたって効率よく浄化できることがわかる。したがって、例えば、リーンバーンとリッチバーンを交互に行えば、本発明担体に担持の触媒は、広い温度範囲でNOxを除去できるので、リーンバーンとリッチバーンを交互に行うことのできる小型ディーゼル車の排NOx処理に適していることがわかる。
[Example 9] Rich burn NOx treatment using ethylene as a reducing agent Nitric oxide was treated using 0.3 g of the mesoporous alumina-supported catalyst of Example 2. The component molar concentration ratio of the gas to be treated was 0.1% nitric oxide, 1% oxygen, and 1% ethylene. The flow rate of the adjustment gas was 100 ml per minute, and the treatment temperature was 200 to 600 ° C. NOx contained in the exhaust gas after the treatment was measured to determine the purification rate of nitric oxide. The results are shown in Table 3. From Table 3, it can be seen that the mesoporous alumina-supported catalyst using the carrier of the present invention can efficiently purify NOx under rich burn conditions from 250 ° C. to 600 ° C. using hydrocarbon as a reducing agent. Therefore, for example, if lean burn and rich burn are alternately performed, the catalyst supported on the carrier of the present invention can remove NOx in a wide temperature range. Therefore, a compact diesel vehicle capable of alternately performing lean burn and rich burn can be used. It can be seen that it is suitable for exhaust NOx treatment.

「実施例10」還元剤としてアンモニアを用いたNOx処理
実施例2のメソポーラスアルミナ担持触媒を0.3g用いて一酸化窒素を処理した。被処理ガスの成分モル濃度比を、一酸化窒素0.1%、酸素14%、水蒸気10%、アンモニア0.3%とした。該調整ガスの流量を毎分100 ml、処理温度を100〜600℃とした。処理後の排ガスに含まれるNOxを測定し一酸化窒素の浄化処理率を求めた。結果を表4に示した。表4から、本発明担体を用いたメソポーラス触媒は、アンモニアを還元剤として用いても高濃度酸素共存下でのNOxを効率よく浄化できることがわかる。したがって、アンモニア源としての尿素供給システムを搭載している大型ディーゼル車の排NOx浄化処理に適していることがわかる。
"Example 10" NOx treatment using ammonia as a reducing agent Nitric oxide was treated using 0.3 g of the mesoporous alumina supported catalyst of Example 2. The component molar concentration ratio of the gas to be treated was 0.1% nitric oxide, 14% oxygen, 10% water vapor, and 0.3% ammonia. The flow rate of the adjustment gas was 100 ml per minute, and the treatment temperature was 100 to 600 ° C. NOx contained in the exhaust gas after the treatment was measured to determine the purification rate of nitric oxide. The results are shown in Table 4. Table 4 shows that the mesoporous catalyst using the carrier of the present invention can efficiently purify NOx in the presence of high-concentration oxygen even when ammonia is used as a reducing agent. Therefore, it turns out that it is suitable for the exhaust-NOx purification process of the large-sized diesel vehicle carrying the urea supply system as an ammonia source.

Figure 2007222842
Figure 2007222842

Figure 2007222842
Figure 2007222842

Figure 2007222842
Figure 2007222842

Figure 2007222842
Figure 2007222842

本発明の担体は、自動車排NOx浄化用触媒の担体、特にディーゼル排NOx浄化用触媒の担体として有用である。   The carrier of the present invention is useful as a carrier for automobile exhaust NOx purification catalyst, particularly as a diesel exhaust NOx purification catalyst carrier.

Claims (3)

1000cm-1〜1250cm-1にIRの吸収バンドをもつアルミナ又はジルコニアの少なくとも1つから構成されることを特徴とする排NOx浄化用触媒の担体。 Carrier of the exhaust NOx purifying catalyst, characterized in that the 1000cm -1 ~1250cm -1 is configured from at least one of alumina or zirconia with IR absorption bands. 1000cm-1〜1250cm-1にIRの吸収バンドをもつアルミナ又はジルコニアが、1〜50nmの細孔径と100〜1400m2/gの比表面積を有するメソポーラス材料であることを特徴とする請求項1に記載の排NOx浄化用触媒の担体。 To 1000cm -1 ~1250cm -1 alumina or zirconia with IR absorption bands, in claim 1, characterized in that the mesoporous material having a specific surface area of pore size and 100~1400m 2 / g of 1~50nm A catalyst carrier for exhaust NOx purification as described. 請求項1又は2に記載の排NOx浄化用触媒の担体に白金含有触媒を担持した触媒担持体がモノリス成形体のガス流路内壁に付着した構造であることを特徴とする排NOx浄化用モノリス触媒。
3. A monolith for purifying exhaust NOx, characterized in that a catalyst support in which a platinum-containing catalyst is supported on the support of the catalyst for purifying exhaust NOx according to claim 1 or 2 is attached to an inner wall of a gas flow path of the monolith molded body. catalyst.
JP2006049798A 2006-02-27 2006-02-27 CATALYST FOR CLARIFYING EMITTED NOx, AND ITS CARRIER Pending JP2007222842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049798A JP2007222842A (en) 2006-02-27 2006-02-27 CATALYST FOR CLARIFYING EMITTED NOx, AND ITS CARRIER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049798A JP2007222842A (en) 2006-02-27 2006-02-27 CATALYST FOR CLARIFYING EMITTED NOx, AND ITS CARRIER

Publications (1)

Publication Number Publication Date
JP2007222842A true JP2007222842A (en) 2007-09-06

Family

ID=38545139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049798A Pending JP2007222842A (en) 2006-02-27 2006-02-27 CATALYST FOR CLARIFYING EMITTED NOx, AND ITS CARRIER

Country Status (1)

Country Link
JP (1) JP2007222842A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254827A (en) * 1991-06-20 1993-10-05 Mobil Oil Corp Method for functionalizing synthetic mesoprorous crystalline material
JPH06171915A (en) * 1992-08-12 1994-06-21 Corning Inc Phosphate-alumina material with adjusted pore diameter
JP2002012426A (en) * 1999-08-31 2002-01-15 Ube Ind Ltd Zirconium oxide, method of producing the same and catalyst for decomposing nitrogen oxide using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254827A (en) * 1991-06-20 1993-10-05 Mobil Oil Corp Method for functionalizing synthetic mesoprorous crystalline material
JPH06171915A (en) * 1992-08-12 1994-06-21 Corning Inc Phosphate-alumina material with adjusted pore diameter
JP2002012426A (en) * 1999-08-31 2002-01-15 Ube Ind Ltd Zirconium oxide, method of producing the same and catalyst for decomposing nitrogen oxide using the same

Similar Documents

Publication Publication Date Title
US7838461B2 (en) Catalyst for exhaust gas purification
KR20190025028A (en) Catalysts containing bimetallic platinum group metal nanoparticles
EP1832345A1 (en) Catalyst for exhaust gas purification
Bassil et al. Catalytic combustion of methane over mesoporous silica supported palladium
WO2014038426A1 (en) Co-selective methanation catalyst
Peng et al. Alkali/alkaline-earth metal-modified MnOx supported on three-dimensionally ordered macroporous–mesoporous TixSi1-xO2 catalysts: Preparation and catalytic performance for soot combustion
US20190060832A1 (en) Low-Temperature Oxidation Catalyst With Particularly Marked Hydrophobic Properties For The Oxidation Of Organic Pollutants
JP4063807B2 (en) Exhaust gas purification catalyst
JP4296908B2 (en) Catalyst body and method for producing the same
Huang et al. Effect of high temperature pretreatment on the thermal resistance properties of Pd/CeO2/Al2O3 close-coupled catalysts
JP4895858B2 (en) New exhaust gas purification method
JP5116377B2 (en) Exhaust NOx purification method
JP2006305406A (en) CATALYST FOR REMOVING NOx IN EXHAUST GAS
JP2006297348A (en) Catalyst for clarifying exhaust gas
Du et al. Controlled synthesis of Pd/CoO x–InO x nanofibers for low-temperature CO oxidation reaction
JP4749093B2 (en) NOx purification catalyst carrier
JP2008279352A (en) Catalyst for removing nitrogen oxide discharged from lean burn automobile
JP5112966B2 (en) Lean burn exhaust gas purification catalyst
JP4233572B2 (en) Honeycomb catalyst for exhaust gas purification
JP5025148B2 (en) Exhaust gas purification catalyst
JP2008215253A (en) NOx EMISSION CONTROL METHOD AND NOx EMISSION CONTROL DEVICE
KR20140082632A (en) Device for the purification of exhaust gases from a heat engine, comprising a ceramic carrier and an active phase mechanically anchored in the carrier
JP5036300B2 (en) Automobile exhaust NOx purification catalyst and exhaust NOx purification method
JP4823100B2 (en) New exhaust gas purification catalyst
JP4712406B2 (en) NOx purification catalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412