JP2007222611A - Artificial bone with sustained-release property of chemical and manufacturing method thereof - Google Patents

Artificial bone with sustained-release property of chemical and manufacturing method thereof Download PDF

Info

Publication number
JP2007222611A
JP2007222611A JP2007014572A JP2007014572A JP2007222611A JP 2007222611 A JP2007222611 A JP 2007222611A JP 2007014572 A JP2007014572 A JP 2007014572A JP 2007014572 A JP2007014572 A JP 2007014572A JP 2007222611 A JP2007222611 A JP 2007222611A
Authority
JP
Japan
Prior art keywords
artificial bone
molecular weight
lactic acid
antibacterial
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007014572A
Other languages
Japanese (ja)
Inventor
Tazuko Sato
田鶴子 佐藤
Tomonobu Matsuno
智宣 松野
Takahiro Miyai
崇宏 宮井
Manabu Tamazawa
学 玉澤
Atsuo Ito
敦夫 伊藤
Tomo Sogo
友 十河
Junji Yamazaki
淳司 山崎
Chiho Nakamura
千穂 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
NIPPON DENTAL UNIV
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
NIPPON DENTAL UNIV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, NIPPON DENTAL UNIV filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007014572A priority Critical patent/JP2007222611A/en
Publication of JP2007222611A publication Critical patent/JP2007222611A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an artificial bone with sustained-release property of chemical and a manufacturing method thereof, sustain releasing an antibacterial medicine effectively working on anaerobiic bacteria over a long period of time as much as about eight weeks, curing myelitis with a small quantity of antibacterial medicine applied, making calcium phosphate porous material act as a foothold for osteoplasty, and metabolizing all of antibacterial medicine, calcium phosphate porous material and an antibacterial medicine carrier. <P>SOLUTION: This artificial bone with sustained-release property of chemical and a manufacturing method thereof are characterized in that one or two or more kinds of antibacterial medicines selected from norfloxacin, ofloxacin, levofloxacin, sparfloxacin, and gatifloxacin, and one or two or more kinds of bioabsorptive polymers not derived from a living body and selected from polycaprolactone, polyethylene glycol, lactic acid-glycolic acid copolymer, and caprolactone-DL lactic acid copolymer are made to exist in pores of artificial bone which has a porosity of 50% to 80% and is made of porous tricalcium phosphate not derived from a living body. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、薬剤徐放性人工骨及びその製造方法に関する。   The present invention relates to a drug sustained-release artificial bone and a method for producing the same.

従来までに多くの種類の抗菌薬が開発されているにもかかわらず、慢性化膿性顎骨骨髄炎は依然として難治疾患のひとつである。 慢性化膿性顎骨骨髄炎の、従来の治療法では、抗菌薬と消炎鎮痛薬の投与、切開排膿、腐骨除去などが行われる。しかし、慢性化膿性顎骨骨髄炎は従来の治療法で完治させることが難しい。慢性化膿性顎骨骨髄炎の治療には、抗菌薬の長期経口投与が有効ではあるが、抗菌薬の長期経口投与は、全身的な悪影響と耐性菌の出現が懸念される。さらに、腐骨分離型の骨髄炎では広範な骨欠損が伴うため、経口投与しても血流を介して抗菌薬を患部に到達させることが困難であるため、非経口投与で局所に直接抗菌薬液を注入する還流療法などが行われる。しかし、これらの方法は多量の抗菌薬が必要であり、さらに骨髄炎の治療のみを目的としていて、骨髄炎治癒後の骨形成を考慮しておらず、治癒後も大きな骨欠損部が残る結果となる。   Although many types of antibacterial drugs have been developed so far, chronic purulent jaw osteomyelitis remains one of the intractable diseases. Conventional treatment of chronic suppurative jaw osteomyelitis involves the administration of antibacterial and anti-inflammatory analgesics, incision drainage, and bone removal. However, chronic purulent jaw osteomyelitis is difficult to cure with conventional treatments. Long-term oral administration of antibacterial drugs is effective for the treatment of chronic suppurative jaw osteomyelitis, but long-term oral administration of antibacterial drugs is a concern for systemic adverse effects and the emergence of resistant bacteria. Furthermore, since osteoclast-separated osteomyelitis is associated with a wide range of bone defects, it is difficult to reach the affected area via the bloodstream even after oral administration. Reflux therapy in which a drug solution is injected is performed. However, these methods require a large amount of antibacterial drugs, and are intended only for the treatment of osteomyelitis, do not consider bone formation after healing of osteomyelitis, and result in large bone defects remaining after healing. It becomes.

これまでに、非経口投与で局所に薬剤を放出して骨髄炎を治療し、さらに治療後の骨形成の足場として機能させるために、抗菌薬とリン酸カルシムとを複合化する方法が考案されてきた。これらは大別すると、骨伝導性のリン酸カルシムセラミック人工骨の外側に、抗菌薬含有生体吸収性物質を被覆または配置させる方法と、骨伝導性のリン酸カルシムセラミック人工骨の内部に、抗菌薬を配置させる方法に大別できる。   To date, a method has been devised that combines antibacterial drugs with calsim phosphate to release osteoporotic locally by parenteral treatment to treat osteomyelitis and to function as a scaffold for bone formation after treatment. I came. These can be broadly divided into a method of coating or arranging an antibacterial agent-containing bioabsorbable material on the outside of the osteoconductive calcium phosphate ceramic artificial bone, and an antibacterial agent inside the osteoconductive calcium phosphate ceramic artificial bone. It can be roughly divided into the method of arranging medicine.

前者はさらに、生体吸収性物質として合成ポリマーを使用する場合(特許文献1、特許文献2参照)と、フィブリンや脱灰骨基質などの生体由来物質を使用する場合に分けられる(特許文献3、特許文献4、特許文献5参照)。合成ポリマーを使用した場合は抗菌薬の長期徐放と放出速度制御に長所があるものの、合成ポリマーがリン酸カルシムセラミックを被覆してしまうため、骨伝導性に劣るという短所があり、生体由来物質を使用する場合には、骨伝導性は損なわないものの、抗菌薬の長期徐放と放出速度制御に難がある。 The former is further divided into a case where a synthetic polymer is used as a bioabsorbable substance (see Patent Document 1 and Patent Document 2) and a case where a biological material such as fibrin or demineralized bone matrix is used (Patent Document 3, (See Patent Document 4 and Patent Document 5). When synthetic polymers are used, there are advantages in long-term sustained release and release rate control of antibacterial agents, but since synthetic polymers coat calcium phosphate ceramic, there is a disadvantage that it is inferior in osteoconductivity, and biologically derived substances However, there are difficulties in long-term sustained release and release rate control of antibacterial agents, although osteoconductivity is not impaired.

後者の方法では、骨伝導性のリン酸カルシムを表面に露出できるため、骨伝導性を維持して骨形成の足場として機能させるには都合がよい。例えば、骨伝導性の水酸アパタイトセラミック多孔体やリン酸カルシム多孔体を抗菌薬水溶液に入れて、薬剤を含浸させ、病巣掻爬後の骨髄炎患部に埋入する方法(特許文献6、特許文献7、特許文献8、非特許文献1、参照)、セラミック多孔体の孔内壁面および外表面に薬剤含有キチンやコラーゲンを複合化する方法(特許文献9参照)、リン酸カルシムセメント内部に薬剤を含有させる物(特許文献10、特許文献11、特許文献12、特許文献13、特許文献14参照)、などを挙げることができる。なお、キチンやコラーゲンは生体由来物質である。 In the latter method, osteoconductive calcium calcite can be exposed to the surface, which is convenient for maintaining osteoconductivity and functioning as a scaffold for osteogenesis. For example, a method of placing an osteoconductive hydroxyapatite ceramic porous body or a calcium phosphate phosphate in an antibacterial aqueous solution, impregnating the agent, and implanting it in the affected area of osteomyelitis after curettage (Patent Document 6, Patent Document) 7, Patent Document 8, Non-Patent Document 1, and the like, a method of compounding drug-containing chitin and collagen on the inner wall surface and outer surface of the porous ceramic body (see Patent Document 9), and the drug inside the calcium phosphate cement The thing to contain (refer patent document 10, patent document 11, patent document 12, patent document 13, patent document 14), etc. can be mentioned. Chitin and collagen are biological substances.

後者の方法では、抗菌薬含有生体吸収性物質を使用する場合、生体吸収性物質は生体由来物質であり、抗菌薬を含有させた非生体由来の人工合成生体吸収性ポリマーをリン酸カルシム多孔体の気孔内部に配置させ、リン酸カルシム多孔体表面の骨伝導性能を保ったまま、抗菌薬を長期徐放化させる技術は知られていなかった。生体由来物質は常に感染リスクが伴うため、人工合成生体吸収性ポリマーを使用することが希求されている。また、通常のリン酸カルシウム多孔体は気孔が閉気孔や袋小路状で多孔体を貫通してない、及び貫通していても貫通経路が複雑であったり、球状空間をつなぎ合わせた貫通経路になっているため、粘性の高い溶融ポリマーなどを気孔中に導入しにくいという欠点があった。さらに、リン酸カルシウム質であろうとなかろうと、多孔体が非吸収性の場合には、骨髄炎の治癒後にも埋入物が患部に残存する。   In the latter method, when a bioabsorbable substance containing an antibacterial agent is used, the bioabsorbable substance is a substance derived from the living body, and the artificial synthetic bioabsorbable polymer derived from a non-biological substance containing the antibacterial drug is converted to a porous calsium phosphate. No technology has been known for long-term sustained release of an antibacterial agent while maintaining the bone conduction performance of the surface of the calcium calcite phosphate porous body. Since bio-derived substances always have a risk of infection, it is desired to use artificial synthetic bioabsorbable polymers. In addition, ordinary calcium phosphate porous bodies have closed pores or bag-shaped pores that do not penetrate the porous body, and even if they are penetrated, the penetration path is complicated, or the penetration path is formed by connecting spherical spaces. Therefore, there is a drawback that it is difficult to introduce a highly viscous molten polymer or the like into the pores. Furthermore, if the porous body is non-absorbable, whether it is calcium phosphate or not, the implant remains in the affected area after healing of osteomyelitis.

抗菌薬を生体吸収性ポリマーに含有させる手段として、生体吸収性ポリマーを液状にするためには、たとえば、有機溶剤で生体吸収性ポリマーを溶解する方法があるが(非特許文献2参照)有機溶剤は毒性であるため医療現場や手術室で実施することはできない。   In order to make the bioabsorbable polymer into a liquid as a means for containing the antibacterial agent in the bioabsorbable polymer, for example, there is a method of dissolving the bioabsorbable polymer with an organic solvent (see Non-Patent Document 2). Is toxic and cannot be performed in the medical setting or operating room.

一方、慢性化膿性顎骨骨髄炎の主働菌は現在でもあまりよくわかっていない。多くの研究者が臨床例から歯の検索を行っても、主働菌が検出されないため、おそらくは嫌気性菌であろうと考えられている。主働菌が嫌気性菌の場合、現在汎用されているアミノ配糖体抗菌薬は嫌気性菌に抗菌力を示さないため使用できないという問題点がある。この観点からは、嫌気性菌にも効果が期待できる抗菌薬を多孔質ハイドロキシアパタイトセラミック人工骨に含浸させた医薬組成物が開示されている(特許文献7参照)が、さらに抗菌力が強く、耐性菌もより少ない抗菌薬の使用が望まれる。 On the other hand, the main bacteria of chronic suppurative jawbone osteomyelitis are still not well understood. Even if many researchers search for teeth from clinical cases, it is thought that it is probably an anaerobic bacterium because the main bacteria are not detected. When the main bacteria are anaerobic bacteria, there is a problem that the aminoglycoside antibacterial drugs that are currently widely used cannot be used because they do not exhibit antibacterial activity against anaerobic bacteria. From this point of view, a pharmaceutical composition in which a porous hydroxyapatite ceramic artificial bone is impregnated with an antibacterial agent that can be expected to be effective against anaerobic bacteria has been disclosed (see Patent Document 7). Use of antibacterial agents with less resistant bacteria is desired.

また、本発明者の一人である伊藤等の研究により、自発核形成を生じるタンパク質含有不安定リンカルシウム過飽和溶液を使用し、自発核形成までの時間を人為的に制御し、溶液全体で自発核形成する以前に、リン酸カルシウム基板上への共沈析出を終了させるか、あるいは、基板のごく近傍でのみ自発核形成させてリン酸カルシウムの析出量を増すことで、タンパク質担持量を増加させたリン酸カルシウム主成分焼結体及び気孔が人工的に作られた直径70μm〜4mmの三次元網目状で、焼結体を貫通しているリン酸カルシウム焼結体、これを用いた人工骨は知られている(特許文献15)。
ここでは、担持するタンパク質は水溶性のタンパク質であり、生物学的活性化物質を使用することができる。水溶性タンパク質には、非水溶性のタンパク質をアルブミンなどの水溶性担体タンパク質またはポリエチレングリコール、エチレングリコール/プロピレングリコールのコポリマー、カルボキメチルセルロース、デキストラン、ポリビニルアルコール、ポリビニルピロリドン、ポリ−1,3−ジオキソラン、ポリ−1,3,6−トリオキサン、エチレン/無水マレイン酸コポリマー、ポリアミノ酸類(ホモポリマーまたはランダムコポリマー)などの水溶性ポリマーに結合させることで水可溶性とした非水溶性タンパク質も含むこと、および表面に担持しているタンパク質である生物学的活性化因子が生体組織再構築に有用である。また、水溶性ポリマーに担持しているタンパク質が徐々に放出されることが開示されている。
また、本発明者の一人である伊藤等の研究により、人工的に作られた直径70μm〜4mmの立体的な貫通孔を有し、空隙率が20%〜80%であり、Ca/Pモル比が0.75〜2.1のリン酸カルシウムを主成分とし、貫通孔内に高分子ハイドロゲルが充填された貫通を有する多孔質リン酸カルシウム高分子ハイドロゲル複合体を用いた薬剤徐放体が開示されている(特許文献16)。なお、高分子ハイドロゲルとは多量に水を含むことができる親水性ポリマーのことであり、ゼラチン、ポリビニルアルコール、コラーゲン、寒天、ヒアルロン酸、キトサンなどのことである。
In addition, according to the research of Ito et al., One of the present inventors, a protein-containing unstable phosphocalcium supersaturated solution that causes spontaneous nucleation is used, and the time until spontaneous nucleation is artificially controlled, and the entire solution is Either the coprecipitation precipitation on the calcium phosphate substrate is completed before formation, or the amount of calcium phosphate is increased by increasing the precipitation amount of calcium phosphate by forming spontaneous nuclei only in the immediate vicinity of the substrate. A calcium phosphate sintered body having a three-dimensional network shape with a diameter of 70 μm to 4 mm in which a sintered body and pores are artificially formed and penetrating the sintered body, and an artificial bone using the same are known (Patent Literature) 15).
Here, the carried protein is a water-soluble protein, and a biologically active substance can be used. Water-soluble proteins include water-insoluble proteins such as water-soluble carrier proteins such as albumin or polyethylene glycol, ethylene glycol / propylene glycol copolymers, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1,3-dioxolane, Including water-insoluble proteins rendered water-soluble by binding to water-soluble polymers such as poly-1,3,6-trioxane, ethylene / maleic anhydride copolymers, polyamino acids (homopolymers or random copolymers), and A biological activator, which is a protein carried on the surface, is useful for biological tissue reconstruction. Further, it is disclosed that the protein carried on the water-soluble polymer is gradually released.
In addition, it has an artificially created three-dimensional through hole with a diameter of 70 μm to 4 mm, a porosity of 20% to 80%, and a Ca / P mole by the research of Ito et al. Disclosed is a sustained-release drug using a porous calcium phosphate polymer hydrogel complex having a penetration of which the main component is calcium phosphate having a ratio of 0.75 to 2.1 and the polymer hydrogel is filled in the through-holes. (Patent Document 16). The polymer hydrogel is a hydrophilic polymer that can contain a large amount of water, and includes gelatin, polyvinyl alcohol, collagen, agar, hyaluronic acid, chitosan, and the like.

特開平4-279520号公報Japanese Unexamined Patent Publication No. 4-279520 特開平6-298639号公報JP-A-62-298639 特開平4-246359号公報JP-A-4-46359 特表2005-536244号公報Special Table 2005-536244 Publication 特開平5-970号公報Japanese Unexamined Patent Publication No. 5-970 特開平10-279471号公報Japanese Patent Laid-Open No. 10-279471 特開平9-124486号公報JP-A-9-124486 特開平9-30988号公報JP-A-9-30988 特開平4-327525号公報JP-A-4-327525 特開2002-12468号公報Japanese Patent Laid-Open No. 2002-12468 特表2001-516264号公報Special table 2001-516264 特開平6-3228011号公報JP-A-6-3228011 特表2005-531341号公報Special Table 2005-531341 特開平6-228011号公報JP-A-62-228011 特開2004−173795号公報Japanese Patent Laid-Open No. 2004-173895 特開2004−261456号公報JP 2004-261456 A J. Applied Biomat 6, 167-169(1995)J. Applied Biomat 6, 167-169 (1995) 日本耳鼻咽喉科感染症研究会会誌、12、186-190 (1994)Journal of Japan Otolaryngological Infectious Diseases Research Association, 12, 186-190 (1994)

本発明は、上記の問題点を考慮して、医療現場や手術室で簡単かつ安全に作製でき、生体由来物質を使用せず、非生体由来の生体吸収性ポリマー及び非生体由来の多孔質リン酸三カルシウムセラミックを用いて、リン酸カルシム多孔体表面の骨伝導性能を保ったまま、嫌気性菌に有効に作用する抗菌薬を8週間程度の長期にわたって徐放でき、その結果低抗菌薬作用量で骨髄炎治療に効果を発揮し、患部以外への抗菌薬移行が少ないために安全で、骨髄炎の治癒後にはリン酸カルシム多孔体が骨形成の足場として作用し、最終的には抗菌薬もリン酸カルシム多孔体も抗菌薬担持体も全て代謝されて生体に吸収されてしまう、慢性化膿性顎骨骨髄炎治療用の抗菌薬徐放性人工骨及びその製造方法を提供することにある。
In consideration of the above-mentioned problems, the present invention can be easily and safely produced in a medical field or an operating room, does not use a biological substance, and a non-biologically-derived bioabsorbable polymer and a non-biologically-derived porous phosphorus. Using tricalcium acid ceramic, the antibacterial agent that effectively acts on anaerobic bacteria can be sustainedly released over a long period of about 8 weeks, while maintaining the bone conduction performance of the surface of the calcium calcite phosphate, resulting in a low antibacterial effect Effective in the treatment of osteomyelitis by the amount, safe because there is little antibacterial drug transfer to other than the affected area, after the healing of osteomyelitis, Calcium Phosphate Phosphate acts as a scaffold for bone formation, eventually antibacterial An antibacterial sustained-release artificial bone for the treatment of chronic suppurative jaw osteomyelitis in which the drug, calcium phosphate porous material and antibacterial drug carrier are all metabolized and absorbed by the living body, and a method for producing the same .

このような状況下において、発明者らは鋭意研究を行った結果、分子量が特定範囲にある特定人工生体吸収性ポリマーを溶融して、特定化学種かつ特定分解温度の抗菌薬と混合し、気孔率が50%〜80%で特定気孔構造のリン酸三カルシウムセラミックの気孔内部に、差圧導入することで、生体由来物質を使用せず、リン酸カルシム多孔体表面の骨伝導性能を保ったまま、嫌気性菌に有効に作用する抗菌薬を8週間程度の長期にわたって徐放でき、骨髄炎治癒後には吸収される慢性化膿性顎骨骨髄炎治療用抗菌薬徐放性人工骨を作製することに成功した。以下、本発明について詳述する。 Under such circumstances, the inventors have conducted intensive research, and as a result, melted a specific artificial bioabsorbable polymer having a molecular weight in a specific range, mixed with an antibacterial agent having a specific chemical species and a specific decomposition temperature, and pores. By introducing differential pressure into the pores of the tricalcium phosphate ceramic with a specific pore structure at a rate of 50% to 80%, the bone conduction performance on the surface of the porous body of calcium phosphate was maintained without using a biological substance. To create a sustained-release artificial bone for the treatment of chronic suppurative jaw osteomyelitis that can be sustainedly released over a long period of about 8 weeks and can be absorbed after osteomyelitis is cured. succeeded in. Hereinafter, the present invention will be described in detail.

すなわち、本発明は、抗菌薬を含有したポリカプロラクトン、ポリエチレングリコール、乳酸−グリコール酸共重合体、カプロラクトン−DL乳酸共重合体から選ばれた1または2種以上の非生体由来の生体吸収性ポリマーを、気孔率50%〜80%の非生体由来の多孔質リン酸三カルシウムセラミックからなる人工骨の気孔中に存在させたことを特徴とした薬剤徐放性人工骨である。
本発明はここで、非生体由来の多孔質リン酸三カルシウムセラミックを、人工的に作られた直径70μm〜4mmの立体的な貫通孔を有する多孔質リン酸三カルシウムセラミックとすることができる。
また、本発明は抗菌薬を、ノルフロキサシン、エノキサシン、オフロキサシン、レボフロキサシン、塩酸シプロフロキサシン、メシル酸パズフロキサシン、塩酸ロメフロキサシン、トシル酸トスフロキサシン、フレロキサシン、スパルフロキサシン、ガチフロキサシン、プルリフロキサシン、から選ばれた1または2種以上とすることができる。
さらにまた、本発明は、人工骨の形状を顎骨の一部または全部の形状とすることができる。
さらに、本発明は、多孔質リン酸三カルシウムセラミックからなる人工骨の形状が、人工的に作られた直径70μm〜4mmの立体的な貫通孔を有し、病巣掻爬後の骨髄炎患部に埋入する0.5mm〜5mmの方体状又は円柱状(円盤状も含む)又は球体状のチップとすることができる。
また、本発明は、抗菌薬がガチフロキサシンであり、生体吸収性ポリマー中の含有量が0.1重量%〜5重量%であることが望ましい。
さらに、本発明は、非生体由来の生体吸収性ポリマーが、分子量8000〜50000のポリカプロラクトン、分子量3000〜30000のポリエチレングリコール、分子量3000〜30000の乳酸−グリコール酸共重合体、分子量30000〜200000のカプロラクトン−DL乳酸共重合体から選ばれる一種であることができる。
また、本発明は、非生体由来の生体吸収性ポリマーが、分子量10000のポリカプロラクトンであり、抗菌薬がガチフロキサシンであることが望ましい。
さらに本発明は、非生体由来の生体吸収性ポリマーが、分子量5000〜15000の乳酸−グリコール酸比が50:50(モル比)の乳酸−グリコール酸共重合体であり、抗菌薬がガチフロキサシンであることが望ましい。
また本発明は、人工骨の形状が、病巣掻爬後の骨髄炎患部に埋入する0.5mm〜3mmの顆粒状であり、ガチフロキサシンを0.5〜3重量%含有することが望ましい。
またさらに、本発明は、ポリカプロラクトン、ポリエチレングリコール、乳酸−グリコール酸共重合体、カプロラクトン−DL乳酸共重合体から選ばれた1または2種以上の生体吸収性ポリマーを抗菌薬の分解温度より30度以上低温で溶融混合し、予め成型した気孔率50%〜80%の多孔質リン酸三カルシウムセラミック気孔中に-0.1MPa以下の差圧で導入することを特徴とした薬剤徐放性人工骨の製造方法である。
That is, the present invention relates to one or more non-biologically derived bioabsorbable polymers selected from polycaprolactone, polyethylene glycol, lactic acid-glycolic acid copolymer, and caprolactone-DL lactic acid copolymer containing antibacterial agents. Is a drug sustained-release artificial bone characterized in that it is present in the pores of an artificial bone made of a non-living porous tricalcium phosphate ceramic having a porosity of 50% to 80%.
In the present invention, the non-living porous tricalcium phosphate ceramic can be an artificially made porous tricalcium phosphate ceramic having a three-dimensional through hole with a diameter of 70 μm to 4 mm.
Further, the present invention provides an antibacterial drug, norfloxacin, enoxacin, ofloxacin, levofloxacin, ciprofloxacin hydrochloride, pazufloxacin mesylate, lomefloxacin hydrochloride, tosfloxacin tosylate, fleroxacin, sparfloxacin, gatifloxacin, pullrifloxacin, 1 or 2 or more types selected from
Furthermore, according to the present invention, the shape of the artificial bone can be a part or all of the jawbone.
Furthermore, the present invention provides an artificial bone made of porous tricalcium phosphate ceramic having an artificially created three-dimensional through-hole with a diameter of 70 μm to 4 mm, which is embedded in the affected area of osteomyelitis after curettage. It can be a 0.5 mm to 5 mm rectangular or cylindrical (including disk) or spherical chip.
In the present invention, the antibacterial agent is gatifloxacin, and the content in the bioabsorbable polymer is preferably 0.1% by weight to 5% by weight.
Further, the present invention provides a non-biologically derived bioabsorbable polymer comprising a polycaprolactone having a molecular weight of 8000 to 50000, a polyethylene glycol having a molecular weight of 3000 to 30000, a lactic acid-glycolic acid copolymer having a molecular weight of 3000 to 30000, and a molecular weight of 30000 to 200,000. It can be a kind selected from a caprolactone-DL lactic acid copolymer.
In the present invention, it is desirable that the non-biologically derived bioabsorbable polymer is polycaprolactone having a molecular weight of 10,000, and the antibacterial agent is gatifloxacin.
Furthermore, the present invention provides a non-biologically derived bioabsorbable polymer which is a lactic acid-glycolic acid copolymer having a molecular weight of 5000-15000 and a lactic acid-glycolic acid ratio of 50:50 (molar ratio), and the antibacterial agent is gatifloxacin It is desirable that
In the present invention, it is desirable that the shape of the artificial bone is 0.5 mm to 3 mm granule to be embedded in the affected area of osteomyelitis after curettage, and 0.5 to 3% by weight of gatifloxacin is contained.
Furthermore, the present invention provides one or more bioabsorbable polymers selected from polycaprolactone, polyethylene glycol, lactic acid-glycolic acid copolymer, and caprolactone-DL lactic acid copolymer from the decomposition temperature of the antibacterial agent. The drug sustained-release artificial bone, which is melt-mixed at a low temperature or more and introduced into a porous tricalcium phosphate ceramic pore having a porosity of 50% to 80% with a differential pressure of -0.1 MPa or less. It is a manufacturing method.

本発明は、リン酸カルシム多孔体表面の骨伝導性能を保ったまま、嫌気性菌に有効に作用する抗菌薬を8週間程度の長期にわたって徐放でき、低抗菌薬作用量で骨髄炎を治療し、骨髄炎の治癒後にはリン酸カルシム多孔体が骨形成の足場として作用し、最終的には抗菌薬もリン酸カルシム多孔体も抗菌薬担持体も全て代謝されて生体に吸収されてしまうことが可能な抗菌薬徐放性人工骨を提供することが出来、非生体由来物質を使用しているため、免疫による影響や、生体由来の病原性反応などの心配がない。
The present invention is capable of sustained release of an antibacterial agent that effectively acts on anaerobic bacteria over a long period of about 8 weeks while maintaining the osteoconductivity of the surface of the calcime phosphate porous material, and treats osteomyelitis with a low antibacterial action amount However, after healing of osteomyelitis, the calcium phosphate body acts as a scaffold for bone formation, and eventually the antimicrobial agent, calcium phosphate body, and antimicrobial carrier are all metabolized and absorbed by the body. Antibacterial sustained-release artificial bone can be provided, and since non-living substances are used, there is no concern about immunity effects or pathogenic reactions derived from living bodies.

本発明で用いる生体吸収性ポリマーとしては、分子量が特定範囲にある、ポリカプロラクトン、ポリエチレングリコール、乳酸−グリコール酸共重合体、カプロラクトン−DL乳酸共重合体から選ばれた1または2種以上の生体吸収性ポリマーを使用することができる。それぞれの生体吸収性ポリマーの好適な分子量範囲は、抗菌薬の分解が生じない温度で該抗菌薬1重量%含有生体吸収性ポリマーを溶融した際に気孔径100〜400μmのリン酸三カルシウムの気孔中に該抗菌薬含有生体吸収性ポリマーが-0.1MPaの低差圧で5分以内に5mm以上侵入できるだけの低粘性を与え、なおかつ該抗菌薬が数日〜8週間の間徐放できる低溶解性または低崩壊性を与える分子量範囲である。このような分子量範囲はポリマー種によって異なり、ポリカプロラクトンでは分子量8000以上50000以下、好ましくは8000以上20000以下、ポリエチレングリコールでは分子量3000以上30000以下、好ましくは20000以上30000以下、乳酸−グリコール酸共重合体では分子量3000以上30000以下、好ましくは5000〜20000である。カプロラクトン−DL乳酸共重合体では分子量30000以上200000以下の範囲、好ましくは80000以上100000以下である。   As the bioabsorbable polymer used in the present invention, one or two or more kinds of living bodies selected from polycaprolactone, polyethylene glycol, lactic acid-glycolic acid copolymer, and caprolactone-DL lactic acid copolymer having a molecular weight in a specific range. Absorbable polymers can be used. The preferred molecular weight range of each bioabsorbable polymer is pores of tricalcium phosphate having a pore diameter of 100 to 400 μm when the bioabsorbable polymer containing 1% by weight of the antibacterial agent is melted at a temperature at which the antibacterial agent is not decomposed. The bioabsorbable polymer containing the antibacterial agent has a low viscosity enough to penetrate 5 mm or less within 5 minutes at a low differential pressure of -0.1 MPa, and the antibacterial agent can be released slowly for several days to 8 weeks. Is a molecular weight range that imparts low or low disintegration properties. Such a molecular weight range varies depending on the polymer type, with polycaprolactone having a molecular weight of 8000 to 50,000, preferably 8000 to 20,000, and with polyethylene glycol, a molecular weight of 3,000 to 30,000, preferably 20,000 to 30,000, lactic acid-glycolic acid copolymer In this case, the molecular weight is 3000 or more and 30000 or less, preferably 5000 to 20000. The caprolactone-DL lactic acid copolymer has a molecular weight in the range of 30,000 to 200,000, preferably 80,000 to 100,000.

乳酸−グリコール酸共重合体の乳酸−グリコール酸比には特に制限はないが、40:60から80:20の比であるものが好適に用いられる。乳酸−グリコール酸共重合体の乳酸はD体、L体、DL体のいずれを使用することもできるが、好適な徐放速度を得るという観点から好ましくはDL体が使用できる。カプロラクトン−DL乳酸共重合体のカプロラクトン−D乳酸―L乳酸比には特に制限はない。 The lactic acid-glycolic acid ratio of the lactic acid-glycolic acid copolymer is not particularly limited, but those having a ratio of 40:60 to 80:20 are preferably used. As the lactic acid of the lactic acid-glycolic acid copolymer, any of D-form, L-form and DL-form can be used, but DL-form can be preferably used from the viewpoint of obtaining a suitable sustained release rate. There is no particular limitation on the caprolactone-D lactic acid-L lactic acid ratio of the caprolactone-DL lactic acid copolymer.

なかでも、上記生体吸収性ポリマーのうち、分子量10000のポリ−ε−カプロラクトン、分子量20000のポリエチレングリコール、乳酸−グリコール酸比50:50の乳酸−グリコール酸共重合体、乳酸−グリコール酸比75:25の乳酸−グリコール酸共重合体、分子量100000のカプロラクトン−DL乳酸共重合体を挙げることができ、分子量10000のポリ−ε−カプロラクトンと分子量20000のポリエチレングリコールを重量比50:50で混合した生体吸収性ポリマーは好適に用いられる。 Among these bioabsorbable polymers, poly-ε-caprolactone having a molecular weight of 10000, polyethylene glycol having a molecular weight of 20000, a lactic acid-glycolic acid copolymer having a lactic acid-glycolic acid ratio of 50:50, and a lactic acid-glycolic acid ratio of 75: Examples include a lactic acid-glycolic acid copolymer having a molecular weight of 100, and a caprolactone-DL lactic acid copolymer having a molecular weight of 100,000. A living body in which poly-ε-caprolactone having a molecular weight of 10,000 and polyethylene glycol having a molecular weight of 20000 are mixed at a weight ratio of 50:50. Absorbable polymers are preferably used.

上記のような特定分子量範囲のポリカプロラクトン、ポリエチレングリコール、乳酸−グリコール酸共重合体、カプロラクトン−DL乳酸共重合体を、有機溶剤を使用せずに、抗菌薬の分解温度よりも30℃以上好ましくは50℃以上低い温度で溶融し、該溶融ポリマー中に嫌気性細菌に抗菌力を発揮する、ノルフロキサシン、エノキサシン、オフロキサシン、レボフロキサシン、塩酸シプロフロキサシン、塩酸ロメフロキサシン、トシル酸トスフロキサシン、フレロキサシン、スパルフロキサシン、ガチフロキサシン、プルリフロキサシン、から選ばれた1または2種以上の抗菌薬を特定範囲量だけ添加して攪拌し混合する。これらの抗菌薬の分解温度はノルフロキサシン;220−240℃、エノキサシン;225−229℃、オフロキサシン;265℃、レボフロキサシン;222−230℃、塩酸シプロフロキサシン;273℃、塩酸ロメフロキサシン;310℃、トシル酸トスフロキサシン;254℃、スパルフロキサシン;266℃、ガチフロキサシン;187℃、プルリフロキサシン;220℃であるので、上記の温度範囲のなかで、それぞれの抗菌薬に応じてポリマーの溶融混合温度を決めることができる。   Polycaprolactone, polyethylene glycol, lactic acid-glycolic acid copolymer, caprolactone-DL lactic acid copolymer having a specific molecular weight range as described above is preferably 30 ° C. or higher than the decomposition temperature of the antibacterial agent without using an organic solvent. Is melted at a temperature lower than 50 ° C. and exhibits antibacterial activity against anaerobic bacteria in the molten polymer, norfloxacin, enoxacin, ofloxacin, levofloxacin, ciprofloxacin hydrochloride, lomefloxacin hydrochloride, tosfloxacin tosylate, flloxacin, spulfloxacin One or more antibacterial agents selected from xacin, gatifloxacin, and pullrifloxacin are added in a specific range amount and stirred and mixed. Decomposition temperature of these antibacterial drugs is norfloxacin; 220-240 ° C, enoxacin; 225-229 ° C, ofloxacin; 265 ° C, levofloxacin; 222-230 ° C, ciprofloxacin hydrochloride; 273 ° C, lomefloxacin hydrochloride; 310 ° C, tosyl 254 ° C, sparfloxacin; 266 ° C, gatifloxacin; 187 ° C, pullrifloxacin; 220 ° C, so that the polymer melts depending on the respective antibacterial drug within the above temperature range The mixing temperature can be determined.

これらの抗菌薬が選ばれる理由は上記のように、嫌気性菌に抗菌力を発揮し、分解温度が高いという理由の他、歯科医師が処方でき、耐性誘導しにくく、組織移行が極めて高いため、歯性の骨髄炎で長期の抗菌薬投与が必要な慢性化膿性顎骨骨髄炎治療に適しているからである。そのなかでも、ガチフロキサシンは耐性菌が極めて少ないという点で、好適に用いられる。 The reason why these antibacterial agents are selected is that, as mentioned above, they exhibit antibacterial activity against anaerobic bacteria, and because the decomposition temperature is high, dentists can prescribe, resistance is difficult to induce, and tissue migration is extremely high. This is because it is suitable for the treatment of chronic purulent jaw osteomyelitis that requires long-term administration of antibacterial agents in dental osteomyelitis. Among them, gatifloxacin is preferably used because it has very few resistant bacteria.

本発明で使用する抗菌薬の分解温度は最高でも310℃であるため、生体吸収性ポリマーの溶融には、300℃まで過熱できる装置であれば、様々な装置を使用することが出来る。そのような装置には例えば、小型アルミブロックヒーターが好適に用いられる。   Since the decomposition temperature of the antibacterial agent used in the present invention is at most 310 ° C., various devices can be used for melting the bioabsorbable polymer as long as the device can be heated to 300 ° C. For example, a small aluminum block heater is suitably used for such an apparatus.

本発明で用いる抗菌薬含有生体吸収性ポリマーの抗菌薬含有量は、おのおの抗菌薬の抗菌有効濃度、作用量、目標とする徐放期間、抗菌薬添加後のポリマーの粘性に応じて決めることができる。例えば、骨髄炎患部の体積をV(cm-3)、抗菌薬含有生体吸収性ポリマーの比重をd(g/cm-3)、骨髄炎患部体積占める抗菌薬含有生体吸収性ポリマー体積の割合をk%とすると、骨髄炎患部における抗菌薬含有ポリマーの重量W(g)は
W = Vdk/100 (g)-----------(1)
となる。抗菌薬をx%だけポリマー中に含有させるとすれば、骨髄炎患部中での抗菌薬総量は
Wx/100 = Vdxk/10000 (g)
-----------(2)
となる。この抗菌薬を徐放期間T(日)かけて徐放させるとすると、1日あたりの抗菌薬放出量はVdxk/(10000T) (g)である。また、骨髄炎患部では常に体液の入れ替わりがあるが、1日あたり患部体積のA倍だけ体液の入れ替わりがあるとし、抗菌薬の有効濃度をRμg/mLとすると、常に抗菌薬が骨髄炎患部で有効濃度以上であるためには
Vdxk/10000TAV > R・10-6 -----------(3)
である必要がある。この式をxについて解けば
x > (ART/dk)・10-2(%) ----------(4)
となる。例えば、比重約1(d=1)のポリマーを使用して、気孔率60%程度の多孔質セラミック中に抗菌薬含有ポリマーを導入し、その結果として、患部体積の50%が抗菌薬含有ポリマーで占有されることが予想され(k=50)、該抗菌薬の有効抗菌濃度が5μg/mL、徐放期間として8週間を設定し(T=56)、患部での体液入れ替わりが1日あたり患部体積の10倍と予想できるなら(A=10)、(4)式を解いて抗菌薬含有量としてx>0.56%と決定することができる。
The antibacterial drug content of the antibacterial drug-containing bioabsorbable polymer used in the present invention can be determined according to the antibacterial effective concentration, the amount of action, the target sustained release period, and the viscosity of the polymer after the addition of the antibacterial drug. it can. For example, the volume of the affected area of the osteomyelitis is V (cm -3 ), the specific gravity of the bioabsorbable polymer containing the antibacterial drug is d (g / cm -3 ), and the ratio of the volume of the bioabsorbable polymer containing the antibacterial drug to the volume of the affected area of the osteomyelitis is Assuming k%, the weight W (g) of the antimicrobial-containing polymer in the affected area of osteomyelitis is
W = Vdk / 100 (g) ----------- (1)
It becomes. If x% of antibacterial drug is included in the polymer, the total amount of antibacterial drug in the affected area of osteomyelitis
Wx / 100 = Vdxk / 10000 (g)
----------- (2)
It becomes. If this antibacterial drug is sustainedly released over a sustained release period T (day), the amount of antibacterial drug released per day is Vdxk / (10000T) (g). In addition, there is always a change of body fluid in the affected area of osteomyelitis, but if there is a change of body fluid by A times the volume of the affected area per day, and the effective concentration of antibacterial drug is Rμg / mL, the antibacterial drug is always in the affected area of osteomyelitis. To exceed the effective concentration
Vdxk / 10000TAV> R ・ 10 -6 ----------- (3)
Need to be. Solving this equation for x
x> (ART / dk) ・ 10 -2 (%) ---------- (4)
It becomes. For example, by using a polymer having a specific gravity of about 1 (d = 1), an antibacterial agent-containing polymer is introduced into a porous ceramic having a porosity of about 60%, and as a result, 50% of the affected part volume contains the antibacterial agent-containing polymer. (K = 50), the effective antibacterial concentration of the antibacterial drug is set to 5μg / mL, and the sustained release period is set to 8 weeks (T = 56). If it can be expected that the volume of the affected area is 10 times (A = 10), x> 0.56% can be determined as the antibacterial drug content by solving equation (4).

次に、このように作製した溶融状態の抗菌薬含有ポリマーに、気孔率が50%〜80%、好ましくは50−70%のリン酸三カルシウムセラミックを接触させ、溶融状態の抗菌薬含有生態吸収性ポリマーをリン酸三カルシウムセラミックに対して加圧するか、または、気孔内の空気を真空脱気することで、セラミック気孔内と気孔外部に差圧を生じせしめ、抗菌薬含有ポリマーをリン酸三カルシウムセラミックの気孔中に導入する。リン酸三カルシウムセラミックスは多孔質であれば特に、その形態、気孔径、気孔率に制限はないが、好ましくは連通した気孔を有するリン酸三カルシウムセラミックスであり、より好ましくは、人工的に作られた直径70μm〜4mmの立体的な貫通孔を有し、空隙率が50%〜80%であるリン酸三カルシウムセラミックである。   Next, the molten antibacterial agent-containing polymer thus prepared is brought into contact with a tricalcium phosphate ceramic having a porosity of 50% to 80%, preferably 50-70%, so that the molten antibacterial agent-containing bioabsorbable material is absorbed. The pressure-sensitive polymer is pressurized against the tricalcium phosphate ceramic, or the air inside the pores is vacuum degassed to create a differential pressure between the ceramic pores and the outside of the pores. It is introduced into the pores of calcium ceramic. The form, pore diameter, and porosity of the tricalcium phosphate ceramics are not particularly limited, but are preferably tricalcium phosphate ceramics having continuous pores, and more preferably artificially produced. This is a tricalcium phosphate ceramic having a three-dimensional through hole with a diameter of 70 μm to 4 mm and a porosity of 50% to 80%.

本発明で用いる多孔質リン酸三カルシウムセラミックは低温型のβ相でも高温型のα相でもよい。多孔質βリン酸三カルシウムセラミックは、典型的には樹脂又は有機物とβリン酸三カルシウム粉体を混合、成形、焼成し、樹脂又は有機物がぬけた部分を気孔とすることで(特公H2-54303、H7-88175、H8-48583等参照)作製することができる。焼成は700-1130℃の範囲、好ましくは950−1130℃の範囲で加熱すれば合成できる。同様に、αリン酸三カルシウムセラミックは、典型的には樹脂又は有機物とβリン酸三カルシウム粉体を混合、成形し、1130−1430℃の範囲、好ましくは1300−1400℃の範囲で焼成し、樹脂又は有機物がぬけた部分を気孔とすることで作製することができる。βリン酸三カルシウムセラミックは歯科用埋没剤加熱用電気炉や歯科技工用ポーセレン焼成炉を使用して、医療現場で作製することもできる。
人工的に作られた直径70μm〜4mmの立体的な貫通孔を有し、空隙率が50%〜80%であるリン酸三カルシウムセラミックを作製するには、公知の方法(特開WO2003/035576号公報参照)に従い、断面寸法90μm以上5.0mm以下、好ましく100μm以上3.0mm以下の多数の長柱体を気孔のオス型として使用し、リン酸三カルシウム粉体を成型する。長柱体状オス型の材質は、金属、木材、竹その他植物材料、木材、炭素材料、ハロゲンを含まない弾性率10GPa以上のポリマーを用いることができる。金属製長柱体状オス型を使用する場合は、焼成前に長柱体状オス型を除去する。長柱体の断面形状には特に制限はないが、少なくとも1組の平行な辺をもつ多角形、楕円、円、または少なくとも1組の平行な辺と曲線からなる図形であれば、加圧成形や長柱体の引き抜き除去に有利である。長柱体の伸長方向の形状は屈曲のない直線状または一平面内でのみ屈曲した曲線状又は折れ線状である必要がある。二平面以上の面内で屈曲している場合は、加圧成形の際に長柱体状オス型の変形を生じ、長柱体オス型の破壊、加圧後の長柱体の復形による成形体破壊等が生じて支障がある。
焼結により10−20%の気孔径収縮が生じるため、焼結後の気孔径を70μm以上にするためには、長柱体状オス型の断面寸法は90μm以上であることが必要になる。また、人工骨にあっては直径4mm以上の血管を侵入させる必要性は特になく、焼結による10−20%の気孔径収縮を考慮しても、長柱体状オス型の断面寸法は5.0mm以上ある必要はない。
多孔体の強度を向上させるためこれらの長柱体オス型をまず配列して粉末を添加し、配列面を加圧圧縮する。配列の方向性は、長柱体状オス型が相互に重ならなければ、等間隔平行、異間隔平行の他、非平行でも良い。加圧成形時の圧力は5MPa以上500MPa以下、好ましくは10MPa以上200MPaである。加圧成形時の圧力をこの範囲とするのは、圧力5MPa以下では、粉体粒子の密着が不充分となり、十分強度のある多孔体が作製できず、加圧が500MPa以上では、長柱体状オス型の変形や破壊が起こりやすいためである。
The porous tricalcium phosphate ceramic used in the present invention may be a low temperature type β phase or a high temperature type α phase. Porous β-tricalcium phosphate ceramic is typically a mixture of resin or organic matter and β-tricalcium phosphate powder, molded, and fired, and the pores are removed from the resin or organic matter. -54303, H7-88175, H8-48583, etc.). Firing can be synthesized by heating in the range of 700-1130 ° C, preferably in the range of 950-1130 ° C. Similarly, α-tricalcium phosphate ceramic is typically a mixture of resin or organic matter and β-tricalcium phosphate powder, molded and fired in the range of 1130-1430 ° C, preferably in the range of 1300-1400 ° C. It can be produced by making pores the portion where the resin or organic matter is removed. The β-tricalcium phosphate ceramic can also be produced in the medical field using a dental investment heating electric furnace or a dental porcelain firing furnace.
A known method (Japanese Patent Laid-Open No. WO2003 / 035576) is used to produce an artificially produced tricalcium phosphate ceramic having a three-dimensional through hole with a diameter of 70 μm to 4 mm and a porosity of 50% to 80%. No. 3), a large number of long pillars having a cross-sectional dimension of 90 μm or more and 5.0 mm or less, preferably 100 μm or more and 3.0 mm or less are used as the male type of pores, and tricalcium phosphate powder is molded. As the long columnar male material, metal, wood, bamboo and other plant materials, wood, carbon material, and a polymer having a modulus of elasticity of 10 GPa or more not containing halogen can be used. When using a metal long columnar male mold, the long columnar male mold is removed before firing. There is no particular restriction on the cross-sectional shape of the long columnar body, but if it is a polygon, an ellipse, a circle with at least one set of parallel sides, or a figure consisting of at least one set of parallel sides and a curve, press molding It is advantageous for pulling out and removing long columns. The shape in the extending direction of the long columnar body needs to be a straight line without bending or a curved line or a broken line bent only within one plane. If it is bent in two or more planes, it will cause deformation of the long columnar male mold during pressure molding, breakage of the long columnar male mold, and reshape of the long columnar body after pressurization There is a problem that the molded body is destroyed.
Since the pore diameter shrinkage of 10-20% is caused by sintering, in order to make the pore diameter after sintering 70 μm or more, it is necessary that the cross-sectional dimension of the long columnar male mold is 90 μm or more. Further, in the case of an artificial bone, it is not particularly necessary to invade a blood vessel having a diameter of 4 mm or more. It is not necessary to be more than 0.0 mm.
In order to improve the strength of the porous body, these long columnar male dies are first arranged, powder is added, and the arrangement surface is compressed under pressure. As long as the long columnar male dies do not overlap each other, the directionality of the arrangement may be non-parallel in addition to parallel at equal intervals, parallel at different intervals. The pressure at the time of pressure molding is 5 MPa or more and 500 MPa or less, preferably 10 MPa or more and 200 MPa. The pressure at the time of pressure molding is set within this range. If the pressure is 5 MPa or less, the adhesion of the powder particles becomes insufficient, and a sufficiently strong porous body cannot be produced. If the pressure is 500 MPa or more, the long columnar body This is because deformation and destruction of the male shape are likely to occur.

本発明で用いる多孔質リン酸三カルシウムの定義は、Ca/Pモル比1.45以上1.55以下のリン酸カルシムのことであり、この組成範囲であれば水酸アパタイト、ピロリンサンカルシム等の不純物リン酸カルシム相が含有されていても差し支えない。リン酸三カルシウムであるかどうかは粉末X線回折で確認することができる。 The definition of porous tricalcium phosphate used in the present invention is a calcium / calcium phosphate having a Ca / P molar ratio of 1.45 or more and 1.55 or less, and impurity phosphates such as hydroxyapatite and pyrroline sancalcim in this composition range. It does not matter even if a calcium phase is contained. Whether it is tricalcium phosphate can be confirmed by powder X-ray diffraction.

このようにして、有害薬品を使用せず、医療現場や手術室で簡単かつ安全に、生体由来物質を使用せず、嫌気性菌に有効に作用する抗菌薬を生体吸収性ポリマーとともに、リン酸三カルシウム多孔体気孔内に導入できる。抗菌薬含有生体吸収性ポリマーの重量比95%以上がリン酸三カルシウムセラミック内部に配置できるため、リン酸三カルシウムセラミック表面を骨伝導性の表面として活用できる。必要に応じて、表面に存在する抗菌薬含有生体吸収性ポリマーを機械的に除去してから、使用することもできる。 In this way, an antibacterial agent that effectively acts on anaerobic bacteria without using any biological chemicals, without using any bio-derived substances without using harmful chemicals, in the medical field or operating room, together with the bioabsorbable polymer, phosphoric acid It can be introduced into the pores of the tricalcium porous material. Since a weight ratio of 95% or more of the bioabsorbable polymer containing an antibacterial agent can be disposed inside the tricalcium phosphate ceramic, the surface of the tricalcium phosphate ceramic can be used as an osteoconductive surface. If necessary, the antibacterial drug-containing bioabsorbable polymer present on the surface can be mechanically removed before use.

このように作製された抗菌薬含有生体吸収性ポリマー複合化リン酸三カルシウムセラミックが抗菌薬を長期間徐放するかどうかは、直径6.3mm厚さ0.5mmの抗菌薬含有生体吸収性ポリマーを多数作製し、それぞれ1枚ずつを10mLのハンクス液に浸漬して37℃に放置し、一定期間ごとにハンクス液中に溶出した抗菌薬の量を分光光度計や分光蛍光光度計を設置した高速液体クロマトフによって定量すれば確認することができる。このとき、液の採取によって液量が変化するため、一度ハンクス液を採取したものは、それ以降徐放試験に使用しない。このようにして測定されたハンクス液の抗菌薬濃度が、期間とともに上昇してゆけば、その期間において抗菌薬が徐放できたことになる。抗菌薬含有生体吸収性ポリマーからの抗菌薬の放出は、溶解する生体吸収性ポリマーの拡散律速であるため、直径6.3mm厚さ0.5mmの抗菌薬含有生体吸収性ポリマーからある一定期間抗菌薬が放出できれば、同一重量の抗菌薬含有生体吸収性ポリマーがリン酸三カルシウムセラミック気孔内に入れた場合は、さらに長期間抗菌薬が放出できることを示す。 The antibacterial drug-containing bioabsorbable polymer composite tricalcium phosphate ceramic produced in this way has many antibacterial drug-containing bioabsorbable polymers with a diameter of 6.3 mm and a thickness of 0.5 mm. A high-speed liquid with a spectrophotometer and a spectrofluorometer installed to measure the amount of antibacterial drug eluted in the Hanks solution at regular intervals. This can be confirmed by quantification with chromatoph. At this time, since the amount of liquid changes depending on the collection of the liquid, once the Hanks liquid is collected, it is not used for the sustained release test thereafter. If the antibacterial concentration of the Hanks solution measured in this way increases with the period, the antibacterial drug could be released gradually during that period. The release of the antibacterial drug from the bioabsorbable polymer containing the antibacterial drug is diffusion-controlled by the dissolved bioabsorbable polymer. If it can be released, it indicates that the same amount of antibacterial drug-containing bioabsorbable polymer can be released for a longer period of time when placed in the tricalcium phosphate ceramic pores.

このように作製された抗菌薬含有生体吸収性ポリマー複合化リン酸三カルシウムセラミックが嫌気性菌も含む骨髄炎に対して、有効に作用し、骨伝導能があり、生体吸収性であることは、ウサギ下顎骨の右頬側と左頬側の2箇所に骨髄炎を作製する佐藤-Heimdahlの方法に準じた感染モデル兎実験によって確かめることができる。すなわち、ウサギ耳静脈よりネンブタール&reg;注射薬(0.5ml/kg)を投与し、麻酔後、除毛、70%消毒用エタノールで手術野を消毒する。切開は頬骨耳筋の筋繊維の走行に沿って皮膚に約1cmの横切開を加え、ついで、その深部にある咬筋を後方に圧迫するようにして咬筋窩の前方の骨膜に縦切開を入れて鈍的に骨膜を剥離し、骨面露出する。露出した骨に歯科用切削ラウンドバー(#8)を用いて骨腔を形成する。使用する菌株は好気性のStreptococcus milleri NCTC7331(Public Health Laboratory Service分与,以下S.milleri )と、嫌気性のBacteroides fragilis NCTC9343(Public Health
Laboratory Service分与,以下B.fragilisの2種類である。骨腔に菌数を調節した両供試菌液を浸潤させたNMPコラーゲンスポンジ架橋処理(150℃×24H)(ニッポンハム)を埋入する。その後4-0VICRYLにて縦切開部を骨膜縫合、3-0ナイロン糸にて横切開創を緊密縫合する。このような菌の播種を下顎骨の左右両頬側の2箇所に行う。
4週間、感染動物実験室で飼育し、ウサギ骨髄炎モデルを完成させる。4週間後、抗菌薬含有生体吸収性ポリマー複合化リン酸三カルシウム多孔体を左頬側の下顎骨骨髄炎患部に埋入する。すなわち、ウサギ耳静脈よりネンブタール注射薬(0.5ml/kg)を投与し、麻酔後、除毛、70%消毒用エタノールで手術野を消毒する。切開は頬骨耳筋の筋繊維の走行に沿って皮膚に約1cmの横切開を加え、ついで、その深部にある咬筋を後方に圧迫するようにして咬筋窩の前方の骨膜に縦切開を入れて鈍的に骨膜を剥離し、骨髄炎患部を露出させる。露出した骨に歯科用切削ラウンドバー(#8)を用いて、抗菌薬含有生体吸収性ポリマー複合化リン酸三カルシム多孔体の埋入できる孔を成形し、埋入する。その後、非吸収性のメンブレンCYTOPLASR&reg;OSTEOGENICS
BIOMEDICAL,INC.を抗菌薬含有生体吸収性ポリマー複合化リン酸三カルシム多孔体上に載せ、その後4-0VICRYLにて縦切開部を骨膜縫合、3-0ナイロン糸にて横切開創を緊密縫合する。右頬側の下顎骨骨髄炎患部は無処置でそのまま放置する。
この後、4または12週後に耳静脈よりネンブタール&reg;注射薬(1.5ml/kg)を投与し、麻酔後、ウサギの左右両頬側の下顎骨を摘出し、ソフテックスを用いて撮影し、ホルマリン固定後、病理切片を作製し、抗菌薬含有生体吸収性ポリマー複合化リン酸三カルシム多孔体を埋入した左頬側と、無処置の右頬側を病理学的に比較観察する。
病理学的に観察して、左頬側に腐骨が無いこと、炎症細胞やリンパ球多孔体が無いことをもって骨髄炎治療に有効であると判定できる。新生骨が生成して、抗菌薬含有生体吸収性ポリマー複合化リン酸三カルシム多孔体表面に直接接触していれば、骨伝導性であると判定できる。破骨細胞や貪食細胞によって、抗菌薬含有生体吸収性ポリマー複合化リン酸三カルシム多孔体の形状が侵食されていれば、生体吸収性であると判定できる。

以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
The antibacterial drug-containing bioabsorbable polymer complexed tricalcium phosphate ceramic produced in this way works effectively against osteomyelitis including anaerobic bacteria, has osteoconductivity, and is bioabsorbable. This can be confirmed by an infection model experiment based on Sato-Heimdahl's method of creating osteomyelitis in the right and left cheeks of the rabbit mandible. That is, Nembutal from rabbit ear vein &reg; injection drugs (0.5 ml / kg) was administered, after anesthesia, hair removal, disinfecting surgical field with 70% ethanol for disinfection. The incision is made by making a lateral incision of about 1 cm along the running of the muscle fibers of the zygomatic ear muscles, and then making a longitudinal incision in the periosteum in front of the masseter fossa so as to compress the masseter muscle in the back. Bluntly removes the periosteum and exposes the bone surface. A bone cavity is formed in the exposed bone using a dental cutting round bar (# 8). The strains used are aerobic Streptococcus milleri NCTC7331 (Public Health Laboratory Service distribution, hereinafter S. milleri) and anaerobic Bacteroides fragilis NCTC9343 (Public Health
Laboratory Service distribution, the following two types: B.fragilis. NMP collagen sponge cross-linking treatment (150 ° C. × 24 H) (Nippon ham) infiltrated with both test bacterial liquids with controlled bacterial count in the bone cavity is implanted. Then, the longitudinal incision is sutured with 4-0 VICRYL, and the transverse incision is tightly sutured with 3-0 nylon thread. The sowing of such bacteria is performed at two locations on the left and right cheeks of the mandible.
Breed in the infected animal laboratory for 4 weeks to complete the rabbit osteomyelitis model. Four weeks later, a bioabsorbable polymer-conjugated tricalcium phosphate porous material containing an antibacterial drug is implanted in the affected area of the mandibular osteomyelitis on the left buccal side. That is, Nembutal injection (0.5 ml / kg) is administered from the rabbit ear vein, and after anesthesia, the surgical field is disinfected with hair removal and 70% ethanol for disinfection. The incision is made by making a lateral incision of about 1 cm along the running of the muscle fibers of the zygomatic ear muscles, and then making a longitudinal incision in the periosteum in front of the masseter fossa so as to compress the masseter muscle in the back. Bluntly remove the periosteum and expose the affected area of osteomyelitis. Using the dental cutting round bar (# 8), the exposed bone is formed with a hole capable of embedding the anti-bacterial-containing bioabsorbable polymer-conjugated tricalcium phosphate porous material, and then embedded. Then the non-absorbable membrane CYTOPLASR &reg; OSTEOGENICS
Place BIOMEDICAL, INC. On a bioresorbable polymer-conjugated tricalcium phosphate porous material containing antibacterial agents, then perforate suture with 4-0 VICRYL, and tightly suture transverse incision with 3-0 nylon thread To do. The affected part of the mandibular osteomyelitis on the right cheek side is left untreated.
After this, Nembutal &reg; injection (1.5ml / kg) was administered from the ear vein 4 or 12 weeks later, and after anesthesia, the mandibles on both the left and right cheeks of the rabbit were removed and photographed using Softex. After formalin fixation, pathological sections are prepared, and the left buccal side in which the bioabsorbable polymer-conjugated tricalcium phosphate porous material containing an antibacterial drug is embedded and the untreated right buccal side are pathologically compared and observed.
Pathologically, it can be determined that osteoclasts are effective on the treatment of osteomyelitis by the absence of rot on the left buccal side and the absence of inflammatory cells and lymphocyte porous bodies. If new bone is generated and is in direct contact with the surface of the anti-bacterial drug-containing bioabsorbable polymer-conjugated tricalcium phosphate porous material, it can be determined to be osteoconductive. If the shape of an antibacterial-containing bioabsorbable polymer-conjugated tricalcium phosphate porous body is eroded by osteoclasts or phagocytic cells, it can be determined to be bioabsorbable.

Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples.

(抗菌薬を含有した生体吸収性ポリマーの作成)
生体吸収性ポリマーとして、分子量4,000、8,000、20,000、500,000、2,000,000のポリエチレングリコール(PEG)と、分子量10,000のポリカプロラクトン(PCL)、分子量10000のPCLと分子量20000のPEGを重量比50:50で混合したポリマー(PCL+PEG)、分子量100000のカプロラクトン−DL乳酸共重合体(CDL)を使用した。
アルミブロックヒーター(NISSIN社製、型式ND-M11)を用い、ポリプロピレンチューブを40℃,80℃, 100℃、120℃,160℃に加熱し、その中にこれらのポリマー粉末1gを入れて溶融した。
その後、1重量%相当のガチフロキサシン(GFLX)を添加し、攪拌して生体吸収性ポリマーと混合した。GFLXの分解温度は187℃である。全体が均一になったことを確認し、内径6.35mm、厚さ0.8mmのアルミ製鋳型に流し込んだ。常温で硬化させ、租形性の優劣(円形ディスクになるかどうか)を判定した。
その結果を、表1に示す。
(Creation of bioabsorbable polymers containing antibacterial drugs)
As a bioabsorbable polymer, polyethylene glycol (PEG) with molecular weight of 4,000, 8,000, 20,000, 500,000, 2,000,000, polycaprolactone (PCL) with molecular weight of 10,000, PCL with molecular weight of 10,000 and PEG with molecular weight of 20000 are mixed at a weight ratio of 50:50. Polymer (PCL + PEG) and caprolactone-DL lactic acid copolymer (CDL) having a molecular weight of 100,000 were used.
Using an aluminum block heater (manufactured by NISSIN, model ND-M11), the polypropylene tube was heated to 40 ° C, 80 ° C, 100 ° C, 120 ° C, 160 ° C, and 1 g of these polymer powders were put in it and melted. .
Thereafter, 1% by weight of gatifloxacin (GFLX) was added, stirred and mixed with the bioabsorbable polymer. The decomposition temperature of GFLX is 187 ° C. After confirming that the whole was uniform, it was poured into an aluminum mold having an inner diameter of 6.35 mm and a thickness of 0.8 mm. It hardened | cured at normal temperature and the superiority or inferiority of the shape property (whether it became a circular disk) was determined.
The results are shown in Table 1.

Figure 2007222611

その結果、PEG分子量4,000では80、100、120℃で、PEG分子量8,000では120℃で、PEG分子量20,000では100、120℃で、PCL分子量10,000は100、120℃で、PCL+PEGは100、120℃で、CDLは120、160℃で、 抗菌薬とポリマーは均一化し、流動性が高く、割れ、欠けも生じなかった。
Figure 2007222611

As a result, at PEG molecular weight 4,000, 80, 100, 120 ° C, PEG molecular weight 8,000 at 120 ° C, PEG molecular weight 20,000 at 100, 120 ° C, PCL molecular weight 10,000 at 100, 120 ° C, PCL + PEG at 100, 120 At ℃, CDL was 120 and 160 ℃, the antibacterial drug and polymer were homogenized, fluidity was high, and neither cracking nor chipping occurred.

(抗菌薬を含有した生体吸収性ポリマーの徐放試験)
抗菌薬を含有した生体吸収性ポリマーの作成で得られた最適溶融条件(PCL;120℃、PEG4,000;100℃、PEG8,000;120℃、PCL+PEG;120℃、CDL;120℃)でGFLX含有PEG、GFLX含有PCL、GFLX含有PCL+PEG、 GFLX含有CDLのペレット(直径6.35mm、厚さ0.8mm)を作製し、最長8週間の徐放試験を行った結果を図1−5に示す。なお、PCL+PEGは分子量10000のPCLと分子量20000のPEGを使用し、PCL:PEG重量比を60:40から35:65まで変えて検討した。PCLは分子量10000について検討した。CDLは分子量100000について検討した。PEG分子量4,000、PEG分子量8,000では、徐放試験は72時間までとした。生体吸収性ポリマーにPEG分子量4,000を用いた場合、3日目まで徐放が確認された。PEG分子量4000は長期の徐放は検討できなかった。PEG分子量8,000を用いた場合、3日目まで徐放が確認された。PCLを用いた場合、56日目までの徐放が認められた。PCL+PEGを用いた場合も56日目までの徐放が認められた。CDLを用いた場合も56日目まで徐放が認められた。コントロールとして、ペーパーディスク(ろ紙にGFLXを含浸させたもの)を用いた場合は、3日目でほぼ最高濃度に達し、その後の徐放はみられなかった。
(Sustained release test of bioabsorbable polymers containing antibacterial drugs)
Optimal melting conditions (PCL; 120 ° C, PEG4,000; 100 ° C, PEG8,000; 120 ° C, PCL + PEG; 120 ° C, CDL; 120 ° C) obtained by making bioabsorbable polymers containing antibacterial drugs Fig. 1-5 shows the results of a sustained-release test for up to 8 weeks after preparing pellets of GFLX-containing PEG, GFLX-containing PCL, GFLX-containing PCL + PEG, and GFLX-containing CDL (diameter 6.35 mm, thickness 0.8 mm) Shown in PCL + PEG used was PCL with a molecular weight of 10,000 and PEG with a molecular weight of 20,000, and the PCL: PEG weight ratio was changed from 60:40 to 35:65. PCL was examined for a molecular weight of 10,000. CDL was examined for a molecular weight of 100,000. With a PEG molecular weight of 4,000 and a PEG molecular weight of 8,000, the sustained release test was carried out for up to 72 hours. When a PEG molecular weight of 4,000 was used for the bioabsorbable polymer, sustained release was confirmed until the third day. PEG molecular weight 4000 could not be studied for long-term sustained release. When PEG molecular weight was 8,000, sustained release was confirmed until the third day. When PCL was used, sustained release up to day 56 was observed. Even when PCL + PEG was used, sustained release was observed up to day 56. In the case of using CDL, sustained release was observed until the 56th day. As a control, when a paper disk (filter paper impregnated with GFLX) was used, the maximum concentration was reached on the third day, and no subsequent sustained release was observed.

(人工骨チップの作成:抗菌薬を含有した生体吸収性ポリマーの多孔質リン酸三カルシウムセラミック気孔中への導入)

公知の手法(特開WO2003/035576号公報)により、直径4mm、厚さ2mmで人工的に作られた直径380μmの立体的な貫通孔を有し、空隙率が58%のβリン酸三カルシムセラミックを作製した。すなわち、粒径75μmアンダーのβリン酸三カルシウム粉末0.1gに1%セルロース誘導体を含むバインダー溶液0.06mLの割合で添加して練和した。直径0.5mm長さ28mmのステンレス製長柱体状オス型4本を0.3mm間隔に平行に配列し、この上に、これと直交する方向で同一寸法のステンレス製長柱体状オス型5本を配列して積層した。この積層を2回繰り返して作製した長柱体状オス型配列物に、上記粉末錬和物を直径5.1mm厚さ2.56mmの円盤状になるように詰め込み25MPaで加圧した。加圧成型後、50℃で10分間乾燥させ、長柱体状オス型を全部抜き取って、気孔を形成させた。これを1100℃で1時間燒結して多孔体とした。焼結により収縮するため、得られたβリン酸三カルシウム多孔体の大きさは直径4mm、厚さ2mmであった。またこの多孔体は、長柱体状オス型をレプリカとした直径380μmの直線状貫通気孔が交互に直交させた多孔体であった。2方向の気孔の交点は直径50‐200μmの気孔になっていて、長柱体状オス型をレプリカとした気孔だけでなく、長柱体状オス型の積層方向にも連続した気孔が形成されていた。ただし交点の一部は閉鎖していた。空隙率は58%であった。
このように作製した直径4mm、厚さ2mm、で人工的に作られた直径380μmの立体的な貫通孔を有し、空隙率が58%のβリン酸三カルシムセラミックの気孔中に、差圧0.02MPaにて種々のGFLX含有生体吸収性ポリマーを導入した。その結果を表2に示す。なお、PCLの分子量は10000であり、PCL+PEGは分子量10000のPCLと分子量20000のPEGの重量比50:50での混合物である。
(Production of artificial bone chip: introduction of bioabsorbable polymer containing antibacterial agent into porous tricalcium phosphate ceramic pores)

Β phosphate tricalcium having a three-dimensional through-hole with a diameter of 4 mm and a thickness of 2 mm artificially made with a known technique (Japanese Patent Laid-Open No. WO2003 / 035576) having a diameter of 380 μm and a porosity of 58% Ceramic was produced. That is, it was kneaded by adding 0.06 mL of a binder solution containing 1% cellulose derivative to 0.1 g of β-tricalcium phosphate powder having a particle diameter of 75 μm. Four stainless steel long columnar male dies with a diameter of 0.5 mm and a length of 28 mm are arranged in parallel at intervals of 0.3 mm, and five stainless steel long columnar male dies with the same dimensions in the direction orthogonal to this Were arranged and laminated. The above-mentioned powder smelt was packed into a long columnar male array produced by repeating this lamination twice so as to form a disk having a diameter of 5.1 mm and a thickness of 2.56 mm, and was pressurized at 25 MPa. After the pressure molding, it was dried at 50 ° C. for 10 minutes, and the long columnar male mold was all extracted to form pores. This was sintered at 1100 ° C. for 1 hour to obtain a porous body. Since it contracted by sintering, the obtained β-tricalcium phosphate porous body had a diameter of 4 mm and a thickness of 2 mm. Further, this porous body was a porous body in which linear through-holes having a diameter of 380 μm were alternately made perpendicular to each other with a long columnar male shape as a replica. The intersection of the pores in the two directions is a pore with a diameter of 50-200 μm, and continuous pores are formed in the stacking direction of the long columnar male type as well as the pores with the long columnar male type as a replica. It was. However, some of the intersections were closed. The porosity was 58%.
In the pores of β-calcium phosphate ceramics having a three-dimensional through-hole with a diameter of 4 mm and a thickness of 2 mm manufactured in this way and having a diameter of 380 μm and a porosity of 58%, the differential pressure Various GFLX-containing bioabsorbable polymers were introduced at 0.02 MPa. The results are shown in Table 2. PCL has a molecular weight of 10,000, and PCL + PEG is a mixture of PCL having a molecular weight of 10,000 and PEG having a molecular weight of 20000 in a weight ratio of 50:50.

Figure 2007222611
Figure 2007222611

(骨髄炎モデルへの適用及びその結果)
佐藤-Heimdahlの方法に準じてウサギ下顎骨に骨髄炎モデルを作製した。骨髄炎は下顎骨の左右両頬側に1箇所ずつ作製した。すなわち、ウサギ耳静脈よりネンブタール&reg;注射薬(0.5ml/kg)を投与し、麻酔後、除毛、70%消毒用エタノールで手術野を消毒した。切開は頬骨耳筋の筋繊維の走行に沿って皮膚に約1cmの横切開を加え、ついで、その深部にある咬筋を後方に圧迫するようにして咬筋窩の前方の骨膜に縦切開を入れて鈍的に骨膜を剥離し、骨面露出した。露出した骨に歯科用切削ラウンドバー(#8)を用いて骨腔を形成。骨腔に菌数を調節した菌液を浸潤させたNMPコラーゲンスポンジ架橋処理(150℃×24H)(ニッポンハム)を埋入した。その後4-0VICRYLにて縦切開部を骨膜縫合、3-0ナイロン糸にて横切開創を緊密縫合した。なお、使用した菌液には好気性のS.milleri と、嫌気性のB.fragilisの2種類をあらかじめ含有させておいた。
4週間、感染動物実験室で飼育し、ウサギ骨髄炎モデルを完成させた。4週間後、GFLX含有生体吸収性ポリマー複合化βリン酸三カルシウム多孔体である人工骨チップをウサギの下顎骨左頬側の骨髄炎患部に埋入した。すなわち、ウサギ耳静脈よりネンブタール&reg;注射薬(0.5ml/kg)を投与し、麻酔後、除毛、70%消毒用エタノールで手術野を消毒した。切開は頬骨耳筋の筋繊維の走行に沿って皮膚に約1cmの横切開を加え、ついで、その深部にある咬筋を後方に圧迫するようにして咬筋窩の前方の骨膜に縦切開を入れて鈍的に骨膜を剥離し、骨髄炎患部を露出させた。露出した骨に歯科用切削ラウンドバー(#8)を用いて、GFLX含有PCL複合化βリン酸三カルシウム多孔体である人工骨チップ(直径4mm、厚さ2mm)を埋入できる直径4.75mmの骨腔を形成し、該人工骨チップを埋入した。下顎骨右頬側の骨髄炎患部はそのまま何も処置せずに放置した。
なお、GFLX含有PCL複合化βリン酸三カルシウム多孔体人工骨チップは、分子量10000のPCLを120℃で溶融し、上記に従って作製した。その後、非吸収性のメンブレンCYTOPLASR&reg;OSTEOGENICS
BIOMEDICAL,INC.をGFLX含有PCL含有βTCPの上に載せ、その後4-0VICRYLにて縦切開部を骨膜縫合、3-0ナイロン糸にて横切開創を緊密縫合した。この後、4および12週後に耳静脈よりネンブタール&reg;注射薬(1.5ml/kg)を投与し、麻酔後、ウサギの患部下顎骨を摘出し、ソフテックスを用いて撮影し、ホルマリン固定後、脱灰組織標本を作製してHE染色し、病理学的に観察した。
(Application to osteomyelitis model and results)
An osteomyelitis model was prepared in the rabbit mandible according to the method of Sato-Heimdahl. Osteomyelitis was created on the left and right cheeks of the mandible. That is, Nembutal &reg; injection (0.5 ml / kg) was administered from the rabbit ear vein, and after anesthesia, the surgical field was disinfected with ethanol for hair removal and 70% disinfection. The incision is made by making a lateral incision of about 1 cm along the running of the muscle fibers of the zygomatic ear muscles, and then making a longitudinal incision in the periosteum in front of the masseter fossa so as to compress the masseter muscle in the back. The periosteum was bluntly detached, and the bone surface was exposed. A bone cavity is formed on the exposed bone using a dental cutting round bar (# 8). NMP collagen sponge cross-linking treatment (150 ° C. × 24 H) (Nippon Ham) infiltrated with a bacterial solution with a controlled bacterial count in the bone cavity was embedded. Thereafter, the longitudinal incision was sutured with 4-0 VICRYL, and the transverse incision was tightly sutured with 3-0 nylon thread. In addition, two types of aerobic S.milleri and anaerobic B.fragilis were previously contained in the used bacterial solution.
A rabbit osteomyelitis model was completed in the infected animal laboratory for 4 weeks. Four weeks later, an artificial bone chip that was a GFLX-containing bioabsorbable polymer-conjugated β-tricalcium phosphate porous body was implanted into the affected area of the osteomyelitis on the left cheek side of the rabbit's mandible. That is, Nembutal &reg; injection (0.5 ml / kg) was administered from the rabbit ear vein, and after anesthesia, the surgical field was disinfected with ethanol for hair removal and 70% disinfection. The incision is made by making a lateral incision of about 1 cm along the running of the muscle fibers of the zygomatic ear muscles, and then making a longitudinal incision in the periosteum in front of the masseter fossa so as to compress the masseter muscle in the back. The periosteum was bluntly removed to expose the affected area of osteomyelitis. Using an dental cutting round bar (# 8) to the exposed bone, an artificial bone chip (diameter 4 mm, thickness 2 mm) that is a GFLX-containing PCL composite β-tricalcium phosphate porous body can be embedded with a diameter of 4.75 mm. A bone cavity was formed and the artificial bone chip was implanted. The affected area on the right cheek side of the mandible was left as it was without any treatment.
The GFLX-containing PCL-complexed β-tricalcium phosphate porous artificial bone chip was prepared by melting PCL having a molecular weight of 10,000 at 120 ° C. Then the non-absorbable membrane CYTOPLASR &reg; OSTEOGENICS
BIOMEDICAL, INC. Was placed on GFLX-containing PCL-containing βTCP, and then the longitudinal incision was sutured with 4-0 VICRYL, and the transverse incision was tightly sutured with 3-0 nylon thread. After this, after 4 and 12 weeks, Nembutal &reg; injection (1.5 ml / kg) was administered from the ear vein, and after anesthesia, the affected mandible of the rabbit was removed and photographed using Softex, after fixing with formalin, Decalcified tissue specimens were prepared and stained with HE and observed pathologically.

埋入4週間後、下顎骨右頬側では、骨髄炎が継続しており中心部に腐骨が観察され、腐骨周囲には炎症細胞やリンパ球(HE染色で青〜青紫色を呈する)が多量に確認された(図6)。GLFX含有PCL複合化βリン酸三カルシウム多孔体人工骨チップを埋入した左頬側では、腐骨や炎症細胞やリンパ球は確認されず、骨髄炎の治癒効果が現れていた(図7)。また多孔体の周りに新生骨(HE染色で赤紫を呈する)が観察され、骨伝導性であることが確認された。なお、脱灰標本のためβリン酸三カルシウム多孔体部分は標本作成時に溶解して消失している。以上の結果は、独立に行った2回の動物実験で同じであり、再現性があった。使用したウサギ体重は3kgであり、PCLに含有させたGFLX量は600μgであるので、GFLX200μg/kgで顎骨骨髄炎の治療効果が現れたことになる。一方、GFLXの1回の経口投与量は3.2mg/kg(ヒト、体重60kg)であるので、本発明の薬剤徐放性人工骨は超低作用量で顎骨骨髄炎の治療効果を示したことになる。
12週後の結果では、一部で新生骨がGLFX含有PCL複合化βリン酸三カルシウム多孔体人工骨チップに直接接触していて骨伝導性であること、及び一部吸収されていることが確認された。
Four weeks after implantation, osteomyelitis continued on the right buccal side of the mandible, and osteoclasts were observed in the center, and inflammatory cells and lymphocytes (shown blue to blue-purple with HE staining) around the osteoclasts. Was confirmed in large quantities (FIG. 6). On the left buccal side where the GLFX-containing PCL-complexed β-tricalcium phosphate porous artificial bone chip was embedded, osteoclasts, inflammatory cells, and lymphocytes were not confirmed, and the healing effect of osteomyelitis appeared (FIG. 7). . In addition, new bone (showing reddish purple by HE staining) was observed around the porous body, and it was confirmed that it was osteoconductive. In addition, because of the decalcified specimen, the β-tricalcium phosphate porous body portion dissolved and disappeared at the time of specimen preparation. The above results were the same in two independent animal experiments and were reproducible. Since the rabbit body weight used was 3 kg and the amount of GFLX contained in PCL was 600 μg, the therapeutic effect of jaw osteomyelitis appeared at GFLX 200 μg / kg. On the other hand, since the single oral dose of GFLX is 3.2 mg / kg (human, body weight 60 kg), the sustained-release artificial bone of the present invention showed a therapeutic effect on osteomyelitis of the jaw with a very low action amount. become.
According to the results after 12 weeks, some of the new bones are in direct contact with the GLFX-containing PCL-complexed β-tricalcium phosphate porous artificial bone chip, and are partially resorbed. confirmed.

(骨髄炎モデル動物の検証)
実施例4の骨髄炎モデルで実験に供した埋入4週後の兎の皮膚組織を採取し、0.067M、pH7.0のリン酸緩衝液を加え、ホモジナイズ後、5000rpm、30分間遠心分離してその上清のGFLX濃度を高速液体クロマトグラフィーで測定した。また、実施例4で実験に供した兎の血液を3000rpm、15分間遠心分離し、その上清のGFLX濃度を高速液体クロマトグラフィーで測定した。その結果、皮膚組織のGFLX濃度は0.15μg/g未満の値、血中GFLX濃度は0.03μg/mLであった。これらの値は、経口投与で治療する場合のGFLXの皮膚組織移行濃度(1.2−5μg/g)や血中濃度(0.16−0.8μg/mL)の1/5〜1/30の値にすぎない。すなわちこのことは、本発明のGLFX含有PCL複合化βリン酸三カルシウムから放出されたGFLXは慢性化膿性骨髄炎の患部局所にのみ作用して、患部以外への抗菌薬移行が少ないために安全で、その結果他組織に対する副作用の懸念が少ない、優れた薬剤徐放性人工骨であることを示している。
(Verification of osteomyelitis model animals)
The skin tissue of the sputum 4 weeks after implantation used in the osteomyelitis model of Example 4 was collected, added with 0.067M, pH 7.0 phosphate buffer, homogenized, and centrifuged at 5000 rpm for 30 minutes. The GFLX concentration in the supernatant was measured by high performance liquid chromatography. The sputum blood subjected to the experiment in Example 4 was centrifuged at 3000 rpm for 15 minutes, and the GFLX concentration of the supernatant was measured by high performance liquid chromatography. As a result, the skin tissue GFLX concentration was less than 0.15 μg / g, and the blood GFLX concentration was 0.03 μg / mL. These values are only 1/5 to 1/30 of GFLX skin tissue transfer concentration (1.2-5 μg / g) and blood concentration (0.16-0.8 μg / mL) when treated by oral administration. . That is, this is safe because GFLX released from the GLFX-containing PCL-complexed β-tricalcium phosphate of the present invention acts only on the affected area of chronic suppurative osteomyelitis, and there is little migration of antibacterial drugs to other areas. As a result, it shows that it is an excellent drug sustained-release artificial bone with less concern about side effects on other tissues.

(抗菌薬を含有した生体吸収性ポリマーの作成)
生体吸収性ポリマーとして、分子量が5,000または15,000、乳酸−グリコール酸比(モル比)が50:50または75:25の4種類の乳酸−グリコール酸共重合体(PLGA50−分子量5000、PLGA50−分子量15000、PLGA75−分子量5000、PLGA75−分子量15000)を使用した。また、コントロールとして、実施例1に記載の分子量10,000のPCLを使用した。
アルミブロックヒーター(NISSIN社製、型式ND-M11)を用い、ポリプロピレンチューブを40℃, 80℃, 120℃に、また同様の形体のガラスチューブを用い140℃,160℃に加熱し、その中にこれらのポリマー粉末1gを入れて溶融した。
その後、0.5, 1, 2, 3重量%相当の抗菌薬ガチフロキサシン(GFLX)を添加し、攪拌して生体吸収性ポリマーと混合した。GFLXの分解温度は187℃である。全体が均一になったことを確認し、内径6.35mm、厚さ0.8mmのアルミ製鋳型に流し込んだ。常温で硬化させ、租形性の優劣(円形ディスクになるかどうか)を判定した。
その結果を、表3に示す。
(Creation of bioabsorbable polymers containing antibacterial drugs)
As bioabsorbable polymers, four types of lactic acid-glycolic acid copolymers (PLGA50-molecular weight 5000, PLGA50-molecular weight 15000) having a molecular weight of 5,000 or 15,000 and a lactic acid-glycolic acid ratio (molar ratio) of 50:50 or 75:25 , PLGA75-molecular weight 5000, PLGA75-molecular weight 15000). As a control, PCL having a molecular weight of 10,000 described in Example 1 was used.
Using an aluminum block heater (model ND-M11 manufactured by NISSIN), heat the polypropylene tube to 40 ° C, 80 ° C, 120 ° C, and 140 ° C, 160 ° C using a glass tube of the same shape. 1 g of these polymer powders were added and melted.
Thereafter, 0.5, 1, 2, 3% by weight of antibacterial agent gatifloxacin (GFLX) was added, and the mixture was stirred and mixed with the bioabsorbable polymer. The decomposition temperature of GFLX is 187 ° C. After confirming that the whole was uniform, it was poured into an aluminum mold having an inner diameter of 6.35 mm and a thickness of 0.8 mm. It hardened | cured at normal temperature and the superiority or inferiority of the shape property (whether it became a circular disk) was determined.
The results are shown in Table 3.

Figure 2007222611
120℃で溶融したPLGA50−分子量5000およびPLGA75−分子量5000で、抗菌薬とポリマーは均一化し、流動性が高く、租形成に優れていた。
Figure 2007222611
The PLGA50-molecular weight 5000 and PLGA75-molecular weight 5000 melted at 120 ° C., the antibacterial drug and the polymer were homogenized, the fluidity was high, and the formation was excellent.

(抗菌薬を含有した生体吸収性ポリマーの徐放試験)
上述のPLGA50−分子量5000およびPLGA75−分子量5000を、最適溶融条件(120℃)で溶融し、GFLX含有PLGA50−分子量5000、およびGFLX含有PLGA75−分子量5000のペレット(直径6.35mm,厚さ0.8mm)を作製し、最長56日間の徐放試験を行った結果を図8−図13に示す。なお、GFLXの含有量は、0.5, 1, 2, 3重量%の3条件について検討した。いずれの、PLGAもポリマーよりGFLXの徐放が認められた。
(Sustained release test of bioabsorbable polymers containing antibacterial drugs)
The above-mentioned PLGA50-molecular weight 5000 and PLGA75-molecular weight 5000 were melted under optimum melting conditions (120 ° C.), and GFLX-containing PLGA50-molecular weight 5000 and GFLX-containing PLGA75-molecular weight 5000 pellets (diameter 6.35 mm, thickness 0.8 mm) 8 to 13 show the results of the sustained release test for up to 56 days. The GFLX content was examined under three conditions of 0.5, 1, 2, 3% by weight. In all cases, PLGA showed sustained release of GFLX from the polymer.

(人工骨チップの作成:抗菌薬を含有した生体吸収性ポリマーの多孔質リン酸三カルシウムセラミック気孔中への導入)
実施例1と同様に、直径4mm、厚さ2mmで人工的に作られた直径380μmの立体的な貫通孔を有し、空隙率が58%のβリン酸三カルシムセラミックの気孔中に、差圧0.02MPaにて、GFLX含有PLGA50−分子量5000、GFLX含有PLGA75−分子量5000、GFLX含有PLGA50−分子量15000、GFLX含有PLGA75−分子量15000を導入した。その結果を表4に示す。
(Production of artificial bone chip: introduction of bioabsorbable polymer containing antibacterial agent into porous tricalcium phosphate ceramic pores)
As in Example 1, a three-dimensional through-hole having a diameter of 4 mm and a thickness of 2 mm and having a three-dimensional through-hole having a diameter of 380 μm and a porosity of 58% was obtained. At a pressure of 0.02 MPa, GFLX-containing PLGA50-molecular weight 5000, GFLX-containing PLGA75-molecular weight 5000, GFLX-containing PLGA50-molecular weight 15000, and GFLX-containing PLGA75-molecular weight 15000 were introduced. The results are shown in Table 4.

Figure 2007222611
Figure 2007222611

(骨髄炎モデルへの適用及びその結果)
実施例1と同様に佐藤-Heimdahlの方法に準じてウサギ下顎骨に骨髄炎モデルを作製し、上記のように作製した1%GFLX含有PLGA(乳酸−グリコール酸比50:50、分子量5000)複合化βリン酸三カルシウム多孔体を下顎骨左頬側の骨髄炎患部に埋入した。4週後にウサギの患部下顎骨を摘出し、ソフテックスを用いて撮影し、ホルマリン固定後、脱灰組織標本を作製してHE染色し、病理学的に観察した。
(Application to osteomyelitis model and results)
As in Example 1, an osteomyelitis model was prepared in the rabbit mandible according to the Sato-Heimdahl method, and a 1% GFLX-containing PLGA (lactic acid-glycolic acid ratio 50:50, molecular weight 5000) composite prepared as described above. Β-tricalcium phosphate porous material was implanted in the affected area of the left cheek side of the mandible. Four weeks later, the affected mandible of the rabbit was excised and photographed using Softex, and after fixing with formalin, a decalcified tissue specimen was prepared, stained with HE, and pathologically observed.

埋入4週間後、1%GLFX含有PLGA複合化βリン酸三カルシウム多孔体人工骨チップを埋入した左頬側では、骨組織内に若干の炎症細胞が残存するものの、旺盛な骨新生と人工骨チップに沿った骨伝導が観察され、骨髄炎の治癒効果が現れていた(図14)。
Four weeks after implantation, on the left buccal side where 1% GLFX-containing PLGA-complexed β-tricalcium phosphate porous artificial bone chip was implanted, although some inflammatory cells remained in the bone tissue, Bone conduction along the artificial bone chip was observed, and the healing effect of osteomyelitis appeared (FIG. 14).

(顆粒状人工骨チップの作成:抗菌薬を含有した生体吸収性ポリマーの多孔質リン酸三カルシウムセラミック気孔中への導入)
粒子径1−3mmで、気孔径30−300μmの不規則気孔を有する顆粒状βリン酸三カルシムセラミックの気孔中に、差圧0.02MPaにて、GFLX含有PCL−分子量10000、GFLX含有PLGA50−分子量5000、GFLX含有PLGA75−分子量5000、GFLX含有PLGA50−分子量15000、GFLX含有PLGA75−分子量15000を導入した。ポリマー中のGFLX含有率は1重量%とした。導入後、人工骨顆粒を破壊して断面を観察し、GFLXを含有した生体吸収性ポリマーが気孔中に導入されているかどうかを、実体鏡観察で調べた。その結果を表5、図15、16、17に示す。120℃で、GFLX含有PCLもGFLX含有PLGAも不規則気孔を有する顆粒状βリン酸三カルシムセラミックの気孔中に導入することができた。
(Production of granular artificial bone chip: Introduction of bioabsorbable polymer containing antibacterial agent into porous tricalcium phosphate ceramic pores)
In the pores of granular β-tricalcium phosphate ceramic with irregular pores with a particle size of 1-3mm and pore size of 30-300μm, at a differential pressure of 0.02MPa, GFLX-containing PCL-molecular weight 10000, GFLX-containing PLGA50-molecular weight 5000, GFLX-containing PLGA75-molecular weight 5000, GFLX-containing PLGA50-molecular weight 15000, GFLX-containing PLGA75-molecular weight 15000 were introduced. The GFLX content in the polymer was 1% by weight. After the introduction, the artificial bone granules were broken and the cross section was observed, and it was examined by stereoscopic microscope observation whether the bioabsorbable polymer containing GFLX was introduced into the pores. The results are shown in Table 5 and FIGS. At 120 ° C., both GFLX-containing PCL and GFLX-containing PLGA could be introduced into the pores of a granular β-tricalcium phosphate ceramic with irregular pores.

Figure 2007222611
Figure 2007222611

本発明の人工骨は、リン酸カルシム多孔体表面の骨伝導性能を保ったまま、嫌気性菌に有効に作用する抗菌薬を8週間程度の長期にわたって徐放でき、低抗菌薬作用量で骨髄炎治療に効果を発揮し、患部以外への抗菌薬移行が少ないために安全で、骨髄炎の治癒後にはリン酸カルシム多孔体が骨形成の足場として作用し、最終的には抗菌薬もリン酸カルシム多孔体も抗菌薬担持体も全て代謝されて生体に吸収されてしまうことが可能な抗菌薬徐放性人工骨を提供することが出来、非生体由来物質を使用しているため、免疫による影響や、生体由来の病原性反応などの心配がないので、慢性化膿性顎骨骨髄炎に対する有効な治療を提供することが出来、医療上、有用であり、産業上の利用可能性が高い。
The artificial bone of the present invention is capable of sustained release of an antibacterial agent that effectively acts on anaerobic bacteria over a long period of about 8 weeks, while maintaining the osteoconductivity of the surface of the calcime phosphate porous body, and has a low antibacterial action amount. It is effective because it is effective in treating inflammation, and it is safe because there is little migration of antibacterial agents outside the affected area.After healing of osteomyelitis, the porous body of calcium phosphate acts as a scaffold for bone formation. We can provide an antibacterial sustained release artificial bone that can be metabolized and absorbed by the living body, both of the acid calcim porous body and the antibacterial drug carrier. Therefore, it is possible to provide an effective treatment for chronic suppurative jaw osteomyelitis, which is medically useful and highly industrially applicable.

PEG4,000からのGFLXの放出挙動Release behavior of GFLX from PEG4,000 PEG8,000からのGFLXの放出挙動Release behavior of GFLX from PEG8,000 PCL10,000からのGFLXの放出挙動Release behavior of GFLX from PCL10,000 PCL+PEGからのGFLXの放出挙動Release behavior of GFLX from PCL + PEG CDLからのGFLXの放出挙動Release behavior of GFLX from CDL 下顎骨骨髄炎モデルウサギの左頬側にGLFX含有PCL複合化βリン酸三カルシウム多孔体埋入して4週目の下顎骨右頬側の組織像。HE染色。脱灰標本。Histological image of the right buccal side of the mandible at 4 weeks after GLFX-containing PCL-complexed β-tricalcium phosphate porous body was embedded in the left buccal side of the rabbit model of osteomyelitis of the mandible. HE staining. Decalcified specimen. 下顎骨骨髄炎モデルウサギの左頬側にGLFX含有PCL複合化βリン酸三カルシウム多孔体を埋入して4週目の下顎骨左頬側の組織像。HE染色。脱灰標本のためβリン酸三カルシウム多孔体部分は標本作成時に溶解して消失している。Histological image of the left cheek side of the mandible at 4 weeks after GLFX-containing PCL-complexed β-tricalcium phosphate porous body was implanted in the left cheek side of the rabbit model of osteomyelitis of the mandible. HE staining. Because of the demineralized specimen, the β-tricalcium phosphate porous body portion dissolved and disappeared during specimen preparation. GFLXを0.5、1、2重量%含有したPLGA50−分子量5000のGFLXの放出挙動Release behavior of PLGA50-GFLX with a molecular weight of 5000 containing 0.5, 1, and 2% by weight of GFLX GFLXを3重量%含有したPLGA50−分子量5000のGFLXの放出挙動Release behavior of PLGA50 containing 3 wt% GFLX-molecular weight 5000 GFLX GFLXを0.5重量%含有したPLGA75−分子量5000のGFLXの放出挙動Release behavior of PLGA75-5000 molecular weight GFLX containing 0.5% GFLX GFLXを1重量%含有したPLGA75−分子量5000のGFLXの放出挙動Release behavior of PLGA75-5000 molecular weight GFLX containing 1% GFLX GFLXを2重量%含有したPLGA75−分子量5000のGFLXの放出挙動Release behavior of PLGA75-5000 molecular weight GFLX containing 2% GFLX GFLXを3重量%含有したPLGA75−分子量5000のGFLXの放出挙動Release behavior of PLGA75 containing 3 wt% GFLX-5000 molecular weight GFLX 下顎骨骨髄炎モデルウサギの左頬側にGLFX含有PLGA複合化βリン酸三カルシウム多孔体を埋入して4週目の下顎骨左頬側の組織像。HE染色。脱灰標本のためβリン酸三カルシウム多孔体部分は標本作成時に溶解して消失している。A histological image of the left cheek side of the mandible at 4 weeks after GLFX-containing PLGA-complexed β-tricalcium phosphate porous body was implanted in the left cheek side of a rabbit with osteomyelitis of the mandible. HE staining. Because of the demineralized specimen, the β-tricalcium phosphate porous body portion dissolved and disappeared during specimen preparation. GFLXを1重量%含有したPCL−分子量10000を気孔内に導入した、顆粒状βリン酸三カルシウム多孔体PCL containing 1% by weight of GFLX-granular β-tricalcium phosphate porous material with a molecular weight of 10,000 introduced into the pores GFLXを1重量%含有したPLGA50−分子量5000を気孔内に導入した、顆粒状βリン酸三カルシウム多孔体Granular β-tricalcium phosphate porous material with PLGA50 containing 1% by weight of GFLX and molecular weight 5000 introduced into the pores GFLXを1重量%含有したPLGA50−分子量15000を気孔内に導入した、顆粒状βリン酸三カルシウム多孔体Granular β-tricalcium phosphate porous material with PLGA50 containing 1% by weight of GFLX and molecular weight of 15000 introduced into the pores

Claims (11)

抗菌薬を含有したポリカプロラクトン、ポリエチレングリコール、乳酸−グリコール酸共重合体、カプロラクトン−DL乳酸共重合体から選ばれた1または2種以上の非生体由来の生体吸収性ポリマーを、気孔率50%〜80%の非生体由来の多孔質リン酸三カルシウムセラミックから成る人工骨の気孔中に存在させたことを特徴とする薬剤徐放性人工骨。 One or two or more non-biologically bioabsorbable polymers selected from polycaprolactone, polyethylene glycol, lactic acid-glycolic acid copolymer, caprolactone-DL lactic acid copolymer containing antibacterial agent, and having a porosity of 50% A drug sustained-release artificial bone characterized by being present in the pores of an artificial bone comprising -80% non-biologically derived porous tricalcium phosphate ceramic. 非生体由来の多孔質リン酸三カルシウムセラミックが、人工的に作られた直径70μm〜4mmの立体的な貫通孔を有する請求項1に記載した薬剤徐放性人工骨。 The drug sustained-release artificial bone according to claim 1, wherein the non-biologically-derived porous tricalcium phosphate ceramic has a three-dimensional through-hole having a diameter of 70 µm to 4 mm made artificially. 抗菌薬が、ノルフロキサシン、エノキサシン、オフロキサシン、レボフロキサシン、塩酸シプロフロキサシン、メシル酸パズフロキサシン、塩酸ロメフロキサシン、トシル酸トスフロキサシン、スパルフロキサシン、ガチフロキサシン、プルリフロキサシン、から選ばれた1種または2種以上である請求項1又は請求項2に記載した薬剤徐放性人工骨。 The antibacterial agent is selected from norfloxacin, enoxacin, ofloxacin, levofloxacin, ciprofloxacin hydrochloride, pazufloxacin mesylate, romefloxacin hydrochloride, tosufloxacin tosylate, sparfloxacin, gatifloxacin, pullrifloxacin, or The drug sustained-release artificial bone according to claim 1 or 2, wherein there are two or more kinds. 人工骨の形状が顎骨の形状である請求項1ないし請求項3のいずれかひとつに記載した薬剤徐放性人工骨。   The drug sustained-release artificial bone according to any one of claims 1 to 3, wherein the artificial bone has a jawbone shape. 多孔質リン酸三カルシウムセラミックからなる人工骨の形状が、病巣掻爬後の骨髄炎患部に埋入する0.5mm〜5mmの方体状、円柱状又は球体状のチップであることを特徴とする請求項1ないし請求項3のいずれかひとつに記載した薬剤徐放性人工骨。   The shape of the artificial bone made of porous tricalcium phosphate ceramic is a 0.5 mm to 5 mm rectangular, cylindrical, or spherical chip that is embedded in the affected area of osteomyelitis after curettage. The drug sustained-release artificial bone according to any one of claims 1 to 3. 上記、抗菌薬がガチフロキサシンであり、生体吸収性ポリマー中の含有量が0.1重量%〜5重量%であることを特徴とした請求項1ないし請求項5のいずれかひとつに記載した薬剤徐放性人工骨。   The antibacterial agent is gatifloxacin, and the content in the bioabsorbable polymer is 0.1% by weight to 5% by weight. Release artificial bone. 非生体由来の生体吸収性ポリマーが、分子量8000〜50000のポリカプロラクトン、分子量3000〜30000のポリエチレングリコール、分子量3000〜30000の乳酸−グリコール酸共重合体、分子量30000〜200000のカプロラクトン−DL乳酸共重合体から選ばれる一種であることを特徴とした請求項1ないし6のいずれかひとつに記載した薬剤徐放性人工骨。 Non-biologically derived bioabsorbable polymer is polycaprolactone with molecular weight 8000-50000, polyethylene glycol with molecular weight 3000-30000, lactic acid-glycolic acid copolymer with molecular weight 3000-30000, caprolactone-DL lactic acid copolymer with molecular weight 30000-200000 The drug sustained-release artificial bone according to any one of claims 1 to 6, which is a kind selected from a combination. 非生体由来の生体吸収性ポリマーが、分子量10000のポリカプロラクトンであり、抗菌薬がガチフロキサシンである請求項1又は請求項2に記載した薬剤徐放性人工骨。 The drug sustained-release artificial bone according to claim 1 or 2, wherein the non-biologically derived bioabsorbable polymer is polycaprolactone having a molecular weight of 10,000 and the antibacterial agent is gatifloxacin. 非生体由来の生体吸収性ポリマーが、分子量5000〜15000の乳酸−グリコール酸比が50:50(モル比)の乳酸−グリコール酸共重合体であり、抗菌薬がガチフロキサシンである請求項1又は請求項2に記載した薬剤徐放性人工骨。 The non-biologically derived bioabsorbable polymer is a lactic acid-glycolic acid copolymer having a molecular weight of 5000 to 15000 and a lactic acid-glycolic acid ratio of 50:50 (molar ratio), and the antibacterial agent is gatifloxacin. Alternatively, the drug sustained-release artificial bone according to claim 2. 人工骨の形状が、病巣掻爬後の骨髄炎患部に埋入する0.5mm〜3mmの顆粒状であり、ガチフロキサシンを0.5〜3重量%含有する請求項8又は請求項9に記載した薬剤徐放性人工骨。
The shape of the artificial bone is 0.5 mm to 3 mm granule to be embedded in the affected area of osteomyelitis after curettage, and contains 0.5 to 3% by weight of gatifloxacin. Drug sustained release artificial bone.
ポリカプロラクトン、ポリエチレングリコール、乳酸−グリコール酸共重合体、カプロラクトン−DL乳酸共重合体から選ばれた1または2種以上の生体吸収性ポリマーを抗菌薬の分解温度より30度以上低温で溶融混合し、予め成型した気孔率50%〜80%の多孔質リン酸三カルシウムセラミック気孔中に-0.1MPa以下の差圧で導入することを特徴とした薬剤徐放性人工骨の製造方法。

One or more bioabsorbable polymers selected from polycaprolactone, polyethylene glycol, lactic acid-glycolic acid copolymer, and caprolactone-DL lactic acid copolymer are melt-mixed at a temperature of 30 ° C. or more lower than the decomposition temperature of the antibacterial drug. A method for producing a controlled-release artificial bone, which is introduced into a porous tricalcium phosphate ceramic pore having a porosity of 50% to 80%, which is preformed at a differential pressure of -0.1 MPa or less.

JP2007014572A 2006-01-26 2007-01-25 Artificial bone with sustained-release property of chemical and manufacturing method thereof Pending JP2007222611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014572A JP2007222611A (en) 2006-01-26 2007-01-25 Artificial bone with sustained-release property of chemical and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006017816 2006-01-26
JP2007014572A JP2007222611A (en) 2006-01-26 2007-01-25 Artificial bone with sustained-release property of chemical and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007222611A true JP2007222611A (en) 2007-09-06

Family

ID=38544952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014572A Pending JP2007222611A (en) 2006-01-26 2007-01-25 Artificial bone with sustained-release property of chemical and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007222611A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194303A (en) * 2009-01-27 2010-09-09 Jms Co Ltd Wetting method for porous member, and wetting container and wetting device used therefor
JP2019126667A (en) * 2018-01-26 2019-08-01 国立大学法人 岡山大学 Controlled release device
CN112386746A (en) * 2019-08-31 2021-02-23 深圳市立心科学有限公司 Injectable artificial bone composite material and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161377A (en) * 1986-01-13 1987-07-17 ユニチカ株式会社 Medical tool gradually releasing antibacterial agent
JPH0426953A (en) * 1990-05-22 1992-01-30 Casio Comput Co Ltd Information recorder
JPH078547A (en) * 1993-06-29 1995-01-13 Asahi Optical Co Ltd Sintered type bone filler containing living body absorbable high polymer
JPH0770478A (en) * 1993-09-03 1995-03-14 Toyobo Co Ltd Antibacterial composition and production of antibacterial material using the composition
WO2003035576A1 (en) * 2001-10-21 2003-05-01 National Institute Of Advanced Industrial Science And Technology Porous article of sintered calcium phosphate, process for producing the same and artificial bone and histomorphological scaffold using the same
JP2004173795A (en) * 2002-11-25 2004-06-24 National Institute Of Advanced Industrial & Technology Protein-carrying calcium phosphate, manufacturing method therefor and protein sustained release body, artificial bone and systems engineering scaffold using the same
JP2004261456A (en) * 2003-03-03 2004-09-24 National Institute Of Advanced Industrial & Technology Porous calcium phosphate polymer hydrogel complex with penetration, its manufacturing method and artificial bone or chemical slowly releasing body using it
WO2005032456A2 (en) * 2003-08-06 2005-04-14 Angstrom Medica, Inc Tricalcium phosphates, their composites, implants incorporating them, and methods for their production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161377A (en) * 1986-01-13 1987-07-17 ユニチカ株式会社 Medical tool gradually releasing antibacterial agent
JPH0426953A (en) * 1990-05-22 1992-01-30 Casio Comput Co Ltd Information recorder
JPH078547A (en) * 1993-06-29 1995-01-13 Asahi Optical Co Ltd Sintered type bone filler containing living body absorbable high polymer
JPH0770478A (en) * 1993-09-03 1995-03-14 Toyobo Co Ltd Antibacterial composition and production of antibacterial material using the composition
WO2003035576A1 (en) * 2001-10-21 2003-05-01 National Institute Of Advanced Industrial Science And Technology Porous article of sintered calcium phosphate, process for producing the same and artificial bone and histomorphological scaffold using the same
JP2004173795A (en) * 2002-11-25 2004-06-24 National Institute Of Advanced Industrial & Technology Protein-carrying calcium phosphate, manufacturing method therefor and protein sustained release body, artificial bone and systems engineering scaffold using the same
JP2004261456A (en) * 2003-03-03 2004-09-24 National Institute Of Advanced Industrial & Technology Porous calcium phosphate polymer hydrogel complex with penetration, its manufacturing method and artificial bone or chemical slowly releasing body using it
WO2005032456A2 (en) * 2003-08-06 2005-04-14 Angstrom Medica, Inc Tricalcium phosphates, their composites, implants incorporating them, and methods for their production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194303A (en) * 2009-01-27 2010-09-09 Jms Co Ltd Wetting method for porous member, and wetting container and wetting device used therefor
JP2019126667A (en) * 2018-01-26 2019-08-01 国立大学法人 岡山大学 Controlled release device
CN112386746A (en) * 2019-08-31 2021-02-23 深圳市立心科学有限公司 Injectable artificial bone composite material and preparation method thereof
CN112386746B (en) * 2019-08-31 2022-05-03 深圳市立心科学有限公司 Injectable artificial bone composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
Martins et al. The controlled release of antibiotic by hydroxyapatite: anionic collagen composites
Hamanishi et al. A self‐setting TTCP‐DCPD apatite cement for release of vancomycin
van Houdt et al. Alendronate release from calcium phosphate cement for bone regeneration in osteoporotic conditions
DE69729647T2 (en) Process for the preparation of calcium phosphate of low crystallinity and process for its use
van Houdt et al. The performance of CPC/PLGA and Bio‐Oss® for bone regeneration in healthy and osteoporotic rats
CN101370531A (en) Maxillofacial bone augmentation using rhpdgf-bb and a biocompatible matrix
JPH05286850A (en) Liquid mixture to be used for release-controlled implant, polymer system suitable for implant and therapy using the polymer system
Jindong et al. Evaluation of a novel osteoporotic drug delivery system in vitro: alendronate-loaded calcium phosphate cement
CN104519834B (en) For treating compositions and the method in bone space and open fracture
KR100564366B1 (en) Nonwoven nanofibrous membranes for guided tissue regeneration and their fabrication method
Trbakovic et al. A new synthetic granular calcium phosphate compound induces new bone in a sinus lift rabbit model
Van Houdt et al. Toward accelerated bone regeneration by altering poly (D, L‐lactic‐co‐glycolic) acid porogen content in calcium phosphate cement
Liao et al. Size matters: Effects of PLGA‐microsphere size in injectable CPC/PLGA on bone formation
JP2013501560A (en) Biocompatible material
US10207028B2 (en) Microcomposites for treatment of bone
Eltawila et al. Local treatment of experimental mandibular osteomyelitis with an injectable biomimetic gentamicin hydrogel using a new rabbit model
JP2007222611A (en) Artificial bone with sustained-release property of chemical and manufacturing method thereof
RU2360663C1 (en) Gel for bone tissue repair
Gala-García et al. In vitro and in vivo evaluation of the biocompatibility of a calcium phosphate/poly (lactic-co-glycolic acid) composite
JP4802317B2 (en) Calcium phosphate ceramic bead assembly and method for constructing the same
BR112020000650B1 (en) BIORREABSORBABLE BONE IMPLANT AND PRODUCTION METHOD
CN108379654A (en) A kind of more gradients carry the preparation method of concentration artificial bone scaffold
EP2967799A1 (en) Systems and methods of using chemically bound antibiotics activated by infections
Bakopoulou et al. A comparative histomorphological and micro computed tomography study of the primary stability and the osseointegration of The Sydney Mini Screw; a qualitative pilot animal study in New Zealand rabbits
Shirsath et al. Biodegradable Polymer in Medical Implants and Devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120816