JP2007221583A - Quantum cryptography key distribution unit, and method for detecting wiretapped key information - Google Patents

Quantum cryptography key distribution unit, and method for detecting wiretapped key information Download PDF

Info

Publication number
JP2007221583A
JP2007221583A JP2006041306A JP2006041306A JP2007221583A JP 2007221583 A JP2007221583 A JP 2007221583A JP 2006041306 A JP2006041306 A JP 2006041306A JP 2006041306 A JP2006041306 A JP 2006041306A JP 2007221583 A JP2007221583 A JP 2007221583A
Authority
JP
Japan
Prior art keywords
photon
detection
key information
key
quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006041306A
Other languages
Japanese (ja)
Other versions
JP4724014B2 (en
Inventor
Hiroki Takei
弘樹 武居
Yasushi Inoue
恭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006041306A priority Critical patent/JP4724014B2/en
Publication of JP2007221583A publication Critical patent/JP2007221583A/en
Application granted granted Critical
Publication of JP4724014B2 publication Critical patent/JP4724014B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve detection of complete interception wiretapping to a quantum correlation key distribution system which is robust to branch wiretapping but has been weak in complete interception wiretapping. <P>SOLUTION: A means for monitoring a simultaneous detection count to an incoming photon is newly provided without an interferometer. By the introduction of a new condition based on the above monitored output, the complete interception wiretapping is detected. Specifically, after receiving photons, presence or non-presence of the complete interception wiretapping is decided by mutually comparing photon detection times in photon detectors A0, B0 and at the interferometer output stage, and by calculating A0-B0 simultaneous photon detection counts and a simultaneous output detection count of the optical interferometer, and comparing therebetween. The principle of the above condition is that there is a difference between a pair of the probability of simultaneous detection of photons in the both receivers and the probability of simultaneous detection in the interferometer output, depending on a case of the photons having quantum correlation (genuine key information) or a case of the photons not having quantum correlation (false key information generated by a wiretapper). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、量子相関を有する光子対を用いた量子暗号鍵配送技術に関し、特に、時間位置もつれ光子による量子暗号鍵配送技術に基づく量子暗号鍵配送装置及び鍵情報盗聴検出方法に関する。   The present invention relates to a quantum cryptographic key distribution technique using a photon pair having a quantum correlation, and more particularly to a quantum cryptographic key distribution apparatus and a key information eavesdropping detection method based on a quantum cryptographic key distribution technique using time-entangled photons.

近年、光子1個レベルの光を用いることにより、物理的に安全性が保証された量子暗号通信の研究が進められている。量子暗号は、離れた2つの通信装置の間で暗号通信を行うための秘密鍵を共有するためのものであり、量子鍵配送とも呼ばれている。量子鍵配送にも各種の方式があるが、ここでは、本発明に類似の量子相関秘密鍵配送システムについて説明する(非特許文献1)。   In recent years, research on quantum cryptography communication in which safety is physically guaranteed by using light of one photon level has been advanced. The quantum cipher is for sharing a secret key for performing cipher communication between two distant communication devices, and is also called quantum key distribution. There are various types of quantum key distribution. Here, a quantum correlation secret key distribution system similar to the present invention will be described (Non-Patent Document 1).

図5に、従来の量子相関秘密鍵配送システムの基本構成を示す。このシステムは、量子暗号鍵生成の情報担体である光子対の配送距離の長距離化を目的として、互いに離れた地点にある秘密鍵を生成する1組の受信機(A、B)41、42の中間位置に、量子相関光子対発生器11を配置している。量子相関光子対発生器11は、ポンプ光源12と光非線形媒質13とを有し、光パラメトリック過程を起こす光非線形媒質13にポンプ光源12で発生したポンプ光を入射することにより、量子相関のある一定時間間隔の光パルス列(シグナル光子とアイドラー光子)を、光子対が平均1光子対/パルス未満(例えば、0.1)である光レベルで、受信機A、Bに配送する。この配送の際、差動位相シフト方式が適用される。シグナル光子とアイドラー光子は、エネルギー保存則を満たすために、必ず対で発生する。このような相関を持った光子のペアを量子相関光子対という。   FIG. 5 shows a basic configuration of a conventional quantum correlation secret key distribution system. This system is a set of receivers (A, B) 41, 42 for generating secret keys at points separated from each other for the purpose of extending the delivery distance of photon pairs, which are information carriers for generating quantum encryption keys. The quantum correlation photon pair generator 11 is arranged at an intermediate position. The quantum correlation photon pair generator 11 has a pump light source 12 and an optical nonlinear medium 13, and has a quantum correlation by making the pump light generated by the pump light source 12 incident on the optical nonlinear medium 13 that causes an optical parametric process. A series of optical pulse trains (signal photons and idler photons) at regular time intervals are delivered to receivers A and B at an optical level that averages photon pairs less than 1 photon pair / pulse (eg, 0.1). In this delivery, a differential phase shift method is applied. The signal photon and idler photon are always generated in pairs in order to satisfy the energy conservation law. A pair of photons having such a correlation is called a quantum correlation photon pair.

量子相関光子対発生器11から出力されたシグナル/アイドラーパルス列は、それぞれ伝送路31,32を経て受信機(A,B)41,42に到達する。各受信機(A,B)41,42は、各々同じ構成であり、1パルス遅延干渉計を有し、その干渉計の出力である干渉結果を検出する2つの光子検出器を有する。すなわち、各受信機A,Bは、それぞれ受信パルス列を光分岐器(C1,C3)5で2つに分岐し、光遅延回路(L,L)6により一方に遅延を加えたのち、2×2の光カップラ(C2,C4)7により再び合波する。この合波カップラ(光合波器)7の2つの出力ポートには、それぞれ光子検出器8,9が備えられている。光子検出器8,9の出力は情報処理装置10に供給される。情報処理装置10は2つの受信機の間の情報交換の機能を有し、一般的なCPUやメモリ、通信デバイス等から構成される。 The signal / idler pulse train output from the quantum correlation photon pair generator 11 reaches the receivers (A, B) 41, 42 via the transmission paths 31, 32, respectively. Each of the receivers (A, B) 41 and 42 has the same configuration, includes a one-pulse delay interferometer, and includes two photon detectors that detect an interference result that is an output of the interferometer. That is, each of the receivers A and B branches the received pulse train into two by an optical branching unit (C1, C3) 5 and adds a delay to one by an optical delay circuit (L a , L b ) 6. The signal is multiplexed again by the 2 × 2 optical coupler (C2, C4) 7. Photon detectors 8 and 9 are provided at two output ports of the multiplexing coupler (optical multiplexer) 7, respectively. Outputs of the photon detectors 8 and 9 are supplied to the information processing apparatus 10. The information processing apparatus 10 has a function for exchanging information between two receivers, and includes a general CPU, a memory, a communication device, and the like.

以上の構成において、上記の光分岐・合波回路5,7によって一方に与える遅延時間は、入力されるパルス列の時間間隔に等しいものとする。このように設定すると、合波カップラ7では、前後のパルスが重なり合って合波される。この重なり合いにより両者は干渉し、干渉の結果に応じて2つの光子検出器8,9のいずれか一方で光子が検出される。このとき、受信機A,Bが共に光子を検出した場合には、上記の量子相関光子対の性質により、一方の受信機Aの第1の光子検出器A1が光子検出すれば、必ず他方の受信機Bの第1の光子検出器B1が光子を検出し、また、一方の受信機Aの第2の光子検出器A2が光子検出すれば、必ず他方の受信機Bの第2の光子検出器B2が光子を検出する。ただし、第1の光子検出器A1/B1が光子検出するか、第2の光子検出器A2/B2が光子検出するかは全くランダムである。このように、光子対は量子相関を有するため、同事象に対し、受信機A,Bは同じ干渉結果を得る、すなわち各々が有する光子検出器のうち、同じ設定を有する光子検出器で同時に光子が検出されるという結果を得る。   In the above configuration, the delay time given to one by the optical branching / multiplexing circuits 5 and 7 is assumed to be equal to the time interval of the input pulse train. With this setting, the multiplexing coupler 7 combines the preceding and succeeding pulses in an overlapping manner. Due to this overlap, both interfere with each other, and a photon is detected by one of the two photon detectors 8 and 9 depending on the result of the interference. At this time, when both the receivers A and B detect photons, if the first photon detector A1 of one receiver A detects a photon due to the nature of the above-described quantum correlation photon pair, the other photons must be detected. If the first photon detector B1 of the receiver B detects a photon, and the second photon detector A2 of one receiver A detects a photon, the second photon detection of the other receiver B is always performed. Instrument B2 detects the photons. However, it is quite random whether the first photon detector A1 / B1 detects photons or the second photon detector A2 / B2 detects photons. Thus, since the photon pair has a quantum correlation, the receivers A and B obtain the same interference result for the same event, that is, among the photon detectors that each has, the photon detectors having the same setting simultaneously Result is detected.

また、一般に、信号伝送装置の伝送距離は送信パワーと最小受信感度の差とで決まる。量子相関光子対発生器の光子対発生効率と光子発生手段を内蔵した従前の送信機の光子送信効率とが同じであると想定すると、その量子相関光子対発生器から受信機までの伝送距離は、その従前の送受信機間距離と同じになる。量子相関光子対発生器は受信機A,Bの中間点に置かれているので、受信機A,B間の距離は、従前の送受信機間距離の2倍となり、秘密鍵を共有する2者間の距離を従前よりも長くすることができる。   In general, the transmission distance of the signal transmission device is determined by the difference between the transmission power and the minimum reception sensitivity. Assuming that the photon pair generation efficiency of the quantum correlation photon pair generator is the same as the photon transmission efficiency of the previous transmitter incorporating the photon generation means, the transmission distance from the quantum correlation photon pair generator to the receiver is This is the same as the distance between the previous transmitter and receiver. Since the quantum correlation photon pair generator is located at the intermediate point between the receivers A and B, the distance between the receivers A and B is twice the distance between the previous transmitter and receiver, and the two parties sharing the secret key The distance between them can be made longer than before.

以上の構成を用いて、受信機A,Bは次の手順により秘密鍵を得る。
A)まず、各受信機A,Bは、上記の受信構成により光子を検出する。この際、検出した時刻と検出器を情報処理装置10により記録する。
B)必要な所定個数だけ光子を受信した後、各受信機A,Bは光子を検出した時刻(光子検出時刻)のみを情報処理装置10と一般に使用されている通常伝送路14を介して互いに送受する。
C)そして、受信機A,Bの両者は、同時刻に光子を検出した場合について、予め定めた規則(例えば、各々の受信機の2つの光子検出器のうち、第1の光子検出器A1/B1が光子検出した事象をビット「0」、第2の光子検出器A2/B2が光子検出した事象をビット「1」とするという規則、以降、ビット「0」又は「1」の数値をビット情報と称す。)に従い、鍵を生成する。
Using the above configuration, the receivers A and B obtain a secret key by the following procedure.
A) First, each of the receivers A and B detects a photon by the above reception configuration. At this time, the detected time and the detector are recorded by the information processing apparatus 10.
B) After receiving the required number of photons, each of the receivers A and B communicates only the time when the photons are detected (photon detection time) with each other via the information processing apparatus 10 and the normal transmission path 14 that is generally used. Send and receive.
C) The receivers A and B both detect a photon at the same time, and a predetermined rule (for example, the first photon detector A1 of the two photon detectors of each receiver). / B1 is a photon detected event bit “0”, the second photon detector A2 / B2 photon detected event is a bit “1” rule, the bit “0” or “1” numerical value is A key is generated according to bit information).

量子相関光子対の性質により、上記のように受信機A,B両者が生成したビットは互いに必ず一致する。これにより、2つの受信機A,Bは秘密鍵として同じビット列を得ることができる。   Due to the nature of the quantum-correlated photon pair, the bits generated by both receivers A and B always match each other. Thus, the two receivers A and B can obtain the same bit string as a secret key.

この手順において、受信機A,Bで伝送路14を通じて送受される情報は光子検出時刻のみであって、ビット情報は外部には出されない。したがって、これからビット情報が他人に盗聴されることはない。また、送られているのはパルスあたり平均1光子未満の光なので、盗聴者が信号の一部を分岐してビット情報を得ることはできない。なぜなら、光子が2分割されることはないので、盗聴者が分岐により光子検出すると、その光子は受信機には届かず、2つの受信機が獲得するビット列にはならないからである。   In this procedure, the information transmitted and received by the receivers A and B through the transmission line 14 is only the photon detection time, and the bit information is not output to the outside. Therefore, the bit information will not be eavesdropped by others. Also, since the light being transmitted is an average of less than one photon per pulse, an eavesdropper cannot obtain bit information by branching a part of the signal. This is because, since the photon is not divided into two, if the eavesdropper detects the photon by branching, the photon does not reach the receiver and does not become a bit string acquired by the two receivers.

井上恭「量子相関光子対を用いる差動位相量子鍵配送の提案」第65回応用物理学会学術講演会講演予稿集P1365 3P−ZF−9応用物理学会2004年9月1日発行Satoshi Inoue “Proposal for Differential Phase Quantum Key Distribution Using Quantum Correlated Photon Pairs” Proceedings of the 65th JSAP Scientific Meeting P1365 3P-ZF-9 Japan Society of Applied Physics September 1, 2004

上述したような従来システムは、光伝送路31,32の途中での分岐盗聴に対しては安全であるが、量子相関光子対を完全に遮断する盗聴方法(完全遮断盗聴法)に対しては安全性を確保できないという問題があった。   The conventional system as described above is safe against branch eavesdropping in the middle of the optical transmission lines 31 and 32, but is not compatible with an eavesdropping method (complete blocking eavesdropping method) that completely blocks the quantum correlation photon pair. There was a problem that safety could not be secured.

ここで、完全遮断とは、従来装置の光子対発生器が送信する光子を完全に遮断し、受信機A,Bの直前で盗聴者が差動位相シフト方式に則った新たな光子を発生し(盗聴者は全ての光子の位相を把握済みとする)、発生した光子を受信機A,Bに配送して、受信機A,Bが交換する検出時刻を盗聴することをいう。   Here, complete blocking means that the photons transmitted by the photon pair generator of the conventional device are completely blocked, and an eavesdropper generates new photons conforming to the differential phase shift method immediately before the receivers A and B. (An eavesdropper assumes that the phases of all photons have been grasped), and means that the generated photons are delivered to the receivers A and B and the detection times exchanged by the receivers A and B are wiretapped.

図6を参照して、その完全遮断盗聴法さらに具体的に説明する。図6では、光伝送路31の途中に接続した盗聴者(盗聴器)A 61,光伝送路32の途中に接続した盗聴者(盗聴器)B 62,通常伝送路14の途中に接続した盗聴者(盗聴器)C 63が協力して秘密鍵を得ようとするものと想定している。盗聴者Aは受信機A 41の近傍に位置し、盗聴者Bは受信機B 42の近傍に位置する。まず、盗聴者A,Bは各受信機A,Bに送られてきた量子相関光子対パルス列を遮断する。そして、盗聴者A,Bはコヒーレント光源64,65によりコヒーレントな光パルス列を発生させ、位相変調器66,67により各パルスの位相を0またはπで変調したうえで、各受信機A,Bへ送り込む。このとき、盗聴者A,Bが各光パルスに与える変調位相は同じであるとする。また、各受信機A,Bへは、図7に示すように、量子相関光子対発生器11からの光パルス列と同じ時間間隔である連続nパルスのかたまり(ブロック)を間欠的に送り込むものとする。   The complete blocking wiretapping method will be described more specifically with reference to FIG. In FIG. 6, an eavesdropper (eavesdropper) A 61 connected in the middle of the optical transmission path 31, an eavesdropper (eavesdropper) B 62 connected in the middle of the optical transmission path 32, and an eavesdropping connected in the middle of the normal transmission path 14. It is assumed that the person (wiretap) C 63 cooperates to obtain a secret key. An eavesdropper A is located near the receiver A 41, and an eavesdropper B is located near the receiver B 42. First, eavesdroppers A and B block the quantum correlation photon pair pulse train sent to the receivers A and B, respectively. Then, the eavesdroppers A and B generate coherent optical pulse trains with the coherent light sources 64 and 65, and the phase modulators 66 and 67 modulate the phase of each pulse with 0 or π, and then to the receivers A and B. Send it in. At this time, it is assumed that the modulation phases given to each optical pulse by the eavesdroppers A and B are the same. Further, as shown in FIG. 7, each receiver A, B is intermittently sent a block (block) of continuous n pulses having the same time interval as the optical pulse train from the quantum correlation photon pair generator 11. To do.

各受信機A,Bは、その送り込まれた光(偽信号)を光分岐・合波回路5,7により2分岐し、光遅延回路(光遅延線)6により1パルス分ずらせて干渉させる。このとき、各パルスの位相は上記のように0またはπなので、前後のパルスの位相差も0またはπである。干渉の結果、前後のパルスの位相差が0なら第1の光子検出器A1/B1が、πなら第2の光子検出器A2/B2が、それぞれ光子を検出する。各受信機A,Bは、必要な所定数の光子を受信後、光子検出時刻を知らせ合い、両者A,Bが共に光子を検出した時間スロットについて、第1の光子検出器A1,B1が光子検出した場合はビット「0」、第2の光子検出器A2.B2が光子検出した場合はビット「1」としてビットを生成する。両受信機A,Bは同じ位相変調を受けた光を受信するので、両受信機A,Bが得た両者のビットは必ず一致する。ここで、盗聴者C 63は、受信機A,Bが知らせ合う光子検出時刻を盗聴し、ビットが生成された時間スロットを盗聴者A,Bに知らせる。これにより、盗聴者A,Bはその時間スロットに対応する位相変調データから、受信機A,Bが生成したビットを知ることができる。   Each of the receivers A and B splits the transmitted light (false signal) into two by the optical branching / combining circuits 5 and 7 and causes the optical delay circuit (optical delay line) 6 to cause one pulse to cause interference. At this time, since the phase of each pulse is 0 or π as described above, the phase difference between the preceding and succeeding pulses is also 0 or π. If the phase difference between the preceding and following pulses is 0 as a result of the interference, the first photon detector A1 / B1 detects the photon, and if it is π, the second photon detector A2 / B2 detects the photon. Each receiver A, B informs the photon detection time after receiving the required predetermined number of photons, and the first photon detector A1, B1 uses the photon for the time slot in which both A, B detect the photon. If detected, bit "0", second photon detector A2. When B2 detects a photon, a bit is generated as bit “1”. Since both receivers A and B receive the light subjected to the same phase modulation, the bits obtained by both receivers A and B always match. Here, the eavesdropper C 63 eavesdrops on the photon detection time when the receivers A and B inform each other, and informs the eavesdroppers A and B of the time slot in which the bits are generated. Thereby, the eavesdroppers A and B can know the bits generated by the receivers A and B from the phase modulation data corresponding to the time slot.

本発明は、従来システムにおける上記のような解決すべき課題に鑑みてなされたもので、その目的は、従来の量子相関秘密鍵配送システムを基本にしつつ、上記のような完全遮断盗聴の有無を検知することができる量子暗号鍵配送装置及び鍵情報盗聴検出方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems to be solved in the conventional system, and its purpose is to check whether or not there is a complete interception wiretapping as described above, based on the conventional quantum correlation secret key distribution system. An object of the present invention is to provide a quantum key distribution device and a key information wiretapping detection method that can be detected.

上記目的を達成するため、本発明は、量子相関を有する光子対を一定の間隔で生成する光子対発生器と、光伝送路を介して前記光子対の光子をそれぞれが受信する2つの受信機とを備えた量子暗号鍵配送装置において、前記各受信機は、光子を直接検出する直接光子検出手段と、光を光分岐手段により2分岐し、分岐した一方の経路間を通る光に前記光子対の生成間隔に等しい時間遅延を与えた後に、これら分岐した光を2つの出力端子を有する光合波手段により合波し、該光合波手段の2つの出力端子からの光子をそれぞれの光子検出手段により検出する光干渉検出手段と、入力光を確率的に分岐して前記直接光子検出手段と光干渉検出手段へそれぞれ出力する光分岐手段と、前記光干渉検出手段における光子検出の時刻情報を交換することによって、前記光干渉検出手段で光子を検出した光子検出手段に対応するビット情報を用いて、互いに共通するビット列を鍵情報として生成し、かつ前記直接光子検出手段の検出結果と前記光干渉検出手段の検出結果とを用いて、光子同時検出計数及び干渉計出力同時検出計数を算出し、算出した両者の値をそれぞれの所定値と比較することにより、盗聴の有無を判定する量子暗号鍵生成手段とを具備することを特徴とする。   In order to achieve the above object, the present invention provides a photon pair generator for generating photon pairs having a quantum correlation at regular intervals, and two receivers each receiving the photons of the photon pair via an optical transmission line. Each of the receivers includes a direct photon detection unit that directly detects a photon, and a light splitting unit that splits the light into two by the optical branching unit. After giving a time delay equal to the generation interval of the pair, these branched lights are multiplexed by optical multiplexing means having two output terminals, and photons from the two output terminals of the optical multiplexing means are respectively photon detection means Exchanges the time information of the photon detection in the optical interference detection means with the optical interference detection means for detecting by the optical interference detection means, the optical branching means for stochastically branching the input light and outputting it to the direct photon detection means and the optical interference detection means, respectively. To do By using the bit information corresponding to the photon detection means that has detected the photons by the optical interference detection means, a bit string common to each other is generated as key information, and the detection result of the direct photon detection means and the optical interference detection means Quantum key generation means for determining the presence or absence of eavesdropping by calculating the photon simultaneous detection count and the interferometer output simultaneous detection count using the detection results of the two, and comparing the calculated values with respective predetermined values. It is characterized by comprising.

ここで、前記量子暗号鍵生成手段は、前記光子同時検出計数及び前記干渉計出力同時検出計数がそれぞれの所定値に一致しない場合は、盗聴有りと判定して、生成した前記鍵情報を捨て、あるいは前記鍵情報の生成を中止することを特徴とすることができる。   Here, when the photon simultaneous detection count and the interferometer output simultaneous detection count do not coincide with each predetermined value, the quantum encryption key generating means determines that there is an eavesdropping, and discards the generated key information, Alternatively, the generation of the key information can be stopped.

また、前記量子暗号鍵生成手段は、前記光子同時検出計数と前記干渉計出力同時検出計数とが一致した場合は、盗聴有りと判定して、生成した前記鍵情報を捨て、あるいは前記鍵情報の生成を中止することを特徴とすることができる。   Further, when the photon coincidence detection count and the interferometer output coincidence detection count coincide with each other, the quantum cryptography key generation means determines that there is an eavesdropping and discards the generated key information or the key information The generation may be stopped.

上記目的を達成するため、本発明は、量子相関を有する光子対を一定の間隔で生成する光子対発生器と、光伝送路を介して前記光子対の光子をそれぞれが受信する2つの受信機とを備えた量子暗号鍵配送装置に対する鍵情報盗聴を検出する鍵情報盗聴検出方法において、入力光を確率的に分岐する手順と、分岐された光の光子を直接検出する直接光子検出手順と、分岐された光をさらに分岐し、該分岐した一方の経路間を通る光に前記光子対の生成間隔に等しい時間遅延を与えた後に、これら分岐した光を光合波手段により合波し、該光合波手段の2つの出力端子からの光子をそれぞれ検出する光干渉検出手順と、前記直接光子検出手順の検出結果と前記光干渉検出手順の検出結果とを用いて、光子同時検出計数及び干渉計出力同時検出計数を算出し、算出した両者の値をそれぞれの所定値と比較することにより、前記鍵情報盗聴の有無を検出する手順とを含むことを特徴とする。   In order to achieve the above object, the present invention provides a photon pair generator for generating photon pairs having a quantum correlation at regular intervals, and two receivers each receiving the photons of the photon pair via an optical transmission line. In a key information eavesdropping detection method for detecting key information eavesdropping for a quantum cryptography key distribution device comprising: a procedure for stochastically branching input light; a direct photon detection procedure for directly detecting photons of branched light; The branched light is further branched, and after a time delay equal to the generation interval of the photon pair is given to the light passing between the one of the branched paths, the branched light is multiplexed by the optical multiplexing means, and the optical multiplexing is performed. Photon simultaneous detection count and interferometer output using optical interference detection procedure for detecting photons from two output terminals of wave means, detection result of direct photon detection procedure and detection result of optical interference detection procedure, respectively Simultaneous detection count Calculated by the calculated two values are compared to predetermined values for each, characterized in that it comprises a procedure for detecting the presence or absence of the key information eavesdropping.

ここで、前記鍵情報盗聴を検出する手順は、前記光子同時検出計数及び前記干渉計出力同時検出計数がそれぞれの所定値に一致しない場合は、盗聴有りと判定して、生成した鍵情報を捨て、あるいは鍵情報の生成を中止することを特徴とすることができる。   Here, in the procedure for detecting the key information wiretapping, when the photon simultaneous detection count and the interferometer output simultaneous detection count do not match the predetermined values, it is determined that there is wiretapping and the generated key information is discarded. Alternatively, the generation of key information may be stopped.

また、前記鍵情報盗聴を検出する手順は、前記光子同時検出計数と前記干渉計出力同時検出計数とが一致した場合は、盗聴有りと判定して、生成した鍵情報を捨て、あるいは鍵情報の生成を中止することを特徴とすることができる。   Further, the procedure for detecting the key information eavesdropping determines that there is an eavesdropping when the photon simultaneous detection count and the interferometer output simultaneous detection count match, and discards the generated key information or The generation may be stopped.

上記構成により、本発明によれば、量子相関光子対を用いる量子秘密鍵配送において、完全遮断盗聴の有無を検知する機能を備えることができる。   With the above configuration, according to the present invention, it is possible to provide a function of detecting the presence or absence of complete interception wiretapping in quantum secret key distribution using a quantum correlation photon pair.

以下、図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に、本発明の一実施形態の量子暗号鍵配送システムの構成を示す。基本的には図5の従来システムと同様であるが、各受信機(A,B)141,142において、入力された光子を干渉計の直前に設けた第3の光カップラ(C5,C6)101により確率的に分岐し、第3の光子検出器(A0,B0)102により直接光子検出している点が異なっている。その他の構成要素は図5と同様なので、同一機能の部分には同一符号を付して、その重複説明は省略する。   FIG. 1 shows the configuration of a quantum key distribution system according to an embodiment of the present invention. This is basically the same as the conventional system of FIG. 5, but in each receiver (A, B) 141, 142, a third optical coupler (C5, C6) in which the input photons are provided immediately before the interferometer. The difference is that the branch is made probabilistically by 101 and the photon is directly detected by the third photon detector (A0, B0) 102. Since the other components are the same as those in FIG. 5, the same reference numerals are given to portions having the same functions, and redundant description thereof is omitted.

秘密鍵を生成する手順も図5で説明した従来システムと同様であるが、各受信機A,Bの情報処理装置110において、それぞれ、干渉計出力後の光子検出時刻と検出器を記録するとともに、第3の光子検出器(A0,B0)102での光子検出時刻も記録する。   The procedure for generating the secret key is the same as in the conventional system described with reference to FIG. 5, but the information processing device 110 of each receiver A and B records the photon detection time and detector after the output of the interferometer, respectively. The photon detection time at the third photon detector (A0, B0) 102 is also recorded.

情報処理装置110は、専用装置だけではなく市販のコンピュータも利用可能であり、例えば図2に示すように、プロセッサ(CPU)201、光子検出時刻や検出器等を記録するためのメモリ202、光子検出器8,9,102の出力をデジタル化するアナログ・デジタルコンバータ203、伝送路14を介して他の受信機と情報の交換をするための回線制御部(モデム)204、およびバス205等を含む。ただし、図2の構成は単なる例示であって、情報処理装置110は他の構成も適用可能である。例えば、アナログ・デジタルコンバータ203は光子検出器8,9,102側に含まれる場合もあり得る。プロセッサ201は内臓プログラムに従って鍵生成処理と以下に説明する完全遮断盗聴の検知に必要な各種計数処理と装置全体の制御を行う。   As the information processing apparatus 110, not only a dedicated apparatus but also a commercially available computer can be used. For example, as shown in FIG. 2, a processor (CPU) 201, a memory 202 for recording a photon detection time, a detector, and the like, a photon An analog / digital converter 203 for digitizing the output of the detectors 8, 9, 102, a line control unit (modem) 204 for exchanging information with other receivers via the transmission line 14, a bus 205, etc. Including. However, the configuration in FIG. 2 is merely an example, and other configurations can be applied to the information processing apparatus 110. For example, the analog-digital converter 203 may be included on the photon detector 8, 9, 102 side. The processor 201 performs a key generation process and various count processes necessary for detecting a complete interception eavesdropping described below and control of the entire apparatus in accordance with a built-in program.

そして、各受信機A,Bの情報処理装置110は、必要な所定数の光子を受信後、検出器A0,B0での光子検出計数と、両検出器A0,B0での同時検出計数と、及び検出器A1,B1,A2,B2から得られた干渉計出力での同時検出計数とを比較することにより、図6で示した完全遮断盗聴を検出する。その原理を以下に述べる。   Then, the information processing device 110 of each receiver A, B receives the required predetermined number of photons, and after that, the photon detection count at the detectors A0, B0, the simultaneous detection count at both detectors A0, B0, Then, the complete interception wiretap shown in FIG. 6 is detected by comparing the simultaneous detection count at the interferometer output obtained from the detectors A1, B1, A2 and B2. The principle is described below.

まず、量子相関光子対の同時検出について説明する。量子相関のある光子対は、必ずペアとなって発生する。本発明は、光子対パルス列の光レベルを平均して1パルスあたり1ペア未満、例えば0.1ペア/パルスに設定する。このような光子対パルス列をそれぞれ直接受信すると、10パルスに1回の割合で光子が検出され、残りのパルスでは何も検出されない。この際、量子相関の性質により、一方(例えば、光子検出器A)で光子が検出される時間位置では、他方(例えば、光子検出器B)でも必ず光子が検出される(図3の(A)を参照)。したがって、送信光レベルを平均μペア/パルスとすると、1パルスあたりの光子検出確率はμ、同時検出確率もμ、となる。光子検出器の検出効率を含む伝送透過率がα(<1)の場合には、片方(光子検出器AまたはBの一方)に1光子が届く確率がα、両方(光子検出器AおよびB)に届く確率がαなので、光子検出確率=μα、同時検出確率=μα、となる。 First, simultaneous detection of a quantum correlation photon pair will be described. A photon pair having a quantum correlation is always generated as a pair. In the present invention, the light level of the photon pair pulse train is averaged and set to less than one pair per pulse, for example, 0.1 pair / pulse. When such a photon pair pulse train is directly received, photons are detected at a rate of once every 10 pulses, and nothing is detected in the remaining pulses. At this time, due to the nature of the quantum correlation, at one time (for example, the photon detector A), a photon is necessarily detected by the other (for example, the photon detector B) at the time position where the photon is detected (for example, (A in FIG. 3). )). Therefore, when the transmission light level is an average μ pair / pulse, the photon detection probability per pulse is μ, and the simultaneous detection probability is μ. When the transmission transmittance including the detection efficiency of the photon detector is α (<1), the probability of one photon reaching one (photon detector A or B) is α and both (photon detectors A and B). ) Reaches α 2 , the photon detection probability = μα and the simultaneous detection probability = μα 2 .

一方、光レベルが平均μ光子/パルスの2つの通常パルス光列を、両光子検出器A,Bで、それぞれ独立に受信した場合(図3の(B)を参照)には、1パルスあたりの光子検出確率はμ、あるパルスでたまたま両方ともが光子検出する確率(すなわち同時検出確率)はその単純に掛け合わせて、μとなる。 On the other hand, when two normal pulse light trains having an average μ photon / pulse are received independently by the two photon detectors A and B (see FIG. 3B), per pulse The probability of photon detection is μ, and the probability that both happen to be detected with a certain pulse (that is, the simultaneous detection probability) is simply multiplied to μ 2 .

以上、光子を直接受信した場合を説明した。次に、干渉計を介して光子検出する場合について説明する。   The case where photons are directly received has been described above. Next, a case where photons are detected via an interferometer will be described.

図1(または図5)に示すような干渉計を介して光子検出すると、その同時検出特性は上記の光子を直接受信した場合の同時検出特性と異なる。図4を用いて、干渉計を介して行う同時検出特性について説明する。この説明のため、受信機A 141が、ある時刻t'で光子を検出したと想定する。この光子は、干渉計の長経路と短経路を経由した2つのパルスの干渉の結果として検出される。したがって、光子はこの2パルスのどちらかに存在していたことになる。但し、そのどちらであるかは特定できない。この2パルスは、もともとは時間的に隣り合う2パルスである。これをそれぞれtパルス、tパルスとする。(tは光子対発生器出力時の時間位置の意味で用いている。)すると、量子相関光子対の性質により、受信機B 142へ行くパルス列においても、tパルスかtパルスのいずれかに光子が存在することになる。そのどちらであるかは特定できないが、少なくともそのどちらかには光子が存在する。tパルスとtパルスの両者は全く同等なので、その存在確率は1/2ずつである。受信機B 142はこのパルス列を干渉計(光分岐回路5,遅延回路6および光合波回路7)を介して受信する。干渉計出力では、図4に示すように、tパルス/tパルスは時刻t',t',t'に分散する。したがって、光子はこの3つの時刻t',t',t'のいずれかで検出される。但し、どの時刻で検出されるかは不確定で確率的である。 When photons are detected via an interferometer as shown in FIG. 1 (or FIG. 5), the simultaneous detection characteristics are different from the simultaneous detection characteristics when the above photons are directly received. The simultaneous detection characteristics performed through the interferometer will be described with reference to FIG. For this explanation, it is assumed that receiver A 141 has detected a photon at a certain time t ′ 3 . This photon is detected as a result of the interference of two pulses through the long and short paths of the interferometer. Therefore, the photon was present in either of these two pulses. However, it is not possible to specify which is the case. These two pulses are originally two pulses that are temporally adjacent. This t 2 pulses respectively, and t 3 pulses. (T i is used in the sense of the time position of the photon pair generator output.) Then, by the nature of the quantum correlated photon pairs, in the pulse train to go to the receiver B 142, one of t 2 pulse or t 3 pulses Crab photons exist. It is not possible to specify which one is, but at least one of them has a photon. Since t 2 pulse and t 3 pulse both is exactly the same, the existence probability is one by 1/2. The receiver B 142 receives this pulse train via the interferometer (the optical branching circuit 5, the delay circuit 6, and the optical multiplexing circuit 7). At the interferometer output, as shown in FIG. 4, t 2 pulses / t 3 pulses are dispersed at times t ′ 2 , t ′ 3 , and t ′ 4 . Therefore, the photon is detected at any one of these three times t ′ 2 , t ′ 3 , t ′ 4 . However, it is uncertain and probabilistic at which time is detected.

時刻t'で検出された場合には、受信機Aと同時刻で検出されたことになり、同時検出事象となる。光子がtパルスあるいはtパルスに存在していた確率はそれぞれ1/2、これが干渉計で2分岐されるので、t'での光子検出確率は1/2×1/2=1/4、t'での光子検出確率は1/4+1/4=1/2、t'での光子検出確率は1/4、である。すなわち、同時検出確率は1/2となる。この1/2は、受信機Aが光子を検出した場合にそれが受信機Bと同時検出となる確率なので、受信機Aが光子検出する確率μを考慮すると、同時検出確率=μ/2、さらに伝送透過率αを考慮すると同時検出確率=μα/2、となる。一方、通常のパルス光をそれぞれ受信する場合の同時検出確率は、光子検出事象は互いに独立なので、既述したように、干渉計があっても直接検出する場合と同じくμである。 When it is detected at time t '3, it will be detected by the receiver A the same time, the simultaneous detection event. The probability that a photon was present in the t 2 pulse or t 3 pulse is 1/2, respectively, and this is branched into two by the interferometer, so the photon detection probability at t ′ 2 is 1/2 × 1/2 = 1 / 4, the photon detection probability at t ′ 3 is 1/4 + 1/4 = 1/2, and the photon detection probability at t ′ 4 is 1/4. That is, the simultaneous detection probability is ½. This 1/2 is the probability that when receiver A detects a photon, it will be detected simultaneously with receiver B. Therefore, considering the probability μ that receiver A detects a photon, simultaneous detection probability = μ / 2, further consider the transmission transmittance α and simultaneous detection probability = μα 2/2, and becomes. On the other hand, the simultaneous detection probability in the case of receiving normal pulse light is μ 2 as in the case of direct detection even if an interferometer is present, as described above, since the photon detection events are independent of each other.

同時検出確率に関する以上の特性を利用すると、本発明に係る図1の構成により、図7と図8を用いて従来技術の欄で説明したような完全遮断盗聴の有無を検知することができる。その原理説明のため、システムパラメータを次のように記述する。
μ:量子相関光子対発生器11からの光子対発生レベル(1パルスあたりの平均ペア数)、
N:量子相関光子対発生器11から出力されるパルス数、
α:量子相関光子対発生器11から光子検出器A,Bまでの伝送透過率、
:盗聴者A,Bが送るブロック数、
n:1ブロック内のパルス数、
μ':盗聴者A,Bが送るブロック内の1パルスあたりの平均光子数。
Utilizing the above characteristics relating to the simultaneous detection probability, the configuration of FIG. 1 according to the present invention can detect the presence / absence of complete interception wiretapping as described in the section of the prior art with reference to FIGS. In order to explain the principle, system parameters are described as follows.
μ: Photon pair generation level (average number of pairs per pulse) from the quantum correlation photon pair generator 11
N: number of pulses output from the quantum correlation photon pair generator 11
α: Transmission transmittance from the quantum correlation photon pair generator 11 to the photon detectors A and B,
N b : Number of blocks sent by eavesdroppers A and B,
n: number of pulses in one block,
μ ′: Average number of photons per pulse in the block sent by eavesdroppers A and B.

なお、簡単のため、光カップラ(C5,C6)101の分岐比は1:1として、量子相関光子対発生器11から光子検出器(A1,B1,A2,B2,A0、B0)8,9,102までの伝送透過率は共通的にαとした。   For simplicity, the branching ratio of the optical coupler (C5, C6) 101 is 1: 1, and the quantum correlation photon pair generator 11 to the photon detector (A1, B1, A2, B2, A0, B0) 8, 9 , 102 is commonly α.

盗聴がない正常時には、1パルスあたりの光子検出器A0,B0の光子検出確率はμα、同時検出確率はμα、また干渉計出力での同時検出確率はμα/2、なので、Nパルスでみると、光子検出器A0,B0の光子検出計数=Nμα、光子検出器A0−B0同時検出計数=Nμα、光子検出器A1,B1/A2,B2の干渉計出力同時検出計数=Nμα/2、である。 When eavesdropping is not normal, the photon detection probability of the photon detector A0, B0 per pulse Myuarufa, simultaneous detection probability μα 2/2 in the simultaneous detection probability Myuarufa 2, also the interferometer output, since, in N pulses As seen, the photon detection count of the photon detectors A0 and B0 = Nμα, the photon detector A0-B0 simultaneous detection count = Nμα 2 , and the interferometer output simultaneous detection count of the photon detectors A1, B1 / A2 and B2 = Nμα 2 / 2.

一方、完全遮断盗聴された場合は、通常のパルス光が光子検出器(A0、B0)102にそれぞれ入力されてくるので、1パルスあたりの光子検出器A0,B0の光子検出確率はμ'、同時検出確率はμ'、干渉計出力での同時検出確率もμ'である。なお、ここでは、盗聴者A,Bは各受信機A,Bの直前に居ると想定しているので、このときの伝送透過率は1としている。光子検出器の検出効率を含む受信機内での損失がある場合にはμ'の中に含めればよい。1パルスあたりの確率が上記である光が、nパルス×Nブロック送り込まれるので、全体としては、光子検出器A0.B0の光子検出計数はNnμ'、光子検出器A0−B0同時検出計数はNnμ'、光子検出器A1,B1/A2,B2の干渉計出力同時検出計数はNnμ'、となる。 On the other hand, in the case of complete interception eavesdropping, normal pulse light is input to the photon detector (A0, B0) 102, so that the photon detection probability of the photon detectors A0, B0 per pulse is μ ′, The simultaneous detection probability is μ ′ 2 , and the simultaneous detection probability at the interferometer output is also μ ′ 2 . Here, since it is assumed that the eavesdroppers A and B are immediately before the receivers A and B, the transmission transmittance at this time is set to 1. If there is a loss in the receiver including the detection efficiency of the photon detector, it may be included in μ ′. Since the light having the probability per pulse is n pulses × Nb blocks, the photon detector A0. The photon detection count of B0 is N b nμ ′, the photon detector A0-B0 simultaneous detection count is N b nμ ′ 2 , and the interferometer output simultaneous detection count of photon detectors A1, B1 / A2, B2 is N b nμ ′ 2. .

盗聴者A,Bは、盗聴行為が露見しないように、受信機の動作状態が盗聴の有無によっても変わらないようにしなければならない。それを式で表わすと、光子検出器A0.B0の光子検出計数が不変であるための条件
Nμα=Nnμ'、 (1)
光子検出器A0−B0の同時検出計数が不変であるための条件
Nμα=Nnμ'、 (2)
光子検出器A1,B1/A2,B2の干渉計出力での同時検出計数が不変であるための条件
Nμα/2=Nnμ'、 (3)
の3条件を満たさなければならない。
The eavesdroppers A and B must make sure that the operating state of the receiver does not change depending on the presence or absence of eavesdropping so that eavesdropping is not revealed. This can be expressed in terms of a photon detector A0. Conditions for the photon detection count of B0 to be unchanged Nμα = N b nμ ′, (1)
Conditions for the simultaneous detection count of the photon detectors A0-B0 to be unchanged Nμα 2 = N b nμ ′ 2 (2)
Photon detector A1, B1 / A2, conditions for simultaneous detection count in the interferometer output B2 is invariant Nμα 2/2 = N b nμ '2, (3)
These three conditions must be satisfied.

このように満たすべき式は3つあるのに対し、盗聴者A,Bが操作できるパラメータはNnとμ'の2つである(註:Nとnは常に一体)。したがって、盗聴者が上記の3条件を全てを満たすことはできない。より具体的には、条件(2)と条件(3)は同時には成立し得ないので、盗聴者A,Bが式(1)と式(2)を満たすようにパラメータを設定すると、式(3)が満たされず、式(1)と式(3)を満たすようにすると式(2)が満たされなくなる。このように、式(2)と式(3)を同時に満たすように、偽の鍵情報を生成することは不可能であるため、2つの確率を比較することにより、盗聴の有無を判定できる。 There are three equations to be satisfied in this way, whereas there are two parameters N b n and μ ′ that can be manipulated by the eavesdroppers A and B (註: N b and n are always integrated). Therefore, an eavesdropper cannot satisfy all the above three conditions. More specifically, since the conditions (2) and (3) cannot be satisfied at the same time, if parameters are set so that the eavesdroppers A and B satisfy the expressions (1) and (2), the expression ( If (3) is not satisfied and Expressions (1) and (3) are satisfied, Expression (2) is not satisfied. Thus, since it is impossible to generate false key information so as to satisfy the expressions (2) and (3) at the same time, the presence / absence of eavesdropping can be determined by comparing the two probabilities.

そこで、図1に示す受信機A,Bのそれぞれの情報処理装置110は、必要な所定数の光子を受信後、光子検出器A0.B0、及び干渉計出力段(A1,B1/A2,B2)での光子検出時刻を比較し合い、光子検出器A0−B0同時検出計数、及び光子検出器A1,B1/A2,B2の干渉計出力同時検出計数を算出し、比較する。   Therefore, each of the information processing apparatuses 110 of the receivers A and B shown in FIG. 1 receives the required predetermined number of photons, and then receives the photon detectors A0. The photon detection times at B0 and the interferometer output stage (A1, B1 / A2, B2) are compared, the photon detectors A0-B0 simultaneous detection count, and the interferometers of the photon detectors A1, B1 / A2, B2 Calculate and compare output coincidence detection counts.

すなわち、完全遮断盗聴が行われた場合は、式(1)〜(3)で説明したように、これらの計数のどれかが所定の値(完全遮断盗聴が行われていない場合の値)と一致しなくなるので、その不一致の検知により盗聴行為ありと判断することができる。盗聴行為ありと判断した場合は、その鍵情報を捨て、鍵生成を中止する。
また、別法として、式(2)、(3)から分かるように、完全遮断盗聴が行われない場合においては、光子検出器A0−B0同時検出計数はNμα、光子検出器A1,B1/A2,B2の干渉計出力同時検出計数はNμα/2、となって、両計数値は不一致となるが、完全遮断盗聴が行われた場合においては、光子検出器A0−B0同時検出計数はNnμ'、光子検出器A1,B1/A2,B2の干渉計出力同時検出計数はNnμ'、となり、両計数値は一致するので、光子検出器A0−B0同時検出計数と干渉計出力同時検出計数とが一致したら、盗聴行為ありと判断することもできる。
That is, when complete interception wiretapping is performed, as described in the equations (1) to (3), any of these counts is a predetermined value (a value when complete interception wiretap is not performed). Since they do not match, it is possible to determine that there is an eavesdropping action by detecting the mismatch. If it is determined that there is an eavesdropping action, the key information is discarded and the key generation is stopped.
As another method, as can be seen from the equations (2) and (3), when complete interception is not performed, the photon detector A0-B0 simultaneous detection count is Nμα 2 , and the photon detectors A1, B1 / A2, the interferometer output simultaneous detection count of B2 is Nμα 2/2, becomes, both count value becomes a mismatch in the case of completely blocking eavesdropping has taken place, the photon detector A0-B0 simultaneous detection count N b nμ ′ 2 , and the photon detectors A1, B1 / A2, and B2 have an interferometer output simultaneous detection count of N b nμ ′ 2 , and the two count values coincide with each other, so that the photon detector A0-B0 simultaneous detection count If the interferometer output simultaneous detection count matches, it can be determined that there is an eavesdropping action.

これに対し、従来システムでは、送られてくる光子に対し干渉計無しで同時検出計数をモニターする手段がなかったため、盗聴者が満たすべき条件が2つであり、盗聴者は2つのパラメータ(Nn,μ')を適当に設定することにより、その2条件とも満たすことが可能であった。このため、従来システムでは、分岐盗聴に対しては頑健であるが、完全遮断盗聴に関しては脆弱であった。これを解決するため、本発明では、光子を両受信機A,Bが同時検出する確率(光子同時検出計数)と干渉計出力において同時に検出する確率(干渉計出力同時検出計数)との組が、光子が量子相関を有する場合(真の鍵情報)と光子が量子相関を有しない場合(盗聴者により生成された偽の鍵情報)とにおいて異なることとを作用の原理として、送られてくる光子に対し干渉計無しで同時検出計数をモニターする手段を新たに設け、このモニター出力に基づく新たな条件を持ち込むことにより、上記のように完全遮断盗聴検知を可能としたものである。 On the other hand, in the conventional system, since there is no means for monitoring the simultaneous detection count without using an interferometer for the transmitted photons, there are two conditions that the eavesdropper must satisfy, and the eavesdropper has two parameters (N By appropriately setting b n, μ ′), it was possible to satisfy both of these conditions. For this reason, the conventional system is robust against branch eavesdropping, but is vulnerable to complete blocking eavesdropping. In order to solve this, in the present invention, a set of a probability of simultaneous detection of photons by both receivers A and B (photon simultaneous detection count) and a probability of simultaneous detection at the interferometer output (interferometer output simultaneous detection count) is , Sent when the photon has a quantum correlation (true key information) and when the photon does not have a quantum correlation (false key information generated by an eavesdropper) By newly providing a means for monitoring the simultaneous detection count for the photon without an interferometer, and bringing in a new condition based on this monitor output, the complete interception wiretap detection can be performed as described above.

(他の実施の形態)
上記では、本発明の好適な実施形態を例示して説明したが、本発明の実施形態は上記例示に限定されるものではなく、特許請求の範囲に記載の範囲内であれば、その構成部材等の置換、変更、追加、個数の増減、形状の設計変更等の各種変形は、全て本発明の実施形態に含まれる。
(Other embodiments)
In the above, the preferred embodiment of the present invention has been described by way of example. However, the embodiment of the present invention is not limited to the above-described example, and the constituent members thereof are within the scope of the claims. Various modifications such as replacement, change, addition, increase / decrease in number, change in shape design, and the like are all included in the embodiment of the present invention.

本発明の一実施形態の量子相関鍵配送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the quantum correlation key distribution system of one Embodiment of this invention. 図1の情報処理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the information processing apparatus of FIG. 光子の同時検出を説明する図で、(A)は量子相関光子対パルス列の場合、(B)は通常のパルス列の場合を示す説明図である。It is a figure explaining the simultaneous detection of a photon, (A) is a case where it is a quantum correlation photon pair pulse train, (B) is an explanatory view showing the case of a normal pulse train. 量子相関鍵配送システムの各受信機の干渉計を介して光子検出したときの同時検出事象を示す説明図である。It is explanatory drawing which shows the simultaneous detection event when a photon is detected via the interferometer of each receiver of a quantum correlation key distribution system. 従来の量子相関鍵配送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the conventional quantum correlation key distribution system. 完全遮断盗聴方法を説明するためのブロック図である。It is a block diagram for demonstrating the complete interception wiretapping method. 完全遮断盗聴方法における盗聴者の送信信号光を示す波形図である。It is a wave form diagram which shows the transmission signal light of an eavesdropper in the complete interception wiretapping method.

符号の説明Explanation of symbols

5 光分岐回路C1,C3(光カップラ)
6 光遅延回路La,Lb(光遅延線)
7 光合波回路C2,C4(光カップラ)
8 第1の光子検出器A1,B1
9 第2の光子検出器A2,B2
10 情報処理装置
11 量子相関光子対発生器
12 ポンプ光源
13 光非線形媒質
14 通常伝送路
31,32 光子伝送路
41,141 受信機A
42,142 受信機B
61 盗聴者A
62 盗聴者B
64,65 コヒーレント光源
66,67 位相変調器
101 光分岐回路C5,C6(光カップラ)
102 第3の光子検出器A0,B0
110 情報処理装置
201 プロセッサ
202 メモリ
203 アナログ・デジタルコンバータ(A/Dコンバータ)
204 回線制御部
205 バス
206 端末入出力制御部
207 ディスプレイおよびキーボード
5 Optical branch circuit C1, C3 (Optical coupler)
6 Optical delay circuit La, Lb (optical delay line)
7 Optical multiplexing circuit C2, C4 (Optical coupler)
8 1st photon detector A1, B1
9 Second photon detector A2, B2
DESCRIPTION OF SYMBOLS 10 Information processing apparatus 11 Quantum correlation photon pair generator 12 Pump light source 13 Optical nonlinear medium 14 Normal transmission path 31, 32 Photon transmission path 41, 141 Receiver A
42,142 Receiver B
61 Eavesdropper A
62 Eavesdropper B
64,65 Coherent light source 66,67 Phase modulator 101 Optical branch circuit C5, C6 (optical coupler)
102 Third photon detectors A0, B0
DESCRIPTION OF SYMBOLS 110 Information processing apparatus 201 Processor 202 Memory 203 Analog / digital converter (A / D converter)
204 Line control unit 205 Bus 206 Terminal input / output control unit 207 Display and keyboard

Claims (6)

量子相関を有する光子対を一定の間隔で生成する光子対発生器と、光伝送路を介して前記光子対の光子をそれぞれが受信する2つの受信機とを備えた量子暗号鍵配送装置において、
前記各受信機は、
光子を直接検出する直接光子検出手段と、
光を光分岐手段により2分岐し、分岐した一方の経路間を通る光に前記光子対の生成間隔に等しい時間遅延を与えた後に、これら分岐した光を2つの出力端子を有する光合波手段により合波し、該光合波手段の2つの出力端子からの光子をそれぞれの光子検出手段により検出する光干渉検出手段と、
入力光を確率的に分岐して前記直接光子検出手段と光干渉検出手段へそれぞれ出力する光分岐手段と、
前記光干渉検出手段における光子検出の時刻情報を交換することによって、前記光干渉検出手段で光子を検出した光子検出手段に対応するビット情報を用いて、互いに共通するビット列を鍵情報として生成し、かつ前記直接光子検出手段の検出結果と前記光干渉検出手段の検出結果とを用いて、光子同時検出計数及び干渉計出力同時検出計数を算出し、算出した両者の値をそれぞれの所定値と比較することにより、盗聴の有無を判定する量子暗号鍵生成手段と
を具備することを特徴とする量子暗号鍵配送装置。
In a quantum key distribution device comprising a photon pair generator for generating photon pairs having a quantum correlation at regular intervals, and two receivers each receiving the photons of the photon pair via an optical transmission path,
Each receiver is
Direct photon detection means for directly detecting photons;
The light is branched into two by the optical branching means, and after giving a time delay equal to the generation interval of the photon pair to the light passing between the branched paths, the branched light is split by the optical multiplexing means having two output terminals. Optical interference detection means for multiplexing and detecting photons from two output terminals of the optical multiplexing means by respective photon detection means;
Light branching means for stochastically branching input light and outputting the light directly to the direct photon detection means and the light interference detection means,
By exchanging time information of photon detection in the optical interference detection means, using the bit information corresponding to the photon detection means that detected the photon in the optical interference detection means, a common bit string is generated as key information, And, using the detection result of the direct photon detection means and the detection result of the optical interference detection means, a photon simultaneous detection count and an interferometer output simultaneous detection count are calculated, and the calculated values are compared with respective predetermined values. And a quantum encryption key generating unit for determining whether or not there is an eavesdropping.
前記量子暗号鍵生成手段は、前記光子同時検出計数及び前記干渉計出力同時検出計数がそれぞれの所定値に一致しない場合は、盗聴有りと判定して、生成した前記鍵情報を捨て、あるいは前記鍵情報の生成を中止することを特徴とする請求項1に記載の量子暗号鍵配送装置。   If the photon simultaneous detection count and the interferometer output simultaneous detection count do not match the predetermined values, the quantum encryption key generating means determines that there is an eavesdropping and discards the generated key information, or the key 2. The quantum key distribution apparatus according to claim 1, wherein the generation of information is stopped. 前記量子暗号鍵生成手段は、前記光子同時検出計数と前記干渉計出力同時検出計数とが一致した場合は、盗聴有りと判定して、生成した前記鍵情報を捨て、あるいは前記鍵情報の生成を中止することを特徴とする請求項1に記載の量子暗号鍵配送装置。   When the photon coincidence detection count and the interferometer output coincidence detection count coincide with each other, the quantum cryptography key generation unit determines that there is an eavesdropping and discards the generated key information or generates the key information. The quantum key distribution apparatus according to claim 1, wherein the quantum key distribution apparatus is stopped. 量子相関を有する光子対を一定の間隔で生成する光子対発生器と、光伝送路を介して前記光子対の光子をそれぞれが受信する2つの受信機とを備えた量子暗号鍵配送装置に対する鍵情報盗聴を検出する鍵情報盗聴検出方法において、
入力光を確率的に分岐する手順と、
分岐された光の光子を直接検出する直接光子検出手順と、
分岐された光をさらに分岐し、該分岐した一方の経路間を通る光に前記光子対の生成間隔に等しい時間遅延を与えた後に、これら分岐した光を光合波手段により合波し、該光合波手段の2つの出力端子からの光子をそれぞれ検出する光干渉検出手順と、
前記直接光子検出手順の検出結果と前記光干渉検出手順の検出結果とを用いて、光子同時検出計数及び干渉計出力同時検出計数を算出し、算出した両者の値をそれぞれの所定値と比較することにより、前記鍵情報盗聴の有無を検出する手順と
を含むことを特徴とする鍵情報盗聴検出方法。
A key for a quantum cryptography key distribution device comprising a photon pair generator for generating photon pairs having a quantum correlation at regular intervals, and two receivers each receiving the photons of the photon pair via an optical transmission line In the key information eavesdropping detection method for detecting information eavesdropping,
A procedure for stochastically branching the input light;
A direct photon detection procedure that directly detects the photons of the branched light;
The branched light is further branched, and after a time delay equal to the generation interval of the photon pair is given to the light passing between the one of the branched paths, the branched light is multiplexed by the optical multiplexing means, and the optical multiplexing is performed. A light interference detection procedure for respectively detecting photons from the two output terminals of the wave means;
Using the detection result of the direct photon detection procedure and the detection result of the optical interference detection procedure, a photon simultaneous detection count and an interferometer output simultaneous detection count are calculated, and the calculated values are compared with respective predetermined values. A key information eavesdropping detection method comprising: detecting the presence or absence of the key information eavesdropping.
前記鍵情報盗聴を検出する手順は、前記光子同時検出計数及び前記干渉計出力同時検出計数がそれぞれの所定値に一致しない場合は、盗聴有りと判定して、生成した鍵情報を捨て、あるいは鍵情報の生成を中止することを特徴とする請求項4に記載の鍵情報盗聴検出方法。   The procedure for detecting the key information wiretapping is that if the photon simultaneous detection count and the interferometer output simultaneous detection count do not match the predetermined values, it is determined that there is wiretapping and the generated key information is discarded or the key 5. The key information eavesdropping detection method according to claim 4, wherein the generation of information is stopped. 前記鍵情報盗聴を検出する手順は、前記光子同時検出計数と前記干渉計出力同時検出計数とが一致した場合は、盗聴有りと判定して、生成した鍵情報を捨て、あるいは鍵情報の生成を中止することを特徴とする請求項4に記載の鍵情報盗聴検出方法。
If the photon simultaneous detection count and the interferometer output simultaneous detection count match, the procedure for detecting the key information wiretapping determines that there is wiretapping and discards the generated key information or generates key information. The key information wiretapping detection method according to claim 4, wherein the key information wiretapping detection method is stopped.
JP2006041306A 2006-02-17 2006-02-17 Quantum cryptographic key distribution device and key information wiretapping detection method Expired - Fee Related JP4724014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041306A JP4724014B2 (en) 2006-02-17 2006-02-17 Quantum cryptographic key distribution device and key information wiretapping detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041306A JP4724014B2 (en) 2006-02-17 2006-02-17 Quantum cryptographic key distribution device and key information wiretapping detection method

Publications (2)

Publication Number Publication Date
JP2007221583A true JP2007221583A (en) 2007-08-30
JP4724014B2 JP4724014B2 (en) 2011-07-13

Family

ID=38498319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041306A Expired - Fee Related JP4724014B2 (en) 2006-02-17 2006-02-17 Quantum cryptographic key distribution device and key information wiretapping detection method

Country Status (1)

Country Link
JP (1) JP4724014B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062632A (en) * 2008-09-01 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> Quantum key delivery system
JP2011228942A (en) * 2010-04-20 2011-11-10 Nippon Telegr & Teleph Corp <Ntt> Quantum cryptographic communication system
JP2014103503A (en) * 2012-11-19 2014-06-05 Toshiba Corp Communication device, communication system and program
JP2015226277A (en) * 2014-05-29 2015-12-14 日本電信電話株式会社 Quantum key delivery device
JP2017157998A (en) * 2016-03-01 2017-09-07 沖電気工業株式会社 Quantum key delivery system and time synchronization method
KR20180056205A (en) * 2016-11-18 2018-05-28 한국과학기술연구원 Communication apparatus and communication method for free-space quantum key distribution
CN108234117A (en) * 2016-12-13 2018-06-29 Id量子技术公司 For the device and method of quantum enhancing physical layer safety
CN109274420A (en) * 2018-11-16 2019-01-25 西安电子科技大学 A kind of entangled photon pairs transmission rate estimation method for star underground line link
CN114938247A (en) * 2022-07-26 2022-08-23 国开启科量子技术(北京)有限公司 Pulsed light signal detection method for QKD system and receiving end

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118545A (en) * 2000-10-06 2002-04-19 Matsushita Electric Ind Co Ltd Method for distributing cipher key and its device
JP2004187268A (en) * 2002-12-04 2004-07-02 Nippon Telegr & Teleph Corp <Ntt> Quantum key delivery method and quantum key delivery system
JP2005266334A (en) * 2004-03-18 2005-09-29 Nippon Telegr & Teleph Corp <Ntt> Entangled photon pair generating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118545A (en) * 2000-10-06 2002-04-19 Matsushita Electric Ind Co Ltd Method for distributing cipher key and its device
JP2004187268A (en) * 2002-12-04 2004-07-02 Nippon Telegr & Teleph Corp <Ntt> Quantum key delivery method and quantum key delivery system
JP2005266334A (en) * 2004-03-18 2005-09-29 Nippon Telegr & Teleph Corp <Ntt> Entangled photon pair generating device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062632A (en) * 2008-09-01 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> Quantum key delivery system
JP2011228942A (en) * 2010-04-20 2011-11-10 Nippon Telegr & Teleph Corp <Ntt> Quantum cryptographic communication system
JP2014103503A (en) * 2012-11-19 2014-06-05 Toshiba Corp Communication device, communication system and program
JP2015226277A (en) * 2014-05-29 2015-12-14 日本電信電話株式会社 Quantum key delivery device
JP2017157998A (en) * 2016-03-01 2017-09-07 沖電気工業株式会社 Quantum key delivery system and time synchronization method
KR20180056205A (en) * 2016-11-18 2018-05-28 한국과학기술연구원 Communication apparatus and communication method for free-space quantum key distribution
KR101979328B1 (en) 2016-11-18 2019-05-16 한국과학기술연구원 Communication apparatus and communication method for free-space quantum key distribution
CN108234117A (en) * 2016-12-13 2018-06-29 Id量子技术公司 For the device and method of quantum enhancing physical layer safety
CN108234117B (en) * 2016-12-13 2023-04-07 Id量子技术公司 Free space key distribution device and method for quantum enhanced physical layer security
CN109274420A (en) * 2018-11-16 2019-01-25 西安电子科技大学 A kind of entangled photon pairs transmission rate estimation method for star underground line link
CN109274420B (en) * 2018-11-16 2020-05-05 西安电子科技大学 Method for estimating transmission rate of entangled photon pair for satellite-ground downlink
CN114938247A (en) * 2022-07-26 2022-08-23 国开启科量子技术(北京)有限公司 Pulsed light signal detection method for QKD system and receiving end

Also Published As

Publication number Publication date
JP4724014B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4724014B2 (en) Quantum cryptographic key distribution device and key information wiretapping detection method
US5515438A (en) Quantum key distribution using non-orthogonal macroscopic signals
US8171354B2 (en) Communication system and method for controlling the same
US11411724B2 (en) Continuous variable quantum secret sharing
JP5146681B2 (en) Quantum cryptography transmission system and optical circuit
JP4684663B2 (en) Quantum cryptographic communication system and method
JP4358206B2 (en) Quantum cryptographic communication device and quantum cryptographic communication method
JP2008270873A (en) Quantum key distribution system, and transmission device and receiving device thereof
Qi et al. Experimental passive-state preparation for continuous-variable quantum communications
Inoue Quantum key distribution technologies
CN113645038B (en) Quantum digital signature system and method irrelevant to measuring equipment
JP4746588B2 (en) Quantum cryptographic communication device and quantum cryptographic communication method
JP4608412B2 (en) Quantum secret key distribution system and quantum secret key distribution method
JP2007129562A (en) Quantum secret sharing system and quantum secret key generation method
JP4421975B2 (en) Photodetector and quantum cryptography communication system
JP2005286485A (en) Quantum encryption communication method and quantum encryption communication apparatus
JP4361069B2 (en) Quantum encryption key sharing system and wiretapping detection method
JP6257042B2 (en) Quantum key distribution system and quantum key distribution method
JP4523365B2 (en) Quantum cryptographic communication device
JP4421977B2 (en) Quantum cryptographic communication device
CN113810188B (en) Quantum digital signature system and method based on polarization coding
JP4142637B2 (en) Quantum cryptography communication device and secret key generation method using quantum cryptography communication device
JP5498234B2 (en) Quantum cryptography communication system
JP2022104102A (en) Quantum key delivery system
JP2008085484A (en) Quantum communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees