JP2007220382A - Ground fault interrupter - Google Patents

Ground fault interrupter Download PDF

Info

Publication number
JP2007220382A
JP2007220382A JP2006037352A JP2006037352A JP2007220382A JP 2007220382 A JP2007220382 A JP 2007220382A JP 2006037352 A JP2006037352 A JP 2006037352A JP 2006037352 A JP2006037352 A JP 2006037352A JP 2007220382 A JP2007220382 A JP 2007220382A
Authority
JP
Japan
Prior art keywords
circuit
leakage
test
zero
earth leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006037352A
Other languages
Japanese (ja)
Other versions
JP4715537B2 (en
Inventor
Takahiro Kudo
高裕 工藤
Yasuhiro Takahashi
康弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006037352A priority Critical patent/JP4715537B2/en
Publication of JP2007220382A publication Critical patent/JP2007220382A/en
Application granted granted Critical
Publication of JP4715537B2 publication Critical patent/JP4715537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/334Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means to produce an artificial unbalance for other protection or monitoring reasons or remote control
    • H02H3/335Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means to produce an artificial unbalance for other protection or monitoring reasons or remote control the main function being self testing of the device

Abstract

<P>PROBLEM TO BE SOLVED: To enhance reliability of a testing action by improving a filter circuit of an operational amplifier booster provided on a secondary output side of a zero-phase current transformer for a ground fault interrupter with a leakage test circuit. <P>SOLUTION: The ground fault interrupter comprises a zero-phase current transformer 3 for detecting a leakage current of a polyphase alternating current path 1, a leakage detection circuit 4, a tripping device 5 for opening a contact of an AC electric path by an output signal of the leakage detection circuit, a testing circuit 6 for supplying the zero-phase current tranfsormer 3 with a testing current It for simulating leakage by switching on a testing switch 6a and a power supply circuit 9 for supplying the testing circuit and the amplifying means with electricity. In the ground fault interrupter, an amplifying means 10 using an operation amplifier as an amplifying element, and a leakage sensitivity setting device 11 for selecting a rated sensitivity current of the ground fault interrupter and an amplifying degree setting device 12 for the amplifying means 10 are provided between a secondary side of the zero-phase current transformer and the leakage detection circuit. The secondary output current Is supplied from the zero-phase current transformer 3 to the leakage detection circuit 4 is amplified to an amplifying degree corresponding to setting of the leakage sensitivity setting device 11 by switching on the test switch 6a. Thus, a leakage test can be appropriately conducted without affected by leakage sensitivity setting. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、配電系統に発生する漏電を検出して漏電事故を未然に防ぐ漏電遮断器、特に漏電引外し機能の動作確認を行うテスト回路を備えた漏電遮断器に関する。   The present invention relates to a leakage breaker that detects a leakage occurring in a distribution system and prevents a leakage accident in advance, and more particularly relates to a leakage breaker including a test circuit that confirms the operation of a leakage trip function.

周知のように、漏電遮断器には漏電引外し機能の動作確認を行うテスト回路を備えており(例えば、特許文献1参照)、その従来の構成回路図を図4に示す。   As is well known, the earth leakage breaker is provided with a test circuit for confirming the operation of the earth leakage trip function (see, for example, Patent Document 1), and a conventional configuration circuit diagram thereof is shown in FIG.

図4において、1は3相交流電路、2は交流電路1を開閉する主回路開閉接点、3は交流電路1を一次巻線として交流電路の漏電電流を検出する零相変流器、4は零相変流器3の漏電電流検出巻線(二次巻線)3aの出力電流から交流電路1の漏電発生有無を判別し、漏電発生が検知された際にトリップ信号を出力する漏電検出回路、5は漏電検出回路4の出力信号によって開閉接点2を開極させるトリップコイル(引外し手段)、6は漏電引外し機能の動作チェックを行うテスト回路、7は交流電源、8は交流電路1に接続した負荷、9は交流電路1の相間電圧を整流して漏電検出回路4に給電する電源回路である。   In FIG. 4, 1 is a three-phase AC circuit, 2 is a main circuit switching contact that opens and closes the AC circuit 1, 3 is a zero-phase current transformer that detects the leakage current of the AC circuit using the AC circuit 1 as a primary winding, A leakage detection circuit that determines whether or not leakage has occurred in the AC circuit 1 from the output current of the leakage current detection winding (secondary winding) 3a of the zero-phase current transformer 3, and outputs a trip signal when the leakage is detected. 5 is a trip coil (tripping means) for opening the switching contact 2 by an output signal of the leakage detection circuit 4, 6 is a test circuit for checking the operation of the leakage trip function, 7 is an AC power source, and 8 is an AC circuit 1 Reference numeral 9 denotes a power supply circuit that rectifies the interphase voltage of the AC circuit 1 and supplies power to the leakage detection circuit 4.

ここで、前記テスト回路6は該回路に流すテスト電流の大きさを調整する限流抵抗6aと、押し釦式のテストスイッチ6bからなり、零相変流器3の二次側に巻回した漏電電流検出巻線3aと電磁的に結合されたテスト巻線3bを介して交流電路1の2相間に接続されている。また、漏電検出回路4は3相交流電路1の2相間に接続した電源回路(整流回路)9を介して電源を供給するようにしている。   Here, the test circuit 6 comprises a current limiting resistor 6a for adjusting the magnitude of the test current flowing through the circuit and a push button type test switch 6b, and is wound around the secondary side of the zero-phase current transformer 3. It is connected between the two phases of the AC circuit 1 through a test winding 3b that is electromagnetically coupled to the leakage current detection winding 3a. The leakage detection circuit 4 supplies power via a power circuit (rectifier circuit) 9 connected between the two phases of the three-phase AC circuit 1.

上記の構成で、交流電路1の負荷側等に漏電(地絡事故,漏れ電流)が生じて零相変流器3の一次側電路に不平衡電流が流れると、漏電電流が零相変流器3により検出され、その二次出力が漏電電流検出巻線3aから漏電検出回路4に入力される。そして漏電検出回路4で検出された漏電電流が予め設定された閾値(定格感度電流に対応する閾値)を越えると、漏電検出回路4は出力信号を発生してトリップコイル5に与え、これを基にトリップコイル5が開閉機構を引外して主回路開閉接点2を開極し、交流電路1を遮断して負荷8等を漏電から保護することは周知の通りである。   With the above configuration, if a leakage (ground fault, leakage current) occurs on the load side of the AC circuit 1 and an unbalanced current flows in the primary circuit of the zero-phase current transformer 3, the leakage current becomes a zero-phase current. The secondary output is input to the leakage detection circuit 4 from the leakage current detection winding 3a. When the leakage current detected by the leakage detection circuit 4 exceeds a preset threshold value (threshold value corresponding to the rated sensitivity current), the leakage detection circuit 4 generates an output signal and supplies it to the trip coil 5, based on this. It is well known that the trip coil 5 trips the switching mechanism to open the main circuit switching contact 2 and interrupts the AC circuit 1 to protect the load 8 and the like from leakage.

また、漏電遮断機能の動作テストを行う場合には、主回路開閉接点2がONの状態でテスト回路6の押し釦式テストスイッチ6bをON操作し、交流電路1から限流抵抗6aを介して零相変流器3に巻装したテスト巻線3bに漏電を模擬するテスト電流(模擬漏電電流)Itを供給する。これにより交流電路1に漏電電流が流れた場合と同様に零相変流器3に二次出力が発生して、漏電電流検出巻線3aから漏電検出回路4に出力電流Isを与え、これを基に漏電検出回路4はトリップ信号を出力し、主回路開閉接点2を引外して交流電路1を遮断させる。このテストにより、零相変流器3、漏電検出回路4,およびトリップコイル5を含む引外し機構の機能が正常に動作するか否かをチェックできる。   Further, when performing an operation test of the earth leakage breaker function, the push button type test switch 6b of the test circuit 6 is turned on while the main circuit switching contact 2 is ON, and the AC circuit 1 is connected via the current limiting resistor 6a. A test current (simulated leakage current) It that simulates leakage is supplied to the test winding 3b wound around the zero-phase current transformer 3. As a result, a secondary output is generated in the zero-phase current transformer 3 in the same manner as when a leakage current flows in the AC circuit 1, and an output current Is is supplied from the leakage current detection winding 3a to the leakage detection circuit 4, Based on this, the leakage detection circuit 4 outputs a trip signal, trips the main circuit switching contact 2 and interrupts the AC circuit 1. This test makes it possible to check whether the functions of the tripping mechanism including the zero-phase current transformer 3, the leakage detection circuit 4, and the trip coil 5 operate normally.

一方、上記の漏電遮断器にはさらに高度な保護機能が求められる傾向にあり、国際規格(IEC)では漏電遮断器に欠相保護対応の機能が要求されている。かかる点、図4に示した従来構成の漏電遮断器では、3相交流電路1が定常状態であれば漏電遮断テストが正常に行えるが、テスト時に3相交流電路1のうちのテスト回路6,漏電検出回路4が接続されている相が欠相している場合、あるいは定格感度電流以下の低レベルな逆位相の漏れ電流が生じている場合には漏電テストが正常に行えないといった問題がある。   On the other hand, the above earth leakage breaker tends to require a more advanced protection function, and the international standard (IEC) requires the earth leakage breaker to have a function corresponding to an open phase protection. In this regard, in the leakage breaker having the conventional configuration shown in FIG. 4, if the three-phase AC circuit 1 is in a steady state, the leakage break test can be performed normally. If the phase to which the leakage detection circuit 4 is connected is open, or if a leakage current with a low phase opposite to the rated sensitivity current is generated, the leakage test cannot be performed normally. .

そこで、発明者等はその対策として、テスト回路,漏電検出回路の電源に3相交流電路の全相から給電を受ける電源回路を採用するとともに、さらにテスト回路には商用周波数と異なる周波数のテスト電流を得る発振回路を設け、交流電路に欠相,定格感度電流以下の漏電電流が生じている場合でも漏電テストが適正に行えるようにした漏電遮断器を特願2005−121052号として先に提案しており、次にその回路構成,機能を図5,図6で説明する。   Therefore, the inventors have adopted a power supply circuit that receives power from all phases of the three-phase AC circuit as a power supply for the test circuit and the leakage detection circuit as a countermeasure, and the test circuit has a test current having a frequency different from the commercial frequency. Japanese Patent Application No. 2005-121052 previously proposed an earth leakage circuit breaker that provides an oscillation circuit that achieves the above-mentioned characteristics so that a leakage test can be performed properly even when a leakage current of a phase loss or lower than the rated sensitivity current occurs in the AC circuit. Next, the circuit configuration and function will be described with reference to FIGS.

すなわち、図5,図6に示す回路構成では、電源回路9が交流電路1の全相に接続した3相全波整流回路9a,定電圧電源回路9b,平滑用コンデンサ(コンデンサ)9cからなり、この電源回路9を通じて漏電検出回路4,テスト回路6に給電するようにしている。また、テスト回路6は押し釦式のテストスイッチ6aと発振回路6bを組み合わせ、テスト動作時には発振回路6bにて商用周波数(50Hzあるいは60Hz)と異なる周波数帯域のテスト電流Itを生成し、これを零相変流器3のテスト巻線3bに供給してテストを行うようにしている。   That is, in the circuit configuration shown in FIGS. 5 and 6, the power supply circuit 9 includes a three-phase full-wave rectifier circuit 9a connected to all phases of the AC circuit 1, a constant voltage power supply circuit 9b, and a smoothing capacitor (capacitor) 9c. Power is supplied to the leakage detection circuit 4 and the test circuit 6 through the power supply circuit 9. The test circuit 6 combines a push button type test switch 6a and an oscillation circuit 6b, and generates a test current It in a frequency band different from the commercial frequency (50 Hz or 60 Hz) in the oscillation circuit 6b during a test operation. The test is performed by supplying the test winding 3 b of the phase current transformer 3.

上記構成の電源回路9,テスト回路6を採用することにより、3相交流電路1の1相が欠相した場合、また交流電路1に定格感度電流以下の微小な漏電電流が生じている状態でも、漏電テストを正常に行うことができる。
特開2003−45312号公報(図1)
By adopting the power supply circuit 9 and the test circuit 6 having the above-described configuration, even when one phase of the three-phase AC circuit 1 is lost, or in a state where a minute leakage current less than the rated sensitivity current is generated in the AC circuit 1 The leakage test can be performed normally.
Japanese Patent Laying-Open No. 2003-45312 (FIG. 1)

上記提案になる漏電遮断器(図5,図6)は、図4に示した従来構成の漏電遮断器と比べて漏電テスト動作に対する信頼性が向上するものの、なお実用面では次記のような解決すべき課題が残る。   The proposed earth leakage circuit breaker (FIGS. 5 and 6) improves the reliability of the earth leakage test operation as compared to the conventional earth leakage circuit breaker shown in FIG. Issues to be solved remain.

すなわち、一般の漏電遮断器にはユーザーサイドでの保護目的,配電系統の保護接地抵抗などに応じて定格感度電流を選択設定できるように、零相変流器3の二次出力回路に接続した検出抵抗値を定格感度電流の設定に応じて切り換えるようにした感度設定部を備えている。   That is, a general earth leakage breaker is connected to the secondary output circuit of the zero-phase current transformer 3 so that the rated sensitivity current can be selected and set according to the protection purpose on the user side, the protective earth resistance of the distribution system, etc. A sensitivity setting unit that switches the detection resistance value according to the setting of the rated sensitivity current is provided.

ところで、上記漏電遮断器のテスト動作時には、テスト回路6を通じて零相変流器3の二次側で設定した感度設定(一般に最小感度電流と最大感度電流の間には10倍程度の差がある)に対応した大きさのテスト電流をテスト巻線6bに供給する必要があるが、図5,図6に示した回路構成ではテスト電流Itが電源回路9の供給電力容量によって略一定に制限されており、このために零相変流器3の二次側で設定した漏電検出感度を例えば最低感度に設定した状態で漏電テストを行った場合に、零相変流器3の二次側から漏電検出回路4に供給する出力電流Isが小さすぎて漏電検出回路4で設定した閾値を超えずに漏電テスト機能が正常に動作しないといった問題が起こり得る。   By the way, during the test operation of the earth leakage circuit breaker, the sensitivity setting set on the secondary side of the zero-phase current transformer 3 through the test circuit 6 (generally, there is a difference of about 10 times between the minimum sensitivity current and the maximum sensitivity current). ) Must be supplied to the test winding 6b. However, in the circuit configuration shown in FIGS. 5 and 6, the test current It is limited to a substantially constant value by the power supply capacity of the power supply circuit 9. For this reason, when the leakage detection test is performed with the leakage detection sensitivity set on the secondary side of the zero-phase current transformer 3 set to the lowest sensitivity, for example, from the secondary side of the zero-phase current transformer 3 There is a possibility that the output current Is supplied to the leakage detection circuit 4 is too small and does not exceed the threshold set by the leakage detection circuit 4 so that the leakage test function does not operate normally.

また、前記の電源回路について、従来の回路では外部から侵入するサージなどによる誤動作,回路素子の破壊を防ぐための手段として、その入力側にバリスタなどのサージアブソーバを設けてサージ耐量を高めるようにしているが、例えば1000Vクラスのバリスタを各相の電源線に設けると、その占有スペースが大きくなって漏電遮断器が大形化するほか、部品コストも増加するといった問題がある。   In addition, with regard to the above power supply circuit, a surge absorber such as a varistor is provided on the input side as a means for preventing malfunction due to surges entering from the outside and destruction of circuit elements in the conventional circuit so as to increase surge resistance. However, for example, if a 1000V class varistor is provided in each phase power supply line, the occupied space becomes large, the leakage circuit breaker becomes larger, and there is a problem that the cost of parts also increases.

本発明は上記の点に鑑みなされたものであり、その目的は図5,図6で述べた先記提案の回路構成を基本として、その零相変流器の二次側出力回路,および電源回路を改良することにより、前記課題を解決して漏電テストの信頼性向上、並びに構成部品の小形,低コスト化を図った漏電遮断器を提供することにある。   The present invention has been made in view of the above points. The object of the present invention is based on the previously proposed circuit configuration shown in FIGS. 5 and 6, and the secondary side output circuit of the zero-phase current transformer, and the power source. An object of the present invention is to provide an earth leakage circuit breaker which improves the reliability of the earth leakage test by reducing the circuit and improves the reliability of the earth leakage test, and reduces the size and cost of components.

上記目的を達成するために、本発明によれば、多相交流電路を開閉する開閉接点と、交流電路の漏電電流を検出する零相変流器と、該零相変流器の二次出力から前記交流電路の漏電有無を判定し、漏電が発生した場合に信号を出力する漏電検出回路と、この漏電検出回路の出力信号を受けて前記開閉接点を開極させる引外し手段と、テストスイッチのON操作により零相変流器に巻回したテスト巻線に模擬漏電電流を供給するテスト回路と、交流電路から漏電検出回路,テスト回路へ電力を供給する電源回路を備えた漏電遮断器で、前記電源回路が交流電路の全相を整流して直流に変換する定電圧電源回路であり、かつ該電源回路を電源とするテスト回路には前記模擬漏電電流の周波数を商用周波数と異なる周波数に設定する発振回路を備えたものにおいて、
零相変流器の二次側と漏電検出回路との間に、漏電検出感度を選択設定する漏電感度設定器、および前記電源回路を電源としてテストスイッチのON操作時に零相変流器から漏電検出回路に供給する二次出力電流を前記漏電感度設定器の設定に対応した増幅度で制御する増幅手段を設けるものとし(請求項1)、ここで前記の増幅手段,電源回路は、具体的に次記のような態様で構成するものとする。
(1)前記の増幅手段は、OPアンプを増幅素子として、その増幅度を漏電感度設定器の設定に対応して可変調整する増幅度設定手段を組み合わせた増幅器とする(請求項2)。
(2)また、前記OPアンプに受動フィルタ素子を付加してノイズカット用のアクティブ・フィルタを構成する(請求項3)。
(3)さらに、前記の電源回路に対するサージ耐量の向上させるために、交流電路と電源回路を接続する電源線の全相にサージ減衰用の入力抵抗を接続し(請求項4)、前記入力抵抗と電源回路の平滑用コンデンサとの積である時定数を0.001以上に設定する(請求項5)。
To achieve the above object, according to the present invention, a switching contact that opens and closes a multiphase AC circuit, a zero-phase current transformer that detects a leakage current of the AC circuit, and a secondary output of the zero-phase current transformer A leakage detection circuit for determining whether or not the AC circuit has a leakage, and outputting a signal when a leakage occurs, a tripping means for receiving the output signal of the leakage detection circuit and opening the switching contact, and a test switch A leakage circuit breaker equipped with a test circuit that supplies a simulated leakage current to a test winding wound around a zero-phase current transformer by turning ON the power supply, and a power supply circuit that supplies power to the leakage detection circuit and test circuit from the AC circuit The power supply circuit is a constant voltage power supply circuit that rectifies all phases of the AC circuit and converts it into DC, and the test circuit that uses the power supply circuit as a power supply sets the frequency of the simulated leakage current to a frequency different from the commercial frequency. Equipped with oscillation circuit to set In things,
An earth leakage sensitivity setting device that selectively sets the earth leakage detection sensitivity between the secondary side of the zero phase current transformer and the earth leakage detection circuit, and the earth leakage from the zero phase current transformer when the test switch is turned on using the power supply circuit as a power source. Amplifying means for controlling the secondary output current supplied to the detection circuit with an amplification degree corresponding to the setting of the leakage sensitivity setting device is provided (Claim 1). Here, the amplifying means and the power supply circuit are concretely provided. It shall be comprised in the following aspects.
(1) The amplifying means is an amplifier in which an OP amplifier is used as an amplifying element, and an amplification degree setting means that variably adjusts the amplification degree corresponding to the setting of the leakage sensitivity setting device is combined.
(2) Further, a passive filter element is added to the OP amplifier to constitute an active filter for noise cut.
(3) Further, in order to improve the surge withstand capability for the power circuit, an input resistor for surge attenuation is connected to all phases of the power line connecting the AC circuit and the power circuit. And a time constant that is the product of the smoothing capacitor of the power supply circuit is set to 0.001 or more.

上記の構成によれば、次記の効果を奏する。すなわち、
(1)零相変流器の二次出力側に、漏電検出感度を選択設定する漏電感度設定器、および前記電源回路を電源としてテストスイッチのON操作時に零相変流器から漏電検出回路に供給する二次出力電流を前記漏電感度設定器の設定に対応した増幅度で可変制御する増幅手段を設けたことにより、漏電遮断器の漏電検出感度を例えば最も低い感度を選択して使用している場合でも、漏電テスト時には零相変流器の二次出力が前記の感度設定に対応した増幅度に増幅されて後段の漏電検出回路に入力し、その閾値を超えて漏電検出回路からトリップ信号を出力することができる。これにより、ユーザーサイドで選択した定格感度電流の選択に関係なく、漏電遮断器のテストが正常に行えて信頼性が向上する。
(2)ここで、前記増幅手段はOPアンプを増幅素子とした増幅器とし、かつOPアンプに受動フィルタ素子を付加してアクティブ・フィルタ(ローパスフィルタ)を構成することにより、回路の能動素子に発生したノイズがOPアンプの出力に重畳されるのを抑制し、回路に追加装備した増幅手段が漏電検出機能に及ぼす影響を防止して高い信頼性を確保できる。
(3)また、電源回路のサージ低減対策として、交流電路と電源回路を接続する電源線の全相にサージ減衰用の入力抵抗を接続し、電源回路の整流回路の後段に接続した平滑用のコンデンサとの組み合わせでサージフィルタを構成することにより、小形,安価な構成部品を用いて侵入サージを効果的に減衰させることができ、かつ前記入力抵抗と平滑用コンデンサとの時定数を0.001以上に設定することで実用的にも信頼性の高いサージ耐量を確保できる。
According to said structure, there exists the following effect. That is,
(1) On the secondary output side of the zero-phase current transformer, an earth leakage sensitivity setting device that selectively sets the leakage detection sensitivity, and from the zero-phase current transformer to the leakage detection circuit when the test switch is turned on using the power supply circuit as a power source By providing amplification means that variably controls the secondary output current to be supplied with an amplification degree corresponding to the setting of the leakage sensitivity setting device, the leakage detection sensitivity of the leakage breaker is selected and used, for example, as the lowest sensitivity. Even when there is a leakage test, the secondary output of the zero-phase current transformer is amplified to an amplification level corresponding to the sensitivity setting and is input to the subsequent leakage detection circuit. Can be output. Thereby, regardless of the selection of the rated sensitivity current selected on the user side, the earth leakage circuit breaker can be tested normally and the reliability is improved.
(2) Here, the amplification means is an amplifier having an OP amplifier as an amplification element, and an active filter (low-pass filter) is formed by adding a passive filter element to the OP amplifier, thereby generating an active element in the circuit. This suppresses the superimposed noise from being superimposed on the output of the OP amplifier, prevents the influence of the amplification means additionally provided in the circuit on the leakage detection function, and ensures high reliability.
(3) Also, as a countermeasure for reducing surges in the power supply circuit, connect an input resistor for surge attenuation to all phases of the power supply line connecting the AC circuit and the power supply circuit, and connect it to the subsequent stage of the rectifier circuit of the power supply circuit. By constructing a surge filter in combination with a capacitor, an ingress surge can be effectively attenuated using small and inexpensive components, and the time constant between the input resistor and the smoothing capacitor is 0.001. By setting as described above, a surge resistance with high reliability can be secured practically.

以下、本発明の実施の形態を図示の実施例に基づいて説明する。なお、実施例の図中で図4,図5に対応する部材には同じ符号を付してその説明は省略する。   Hereinafter, embodiments of the present invention will be described based on the illustrated examples. In the drawing of the embodiment, members corresponding to those in FIG. 4 and FIG.

まず、本発明の第1の実施例に係わる漏電遮断器の回路を図1,図2に示す。なお、図1は漏電遮断器の主要回路図、図2は図1における零相変流器の二次出力側に設けた増幅手段の回路図である。   First, FIG. 1 and FIG. 2 show a circuit of an earth leakage circuit breaker according to the first embodiment of the present invention. 1 is a main circuit diagram of the earth leakage circuit breaker, and FIG. 2 is a circuit diagram of the amplifying means provided on the secondary output side of the zero-phase current transformer in FIG.

すなわち、図示実施例の回路構成では零相変流器3の二次側出力回路にOPアンプを増幅素子とした増幅手段10,感度設定器11,増幅度設定器12を新たに追加装備し、漏電テストを行う際には増幅手段10の増幅度(ゲイン)を感度設定器11(漏電遮断器の定格感度電流を選択設定する)で選択した感度設定に対応する増幅度に可変調整した上で、テストスイッチ6aのON操作時に零相変流器3の漏電検出巻線3aより出力する出力電流Isを後記のOPアンプを経て後段の漏電検出回路4に供給するようにしている。   That is, in the circuit configuration of the illustrated embodiment, the secondary side output circuit of the zero-phase current transformer 3 is newly equipped with an amplifying means 10, an sensitivity setting unit 11, and an amplification degree setting unit 12 using an OP amplifier as an amplification element, When performing the leakage test, the amplification degree (gain) of the amplification means 10 is variably adjusted to the amplification degree corresponding to the sensitivity setting selected by the sensitivity setting device 11 (selecting and setting the rated sensitivity current of the leakage breaker). The output current Is output from the leakage detection winding 3a of the zero-phase current transformer 3 when the test switch 6a is turned on is supplied to the subsequent leakage detection circuit 4 via an OP amplifier described later.

ここで、前記の増幅手段10は、OPアンプ10aを増幅素子とし、これに抵抗R1〜R6,およびコンデンサC1を外付けしてアクティブ・フィルタ(ローパスフィルタ)を組んだ非反転増幅器にアナログスイッチ10bを組み合わせ、テスト時に後記の増幅設定器から出力する制御信号に対応して切換動作するアナログスイッチ10bが入力抵抗R2〜R5を選択し、これを基に増幅度を決めるようにしている。また、テスト電流の周波数よりも高周波帯域のノイズがOPアンプ10aの出力に重畳されるのを防ぐために、OPアンプ10aの帰還回路に接続したコンデンサC1,抵抗R1のパラメータを適宜に設定するものとする。   Here, the amplifying means 10 includes an analog switch 10b as a non-inverting amplifier in which an operational amplifier (low-pass filter) is formed by externally connecting resistors R1 to R6 and a capacitor C1 with the OP amplifier 10a as an amplifying element. The analog switch 10b that performs switching operation in response to a control signal output from an amplification setter described later at the time of testing selects the input resistors R2 to R5, and determines the amplification degree based on this. In addition, in order to prevent noise in a higher frequency band than the frequency of the test current from being superimposed on the output of the OP amplifier 10a, parameters of the capacitor C1 and the resistor R1 connected to the feedback circuit of the OP amplifier 10a are appropriately set. To do.

一方、感度設定器11は切換スイッチ11aの各接点に抵抗値の異なる抵抗11bを接続し、切換スイッチ11aで選択した抵抗11bを零相変流器3の二次出力側に接続した検出抵抗13と組み合わせて漏電遮断器の漏電検出感度を切り換える。また、増幅設定器12は切換スイッチ12aに抵抗R7〜R9,コンデンサC2〜C4を組み合わせ、その出力信号を前記アナログスイッチ10bの制御信号ポートに入力するようにしたもので、その切換スイッチ12aを感度設定器11の切換スイッチ11aと機械的に連繋して2回路4接点スイッチを構成している。   On the other hand, the sensitivity setting device 11 connects a resistor 11b having a different resistance value to each contact of the changeover switch 11a, and a detection resistor 13 in which the resistor 11b selected by the changeover switch 11a is connected to the secondary output side of the zero-phase current transformer 3. In combination with, the leakage detection sensitivity of the leakage breaker is switched. The amplification setter 12 combines resistors R7 to R9 and capacitors C2 to C4 with the changeover switch 12a and inputs the output signal to the control signal port of the analog switch 10b. A two-circuit four-contact switch is configured mechanically connected to the change-over switch 11a of the setting device 11.

また、増幅手段10のアナログスイッチ10b,増幅度設定器12とテスト回路6に配したテストスイッチ6aの出力端との間を配線で結び、テストスイッチ6aのON操作時にアナログスイッチ10bをアクティブ状態にするとともに、増幅度設定器12を電源に接続するようにしている。   In addition, the analog switch 10b and the amplification degree setting unit 12 of the amplifying means 10 and the output terminal of the test switch 6a disposed in the test circuit 6 are connected by wiring so that the analog switch 10b is activated when the test switch 6a is turned on. In addition, the amplification degree setting device 12 is connected to a power source.

一方、図示実施例の電源回路9(図1参照)では、サージ耐量を高める手段として交流電路1の各相に入力抵抗14を接続し、この入力抵抗14と電源回路9の平滑用コンデンサ9cとで電源ラインのサージフィルタを構成している。また、このサージフィルタで十分なサージ減衰効果を確保するには、入力抵抗14に数十KΩの抵抗を使用し、該入力抵抗14とコンデンサ9cとの時定数が0.001以上となるように設定するのがよい。   On the other hand, in the power supply circuit 9 (see FIG. 1) of the illustrated embodiment, an input resistor 14 is connected to each phase of the AC circuit 1 as means for increasing the surge resistance, and the input resistor 14 and the smoothing capacitor 9c of the power supply circuit 9 are connected. Constitutes a surge filter for the power line. Further, in order to secure a sufficient surge attenuation effect with this surge filter, a resistance of several tens of KΩ is used for the input resistor 14 so that the time constant between the input resistor 14 and the capacitor 9c is 0.001 or more. It is good to set.

次に、前記の回路構成による漏電テスト時の基本動作について説明する。
(1)テストスイッチOFF時:
この状態では、発振回路6bは停止しており、増幅手段10のアナログスイッチ10bは非アクティブでその各接点がOFF,増幅度設定器12は電源OFFであり、OPアンプ10aはバッフアとして機能している。
(2)テストスイッチON時:
テストスイッチ6aをON操作すると、発振回路6bを介して零相変流器3のテスト巻線3bに商用周波数と異なる周波数のテスト電流Itを供給するとともに、増幅手段10のアナログスイッチ10bがアクティブ状態,増幅度設定器12の電源がONとなる。また、増幅度設定器12の切換スイッチ12aは感度設定器11の切換スイッチ11aに連係しており、感度設定器11での感度設定に対応して増幅度設定器12から出力する制御信号が増幅手段10のアナログスイッチ10bの制御信号ポートに入力するとともに、この信号に応じてアナログスイッチ10bの各接点がON,OFFし、このON,OFFパターンに対応してOPアンプ10aの入力抵抗R2〜R5が選択される。なお、抵抗R7〜R9でプルアップされたアナログスイッチ10bの制御信号ポートは、選択されたポートがLレベル、それ以外はHレベルとなる。これによりOPアンプは、アナログスイッチ10bの接点ON,OFFパターンに対応してR2〜R5の中から選択された抵抗(Rxとする)にR6を加えた等価抵抗と抵抗R1(帰還抵抗)との比に応じて増幅度A(A=1+R1/(Rx+R6))が可変調整されることになる。
Next, the basic operation at the time of a leakage test with the above circuit configuration will be described.
(1) When test switch is OFF:
In this state, the oscillation circuit 6b is stopped, the analog switch 10b of the amplification means 10 is inactive, each contact thereof is OFF, the amplification degree setting device 12 is OFF, and the OP amplifier 10a functions as a buffer. Yes.
(2) When test switch is ON:
When the test switch 6a is turned ON, a test current It having a frequency different from the commercial frequency is supplied to the test winding 3b of the zero-phase current transformer 3 through the oscillation circuit 6b, and the analog switch 10b of the amplification means 10 is in an active state. , The amplification degree setting device 12 is turned on. The changeover switch 12a of the amplification degree setting device 12 is linked to the changeover switch 11a of the sensitivity setting device 11, and the control signal output from the amplification degree setting device 12 is amplified in response to the sensitivity setting in the sensitivity setting device 11. The signal is inputted to the control signal port of the analog switch 10b of the means 10, and each contact of the analog switch 10b is turned ON / OFF according to this signal, and the input resistances R2 to R5 of the OP amplifier 10a corresponding to this ON / OFF pattern. Is selected. As for the control signal port of the analog switch 10b pulled up by the resistors R7 to R9, the selected port is at the L level and the other ports are at the H level. As a result, the OP amplifier has an equivalent resistance obtained by adding R6 to a resistor (Rx) selected from R2 to R5 corresponding to the contact ON / OFF pattern of the analog switch 10b and a resistor R1 (feedback resistor). The amplification degree A (A = 1 + R1 / (Rx + R6)) is variably adjusted according to the ratio.

つまり、漏電テスト時には、テスト電流Itによる零相変流器3の二次出力が、感度設定器11での感度設定に応じた増幅度に増幅されて後段の漏電検出回路4に入力されることになる。したがって、漏電遮断器の漏電検出感度を例えば最も低い感度を選択して使用している場合でも、テスト時には漏電検出回路4に入力する零相変流器3の二次出力電流Isが漏電検出回路であらかじめ設定した閾値を超える値になるよう増幅されるので、引外し装置(図4のトリップコイル5)にトリップ信号を出力して適正にテストを行うことができる。また、増幅手段のOPアンプにアクティブ・フィルタの機能を持たせたことで、回路中の能動素子に生じたノイズがOPアンプの出力に重畳するのを防止して高い漏電検出特性を維持できる。   That is, at the time of the leakage test, the secondary output of the zero-phase current transformer 3 by the test current It is amplified to an amplification degree corresponding to the sensitivity setting in the sensitivity setting unit 11 and input to the subsequent leakage detection circuit 4. become. Therefore, even when the leakage detection sensitivity of the leakage breaker is selected by using the lowest sensitivity, for example, the secondary output current Is of the zero-phase current transformer 3 input to the leakage detection circuit 4 during the test is the leakage detection circuit. Therefore, the trip signal is output to the tripping device (trip coil 5 in FIG. 4), and the test can be properly performed. Further, by providing the operational amplifier function to the operational amplifier of the amplification means, it is possible to prevent noise generated in the active element in the circuit from being superimposed on the output of the operational amplifier and maintain high leakage detection characteristics.

さらに、漏電遮断器に前記の電源回路9(図1参照)を組み合わせることで、3相交流電路1に欠相、低レベルの漏れ電流が生じている状態で行うテスト動作の信頼性が向上し、さらに高いサージ耐量も確保できる。   Furthermore, by combining the power supply circuit 9 (see FIG. 1) with the earth leakage breaker, the reliability of the test operation performed in a state where a three-phase AC circuit 1 is open and low-level leakage current is generated is improved. Furthermore, higher surge resistance can be secured.

次に、先記した実施例1と回路構成が異なる第2の実施例を図3で説明する。   Next, a second embodiment having a circuit configuration different from that of the first embodiment will be described with reference to FIG.

すなわち、この実施例では増幅手段10が、OPアンプ10aを反転増幅器として使用し、これに抵抗R1〜R3およびコンデンサCを外付けしてノイズをカットするアクティブ・フィルタ(多重帰還型ローパスフィルタ)を構成し、さらに反転端子側には前記抵抗R1と並列に増幅度調整用の抵抗R4〜R6,および感度設定器11での感度設定に対応して抵抗R4〜R6のいずれかを選択するアナログスイッチ10bを組み合わせた構成になる。   That is, in this embodiment, the amplifying means 10 uses an operational amplifier (multiple feedback type low-pass filter) that uses the OP amplifier 10a as an inverting amplifier and externally attaches resistors R1 to R3 and a capacitor C to cut noise. Further, on the inverting terminal side, an analog switch for selecting any of the resistors R4 to R6 for adjusting the amplification degree and the resistors R4 to R6 corresponding to the sensitivity setting in the sensitivity setting unit 11 in parallel with the resistor R1. 10b is combined.

次に、前記の回路構成による漏電テスト時の動作について説明する。
(1)テストスイッチOFF時:
この状態では、発振回路6bは停止しており、増幅手段10のアナログスイッチ10bは非アクティブで、入力抵抗R4〜R6が回路に接続されてなく、増幅器の増幅度(電圧利得)AはA=R2/R1である。
(2)テストスイッチON時:
テストスイッチ6aをON操作すると、発振回路6bを介して零相変流器3のテスト巻線3bにテスト電流Itを供給するとともに、増幅手段10のアナログスイッチ10bがアクティブとなり、同時に漏電感度設定器11での感度設定に対応して入力抵抗R4〜R6から選択された抵抗が抵抗R1と並列に接続される。これにより、選択された抵抗をRxとして増幅器(OPアンプ)の増幅度A(フィルタ回路の通過ゲイン)はA=R2×(R1+Rx)/R1×Rxとなる。ここで、前記抵抗R4〜R6を漏電感度の設定に対応して適宜に決めておくことにより、漏電遮断器の漏電検出感度を例えば最も低い感度を選択している使用状態でも、テスト時に漏電検出回路4に入力する零相変流器3の二次出力電流Isが漏電検出回路であらかじめ設定した閾値を超える値に増幅され、これにより引外し装置(図4のトリップコイル5)にトリップ信号を出力して適正にテストを行うことができる。また、OPアンプの増幅回路でアクティブ・ローパスフィルタの機能を持たせたことにより、実施例1と同様に増幅手段10の能動素子に生じたノイズ(商用周波数よりも高域)がOPアンプ10aの出力に重畳して後段の漏電検出回路4に入力するのを防止できる。
Next, the operation at the time of a leakage test with the above circuit configuration will be described.
(1) When test switch is OFF:
In this state, the oscillation circuit 6b is stopped, the analog switch 10b of the amplification means 10 is inactive, the input resistors R4 to R6 are not connected to the circuit, and the amplification degree (voltage gain) A of the amplifier is A = R2 / R1.
(2) When test switch is ON:
When the test switch 6a is turned on, the test current It is supplied to the test winding 3b of the zero-phase current transformer 3 via the oscillation circuit 6b, and the analog switch 10b of the amplifying means 10 becomes active, and at the same time, the leakage sensitivity setting device In response to the sensitivity setting at 11, a resistor selected from the input resistors R4 to R6 is connected in parallel with the resistor R1. As a result, the amplification factor A (pass gain of the filter circuit) of the amplifier (OP amplifier) is A = R2 × (R1 + Rx) / R1 × Rx, where Rx is the selected resistance. Here, by appropriately determining the resistances R4 to R6 in accordance with the setting of the leakage sensitivity, the leakage detection sensitivity of the leakage breaker is detected during the test even in the usage state where the lowest sensitivity is selected, for example. The secondary output current Is of the zero-phase current transformer 3 that is input to the circuit 4 is amplified to a value that exceeds a preset threshold value by the leakage detection circuit, and thereby a trip signal is sent to the trip device (trip coil 5 in FIG. 4). You can output and test properly. Further, by providing the function of the active low-pass filter in the amplifier circuit of the OP amplifier, the noise (higher frequency than the commercial frequency) generated in the active element of the amplifier means 10 is similar to that of the first embodiment in the OP amplifier 10a. It can be prevented from being superimposed on the output and being input to the subsequent leakage detection circuit 4.

本発明の実施例1に係わる漏電遮断器の主要部の構成回路図FIG. 2 is a configuration circuit diagram of a main part of an earth leakage breaker according to Embodiment 1 of the present invention. 図1における増幅手段および感度設定器,増幅度設定器の詳細な回路図Detailed circuit diagram of the amplification means, sensitivity setting device, and amplification setting device in FIG. 本発明の実施例2に係わる漏電遮断器の増幅手段および感度設定器,増幅度設定器の詳細な回路図Detailed circuit diagram of the amplifying means, sensitivity setting device, and amplification setting device of the earth leakage circuit breaker according to the second embodiment of the present invention 従来における漏電遮断器のブロック回路図Block circuit diagram of a conventional earth leakage breaker 本発明の先行出願に係わる漏電遮断器のブロック回路図Block circuit diagram of an earth leakage breaker according to the prior application of the present invention 図5における電源回路,テスト回路の詳細な回路図Detailed circuit diagram of power supply circuit and test circuit in FIG.

符号の説明Explanation of symbols

1 交流電路
2 主回路開閉接点
3 零相変流器
3a 漏電検出巻線
3b テスト巻線
4 漏電検出回路
5 トリップコイル(引外し装置)
6 テスト回路
6a テストスイッチ
6b 発振回路
9 電源回路
9a 3相全波整流回路
9c 平滑用コンデンサ
10 増幅手段
10a OPアンプ
10b アナログスイッチ
11 感度設定器
12 増幅度設定器
14 電源回路の入力抵抗
DESCRIPTION OF SYMBOLS 1 AC circuit 2 Main circuit switching contact 3 Zero phase current transformer 3a Earth leakage detection winding 3b Test winding 4 Earth leakage detection circuit 5 Trip coil (tripping device)
6 Test circuit 6a Test switch 6b Oscillator circuit 9 Power supply circuit 9a Three-phase full-wave rectifier circuit 9c Smoothing capacitor 10 Amplifying means 10a OP amplifier 10b Analog switch 11 Sensitivity setter 12 Amplification degree setter 14 Input resistance of power supply circuit

Claims (5)

多相交流電路を開閉する開閉接点と、交流電路の漏電電流を検出する零相変流器と、該零相変流器の二次出力から前記交流電路の漏電有無を判定し、漏電が発生した場合に信号を出力する漏電検出回路と、この漏電検出回路の出力信号を受けて前記開閉接点を開極させる引外し手段と、テストスイッチのON操作により零相変流器に巻回したテスト巻線に模擬漏電電流を供給するテスト回路と、交流電路から漏電検出回路,テスト回路へ電力を供給する電源回路を備えた漏電遮断器であって、前記電源回路が交流電路の全相を整流して直流に変換する定電圧電源回路で、かつ該電源回路を電源とするテスト回路には前記模擬漏電電流の周波数を商用周波数と異なる周波数に設定する発振回路を備えたものにおいて、
零相変流器の二次側と漏電検出回路との間に、漏電検出感度を選択設定する漏電感度設定器、および前記電源回路を電源としてテストスイッチのON操作時に零相変流器から漏電検出回路に供給する二次出力電流を前記漏電感度設定器の設定に対応した増幅度で制御する増幅手段を設けたことを特徴とする漏電遮断器。
An open / close contact that opens and closes the multi-phase AC circuit, a zero-phase current transformer that detects the leakage current of the AC circuit, and the presence or absence of leakage in the AC circuit is determined from the secondary output of the zero-phase current transformer. A leakage detection circuit that outputs a signal in the case of failure, a tripping means that opens the switching contact in response to the output signal of the leakage detection circuit, and a test wound around the zero-phase current transformer by turning on the test switch An earth leakage circuit breaker having a test circuit for supplying a simulated leakage current to the winding, a leakage detection circuit from the AC circuit, and a power circuit for supplying power to the test circuit, the power circuit rectifying all phases of the AC circuit In the constant voltage power supply circuit that converts to direct current, and the test circuit that uses the power supply circuit as a power supply includes an oscillation circuit that sets the frequency of the simulated leakage current to a frequency different from the commercial frequency,
An earth leakage sensitivity setting device that selectively sets the earth leakage detection sensitivity between the secondary side of the zero phase current transformer and the earth leakage detection circuit, and the earth leakage from the zero phase current transformer when the test switch is turned on using the power supply circuit as a power source. An earth leakage breaker comprising an amplifying means for controlling a secondary output current supplied to the detection circuit with an amplification degree corresponding to the setting of the earth leakage sensitivity setting device.
請求項1に記載の漏電遮断器において、増幅手段が、OPアンプを増幅素子として、その増幅度を漏電感度設定器の設定に対応して可変調整する増幅度設定手段を組み合わせた構成の増幅器になることを特徴とする漏電遮断器。 2. The earth leakage circuit breaker according to claim 1, wherein the amplifying means is an amplifier having an OP amplifier as an amplifying element and an amplification degree setting means that variably adjusts the amplification degree according to the setting of the leakage sensitivity setting device. An earth leakage circuit breaker characterized by comprising: 請求項2に記載の漏電遮断器において、OPアンプに受動フィルタ素子を付加してノイズカット用のアクティブフィルタを構成したことを特徴とする漏電遮断器。 3. The earth leakage circuit breaker according to claim 2, wherein a passive filter element is added to the OP amplifier to form an active filter for noise reduction. 請求項1に記載の漏電遮断器において、交流電路と電源回路を接続する電源線の全相にサージ減衰用の入力抵抗を接続し、かつ電源回路が平滑用の静電容量を備えていることを特徴とする漏電遮断器。 2. The earth leakage breaker according to claim 1, wherein an input resistor for surge attenuation is connected to all phases of the power line connecting the AC circuit and the power circuit, and the power circuit has a smoothing capacitance. An earth leakage circuit breaker. 請求項4に記載の漏電遮断器において、電源線に接続した入力抵抗と電源回路の平滑用静電容量との積である時定数が0.001以上であることを特徴とする漏電遮断器。 5. The earth leakage circuit breaker according to claim 4, wherein a time constant that is a product of an input resistance connected to the power line and a smoothing capacitance of the power circuit is 0.001 or more.
JP2006037352A 2006-02-15 2006-02-15 Earth leakage breaker Active JP4715537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037352A JP4715537B2 (en) 2006-02-15 2006-02-15 Earth leakage breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037352A JP4715537B2 (en) 2006-02-15 2006-02-15 Earth leakage breaker

Publications (2)

Publication Number Publication Date
JP2007220382A true JP2007220382A (en) 2007-08-30
JP4715537B2 JP4715537B2 (en) 2011-07-06

Family

ID=38497440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037352A Active JP4715537B2 (en) 2006-02-15 2006-02-15 Earth leakage breaker

Country Status (1)

Country Link
JP (1) JP4715537B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075815A1 (en) * 2013-11-22 2015-05-28 三菱電機株式会社 Electronic circuit breaker
US10483751B2 (en) 2016-04-28 2019-11-19 Lsis Co., Ltd. Trip control circuit for circuit breaker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198339U (en) * 1984-12-04 1986-06-24
JPH09224328A (en) * 1996-02-16 1997-08-26 Fuji Electric Co Ltd Earth leakage breaker
JP2002289085A (en) * 2001-03-26 2002-10-04 Mitsubishi Electric Corp Circuit breaker with leakage current display unit
JP2004227898A (en) * 2003-01-22 2004-08-12 Terasaki Electric Co Ltd Ground fault interrupter
JP2005158559A (en) * 2003-11-27 2005-06-16 Fuji Electric Fa Components & Systems Co Ltd Earth leakage breaker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198339U (en) * 1984-12-04 1986-06-24
JPH09224328A (en) * 1996-02-16 1997-08-26 Fuji Electric Co Ltd Earth leakage breaker
JP2002289085A (en) * 2001-03-26 2002-10-04 Mitsubishi Electric Corp Circuit breaker with leakage current display unit
JP2004227898A (en) * 2003-01-22 2004-08-12 Terasaki Electric Co Ltd Ground fault interrupter
JP2005158559A (en) * 2003-11-27 2005-06-16 Fuji Electric Fa Components & Systems Co Ltd Earth leakage breaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075815A1 (en) * 2013-11-22 2015-05-28 三菱電機株式会社 Electronic circuit breaker
US10483751B2 (en) 2016-04-28 2019-11-19 Lsis Co., Ltd. Trip control circuit for circuit breaker

Also Published As

Publication number Publication date
JP4715537B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4760428B2 (en) Earth leakage breaker
US8570181B2 (en) Method and apparatus for supervisory circuit for ground fault circuit interrupt device
US8810979B2 (en) Method and apparatus for supervisory circuit for ground fault circuit interrupt device
US6437955B1 (en) Frequency-selective circuit protection arrangements
US9013840B2 (en) Adaptive line filter
EP2306487B1 (en) Wiring device with leakage detection function
KR101162252B1 (en) Versatile circuit breaker for detecting various failure on power lines and loads
JP2013507098A (en) System and method for a multiphase ground fault circuit breaker
JP7273813B2 (en) A circuit arrangement to protect the load from both temporary and transient overvoltages
US5867358A (en) Fault current limiting circuit
JP4715537B2 (en) Earth leakage breaker
KR20010088890A (en) Circuit for Preventing a Earth Leakage Circuit Breaker from Miss-operating by Serge Voltage
KR100501419B1 (en) The circuit-breaker for earth leakage and overvoltage
KR20080075937A (en) Complex type leackage current circuit breaker
JP2008269921A (en) Ground fault interrupter
US10951018B2 (en) Ground fault current interrupter circuit
JPH04271225A (en) Leakage protection system and leakage circuit breaker
KR101396945B1 (en) Earth leakage current breaker
JP2004015961A (en) Ground fault interrupter with three-phase phase-failure protector
JPH11299082A (en) Earth leakage breaking device provided with overvoltage protecting function
KR102551607B1 (en) Leakage Current Detector
CN100470984C (en) Residual current circuit breaker
WO2022264544A1 (en) Leakage current sensing circuit, earth leakage breaker, and distribution board
JP3960074B2 (en) Test circuit for leakage detector
JP4395009B2 (en) Earth leakage breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Ref document number: 4715537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250