JP2005158559A - Earth leakage breaker - Google Patents

Earth leakage breaker Download PDF

Info

Publication number
JP2005158559A
JP2005158559A JP2003396858A JP2003396858A JP2005158559A JP 2005158559 A JP2005158559 A JP 2005158559A JP 2003396858 A JP2003396858 A JP 2003396858A JP 2003396858 A JP2003396858 A JP 2003396858A JP 2005158559 A JP2005158559 A JP 2005158559A
Authority
JP
Japan
Prior art keywords
circuit
test
leakage
current
leakage detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003396858A
Other languages
Japanese (ja)
Other versions
JP4264817B2 (en
Inventor
Nobuhiko Tsuji
伸彦 辻
Hisanobu Asano
浅野  久伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2003396858A priority Critical patent/JP4264817B2/en
Priority to CN2009101353315A priority patent/CN101562328B/en
Priority to CNB2004100907180A priority patent/CN100505462C/en
Priority to KR1020040091920A priority patent/KR100981845B1/en
Priority to FR0412410A priority patent/FR2863115B1/en
Priority to DE102004056976A priority patent/DE102004056976A1/en
Publication of JP2005158559A publication Critical patent/JP2005158559A/en
Application granted granted Critical
Publication of JP4264817B2 publication Critical patent/JP4264817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/334Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means to produce an artificial unbalance for other protection or monitoring reasons or remote control
    • H02H3/335Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means to produce an artificial unbalance for other protection or monitoring reasons or remote control the main function being self testing of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
    • H01H83/04Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents with testing means for indicating the ability of the switch or relay to function properly
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify the structure of a test circuit in an earth leakage breaker to miniaturize it, and to enable a correct earth leakage test. <P>SOLUTION: A power circuit having a constant current circuit for converting an alternating current supplied from a main circuit as a power circuit for supplying power to an earth leakage detection circuit in this earth leakage breaker to a direct current, and for supplying a constant direct current to the earth leakage detection circuit is used; a test resistance element is installed in series to a circuit connecting the main circuit to an A.C. input end of the constant current circuit; and a test winding of a zero-phase current transformer is connected to both ends of the resistance element through a test switch, whereby an earth leakage test circuit is composed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、電動機、その他各種の負荷の接続された配電系統に発生する漏電を検出して波及事故を未然に防ぐための漏電遮断器、特にそのテスト回路の改良に関するものである。   The present invention relates to an earth leakage breaker for detecting an electric leakage generated in a power distribution system connected to an electric motor and other various loads to prevent a ripple accident, and particularly to an improvement of a test circuit thereof.

漏電遮断器における動作テストを正確に行なうために、従来から漏電遮断器の漏電テスト回路は種々工夫されている。その一つの例が、特許文献1に示されている。この特許文献1に示された漏電遮断器の構成を図7に示す。   In order to accurately perform the operation test in the earth leakage breaker, various earth leakage test circuits for the earth leakage breaker have been conventionally devised. One example is shown in Patent Document 1. FIG. 7 shows the configuration of the earth leakage circuit breaker disclosed in Patent Document 1.

図7の漏電遮断器は、複数の定格電圧、例えば、100,200および400Vの3つの定格電圧を有するものである。図示された漏電遮断器1は、電源側接続端子3Aおよび負荷側接続端子3Bを有し、この接続端子3A、3B間を接続する主回路内に負荷電流を開閉する複数極の開閉部8が設けられている。開閉部8と負荷側端子3Bとを結ぶ主回路導体2の挿通された零相変流器5は、負荷側端子3Bに接続された負荷回路における漏電電流を検出する。漏電検出回路6が零相変流器5の漏電検出巻線51の出力電流から漏電の有無を判定し、漏電の発生が検出されたとき引外し装置7に駆動信号を出力する。引外し装置7は、漏電検出回路6から駆動信号が与えられると、開閉部8の図示しない投入機構を引外し、閉極されている開閉部接点を開極させて負荷回路を遮断する。漏電検出回路6へは主回路2から電源回路4を介して給電される。   7 has a plurality of rated voltages, for example, three rated voltages of 100, 200 and 400V. The earth leakage circuit breaker 1 shown in the figure has a power supply side connection terminal 3A and a load side connection terminal 3B, and a multipolar switching unit 8 for opening and closing a load current in a main circuit connecting the connection terminals 3A and 3B. Is provided. The zero-phase current transformer 5 through which the main circuit conductor 2 connecting the switching unit 8 and the load side terminal 3B is inserted detects a leakage current in the load circuit connected to the load side terminal 3B. The leakage detection circuit 6 determines the presence or absence of leakage from the output current of the leakage detection winding 51 of the zero-phase current transformer 5, and outputs a drive signal to the trip device 7 when the occurrence of leakage is detected. When receiving a drive signal from the leakage detection circuit 6, the tripping device 7 trips a closing mechanism (not shown) of the switching unit 8 and opens a closed switching unit contact to interrupt the load circuit. Power is supplied to the leakage detection circuit 6 from the main circuit 2 through the power supply circuit 4.

テスト回路9は、動作テスト時にテスト回路を閉成して主回路2から零相変流器5のテスト巻線52にテスト電流を供給するテストスイッチ91とテスト電流を制限する3個の制限抵抗素子921〜923と、これらの抵抗素子を選択する選択スイッチ93とで構成される。   The test circuit 9 closes the test circuit during an operation test and supplies a test current from the main circuit 2 to the test winding 52 of the zero-phase current transformer 5 and three limiting resistors for limiting the test current. It comprises elements 921 to 923 and a selection switch 93 for selecting these resistance elements.

定格電圧が100Vから400Vに変化してもテスト回路9におけるテスト電流が一定の電流となるようにしておくと、漏電検出回路6の検出感度を一定にして漏電テストを行なうことができるため、漏電テストが正確となり、その信頼性を高めることができる。このために、この漏電遮断器においては、電流制限抵抗素子921,922、および923それぞれの抵抗値が、定格電圧が変化してもテスト巻線52に供給されるテスト電流が一定となるように100V、200Vおよび400Vの定格電圧に対応した値に設定され、使用する定格電圧に応じて選択スイッチ93により電流制限抵抗素子921〜923のうちの1つを選択できるようにしている。
特開2002−78187号公報
Even if the rated voltage changes from 100 V to 400 V, if the test current in the test circuit 9 is kept constant, the leakage detection test can be performed with the detection sensitivity of the leakage detection circuit 6 being constant. Tests are accurate and can be more reliable. For this reason, in this earth leakage breaker, the resistance values of the current limiting resistance elements 921, 922, and 923 are 100 V so that the test current supplied to the test winding 52 is constant even when the rated voltage changes. It is set to a value corresponding to the rated voltage of 200 V and 400 V, and one of the current limiting resistance elements 921 to 923 can be selected by the selection switch 93 according to the rated voltage to be used.
JP 2002-78187 A

このようなテスト回路を備えた漏電遮断器においては、使用する定格電圧が100Vから400Vの間で変化しても、そのときの定格電圧に応じて選択スイッチ93を操作して対応する抵抗素子を選択することによりテスト回路9から零相変流器5のテスト巻線52に供給されるテスト電流を一定にすることができるため、テストを正確に安定的に行なうことができる。   In the earth leakage breaker equipped with such a test circuit, even if the rated voltage to be used changes between 100 V and 400 V, the corresponding resistance element is operated by operating the selection switch 93 according to the rated voltage at that time. By selecting, the test current supplied from the test circuit 9 to the test winding 52 of the zero-phase current transformer 5 can be made constant, so that the test can be performed accurately and stably.

しかしながら、このような従来装置においては、使用する定格電圧の種類に対応する個数の電流制限抵抗素子と選択スイッチを設ける必要があるため、テスト回路の設置スペースが大きくなることおよび部品点数の増加により製造コストが高くなることなどの問題が生じる。   However, in such a conventional device, it is necessary to provide a number of current limiting resistor elements and selection switches corresponding to the type of rated voltage to be used, which increases the installation space of the test circuit and the number of parts. Problems such as high manufacturing costs arise.

そして、特に定格電圧の高いところでは、テストスイッチの開放時に接点間に常時大きな電圧が加わるため、このテストスイッチの接点間隔を大きくして耐電圧を高くする必要があるため、このスイッチが大形となる問題もある。   And especially in places where the rated voltage is high, a large voltage is constantly applied between the contacts when the test switch is opened, so it is necessary to increase the withstand voltage by increasing the contact distance of the test switch. There is also a problem.

この発明は、このような問題点を解消するため、小形で設置スペースの小さなテスト回路を備え、また正確な漏電テストを行なうことのできる漏電遮断器を提供することを課題とするものである。   In order to solve such problems, it is an object of the present invention to provide a ground fault circuit breaker that is provided with a small test circuit having a small installation space and that can perform an accurate ground fault test.

前記のような課題を解決するため、この発明は、主回路を開閉する開閉部と、主回路の全相の導体が挿通された零相変流器と、この零相変流器の漏電検出巻線の出力電流から漏電の発生の有無を判定する漏電検出回路と、この漏電検出回路の漏電の発生を示す出力信号により前記開閉部を引外して遮断する引外し装置と、前記漏電検出回路へ電力を供給する電源回路と、前記零相変流器のテスト巻線にテスト電流を供給するテストスイッチと電流制限抵抗素子を有するテスト回路とを備えた漏電遮断器において、前記電源回路を主回路から供給される交流電流を直流電流に変換し、漏電検出回路へ一定の直流電流を供給する定電流回路で構成し、主回路とこの定電流回路の交流入力端とを結ぶ回路に直列にテスト抵抗素子を設け、この抵抗素子の両端にテストスイッチを介して前記零相変流器のテスト巻線を接続したことを特徴とする。   In order to solve the above-described problems, the present invention provides an open / close unit that opens and closes a main circuit, a zero-phase current transformer through which all phase conductors of the main circuit are inserted, and leakage detection of the zero-phase current transformer A leakage detection circuit that determines whether or not leakage has occurred from the output current of the winding, a tripping device that trips and shuts off the open / close portion by an output signal indicating the occurrence of leakage in the leakage detection circuit, and the leakage detection circuit A ground fault circuit breaker comprising: a power supply circuit for supplying power to the power supply; a test switch for supplying a test current to a test winding of the zero-phase current transformer; and a test circuit having a current limiting resistance element. It is composed of a constant current circuit that converts alternating current supplied from the circuit into direct current and supplies a constant direct current to the leakage detection circuit, and is connected in series to the circuit connecting the main circuit and the alternating current input terminal of this constant current circuit. A test resistance element is provided. Both ends via the test switch, characterized in that to connect the test winding of the residual current transformer.

前記の発明においては、前記テスト抵抗素子の抵抗値を前記定電流回路の内部インピーダンスよりも小さな値とするのがよく、また、前記電源回路交流入力側に入力抵抗素子を設けるようにしてもよい。   In the above invention, the resistance value of the test resistance element may be smaller than the internal impedance of the constant current circuit, and an input resistance element may be provided on the power supply circuit AC input side. .

さらに、前記テスト抵抗素子の両端に定電圧ダイオードを2個逆直列に接続することことによりテスト抵抗素子の端子電圧を制限することができる。   Further, the terminal voltage of the test resistance element can be limited by connecting two constant voltage diodes in anti-series at both ends of the test resistance element.

また、第2の発明は、前記漏電遮断器における漏電検出回路にこの漏電検出回路の検出感度を設定するする感度設定回路が付設されている場合は、前記テストスイッチと連動して前記感度設定回路の設定に関係なく予め決められた感度に設定する手段を設けることを特徴とする。   According to a second aspect of the present invention, in the case where a sensitivity setting circuit for setting the detection sensitivity of the leakage detection circuit is attached to the leakage detection circuit in the leakage breaker, the sensitivity setting circuit is linked with the test switch. Means is provided for setting the sensitivity to a predetermined value regardless of the setting.

さらに、第3の発明は、前記漏電遮断器における漏電検出回路にこの漏電検出回路の動作時間を設定するする動作時間設定回路が付設されている場合は、前記テストスイッチと連動して前記動作時間設定回路の設定に関係なく予め決められた動作時間に設定する手段を設けることを特徴とする。   Furthermore, in the third aspect of the present invention, when an operation time setting circuit for setting an operation time of the leakage detection circuit is attached to the leakage detection circuit in the leakage breaker, the operation time is interlocked with the test switch. Means is provided for setting the operation time to a predetermined time regardless of the setting of the setting circuit.

この発明においては、電源回路に定電流回路を設けているため、この電源回路の交流入力端に直列に挿入されたテスト抵抗素子には、定格電圧の大きさにかかわらず一定の電流が流れるので、両端電圧が一定となり、テスト時には、定格電圧の大きさにかかわらずテスト抵抗装置素子の両端から零相変流器のテスト巻線に一定の電圧が印加され一定のテスト電流が供給されるようになる。このため、この発明によれば、1個のテスト抵抗素子によって、零相変流器に定格電圧の大きさに関係なく常に一定のテスト電流を供給できるので、漏電テストを正確に安定して行なうことができ、テスト抵抗素子の使用個数が減った分、テスト回路の設置スペースを縮小できる効果が得られる。そして、テスト抵抗素子の抵抗値を定電流回路の内部インピーダンスより小さく選ぶことによりテスト抵抗素子の負担電圧を低くすることができるので、テストスイッチの開放時の接点間電圧が低くなり、接点間隔を小さくすることでき、このスイッチを小形にすることが可能となる効果も得られる。   In the present invention, since a constant current circuit is provided in the power supply circuit, a constant current flows through the test resistance element inserted in series at the AC input terminal of the power supply circuit regardless of the magnitude of the rated voltage. The voltage at both ends is constant, and at the time of testing, a constant voltage is applied to the test winding of the zero-phase current transformer from both ends of the test resistor device regardless of the magnitude of the rated voltage so that a constant test current is supplied. become. Therefore, according to the present invention, a constant test current can be always supplied to the zero-phase current transformer regardless of the magnitude of the rated voltage by one test resistance element, so that the leakage test is performed accurately and stably. As a result, it is possible to reduce the installation space of the test circuit as the number of test resistor elements used is reduced. And by selecting the resistance value of the test resistance element to be smaller than the internal impedance of the constant current circuit, the burden voltage of the test resistance element can be lowered. It is possible to reduce the size of the switch, and it is possible to obtain an effect that enables the switch to be downsized.

そして、漏電検出回路にその検出感度を設定する感度設定回路または、動作時間を設定する動作時間設定回路が付設されている場合には、テストスイッチと連動して、前期感度設定回路または動作時間設定回路の設定に関係なく予め決められた感度または動作時間を設定する手段を設けることにより、漏電テストのとき、漏電検出回路の検出感度または動作時間が常に一定の設定値とすることができるため動作テストを正確に安定的に行なうことができる効果がある。   If the leakage detection circuit is provided with a sensitivity setting circuit that sets the detection sensitivity or an operation time setting circuit that sets the operation time, the sensitivity setting circuit or operation time setting for the previous period is linked with the test switch. By providing a means to set a predetermined sensitivity or operating time regardless of the circuit setting, the detection sensitivity or operating time of the leakage detection circuit can always be set to a constant value during a leakage test. There is an effect that the test can be performed accurately and stably.

以下に、この発明を図に示す実施例について説明する。   The present invention will be described below with reference to embodiments shown in the drawings.

図1は、この発明の第1の実施例を示す構成図である。   FIG. 1 is a block diagram showing a first embodiment of the present invention.

図1において、1は漏電遮断器であり、通常は構成要素のすべてが絶縁樹脂製のモールドケース内に収納され、コンパクトに形成されている。この漏電遮断器1は、電源側接続端子3Aと負荷側接続端子3Bとを接続する主回路2、この主回路2を開閉する開閉部8、主回路2の全相の導体が挿通され、主回路に流れる漏電電流を検出する零相変流器5、この零相変流器5の漏電検出巻線51の検出電流を監視して漏電の有無を判定する漏電検出回路6、この漏電検出回路6の漏電を示す出力信号により前記開閉部8の投入機構を引外して開閉部を遮断する引外し装置7および前記漏電検出回路6に動作電力を供給する電源回路4とを備えている。   In FIG. 1, reference numeral 1 denotes an earth leakage circuit breaker. Normally, all of the components are housed in a mold case made of insulating resin and are compactly formed. The earth leakage circuit breaker 1 includes a main circuit 2 for connecting the power supply side connection terminal 3A and the load side connection terminal 3B, an open / close unit 8 for opening and closing the main circuit 2, and conductors of all phases of the main circuit 2 inserted therethrough. A zero-phase current transformer 5 for detecting a leakage current flowing in the circuit, a leakage detection circuit 6 for monitoring the detection current of the leakage detection winding 51 of the zero-phase current transformer 5 and determining the presence or absence of the leakage, and this leakage detection circuit 6 is provided with a tripping device 7 that trips the closing mechanism of the switching unit 8 by an output signal indicating leakage of the circuit 6 and shuts off the switching unit, and a power supply circuit 4 that supplies operating power to the leakage detection circuit 6.

前記電源回路4は、主回路2から給電される交流電力を整流して直流電力に変換する整流回路41と、整流回路41の出力電流を所定の一定電流に制御する定電流回路とで構成される。そしてこの電源回路4の主回路2に接続される交流入力側に直列にテスト抵抗素子11を接続し、このテスト抵抗素子11の両端にテストスイッチ12を直列に介して零相変流器5に設けられたテスト巻線52を接続し、テスト抵抗素子11、テストスイッチ12およびテスト巻線52によりテスト回路10を構成する。   The power supply circuit 4 includes a rectifier circuit 41 that rectifies AC power fed from the main circuit 2 and converts it into DC power, and a constant current circuit that controls the output current of the rectifier circuit 41 to a predetermined constant current. The A test resistance element 11 is connected in series to the AC input side connected to the main circuit 2 of the power supply circuit 4, and a test switch 12 is connected in series to both ends of the test resistance element 11 to the zero-phase current transformer 5. The provided test winding 52 is connected, and the test resistance element 11, the test switch 12 and the test winding 52 constitute the test circuit 10.

前記電源回路4における定電流回路42の具体的構成を図2に示す。   A specific configuration of the constant current circuit 42 in the power supply circuit 4 is shown in FIG.

図2において、定電流回路42を構成するトランジスタTr1は、そのコレクタが整流回路41の出力に接続され、エミッタが抵抗r2を介して負荷回路に接続され、そしてコレクタ−ベース間に抵抗r1が接続されている。また、トランジスタTr2は、そのエミッタ−コレクタ回路をトランジスタTr1のベース−エミッタ間に接続し、そのエミッタ−ベース間に抵抗r3を接続している。そしてトランジスタTr2のベースと抵抗r2の負荷回路側端との間に定電圧ダイオードZD1を接続して定電流回路42が構成される。トランジスタTr2は、トランジスタTr1とは異なり、抵抗r1が100kΩ以上の高抵抗に選ばれているため、エミッタ−コレクタ間の負担電圧(損失)が低くなり、小容量の素子で十分となる。また、抵抗r3の抵抗値は、トランジスタTr2のエミッタ−コレクタ間のオン抵抗値(100Ω程度)より十分大きな数10kΩに選ばれているので、この抵抗r3と定電圧ダイオードZD1を介して負荷回路へ流れる電流は無視できるほど小さなものとなる。 In FIG. 2, the transistor Tr 1 constituting the constant current circuit 42 has a collector connected to the output of the rectifier circuit 41, an emitter connected to the load circuit via a resistor r 2 , and a resistor r between the collector and base. 1 is connected. The transistor Tr 2 has its emitter-collector circuit connected between the base and emitter of the transistor Tr 1 and a resistor r 3 connected between the emitter and base. The constant voltage diode ZD 1 is connected between the base of the transistor Tr 2 and the load circuit side end of the resistor r 2 to form a constant current circuit 42. Unlike the transistor Tr 1 , the transistor Tr 2 is selected to have a resistance r 1 of a high resistance of 100 kΩ or higher, so that the burden voltage (loss) between the emitter and the collector is low, and a small-capacity element is sufficient. . The resistance value of the resistor r 3 is selected to be several tens of kΩ, which is sufficiently larger than the on-resistance value (about 100Ω) between the emitter and collector of the transistor Tr 2 , so that the resistance r 3 and the constant voltage diode ZD 1 are used. Thus, the current flowing to the load circuit is negligibly small.

ここで、電流制限抵抗r2には第1のトランジスタTr1のベース側に流れる電流Ibが流入するように第2のトランジスタTr2を追加したため、図3に示すように整流電圧Viに比例して電流Ibが変化するようになる。これは、トランジスタTr2のベース電位が定電圧ダイオードZD1により一定に保たれているためである。 Here, since the second transistor Tr 2 is added so that the current Ib flowing to the base side of the first transistor Tr 1 flows into the current limiting resistor r 2, it is proportional to the rectified voltage Vi as shown in FIG. As a result, the current Ib changes. This is because the base potential of the transistor Tr 2 is kept constant by the constant voltage diode ZD 1 .

このように、電流Ibが電圧Viの変化に比例して変化することにより、電流Ibの増加とともに抵抗r1の電圧降下が増大するのでトランジスタTr1のベース電位は、電圧Viに対して反比例的に低下するため、トランジスタTr1のエミッタ電流Ieは、図3に示すように整流電圧Viの変化に対して反比例的に変化するようになる。 As described above, since the current Ib changes in proportion to the change of the voltage Vi, the voltage drop of the resistor r 1 increases with the increase of the current Ib. Therefore, the base potential of the transistor Tr 1 is inversely proportional to the voltage Vi. Therefore, the emitter current Ie of the transistor Tr 1 changes in inverse proportion to the change of the rectified voltage Vi as shown in FIG.

このように電流IeとIbは、入力の電圧Viの変化に対して相補的な変化を示すため、IeとIbの和となる負荷回路の漏電検出回路6に供給される電流Iは、入力電圧Viの変化に関係なく一定とすることができる。   Thus, since the currents Ie and Ib show a complementary change to the change in the input voltage Vi, the current I supplied to the leakage detection circuit 6 of the load circuit, which is the sum of Ie and Ib, is the input voltage. It can be kept constant regardless of changes in Vi.

このように、電源回路4に定電流回路42を設けると、使用する定格電圧が変化しても漏電検出回路6に一定電流を供給できるだけでなく、交流入力電流も一定とすることができる。このため、テスト抵抗素子11の両端の電圧が、主回路2の電圧の変化に関係なく一定に維持される。   As described above, when the constant current circuit 42 is provided in the power supply circuit 4, not only can a constant current be supplied to the leakage detection circuit 6 even if the rated voltage used changes, but also the AC input current can be constant. For this reason, the voltage across the test resistor element 11 is kept constant regardless of the change in the voltage of the main circuit 2.

漏電テストのために、図1および図2におけるテスト回路10のテストスイッチ12をオンにすると、テスト抵抗素子11の両端の電圧が零相変流器5のテスト巻線52に加わり、この電圧の大きさで決まるテスト電流がこのテスト巻線52に流れる。テスト抵抗素子11の両端の電圧は、定電流回路42の作用により主回路2の電圧の大きさに関係なく一定となるので、使用する定格電圧が変っても一定となるため、使用する定格電圧に関係なく、漏電テスト時に零相変流器5のテスト巻線に供給するテスト電流(模擬漏電電流)が常に一定となるので、漏電検出回路6の動作テストを正確に行なうことができ、漏電テストの信頼性を高めることができる。   When the test switch 12 of the test circuit 10 in FIGS. 1 and 2 is turned on for the leakage test, the voltage across the test resistance element 11 is applied to the test winding 52 of the zero-phase current transformer 5, and this voltage A test current determined by the magnitude flows through the test winding 52. Since the voltage at both ends of the test resistor element 11 is constant regardless of the magnitude of the voltage of the main circuit 2 due to the action of the constant current circuit 42, it is constant even if the rated voltage used is changed. Regardless of the current leakage test, since the test current (simulated leakage current) supplied to the test winding of the zero-phase current transformer 5 is always constant during the leakage test, the operation test of the leakage detection circuit 6 can be accurately performed, Test reliability can be increased.

前記の実施例において、テスト抵抗素子11の抵抗値を電源回路4の内部インピーダンスよりも十分小さい値に選ぶようにすると、主回路2の定格電圧が400Vと高電圧であっても、テスト抵抗素子11が負担する電圧を数ボルト程度まで小さくすることができるため、テストスイッチ12の接点間に加わる電圧が低下し、このスイッチの接点間隔を狭めることができ、このスイッチを小形にすることできる。   In the above embodiment, if the resistance value of the test resistor element 11 is selected to be a value sufficiently smaller than the internal impedance of the power supply circuit 4, even if the rated voltage of the main circuit 2 is as high as 400V, the test resistor element Since the voltage borne by 11 can be reduced to about several volts, the voltage applied between the contacts of the test switch 12 is lowered, the contact distance between the switches can be reduced, and the switch can be made compact.

また、漏電検出回路6は、電子回路で構成されるため、その動作電流は数mA程度であるので、電源回路4の出力電流も数mAの定格でよく、この電源回路に直列に接続されたテスト抵抗素子として定格熱容量の小さい抵抗素子を使用することができ、テスト回路を小形にすることができる。   Further, since the leakage detection circuit 6 is composed of an electronic circuit, its operating current is about several mA, so the output current of the power circuit 4 may be rated at several mA and is connected in series to this power circuit. A resistance element having a small rated heat capacity can be used as the test resistance element, and the test circuit can be miniaturized.

次に、図4にこの発明の第2の実施例の構成を示す。   Next, FIG. 4 shows the configuration of the second embodiment of the present invention.

この実施例2は、電源回路4の整流回路41の交流入力側の各相に入力抵抗R1、R2およびR3を挿入している点が、実施例1とは異なるだけでその他の構成は同じである。 The second embodiment is different from the first embodiment only in that the input resistors R 1 , R 2, and R 3 are inserted in the respective phases on the AC input side of the rectifier circuit 41 of the power supply circuit 4. Are the same.

このように、電源回路4に入力抵抗R1、R2、R3を挿入すると、これらの抵抗素子と電源回路4における平滑コンデンサC1(図2参照)とでフィルタ回路が形成されるので、これにより比較的周波数の高いサージ電圧を吸収することができるため、電源回路4およびテスト回路10のテストスイッチ12のサージ電圧耐量を高めることができる。 Thus, when the input resistors R 1 , R 2 , R 3 are inserted into the power supply circuit 4, a filter circuit is formed by these resistance elements and the smoothing capacitor C 1 (see FIG. 2) in the power supply circuit 4. As a result, a surge voltage having a relatively high frequency can be absorbed, so that the surge voltage tolerance of the power switch 4 and the test switch 12 of the test circuit 10 can be increased.

図5は、この発明の第3の実施例を示す構成図である。   FIG. 5 is a block diagram showing a third embodiment of the present invention.

この図5の実施例3は、テスト抵抗素子11の両端に2個の定電圧ダイオードZD3とZD4を逆直列に接続し、テスト抵抗素子11の端子電圧を定電圧ダイオードで決められた一定電圧以下に制限するようにしたものである。テスト抵抗素子11の抵抗値を下げない場合でも、定電圧ダイオードを設けることにより、両端の電圧を一定値以下に制限できることにより、テストスイッチ12の交流電圧の負担を低減できるため、その接点間隔をより狭めることができ、スイッチ全体を小形にすることができる。 In the third embodiment shown in FIG. 5, two constant voltage diodes ZD 3 and ZD 4 are connected in reverse series to both ends of the test resistance element 11, and the terminal voltage of the test resistance element 11 is constant determined by the constant voltage diode. The voltage is limited to a voltage or less. Even when the resistance value of the test resistance element 11 is not lowered, by providing the constant voltage diode, the voltage at both ends can be limited to a certain value or less, so that the burden of the AC voltage of the test switch 12 can be reduced. The entire switch can be made smaller.

図6は、この発明の第4の実施例を示すものである。   FIG. 6 shows a fourth embodiment of the present invention.

図6において、61はセレクタースイッチなどで構成された漏電検出回路6の検出感度設定回路である。この設定回路61を操作することにより、漏電検出回路6に予め設定された複数の感度の1つを選択して設定することができる。   In FIG. 6, reference numeral 61 denotes a detection sensitivity setting circuit of the leakage detection circuit 6 constituted by a selector switch or the like. By operating the setting circuit 61, one of a plurality of sensitivities preset in the leakage detection circuit 6 can be selected and set.

62は、この発明にしたがって、設定回路61を漏電検出回路から切り離すことにより漏電検出回路6の感度設定回路61の設定に関係なく所定の感度に設定する感度設定スイッチである。このスイッチ62は、テスト回路10のテストスイッチ12と連動しており、テストスイッチ12がオンされるとオフするように動作する。   62 is a sensitivity setting switch for setting a predetermined sensitivity regardless of the setting of the sensitivity setting circuit 61 of the leakage detection circuit 6 by separating the setting circuit 61 from the leakage detection circuit according to the present invention. The switch 62 is interlocked with the test switch 12 of the test circuit 10 and operates so as to be turned off when the test switch 12 is turned on.

テストスイッチ12をオンにして、漏電遮断器1の漏電テストを行なうときは、スイッチ62がオフにされ、感度設定回路61が漏電検出回路6から切り離されることにより、漏電検出回路6の感度が、テスト回路10により零相変流器5のテスト巻線52に供給するテスト電流(模擬漏電電流)に対応した所定の感度に設定される。このため、感度設定回路の設けられた漏電検出回路を有する漏電遮断器であっても、常に漏電検出回路6の検出感度を一定にして漏電テストが実行できるので、漏電テストを正確に行なうことができる。   When the test switch 12 is turned on and the leakage test of the leakage breaker 1 is performed, the switch 62 is turned off and the sensitivity setting circuit 61 is disconnected from the leakage detection circuit 6, thereby reducing the sensitivity of the leakage detection circuit 6. A predetermined sensitivity corresponding to a test current (simulated leakage current) supplied to the test winding 52 of the zero-phase current transformer 5 by the test circuit 10 is set. For this reason, even if the leakage breaker has a leakage detection circuit provided with a sensitivity setting circuit, the leakage detection test can always be performed with the detection sensitivity of the leakage detection circuit 6 kept constant. it can.

図6の漏電遮断器1の漏電検出回路6には、さらに動作時間(漏電検出から出力信号発生までの遅れ時間)を設定する動作時間設定回路63が付設されている。この動作時間設定回路63は、短時間のパルス状のノイズ信号等の侵入による誤動作を防止するために設けられたもので、誤動作を防止したいノイズの種類にしたがって、選択スイッチなどによりその動作時間を切り換え設定するものである。   The leakage detection circuit 6 of the leakage breaker 1 of FIG. 6 is additionally provided with an operation time setting circuit 63 for setting an operation time (a delay time from the detection of the leakage to the generation of the output signal). The operation time setting circuit 63 is provided to prevent malfunction due to intrusion of a short-time pulse noise signal or the like. The operation time is set by a selection switch or the like according to the type of noise to be prevented from malfunctioning. It is for switching setting.

この動作時間設定回路63により動作時間が設定されていると、漏電テストのときのテストスイッチ12の操作をその設定時間に合わせて行なわないと正確なテストができないことがあるため、テストを行なうときは、予め動作時間設定回路63による設定時間を調べておく必要がある。この点を改善するために、この発明に従って、動作時間設定回路63には、この回路を漏電検出回路から切り離し、動作時間設定回路63の設定に関係なく所定の動作時間に設定することのできる動作時間設定スイッチ64を付設している。このスイッチ64は、テスト回路10のテストスイッチ12と連動して、このテストスイッチ12がオンされると、オフされるように構成されている。   When the operation time is set by the operation time setting circuit 63, an accurate test may not be performed unless the test switch 12 is operated in accordance with the set time during the leakage test. Needs to check the set time by the operation time setting circuit 63 in advance. In order to improve this point, according to the present invention, the operation time setting circuit 63 has an operation that can be disconnected from the leakage detection circuit and set to a predetermined operation time regardless of the setting of the operation time setting circuit 63. A time setting switch 64 is provided. The switch 64 is configured to be turned off when the test switch 12 is turned on in conjunction with the test switch 12 of the test circuit 10.

このため、テストスイッチ12をオンして漏電テストを行なうときは、動作時間設定スイッチ64がオフし、動作時間設定回路63が漏電検出回路6から切り離され、動作時間が予め決められた所定の時間に設定される。これにより、漏電テストを常に一定の動作時間で行なうことができるので、正確なテストが可能となる。   For this reason, when the leakage test is performed with the test switch 12 turned on, the operation time setting switch 64 is turned off, the operation time setting circuit 63 is disconnected from the leakage detection circuit 6, and the operation time is set to a predetermined time. Set to As a result, the earth leakage test can always be performed with a constant operation time, so that an accurate test can be performed.

この発明の漏電遮断器を示す構成図である(実施例1)。It is a block diagram which shows the earth-leakage circuit breaker of this invention (Example 1). この発明の漏電遮断器の電源回路を具体的に示した構成図である。It is the block diagram which showed the power supply circuit of the earth-leakage circuit breaker of this invention concretely. 図2の電源回路の動作説明図である。FIG. 3 is an operation explanatory diagram of the power supply circuit of FIG. 2. この発明の第2の実施例を示す構成図である。It is a block diagram which shows the 2nd Example of this invention. この発明の第3の実施例を示す構成図である。It is a block diagram which shows the 3rd Example of this invention. この発明の第4の実施例を示す構成図である。It is a block diagram which shows the 4th Example of this invention. 従来の漏電遮断器を示す構成図である。It is a block diagram which shows the conventional earth-leakage circuit breaker.

符号の説明Explanation of symbols

1 :漏電遮断器
2 :主回路
3A:電源側接続端子
3B:負荷側接続端子
4 :電源回路
42:定電流回路
5 :零相変流器
51:検出巻線
52:テスト巻線
6 :漏電検出回路
7 :引はずし装置
8 :開閉部
10:テスト回路
11:テスト抵抗素子
12:テストスイッチ

1: Earth leakage breaker 2: Main circuit 3A: Power supply side connection terminal 3B: Load side connection terminal 4: Power supply circuit 42: Constant current circuit 5: Zero phase current transformer 51: Detection winding 52: Test winding 6: Earth leakage Detection circuit 7: Tripping device 8: Opening / closing part 10: Test circuit 11: Test resistance element 12: Test switch

Claims (6)

主回路を開閉する開閉部と、主回路の全相の導体が挿通された零相変流器と、この零相変流器の漏電検出巻線の出力電流から漏電の発生の有無を判定する漏電検出回路と、この漏電検出回路の漏電の発生を示す出力信号により前記開閉部を引外して遮断する引外し装置と、前記漏電検出回路へ電力を供給する電源回路と、前記零相変流器のテスト巻線にテスト電流を供給するテストスイッチと電流制限抵抗素子を有するテスト回路とを備えた漏電遮断器において、前記電源回路を主回路から供給される交流電流を直流電流に変換し、漏電検出回路へ一定の直流電流を供給する定電流回路により構成し、主回路とこの定電流回路の交流入力端とを結ぶ回路に直列にテスト抵抗素子を設け、この抵抗素子の両端にテストスイッチを介して前記零相変流器のテスト巻線を接続したことを特徴とする漏電遮断器。 Open / close unit that opens and closes the main circuit, zero-phase current transformer through which the conductors of all phases of the main circuit are inserted, and whether or not leakage has occurred is determined from the output current of the leakage detection winding of this zero-phase current transformer A leakage detection circuit, a tripping device that trips and shuts off the open / close portion by an output signal indicating occurrence of leakage in the leakage detection circuit, a power supply circuit that supplies power to the leakage detection circuit, and the zero-phase current transformation An earth leakage circuit breaker comprising a test switch for supplying a test current to a test winding of the tester and a test circuit having a current limiting resistance element, the alternating current supplied from the main circuit to the power supply circuit is converted into a direct current, It is composed of a constant current circuit that supplies a constant DC current to the leakage detection circuit, and a test resistance element is provided in series with the circuit connecting the main circuit and the AC input terminal of this constant current circuit, and test switches are provided at both ends of this resistance element. Through the zero phase Earth leakage breaker, characterized in that it connects the test winding of the flow device. 請求項1記載の漏電遮断器において、前記テスト抵抗素子の抵抗値を前記定電流回路の内部インピーダンスよりも小さな値としたことを特徴とする漏電遮断器。 2. The circuit breaker according to claim 1, wherein a resistance value of the test resistance element is set to a value smaller than an internal impedance of the constant current circuit. 請求項1または2記載の漏電遮断器において、前記電源回路の交流入力側に入力抵抗素子を設けたことを特徴とする漏電遮断器。 3. The earth leakage circuit breaker according to claim 1, wherein an input resistance element is provided on an AC input side of the power supply circuit. 請求項1ないし3のいずれかに記載の漏電遮断器において、前記テスト抵抗素子の両端に定電圧ダイオードを2個逆直列に接続したことを特徴とする漏電遮断器。 4. The earth leakage circuit breaker according to claim 1, wherein two constant voltage diodes are connected in reverse series to both ends of the test resistance element. 主回路を開閉する開閉部と、主回路の全相の導体が挿通された零相変流器と、この零相変流器の漏電検出巻線の出力電流から漏電の発生の有無を判定する漏電検出回路と、この漏電検出回路の検出感度を設定する感度設定回路と、前記漏電検出回路の漏電の発生を示す出力信号により前記開閉部を引外して遮断する引外し装置と、前記漏電検出回路へ電力を供給する電源回路と、前記零相変流器のテスト巻線にテスト電流を供給するテストスイッチと電流制限抵抗素子を有するテスト回路とを備えた漏電遮断器において、前記テストスイッチと連動して前記感度設定回路の設定に関係なく予め決められた感度を設定する手段を設けたことを特徴とする漏電遮断器。 Open / close unit that opens and closes the main circuit, zero-phase current transformer through which the conductors of all phases of the main circuit are inserted, and whether or not leakage has occurred is determined from the output current of the leakage detection winding of this zero-phase current transformer A leakage detection circuit, a sensitivity setting circuit for setting a detection sensitivity of the leakage detection circuit, a tripping device that trips and shuts off the open / close portion by an output signal indicating the occurrence of leakage in the leakage detection circuit, and the leakage detection An earth leakage circuit breaker comprising: a power supply circuit for supplying power to the circuit; a test switch for supplying a test current to a test winding of the zero-phase current transformer; and a test circuit having a current limiting resistance element. An earth leakage circuit breaker comprising means for setting a predetermined sensitivity in conjunction with the sensitivity setting circuit regardless of the setting. 主回路を開閉する開閉部と、主回路の全相の導体が挿通された零相変流器と、この零相変流器の漏電検出巻線の出力電流から漏電の発生の有無を判定する漏電検出回路と、この漏電検出回路の動作時間を設定する動作時間設定回路と、前記漏電検出回路の漏電の発生を示す出力信号により前記開閉部を引外して遮断する引外し装置と、前記漏電検出回路へ電力を供給する電源回路と、前記零相変流器のテスト巻線にテスト電流を供給するテストスイッチと電流制限抵抗素子を有するテスト回路とを備えた漏電遮断器において、前記テストスイッチと連動して前記動作時間設定回路の設定に関係なく予め決められた動作時間に設定する手段を設けたことを特徴とする漏電遮断器。

Open / close unit that opens and closes the main circuit, zero-phase current transformer through which the conductors of all phases of the main circuit are inserted, and whether or not leakage has occurred is determined from the output current of the leakage detection winding of this zero-phase current transformer A leakage detection circuit, an operation time setting circuit for setting an operation time of the leakage detection circuit, a tripping device that trips and shuts off the open / close portion by an output signal indicating occurrence of leakage in the leakage detection circuit, and the leakage An earth leakage circuit breaker comprising: a power supply circuit for supplying power to a detection circuit; a test switch for supplying a test current to a test winding of the zero-phase current transformer; and a test circuit having a current limiting resistance element. An earth leakage circuit breaker comprising means for setting a predetermined operation time regardless of the setting of the operation time setting circuit in conjunction with the operation time setting circuit.

JP2003396858A 2003-11-27 2003-11-27 Earth leakage breaker Expired - Fee Related JP4264817B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003396858A JP4264817B2 (en) 2003-11-27 2003-11-27 Earth leakage breaker
CN2009101353315A CN101562328B (en) 2003-11-27 2004-11-08 Residual current circuit breaker
CNB2004100907180A CN100505462C (en) 2003-11-27 2004-11-08 Leakage circuit breaker
KR1020040091920A KR100981845B1 (en) 2003-11-27 2004-11-11 Earth leakage breaker
FR0412410A FR2863115B1 (en) 2003-11-27 2004-11-23 CIRCUIT SWITCH IN CASE OF EARTHFALL DEFECT.
DE102004056976A DE102004056976A1 (en) 2003-11-27 2004-11-25 Residual-current device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396858A JP4264817B2 (en) 2003-11-27 2003-11-27 Earth leakage breaker

Publications (2)

Publication Number Publication Date
JP2005158559A true JP2005158559A (en) 2005-06-16
JP4264817B2 JP4264817B2 (en) 2009-05-20

Family

ID=34567530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396858A Expired - Fee Related JP4264817B2 (en) 2003-11-27 2003-11-27 Earth leakage breaker

Country Status (5)

Country Link
JP (1) JP4264817B2 (en)
KR (1) KR100981845B1 (en)
CN (2) CN100505462C (en)
DE (1) DE102004056976A1 (en)
FR (1) FR2863115B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149603A (en) * 2005-11-30 2007-06-14 Mitsubishi Electric Corp Earth leakage breaker
JP2007220381A (en) * 2006-02-15 2007-08-30 Fuji Electric Fa Components & Systems Co Ltd Ground fault interrupter
JP2007220382A (en) * 2006-02-15 2007-08-30 Fuji Electric Holdings Co Ltd Ground fault interrupter
JP2009089574A (en) * 2007-10-03 2009-04-23 Mitsubishi Electric Corp Ground-fault circuit interrupter
KR100902683B1 (en) * 2007-06-08 2009-06-15 주식회사 대륙 Circuit breaker
KR200445304Y1 (en) 2007-07-18 2009-07-17 주식회사 두원 Leakage breaker
CN102931034A (en) * 2012-07-27 2013-02-13 苏州贝腾特电子科技有限公司 Leakage circuit breaker
CN103151756A (en) * 2013-03-29 2013-06-12 苏州长量电器有限公司 Controller for residual leakage protection circuit breaker
US8941957B2 (en) 2010-07-30 2015-01-27 Panasonic Intellectual Property Management Co., Ltd. Battery charger for an electrically-driven vehicle and method of confirming earth leakage applicable thereto
JP2016046063A (en) * 2014-08-22 2016-04-04 三菱電機株式会社 Earth leakage breaker
KR101611020B1 (en) * 2013-08-01 2016-04-08 미쓰비시덴키 가부시키가이샤 Earth leakage circuit breaker
CN107769159A (en) * 2017-10-25 2018-03-06 浙江致威电子科技有限公司 A kind of earth leakage protective device, electrical leakage detecting method and a kind of charging equipment
JP2018133254A (en) * 2017-02-16 2018-08-23 河村電器産業株式会社 Earth leakage circuit breaker
US10483751B2 (en) 2016-04-28 2019-11-19 Lsis Co., Ltd. Trip control circuit for circuit breaker
CN112840518A (en) * 2018-11-19 2021-05-25 Ls电气株式会社 Residual current circuit breaker and control method thereof
JP2022059189A (en) * 2020-10-01 2022-04-13 富士電機株式会社 Power conversion device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742232B2 (en) * 2005-04-19 2011-08-10 富士電機株式会社 Earth leakage breaker
JP4893358B2 (en) * 2007-02-19 2012-03-07 富士電機機器制御株式会社 Earth leakage trip device for earth leakage breaker
JP4935455B2 (en) * 2007-03-27 2012-05-23 富士電機機器制御株式会社 Earth leakage detector
JP4845910B2 (en) * 2008-03-17 2011-12-28 三菱電機株式会社 Earth leakage breaker
CN102859375B (en) * 2010-02-23 2017-05-10 Abb技术有限公司 Protective switch with status detection
AT509839A3 (en) * 2010-04-14 2018-12-15 Eaton Gmbh Residual Current Device
US20130120892A1 (en) * 2010-07-13 2013-05-16 Panasonic Corporation Earth leakage circuit breaker
CN102547483B (en) * 2010-12-08 2016-02-24 中国电信股份有限公司 The self-checking unit of distributing frame overcurrent proof break alarm equipment, method and supervisory control system
DE102011083792A1 (en) * 2011-09-29 2013-04-04 Bender Gmbh & Co. Kg Insulation fault locating device and device for isolation fault location in an ungrounded power supply network
CN103337429B (en) * 2013-07-01 2015-11-18 浙江正泰电器股份有限公司 Residual current action breaker

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851950A (en) * 1987-06-09 1989-07-25 Bassani Ticino, S.P.A. Electrical apparatus for magnetothermal and differential protection
JP2818063B2 (en) * 1992-01-08 1998-10-30 三菱電機株式会社 Earth leakage breaker
CN1040473C (en) * 1992-06-12 1998-10-28 大延电子株式会社 Integrated electric leakage warning system
CA2093061C (en) * 1992-07-22 2005-02-15 Raymond H. Legatti Leakage current protection device adapted to a wide variety of domestic and international applications
CN2145469Y (en) * 1992-10-28 1993-11-03 尤大千 Delay electromagnet leakage switch
JP3157386B2 (en) * 1994-06-24 2001-04-16 三菱電機株式会社 Ground fault detector
JP3230639B2 (en) * 1994-11-16 2001-11-19 三菱電機株式会社 Ground fault detector
JP3788042B2 (en) * 1998-06-30 2006-06-21 マツダ株式会社 Vehicle occupant protection device
JP2002078187A (en) * 2000-08-28 2002-03-15 Matsushita Electric Works Ltd Leakage breaker

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149603A (en) * 2005-11-30 2007-06-14 Mitsubishi Electric Corp Earth leakage breaker
JP4715537B2 (en) * 2006-02-15 2011-07-06 富士電機株式会社 Earth leakage breaker
JP2007220381A (en) * 2006-02-15 2007-08-30 Fuji Electric Fa Components & Systems Co Ltd Ground fault interrupter
JP2007220382A (en) * 2006-02-15 2007-08-30 Fuji Electric Holdings Co Ltd Ground fault interrupter
KR100902683B1 (en) * 2007-06-08 2009-06-15 주식회사 대륙 Circuit breaker
KR200445304Y1 (en) 2007-07-18 2009-07-17 주식회사 두원 Leakage breaker
JP2009089574A (en) * 2007-10-03 2009-04-23 Mitsubishi Electric Corp Ground-fault circuit interrupter
US8941957B2 (en) 2010-07-30 2015-01-27 Panasonic Intellectual Property Management Co., Ltd. Battery charger for an electrically-driven vehicle and method of confirming earth leakage applicable thereto
CN102931034A (en) * 2012-07-27 2013-02-13 苏州贝腾特电子科技有限公司 Leakage circuit breaker
CN106158540A (en) * 2012-07-27 2016-11-23 赵牧青 A kind of RCCB with electric switch-on function
CN105895464A (en) * 2012-07-27 2016-08-24 赵牧青 Residual current circuit breaker having automatic closing function
CN103151756A (en) * 2013-03-29 2013-06-12 苏州长量电器有限公司 Controller for residual leakage protection circuit breaker
KR101611020B1 (en) * 2013-08-01 2016-04-08 미쓰비시덴키 가부시키가이샤 Earth leakage circuit breaker
JP2016046063A (en) * 2014-08-22 2016-04-04 三菱電機株式会社 Earth leakage breaker
US10483751B2 (en) 2016-04-28 2019-11-19 Lsis Co., Ltd. Trip control circuit for circuit breaker
JP2018133254A (en) * 2017-02-16 2018-08-23 河村電器産業株式会社 Earth leakage circuit breaker
CN107769159A (en) * 2017-10-25 2018-03-06 浙江致威电子科技有限公司 A kind of earth leakage protective device, electrical leakage detecting method and a kind of charging equipment
CN112840518A (en) * 2018-11-19 2021-05-25 Ls电气株式会社 Residual current circuit breaker and control method thereof
CN112840518B (en) * 2018-11-19 2023-04-11 Ls电气株式会社 Residual current circuit breaker and control method thereof
JP2022059189A (en) * 2020-10-01 2022-04-13 富士電機株式会社 Power conversion device

Also Published As

Publication number Publication date
CN100505462C (en) 2009-06-24
DE102004056976A1 (en) 2005-06-30
FR2863115B1 (en) 2011-02-11
KR20050051548A (en) 2005-06-01
FR2863115A1 (en) 2005-06-03
CN101562328B (en) 2011-01-05
CN101562328A (en) 2009-10-21
CN1622414A (en) 2005-06-01
JP4264817B2 (en) 2009-05-20
KR100981845B1 (en) 2010-09-13

Similar Documents

Publication Publication Date Title
JP4264817B2 (en) Earth leakage breaker
KR100974782B1 (en) Earth leakage breaker
KR100972274B1 (en) Ground fault circuit interrupter
US7715158B2 (en) Circuit interrupter with live ground detector
CN1842951B (en) Method and safety device for ground fault protection circuit
US8446702B2 (en) Circuit breaker
EP1841033B1 (en) Circuit breaker
US8183869B2 (en) Circuit interrupter with continuous self-testing feature
JP4931754B2 (en) Earth leakage breaker
EP2051359A1 (en) Power supply circuit and earth leakage circuit breaker using the same
IL121859A (en) High sensitivity electrical switching circuit
US5488303A (en) GFCI with auxiliary coil current blocking means and improved test button configuration
Bashi et al. Power transformer protection using microcontroller-based relay
US20220416532A1 (en) Residual current circuit breaker
JP2680871B2 (en) Additional grounding accident module
JPH08331748A (en) Circuit breaker
JP4395009B2 (en) Earth leakage breaker
KR101889535B1 (en) Earth Leakage Breaker
KR20010000555A (en) Ground relay of engine driven generator
EP0999631A1 (en) Device for the protection of an electric motor and related method
RU2242829C2 (en) Ground fault detecting and protecting device for electrical machines and apparatuses (alternatives)
RU2199788C2 (en) Device testing serviceability of ac overcurrent protection
KR200217022Y1 (en) Ground relay of engine driven generator
KR100439890B1 (en) Earth Leakage Circuit Breaker
US5719489A (en) Apparatus for determining load currents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

R150 Certificate of patent or registration of utility model

Ref document number: 4264817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees