JP2007220215A - Optical pickup device and optical disk device - Google Patents

Optical pickup device and optical disk device Download PDF

Info

Publication number
JP2007220215A
JP2007220215A JP2006039986A JP2006039986A JP2007220215A JP 2007220215 A JP2007220215 A JP 2007220215A JP 2006039986 A JP2006039986 A JP 2006039986A JP 2006039986 A JP2006039986 A JP 2006039986A JP 2007220215 A JP2007220215 A JP 2007220215A
Authority
JP
Japan
Prior art keywords
wavelength
light
grating
optical
order diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006039986A
Other languages
Japanese (ja)
Other versions
JP4737536B2 (en
Inventor
Takashi Kobayashi
高志 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006039986A priority Critical patent/JP4737536B2/en
Publication of JP2007220215A publication Critical patent/JP2007220215A/en
Application granted granted Critical
Publication of JP4737536B2 publication Critical patent/JP4737536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical pickup device and an optical disk device, which execute sure operations with respect to several types of optical disks with simple configurations. <P>SOLUTION: In a diffraction grating 14 for generating a diffracted light from an optical beam reflected on an optical recording medium, a grating pattern of the diffraction grating 14 is selected so as to generate ± secondary diffracted lights for the optical beam of a first wavelength, and ± primary diffracted lights for the optical beam of a second wavelength roughly double of the first wavelength. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数種類の光ディスクに対応した光ディスク装置に用いる光ピックアップ装置に適用して好適なものである。   The present invention is suitable for application to an optical pickup device used in an optical disc apparatus compatible with a plurality of types of optical discs.

従来、光ディスク装置の光ピックアップにおけるフォーカス制御方法として、光ディスクで反射された反射光ビームを回折格子に通過させることにより+1次回折光及び−1次回折光を生成し、当該+1次回折光及び−1次回折光のスポットサイズの差に基づいてフォーカスエラー信号を生成するSSD(Spot Size Detection:スポットサイズ検出)法が広く用いられている。   Conventionally, as a focus control method in an optical pickup of an optical disk device, a + 1st order diffracted light and a −1st order diffracted light are generated by passing a reflected light beam reflected by an optical disk through a diffraction grating, and the + 1st order diffracted light and −1st order diffracted light are generated. An SSD (Spot Size Detection) method for generating a focus error signal based on a difference in spot size is widely used.

一方、近年ではCD(Compact-Disc)やDVD(Digital Versatile Disc)等の様々な種類の光ディスクが製造されており、これに伴い、複数種類の光ディスクに対応した光ディスク装置が製品化されている。   On the other hand, in recent years, various types of optical disks such as CD (Compact-Disc) and DVD (Digital Versatile Disc) have been manufactured, and along with this, optical disk devices corresponding to a plurality of types of optical disks have been commercialized.

ここで、DVD及びCD対応の光ディスク装置にSSD法を適用した場合、DVD用レーザ光(波長660[nm])とCD用レーザ光(波長780[nm])とではその波長が異なることから、回折格子を通過する際の回折角も異なり、これにより、DVDの±1次回折光のスポットとCDの±1次回折光のスポットは受光素子上のそれぞれ異なる位置に照射される。このため、DVDの±1次回折光を受光するための光検出器と、CDの±1次回折光を受光するための光検出器とを別個に設ける必要があり、これにより光ピックアップの構成が複雑になるという問題があった。   Here, when the SSD method is applied to a DVD and CD compatible optical disc apparatus, the wavelength is different between the DVD laser beam (wavelength 660 [nm]) and the CD laser beam (wavelength 780 [nm]). The diffraction angle when passing through the diffraction grating is also different, and thereby the spot of ± 1st order diffracted light of DVD and the spot of ± 1st order diffracted light of CD are irradiated to different positions on the light receiving element. For this reason, it is necessary to separately provide a photodetector for receiving the ± 1st order diffracted light of the DVD and a photodetector for receiving the ± 1st order diffracted light of the CD, which complicates the configuration of the optical pickup. There was a problem of becoming.

かかる問題を解決するため、回折格子をDVD用回折領域とCD用回折領域とに領域分割し、DVD用回折領域を通過するDVD用レーザ光の回折角と、CD用回折領域を通過するCD用レーザ光の回折角とが一致するように、DVD用回折領域の格子ピッチ及びCD用回折領域の格子ピッチをそれぞれ設定することにより、DVDの±1次回折光及びCDの±1次回折光を共通の光検出器で受光するようにした光ピックアップが提案されている(例えば、特許文献1参照)。
特開2001−84609公報(図1)
In order to solve this problem, the diffraction grating is divided into a DVD diffraction region and a CD diffraction region, the diffraction angle of the DVD laser light passing through the DVD diffraction region, and the CD light passing through the CD diffraction region. By setting the grating pitch of the diffraction region for DVD and the grating pitch of the diffraction region for CD so that the diffraction angles of the laser light coincide with each other, the ± 1st order diffracted light of DVD and the ± 1st order diffracted light of CD are shared. An optical pickup that receives light with a photodetector has been proposed (see, for example, Patent Document 1).
JP 2001-84609 A (FIG. 1)

ところが上述した構成の光ピックアップでは、DVD用回折領域を通過したCD用レーザ光の±1次回折光や、CD用回折領域を通過したDVD用レーザ光の±1次回折光は、何れも光検出器で受光されない。このため、上述した構成の光ピックアップでは反射光ビームの利用効率が低く、光検出器の出力の信号レベルが低くなってノイズの影響を受けやすくなり、これによりフォーカス制御などのサーボ制御が不確実になるという問題がある。   However, in the optical pickup having the above-described configuration, the ± first-order diffracted light of the CD laser light that has passed through the DVD diffraction region and the ± first-order diffracted light of the DVD laser light that has passed through the CD diffraction region are both photodetectors. Is not received. For this reason, in the optical pickup having the above-described configuration, the utilization efficiency of the reflected light beam is low, the signal level of the output of the photodetector is low, and it is easily affected by noise, thereby uncertain servo control such as focus control. There is a problem of becoming.

また上述した構成の光ピックアップにおいて、DVD用回折領域を通過したCD用レーザ光の±1次回折光や、CD用回折領域を通過したDVD用レーザ光の±1次回折光を別の光検出器で受光して再生信号やトラッキングエラー信号を生成することも考えられるが、この場合、光検出器に到達する光ビームの本数が増加してしまい、多層ディスク使用時における非合焦記録層からの迷光が光検出器に入射することによってフォーカスエラー信号等に誤差を生じ、これによりフォーカス制御などのサーボ制御が不確実になるという問題がある。   Further, in the optical pickup having the above-described configuration, ± 1st order diffracted light of CD laser light that has passed through the DVD diffraction region and ± 1st order diffracted light of DVD laser light that has passed through the CD diffraction region can be obtained by another photodetector. It is also possible to generate a reproduction signal or tracking error signal by receiving light, but in this case, the number of light beams reaching the photodetector increases, and stray light from the unfocused recording layer when using a multilayer disk is used. When the light enters the photodetector, an error occurs in the focus error signal or the like, which causes a problem that servo control such as focus control becomes uncertain.

さらに近年では、青色波長域の波長405[nm]のレーザ光を用いるBlu−ray Disk(以下、BDと呼ぶ)等の次世代光ディスクも登場しており、CD、DVD及びBDの3種類のディスクに対応した光ピックアップも開発されているが、このような光ピックアップにおいて、回折格子をDVD用、CD用及びBD用の3つの回折領域に領域分割した場合、反射光ビームの利用効率がさらに低下してしまうという問題があった。また、このような3種類の光ディスクに対応した光ピックアップでは、DVD、CD及びBDそれぞれに対して適切なフォーカス引き込み範囲を実現するのが困難であるという問題もあった。   In recent years, next-generation optical discs such as Blu-ray Disk (hereinafter referred to as BD) using a laser beam having a wavelength of 405 [nm] in the blue wavelength region have also appeared, and three types of discs, CD, DVD and BD. Although an optical pickup compatible with the above has been developed, in such an optical pickup, when the diffraction grating is divided into three diffraction regions for DVD, CD and BD, the utilization efficiency of the reflected light beam is further reduced. There was a problem of doing. In addition, there is a problem in that it is difficult to realize an appropriate focus pull-in range for each of DVD, CD, and BD with such an optical pickup that supports three types of optical disks.

本発明は以上の点を考慮してなされたもので、簡易な構成で、複数種類の光ディスクに対して確実な動作を行い得る光ピックアップ装置及び光ディスク装置を提案しようとするものである。   The present invention has been made in consideration of the above points, and an object of the present invention is to propose an optical pickup apparatus and an optical disk apparatus that can perform reliable operations on a plurality of types of optical disks with a simple configuration.

かかる課題を解決するため本発明においては、それぞれ異なる波長の光ビームを用いて情報を読み出す複数種類の光記録媒体に対応した光ピックアップ装置において、光記録媒体で反射された光ビームを受光する光検出器と、光記録媒体と光検出器との間に設けられ、第1の波長の光ビームに対しては±2次回折光を生成して光検出器に入射させ、第1の波長の略2倍の第2の波長の光ビームに対しては±1次回折光を生成して上記光検出器に入射させる回折格子とを設けた。   In order to solve such a problem, in the present invention, in an optical pickup device corresponding to a plurality of types of optical recording media that read out information using light beams of different wavelengths, the light that receives the light beams reflected by the optical recording media. Provided between the detector, the optical recording medium, and the photodetector, ± 2nd order diffracted light is generated for the light beam of the first wavelength and is incident on the photodetector, and the abbreviated first wavelength. A diffraction grating that generates ± first-order diffracted light and makes it incident on the photodetector is provided for the light beam having the second wavelength that is doubled.

第1の波長の光ビームに対しては±2次回折光を生成するとともに、その2倍の第2の波長の光ビームに対しては±1次回折光を生成するよう、回折格子の格子パターンを選定することにより、第1の波長の光ビームの±2次回折光と第2の波長の光ビームの±1次回折光の回折角を略一致させることにより、当該第1の波長の光ビームの±2次回折光及び第2の波長の光ビームの±1次回折光を共通の光検出器に入射させることができる。   The grating pattern of the diffraction grating is generated so that ± 2nd order diffracted light is generated for the light beam of the first wavelength and ± 1st order diffracted light is generated for the light beam of the second wavelength that is twice that of the light beam. By selecting, by making the diffraction angles of the ± 2nd order diffracted light of the first wavelength light beam and the ± 1st order diffracted light of the second wavelength light beam substantially coincide, The ± first-order diffracted light of the second-order diffracted light and the light beam of the second wavelength can be made incident on the common photodetector.

本発明によれば、第1の波長の光ビームに対しては±2次回折光を生成するとともに、その2倍の第2の波長の光ビームに対しては±1次回折光を生成するよう、回折格子の格子パターンを選定することにより、第1の波長の光ビームの±2次回折光と第2の波長の光ビームの±1次回折光の回折角を略一致させることにより、当該第1の波長の光ビームの±2次回折光及び第2の波長の光ビームの±1次回折光を共通の光検出器に入射させることができ、これにより光検出器の数を最小限にして光ピックアップ装置を小型化できる。また、多層ディスク使用時における迷光の影響を削減できるとともに、光ビームの光束の全部分を用いて回折光を生成することができるため光ビームの利用効率を向上して光検出器の出力の信号レベルを高めることができることにより、信号の精度を向上して、複数種類の光ディスクに対して確実な動作を行い得る光ピックアップ装置を実現できる。   According to the present invention, ± 2nd order diffracted light is generated for the light beam of the first wavelength, and ± 1st order diffracted light is generated for the light beam of the second wavelength that is twice that of the light beam. By selecting the grating pattern of the diffraction grating, the diffraction angles of the ± 2nd order diffracted light of the light beam of the first wavelength and the ± 1st order diffracted light of the light beam of the second wavelength are made to substantially coincide with each other. The optical pickup device can make the ± 2nd order diffracted light of the light beam of the wavelength and the ± 1st order diffracted light of the light beam of the second wavelength incident on the common photodetector, thereby minimizing the number of the photodetectors. Can be miniaturized. In addition, the influence of stray light when using a multi-layer disc can be reduced, and diffracted light can be generated using the entire part of the light beam of the light beam, so the light beam output efficiency is improved and the output signal of the photodetector is improved. Since the level can be increased, it is possible to improve the accuracy of the signal and realize an optical pickup device capable of performing reliable operation on a plurality of types of optical disks.

以下図面について、本発明の一実施の形態を詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

(1)光ディスク装置の全体構成
図1において、1は全体として本発明を適用した光ディスク装置を示し、制御部2が、不揮発性メモリ(図示せず)に格納された基本プログラムやアプリケーションプログラムに従って当該光ディスク装置1の各部を制御するようになされている。
(1) Overall Configuration of Optical Disc Device In FIG. 1, reference numeral 1 denotes an optical disc device to which the present invention is applied as a whole, and the control unit 2 executes the program according to a basic program or application program stored in a nonvolatile memory (not shown). Each part of the optical disk apparatus 1 is controlled.

すなわち制御部2は、サーボ回路3を介してスピンドルモータ4を回転させ、ターンテーブル(図示せず)に載置された光ディスク8を回転駆動する。また制御部2は、サーボ回路3を介して送りモータ5を回転させ、光ピックアップ7を光ディスク8の半径方向に移動させる。さらに制御部2は信号処理部6を制御し、光ディスク8に対するデータの読出及び書込を実行させる。   That is, the control unit 2 rotates the spindle motor 4 via the servo circuit 3 and rotationally drives the optical disc 8 placed on a turntable (not shown). Further, the control unit 2 rotates the feed motor 5 via the servo circuit 3 to move the optical pickup 7 in the radial direction of the optical disk 8. Further, the control unit 2 controls the signal processing unit 6 to execute reading and writing of data with respect to the optical disc 8.

また制御部2は光ピックアップ7のレンズ駆動装置(図示せず)を制御し、当該光ピックアップ7の対物レンズをトラッキング方向及びフォーカス方向に駆動して、光ディスク8の記録面にレーザ光を合焦させる。   Further, the control unit 2 controls a lens driving device (not shown) of the optical pickup 7, drives the objective lens of the optical pickup 7 in the tracking direction and the focusing direction, and focuses the laser beam on the recording surface of the optical disk 8. Let

この光ディスク装置1はDVD、CD及びBDの3種類の光ディスクに対応しており、ディスク種別に応じた最適な光ビーム出力等の各種制御パラメータを不揮発メモリ(図示せず)に記憶している。そして制御部2は、装着された光ディスク8の種別を光ピックアップ7からの再生信号等に基づいて認識し、当該認識した種類に応じた制御パラメータを用いてレーザ出力や発光パターン、スピンドル回転数等を制御する。   The optical disc apparatus 1 is compatible with three types of optical discs of DVD, CD, and BD, and stores various control parameters such as an optimum light beam output corresponding to the disc type in a nonvolatile memory (not shown). The control unit 2 recognizes the type of the mounted optical disk 8 based on a reproduction signal from the optical pickup 7 and the like, and uses a control parameter corresponding to the recognized type to output a laser output, a light emission pattern, a spindle rotation speed, and the like. To control.

(2)光ピックアップの構成
図2は光ピックアップ7の構成を示し、DVDに対応する赤色レーザ光(波長660[nm])、CDに対応する赤外レーザ光(780[nm])及びBDに対応する青色レーザ光(波長405[nm])の3波長に対応したレーザダイオード9から、使用する光ディスク8の種類に応じた波長のレーザ光を出射光ビームとして出射し、偏光ビームスプリッタ10に入射させる。
(2) Configuration of Optical Pickup FIG. 2 shows the configuration of the optical pickup 7 for red laser light (wavelength 660 [nm]) corresponding to DVD, infrared laser light (780 [nm]) corresponding to CD, and BD. From the laser diode 9 corresponding to the three wavelengths of the corresponding blue laser light (wavelength 405 [nm]), a laser light having a wavelength corresponding to the type of the optical disk 8 to be used is emitted as an outgoing light beam and incident on the polarization beam splitter 10. Let

偏光ビームスプリッタ10は出射光ビームをその偏光面に応じて透過し、コリメータレンズ11で平行光に変換して1/4波長板12に入射する。1/4波長板12は出射光ビームをP偏光から円偏光へと変換して対物レンズ12に入射する。対物レンズ12は出射光ビームを集光して光ディスク8に照射する。   The polarization beam splitter 10 transmits the outgoing light beam according to its polarization plane, converts it into parallel light by the collimator lens 11, and enters the quarter-wave plate 12. The quarter-wave plate 12 converts the outgoing light beam from P-polarized light to circularly-polarized light and enters the objective lens 12. The objective lens 12 condenses the emitted light beam and irradiates the optical disk 8.

さらに対物レンズ12は、出射光ビームが光ディスク8で照射されてなる反射光ビームを集光し、1/4波長板12によって円偏光からS偏光へと変換してコリメータレンズ11に入射させる。コリメータレンズ11は、反射光ビームを平行光から収束光へと変換して偏光ビームスプリッタ10へと入射させる。   Furthermore, the objective lens 12 condenses the reflected light beam formed by irradiating the optical disk 8 with the emitted light beam, and converts the circularly polarized light into S-polarized light by the quarter wavelength plate 12 so as to enter the collimator lens 11. The collimator lens 11 converts the reflected light beam from parallel light into convergent light and makes it incident on the polarization beam splitter 10.

偏光ビームスプリッタ10は、反射光ビームをその偏光方向に応じて略全反射して回折格子14に入射させる。回折格子14は、反射光ビームをその波長に応じた回折角で+n次及び−n次(n=1、2、3、…)の回折光を生成し、受光素子15に照射する。ここで、+n次回折光及び−n次回折光はそれぞれ前焦点及び後焦点になっており、受光素子は受光した+n次回折光及び−n次回折光の光量に基づき、SSD法を用いてフォーカスエラー信号を生成するとともに、当該+n次回折光及び−n次回折光の光量に基づき再生信号を生成し、信号処理部6(図1)に供給する。   The polarization beam splitter 10 causes the reflected light beam to be substantially totally reflected in accordance with the polarization direction and enter the diffraction grating 14. The diffraction grating 14 generates + n-order and −n-order (n = 1, 2, 3,...) Diffracted light with a diffraction angle corresponding to the wavelength of the reflected light beam, and irradiates the light receiving element 15. Here, the + n-order diffracted light and the −n-order diffracted light are the front focal point and the back focal point, respectively, and the light receiving element generates a focus error signal using the SSD method based on the received light amounts of the + n-order diffracted light and the −n-order diffracted light. At the same time, a reproduction signal is generated based on the light amounts of the + n-order diffracted light and the −n-order diffracted light, and is supplied to the signal processing unit 6 (FIG. 1).

(3)回折格子の構造
次に、本発明による回折格子14の構造を詳細に説明する。図3(C)は回折格子14の格子パターンの断面形状、図4(C)は格子パターンの平面形状を示す。そして回折格子14は、主に波長405[nm]の光に対して作用する格子周期L/2かつ格子深さD1の第1の格子パターン14A(図3(A)、図4(A))と、主に波長660[nm]及び波長780[nm]の光に対して作用する格子周期Lかつ格子深さD2の第2の格子パターン14B(図3(B)、図4(B))とを重ね合わせた合成パターン(図3(C)、図4(C))を有している。図4(C)に示すように、回折格子14の格子パターンは2次曲線を配列したものとなっており、これにより当該回折格子14はシリンドリカルレンズの作用を示す。
(3) Structure of diffraction grating Next, the structure of the diffraction grating 14 according to the present invention will be described in detail. 3C shows the cross-sectional shape of the grating pattern of the diffraction grating 14, and FIG. 4C shows the planar shape of the grating pattern. The diffraction grating 14 is a first grating pattern 14A having a grating period L / 2 and a grating depth D1 mainly acting on light having a wavelength of 405 [nm] (FIGS. 3A and 4A). The second grating pattern 14B having a grating period L and a grating depth D2 mainly acting on light having a wavelength of 660 [nm] and a wavelength of 780 [nm] (FIGS. 3B and 4B) Are combined patterns (FIGS. 3C and 4C). As shown in FIG. 4C, the grating pattern of the diffraction grating 14 is an array of quadratic curves, whereby the diffraction grating 14 exhibits the action of a cylindrical lens.

第1の格子パターン14Aと第2の格子パターン14Bとが重ね合わされた回折格子14の格子パターンは、L/4、L/8、L/8、L/4、L/8、L/8の間隔で、格子深さがD1+D2、D2、0、D1、0、D2と変化している。   The grating pattern of the diffraction grating 14 in which the first grating pattern 14A and the second grating pattern 14B are overlapped is L / 4, L / 8, L / 8, L / 4, L / 8, L / 8. At intervals, the lattice depth changes as D1 + D2, D2, 0, D1, 0, D2.

なお、回折格子14の格子パターンとしては、図3(C)に示した格子パターンの山と谷を反転させたようなパターン(図3(D))を用いることもできる。この場合の格子パターンは、L/8、L/4、L/8、L/8、L/4、L/8の間隔で、格子深さがD1+D2、D2、D1+D2、D1、0、D1と変化している。   Note that as the grating pattern of the diffraction grating 14, a pattern (FIG. 3D) in which peaks and valleys of the grating pattern shown in FIG. The lattice pattern in this case is L / 8, L / 4, L / 8, L / 8, L / 4, L / 8, and the lattice depths are D1 + D2, D2, D1 + D2, D1, 0, D1. It has changed.

格子深さD1及びD2は、回折格子14の屈折率をnとしたとき、405[nm]の波長λに対して、D1=1.6×λ/(n−1)、D2=0.92×λ/(n−1)として定められる。そして、この実施例では回折格子14の屈折率は1.5であり、この場合格子深さD1は1.3[μm]、格子深さD2は0.75[μm]となる。   The grating depths D1 and D2 are D1 = 1.6 × λ / (n−1) and D2 = 0.92 with respect to a wavelength λ of 405 [nm], where n is the refractive index of the diffraction grating 14. Xλ / (n-1) In this embodiment, the refractive index of the diffraction grating 14 is 1.5. In this case, the grating depth D1 is 1.3 [μm], and the grating depth D2 is 0.75 [μm].

図5は格子間隔Lの回折格子における格子深さに対する回折効率の関係を示し、格子深さがD1=1.3[μm]の場合、波長405[nm]の光に対しては主として±1次回折光を発生し、波長660[nm]及び780[nm]の光に対しては主として0次回折光を発生する。第1の格子パターン14Aは格子周期がL/2かつ格子深さがD1であるから、当該第1の格子パターン14Aは波長405[nm]の光に対して±2次回折光を発生し、波長660[nm]及び780[nm]の光に対してはこれを透過することになる。   FIG. 5 shows the relationship of the diffraction efficiency to the grating depth in a diffraction grating having a grating interval L. When the grating depth is D1 = 1.3 [μm], it is mainly ± 1 for light with a wavelength of 405 [nm]. Next-order diffracted light is generated, and 0th-order diffracted light is mainly generated for light having wavelengths of 660 [nm] and 780 [nm]. Since the first grating pattern 14A has a grating period of L / 2 and a grating depth of D1, the first grating pattern 14A generates ± second-order diffracted light with respect to light having a wavelength of 405 [nm]. This transmits light of 660 [nm] and 780 [nm].

また格子深さがD2=0.75[μm]の場合、波長660[nm]及び780[nm]の光に対しては主として±1次回折光を発生し、波長405[nm]の光に対しては主として0次回折光を発生する。第2の格子パターン14Bは格子周期がLかつ格子深さがD2であるから、当該第2の格子パターン14Bは波長660[nm]及び780[nm]の光に対して±1次回折光を発生し、波長405[nm]の光に対してはこれを透過することになる。   In addition, when the grating depth is D2 = 0.75 [μm], ± 1st order diffracted light is mainly generated for light of wavelengths 660 [nm] and 780 [nm], and for light of wavelength 405 [nm]. Mainly generate 0th-order diffracted light. Since the second grating pattern 14B has a grating period of L and a grating depth of D2, the second grating pattern 14B generates ± first-order diffracted light with respect to light having wavelengths of 660 [nm] and 780 [nm]. In addition, light having a wavelength of 405 [nm] is transmitted.

そして、第1の格子パターン14Aと第2の格子パターン14Bとが重ね合わされてなる回折格子14は、波長405[nm]の光に対しては格子周期L/2かつ格子深さD1のパターンが作用して±2次回折光を発生し、波長660[nm]及び780[nm]の光に対しては格子周期Lかつ格子深さD2のパターンが作用して±1次回折光を発生する。   The diffraction grating 14 formed by superimposing the first grating pattern 14A and the second grating pattern 14B has a pattern with a grating period L / 2 and a grating depth D1 for light having a wavelength of 405 [nm]. It acts to generate ± 2nd order diffracted light, and a pattern having a grating period L and a grating depth D2 acts on light of wavelengths 660 [nm] and 780 [nm] to generate ± 1st order diffracted light.

図6(A)〜図6(C)は、回折格子14による0次〜±7次までの回折効率を波長別に示したものであり、波長405[nm]の光については、図6(A)に示すように±2次回折光が支配的であり、波長660[nm]及び780[nm]の光については、図6(B)及び図6(C)に示すように±1次回折光が支配的であることがわかる。   FIGS. 6A to 6C show the diffraction efficiency from the 0th order to the ± 7th order by the diffraction grating 14 for each wavelength, and the light of wavelength 405 [nm] is shown in FIG. ), The ± 2nd order diffracted light is dominant, and the light of wavelengths 660 [nm] and 780 [nm] is ± 1st order diffracted light as shown in FIG. 6 (B) and FIG. 6 (C). It turns out that it is dominant.

ここで、回折格子による回折角度は波長に比例するため、波長405[nm]の±2次回折光及び波長780[nm]の±1次回折光はその回折角度がほぼ一致する。また、波長660[nm]の±1次回折光及び波長780[nm]の±1次回折光はその回折角度が近い値になる。このため、波長405[nm]の±2次回折光、波長780[nm]の±1次回折光及び波長660[nm]の±1次回折光を、共通の光検出器で受光することが可能になる。   Here, since the diffraction angle by the diffraction grating is proportional to the wavelength, the diffraction angles of the ± 2nd order diffracted light having the wavelength of 405 [nm] and the ± 1st order diffracted light having the wavelength of 780 [nm] are substantially the same. Also, the ± 1st order diffracted light of wavelength 660 [nm] and the ± 1st order diffracted light of wavelength 780 [nm] have close diffraction angles. Therefore, ± 2nd order diffracted light having a wavelength of 405 [nm], ± 1st order diffracted light having a wavelength of 780 [nm], and ± 1st order diffracted light having a wavelength of 660 [nm] can be received by a common photodetector. .

図7(A)は、受光素子15の光検出器15A及び15Bに対する各波長の±2次回折光の照射状態を示し、当該光検出器15A及び15Bに対して波長405[nm]の±2次回折光のみが到達している。一方、図7(B)は、光検出器15A及び15Bに対する各波長の±1次回折光の照射状態を示し、当該光検出器15A及び15Bに対して波長660[nm]及び780[nm]の±1次回折光のみが到達している。   FIG. 7A shows the irradiation state of ± 2nd order diffracted light of each wavelength with respect to the photodetectors 15A and 15B of the light receiving element 15, and ± 2 next time with a wavelength of 405 [nm] to the photodetectors 15A and 15B. Only Origami has arrived. On the other hand, FIG. 7B shows the irradiation state of ± 1st order diffracted light of each wavelength with respect to the photodetectors 15A and 15B, and the wavelengths of 660 [nm] and 780 [nm] with respect to the photodetectors 15A and 15B. Only ± first-order diffracted light has reached.

すなわち、波長405[nm]のレーザ光を用いるBD使用時には、光検出器15A及び15Bに対して±2次回折光のみが照射され、他の次数の回折光は光検出器15A及び15Bに影響を及ぼさない。また、波長660[nm]のレーザ光を用いるDVD使用時及び780[nm]のレーザ光を用いるCD使用時には、光検出器15A及び15Bに対して±1次回折光のみが照射され、他の次数の回折光は光検出器15A及び15Bに影響を及ぼさない。   That is, when using a BD using a laser beam having a wavelength of 405 [nm], only the ± 2nd-order diffracted light is irradiated to the photodetectors 15A and 15B, and diffracted light of other orders affects the photodetectors 15A and 15B. Does not reach. Further, when using a DVD using a laser beam having a wavelength of 660 [nm] and using a CD using a laser beam having a wavelength of 780 [nm], only the ± first-order diffracted light is applied to the photodetectors 15A and 15B, and the other orders. Diffracted light does not affect the photodetectors 15A and 15B.

光検出器15Aの受光面は短冊状に受光面A、E及びBに分割されており、同様に光検出器15Bの受光面は受光面C、F及びDに分割されている。受光素子15は各受光面A〜Fの出力信号を電流/電圧変換して検出信号A〜Fを生成し、さらにSSD法の演算式FE=(A+B+F)−(C+D+E)を用いてフォーカスエラー信号FEを生成して信号処理部6(図1)に供給する。   The light-receiving surface of the photodetector 15A is divided into light-receiving surfaces A, E, and B in a strip shape. Similarly, the light-receiving surface of the photodetector 15B is divided into light-receiving surfaces C, F, and D. The light receiving element 15 performs current / voltage conversion on the output signals of the light receiving surfaces A to F to generate detection signals A to F, and further, a focus error signal using an arithmetic expression FE = (A + B + F) − (C + D + E) of the SSD method. An FE is generated and supplied to the signal processing unit 6 (FIG. 1).

また、回折格子による回折角度は波長に比例するため、回折格子のレンズパワーも波長に比例する。そしてこの光ピックアップ7では、波長405[nm]については±2次回折光を使用し、波長660[nm]及び780[nm]については±1次回折光を使用するため、これらのレンズパワーはほぼ同等となる。これにより光ピックアップ7では、DVD、CD及びBDそれぞれに対して、最適なフォーカス引き込み範囲を設定することができる。   Further, since the diffraction angle by the diffraction grating is proportional to the wavelength, the lens power of the diffraction grating is also proportional to the wavelength. Since this optical pickup 7 uses ± 2nd order diffracted light for wavelength 405 [nm] and ± 1st order diffracted light for wavelengths 660 [nm] and 780 [nm], these lens powers are almost equal. It becomes. As a result, the optical pickup 7 can set an optimum focus pull-in range for each of DVD, CD, and BD.

図8(A)〜図8(C)は、波長405[nm]の±2次回折光、波長660[nm]の±1次回折光及び780[nm]の±1次回折光の焦点位置を示したものであり、それぞれ、光検出器の受光面からyBD、yDVD、yCDだけデフォーカスした位置に焦点を結んでいる。 8A to 8C show the focal positions of ± 2nd order diffracted light having a wavelength of 405 [nm], ± 1st order diffracted light having a wavelength of 660 [nm], and ± 1st order diffracted light having a wavelength of 780 [nm]. Each of them focuses on a position defocused by y BD , y DVD , and y CD from the light receiving surface of the photodetector.

ここで、例えばBDにおけるフォーカス引き込み範囲Xは、横倍率(コリメータレンズ焦点距離に対する対物レンズ焦点距離の比)をβとすると、X=yBD/β2にて求められる。通常、BDにおけるフォーカス引き込み範囲Xは3[μm]、横倍率βは12が妥当であり、これによってyBDが設定される。 Here, for example, the focus pull-in range X in BD is obtained by X = y BD / β 2 where β is the lateral magnification (ratio of the objective lens focal length to the collimator lens focal length). Normally, a focus pull-in range X in BD is 3 [μm], and a lateral magnification β is 12, which sets y BD .

本発明の光ピックアップ7におけるデフォーカス位置yBD、yDVD、yCDの関係は、yDVD=660[nm]/ (405[nm]×2 )×yBD、yCD=780[nm]/(405[nm]×2 )×yBDとなっている。また通常、DVD、CDの横倍率はそれぞれ6、4.5が妥当である。これにより、本発明の光ピックアップ7におけるフォーカス引き込み範囲Xは、図9(A)に示すように、BDに対して3[μm]、DVDに対して10[μm]、CDに対して21[μm]と、光ピックアップとして適当な値とすることが可能となる。 The relationship between the defocus positions y BD , y DVD , and y CD in the optical pickup 7 of the present invention is as follows: y DVD = 660 [nm] / (405 [nm] × 2) × y BD , y CD = 780 [nm] / (405 [nm] × 2) × y BD . In general, it is appropriate that the lateral magnifications of DVD and CD are 6 and 4.5, respectively. As a result, the focus pull-in range X in the optical pickup 7 of the present invention is 3 [μm] for BD, 10 [μm] for DVD, and 21 [CD] for CD, as shown in FIG. μm] and an appropriate value as an optical pickup can be obtained.

また、一般的なDVD/CD互換対物レンズを用いた光ピックアップの場合、CDの横倍率はDVDと同じ6となるが、この場合でも、図9(B)に示すように、CDに対するフォーカス引き込み範囲Xは12[μm]となり、実用的なフォーカス引き込み範囲を実現できる。   Further, in the case of an optical pickup using a general DVD / CD compatible objective lens, the lateral magnification of the CD is 6, which is the same as that of the DVD, but even in this case, as shown in FIG. The range X is 12 [μm], and a practical focus pull-in range can be realized.

(4)動作及び効果
以上の構成において、この光ピックアップ7では、波長405[nm]の光ビームに対しては±2次回折光を発生すると共に波長660[nm]及び波長780[nm]の光ビームに対しては±1次回折光を発生するように、回折格子14の格子パターンを設定した。
(4) Operation and Effect In the above configuration, the optical pickup 7 generates ± second-order diffracted light with respect to the light beam having a wavelength of 405 [nm] and light having a wavelength of 660 [nm] and a wavelength of 780 [nm]. The grating pattern of the diffraction grating 14 was set so that ± 1st order diffracted light was generated for the beam.

このためこの光ピックアップ7では、波長405[nm]の±2次回折光の回折角と、波長660[nm]及び波長780[nm]の±1次回折光の回折角とが近い値となって、受光素子15上の近い範囲に照射することができ、これらを共通の光検出器15A及び15Bで受光できる。   For this reason, in this optical pickup 7, the diffraction angle of ± 2nd order diffracted light with a wavelength of 405 [nm] is close to the diffraction angle of ± 1st order diffracted light with a wavelength of 660 [nm] and a wavelength of 780 [nm], It is possible to irradiate a close range on the light receiving element 15, and these can be received by the common photodetectors 15A and 15B.

これによりこの光ピックアップ7では、受光素子15上に設ける光検出器の数を最小限にでき、さらには光検出器の出力を電流/電圧変換するための受光素子15上のアンプの数をも削減して、受光素子15を小型化及び低消費電力化でき、ひいては光ピックアップ7及び光ディスク装置1を小型化及び低消費電力化できる。そして、波長405[nm]の±2次回折光と波長660[nm]及び波長780[nm]の±1次回折光とが近い範囲に照射されることから、これらを受光する光検出器15A及び15Bの受光面積を削減でき、このため光検出器15A及び15Bの寄生容量が小さくなって、これにより光検出器15A及び15Bの周波数特性が向上して、より精度の高い信号を生成することができる。   As a result, in this optical pickup 7, the number of photodetectors provided on the light receiving element 15 can be minimized, and further, the number of amplifiers on the light receiving element 15 for current / voltage conversion of the output of the photodetector can be increased. Thus, the light receiving element 15 can be reduced in size and power consumption, and the optical pickup 7 and the optical disc apparatus 1 can be reduced in size and power consumption. Since ± 2nd order diffracted light with a wavelength of 405 [nm] and ± 1st order diffracted light with a wavelength of 660 [nm] and a wavelength of 780 [nm] are irradiated in a close range, the photodetectors 15A and 15B that receive them are received. Light receiving area can be reduced, and the parasitic capacitances of the photodetectors 15A and 15B can be reduced, thereby improving the frequency characteristics of the photodetectors 15A and 15B and generating more accurate signals. .

またこの光ピックアップ7では、波長405[nm]の±2次回折光を生成するL/2周期の格子パターンと、波長660[nm]及び波長780[nm]の±1次回折光を生成するL周期の格子パターンとを重ねて、回折格子14の格子パターンを形成したことにより、当該回折格子14に入射する反射光ビームの光束の全部分を用いて回折光を生成することができる。このため、この光ピックアップ7では反射光ビームの利用効率が高く、光検出器15A及び15Bに入射する回折光の光量を高めることができ、これにより光検出器の出力の信号レベルが高まって、ノイズの影響を低減してより精度の高い信号を生成することができる。   Further, in this optical pickup 7, an L / 2 period grating pattern for generating ± 2nd order diffracted light having a wavelength of 405 [nm] and an L period for generating ± 1st order diffracted light having a wavelength of 660 [nm] and a wavelength of 780 [nm]. When the grating pattern of the diffraction grating 14 is formed by superimposing the grating pattern, the diffracted light can be generated using the entire portion of the reflected light beam incident on the diffraction grating 14. For this reason, this optical pickup 7 has high utilization efficiency of the reflected light beam, and can increase the amount of diffracted light incident on the photodetectors 15A and 15B, thereby increasing the signal level of the output of the photodetector, It is possible to reduce the influence of noise and generate a more accurate signal.

またこの光ピックアップ7では、受光素子15上に設ける光検出器の数を最小限にできることから、多層ディスク使用時における非合焦記録層からの迷光が光検出器に入射することによる影響を最小限にして、より精度の高い信号を生成することができる。   Further, in this optical pickup 7, since the number of photodetectors provided on the light receiving element 15 can be minimized, the influence of stray light from the unfocused recording layer entering the photodetector when using a multilayer disk is minimized. In the limit, a signal with higher accuracy can be generated.

さらにこの光ピックアップ7では、BD、DVD及びCDそれぞれに対して適切なフォーカス引き込み範囲を設定することができ、これによりサーボ特性が安定し、ひいては再生信号の特性も向上する。また、装置の衝突などの外乱に対する耐性も向上される。また、フォーカス引き込み範囲を最適に設定することができるということは、BD、DVD及びCDそれぞれの横倍率を最適に設定することができるということでもあり、これによって、光の利用効率を最適化することが可能となり、レーザダイオードの消費電力の低減や、信頼性の向上も図ることができる。   Furthermore, with this optical pickup 7, it is possible to set an appropriate focus pull-in range for each of BD, DVD, and CD, whereby the servo characteristics are stabilized and the reproduction signal characteristics are also improved. Also, resistance to disturbances such as device collisions is improved. In addition, the fact that the focus pull-in range can be optimally set also means that the lateral magnification of each of BD, DVD and CD can be optimally set, thereby optimizing the light utilization efficiency. Therefore, the power consumption of the laser diode can be reduced and the reliability can be improved.

(5)他の実施の形態
なお上述の実施の形態においては、レーザダイオード9や偏光ビームスプリッタ10等の各光学素子が個別にシャシーに搭載された形態の光ピックアップ7に本発明を適用した場合について述べたが、本発明はこれに限らず、各種光学素子が一体化された光学集積素子を用いた光ピックアップ7に本発明を適用することもできる。
(5) Other Embodiments In the above-described embodiment, the present invention is applied to the optical pickup 7 in which each optical element such as the laser diode 9 and the polarization beam splitter 10 is individually mounted on the chassis. However, the present invention is not limited to this, and the present invention can also be applied to an optical pickup 7 using an optical integrated element in which various optical elements are integrated.

図2との対応部分に共通符号を付して示す図10は、このような構成の光ピックアップ20を示し、光学集積素子21、コリメータレンズ11、1/4波長板12、及び対物レンズ13が、例えばアルミダイキャスト成型品でなる図示しない光ピックアップベースにマウントされて構成されている。   FIG. 10, in which parts corresponding to those in FIG. 2 are given common reference numerals, shows the optical pickup 20 having such a configuration, and includes an optical integrated element 21, a collimator lens 11, a quarter-wave plate 12, and an objective lens 13. For example, it is mounted on an optical pickup base (not shown) made of an aluminum die cast product.

光学集積素子21は、レーザダイオード9等を内蔵して封止したパッケージ22に対して各種部品が組み付けられて構成されている。すなわちパッケージ22の上面には、光ディスク8で反射された反射レーザ光から再生信号やフォーカスエラー信号を得るための受光素子15が取り付けられているとともに、回折格子14やホログラム23Bを有するモールド複合素子23がスペーサ24を介して取り付けられている。さらに、モールド複合素子23の上面には、複数個のプリズムを組み合わせて構成された積層プリズム25が取り付けられている。   The optical integrated element 21 is configured by assembling various components to a package 22 in which a laser diode 9 or the like is embedded and sealed. That is, a light receiving element 15 for obtaining a reproduction signal and a focus error signal from the reflected laser light reflected by the optical disk 8 is attached to the upper surface of the package 22, and a mold composite element 23 having a diffraction grating 14 and a hologram 23B. Is attached via a spacer 24. Furthermore, a laminated prism 25 configured by combining a plurality of prisms is attached to the upper surface of the mold composite element 23.

パッケージ22は例えばセラミックスで成型された箱状でなり、その内部には、レーザダイオード9、プリズム32及び第2の受光素子33が配置されている。そして、パッケージ21の周面部の下端には、パッケージ22の開口部全体を覆う反射リッド21Aが取り付けられており、レーザダイオード9、プリズム32及び第2の受光素子33はパッケージ22の内部に封止される。   The package 22 has a box shape formed of ceramics, for example, and a laser diode 9, a prism 32, and a second light receiving element 33 are disposed therein. A reflective lid 21A that covers the entire opening of the package 22 is attached to the lower end of the peripheral surface portion of the package 21. The laser diode 9, the prism 32, and the second light receiving element 33 are sealed inside the package 22. Is done.

プリズム32は、レーザダイオード9から出射されたレーザ光の光路を変更する光路変更体として機能する。すなわち、プリズム32におけるレーザ光の入射方向には、当該レーザ光の光路に対して45°上方に傾斜した反射面32Aが設けられており、当該反射面32Aはレーザ光の約80%を出射光ビームとして上方に反射するとともに、残りの20%をモニタ光ビームとして透過する。   The prism 32 functions as an optical path changing body that changes the optical path of the laser light emitted from the laser diode 9. That is, in the incident direction of the laser beam in the prism 32, a reflecting surface 32A inclined upward by 45 ° with respect to the optical path of the laser beam is provided, and the reflecting surface 32A emits about 80% of the laser beam. Reflects upward as a beam and transmits the remaining 20% as a monitor light beam.

プリズム32の反射面32Aを透過したモニタ光ビームは、当該プリズム32によって下方に屈折されて反射リッド21Aの上面に導かれる。反射リッド21Aの上面には反射面が形成されており、反射リッド21Aはプリズム32からのモニタ光ビームを当該反射面で反射して、第2の受光素子33のモニタ光検出器(図示せず)に入射させる。このモニタ光ビームの光量はレーザダイオード9の発光パワーに比例しており、モニタ光検出器は当該モニタ光ビームの入射光量に応じて、レーザダイオード9の発光パワーに比例した検出電流を生成する。   The monitor light beam transmitted through the reflecting surface 32A of the prism 32 is refracted downward by the prism 32 and guided to the upper surface of the reflecting lid 21A. A reflective surface is formed on the upper surface of the reflective lid 21A, and the reflective lid 21A reflects the monitor light beam from the prism 32 on the reflective surface, and a monitor light detector (not shown) of the second light receiving element 33. ). The light amount of the monitor light beam is proportional to the light emission power of the laser diode 9, and the monitor light detector generates a detection current proportional to the light emission power of the laser diode 9 according to the incident light amount of the monitor light beam.

一方、プリズム32の反射面32Aで反射された出射光ビームは、パッケージ22に開口された出射孔を透過し、積層プリズム24の偏光ビームスプリッタ10に入射される。   On the other hand, the outgoing light beam reflected by the reflecting surface 32 </ b> A of the prism 32 passes through the outgoing hole opened in the package 22 and enters the polarizing beam splitter 10 of the laminated prism 24.

偏光ビームスプリッタ10は出射光ビームをその偏光面に応じて透過し、コリメータレンズ11で平行光に変換して1/4波長板12に入射する。1/4波長板12は出射光ビームをP偏光から円偏光へと変換して対物レンズ12に入射する。対物レンズ12は出射光ビームを集光して光ディスク8に照射する。   The polarization beam splitter 10 transmits the outgoing light beam according to its polarization plane, converts it into parallel light by the collimator lens 11, and enters the quarter-wave plate 12. The quarter-wave plate 12 converts the outgoing light beam from P-polarized light to circularly-polarized light and enters the objective lens 12. The objective lens 12 condenses the emitted light beam and irradiates the optical disk 8.

さらに対物レンズ12は、出射光ビームが光ディスク8で照射されてなる反射光ビームを集光し、1/4波長板12によって円偏光からS偏光へと変換してコリメータレンズ11に入射させる。コリメータレンズ11は、反射光ビームを平行光から収束光へと変換して偏光ビームスプリッタ10へと入射させる。   Furthermore, the objective lens 12 condenses the reflected light beam formed by irradiating the optical disk 8 with the emitted light beam, and converts the circularly polarized light into S-polarized light by the quarter wavelength plate 12 so as to enter the collimator lens 11. The collimator lens 11 converts the reflected light beam from parallel light into convergent light and makes it incident on the polarization beam splitter 10.

偏光ビームスプリッタ10は、反射光ビームをその偏光方向に応じて略全反射してハーフミラー24Bに入射させる。ハーフミラー24Bは、反射光ビームの一部を90度反射してモールド複合素子23の回折格子14に入射し、当該回折格子14によって回折される+及び−の回折光を、受光素子15のフォーカスエラー信号生成用光検出器(図示せず)に入射させる。またハーフミラー24Bは、反射レーザ光の残りを透過し、全反射ミラー24Cを介して受光素子12の再生信号生成用光検出器(図示せず)に入射させる。   The polarization beam splitter 10 causes the reflected light beam to be substantially totally reflected in accordance with the polarization direction and enter the half mirror 24B. The half mirror 24 </ b> B reflects a part of the reflected light beam by 90 degrees and enters the diffraction grating 14 of the mold composite element 23, and the + and − diffracted lights diffracted by the diffraction grating 14 are focused on the light receiving element 15. The light is incident on an error signal generating photodetector (not shown). The half mirror 24B transmits the remainder of the reflected laser light and makes it incident on a reproduction signal generating photodetector (not shown) of the light receiving element 12 through the total reflection mirror 24C.

このような光学集積素子21を用いた光ピックアップ20においても、上述した回折特性を有する回折格子14を用いることにより、光検出器やアンプの数を最小限にして受光素子15の小型化及び低消費電力化、周波数特性や反射光ビームの利用効率の向上、多層ディスク使用時における迷光の影響の削減、フォーカス引き込み範囲の適正化といった効果を得ることができる。   Also in the optical pickup 20 using such an optical integrated element 21, by using the diffraction grating 14 having the above-described diffraction characteristics, the number of photodetectors and amplifiers can be minimized, and the light receiving element 15 can be reduced in size and size. It is possible to obtain effects such as power consumption, improvement of frequency characteristics and use efficiency of reflected light beam, reduction of influence of stray light when using a multilayer disk, and optimization of a focus pull-in range.

さらに上述の実施の形態においては、BD、DVD及びCDの3種類の光ディスクに対応した光ディスク装置に本発明を適用した場合について述べたが、本発明はこれに限らず、回折格子14の格子パターンを適切に設定することにより、この他種々の複数種類の光ディスクに対応した光ディスク装置に本発明を適用することができる。   Further, in the above-described embodiment, the case where the present invention is applied to the optical disk apparatus corresponding to the three types of optical disks of BD, DVD, and CD has been described. However, the present invention is not limited to this, and the grating pattern of the diffraction grating 14 By appropriately setting the above, the present invention can be applied to an optical disc apparatus corresponding to various other types of optical discs.

本発明は、複数種類の光ディスクに対応した光ディスク装置に適用できる。   The present invention can be applied to an optical disc apparatus corresponding to a plurality of types of optical discs.

光ディスク装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of an optical disk device. 光ピックアップの構成を示す略線図である。It is a basic diagram which shows the structure of an optical pick-up. 本発明による回折格子の断面形状を示す略線図である。It is a basic diagram which shows the cross-sectional shape of the diffraction grating by this invention. 本発明による回折格子の格子パターンを示す略線図である。It is a basic diagram which shows the grating pattern of the diffraction grating by this invention. 格子深さと回折効率の関係を示すグラフである。It is a graph which shows the relationship between a grating depth and diffraction efficiency. 回折次数と回折効率の関係を示すグラフである。It is a graph which shows the relationship between a diffraction order and diffraction efficiency. 光検出器に対する回折光の照射状態を示す略線図である。It is a basic diagram which shows the irradiation state of the diffracted light with respect to a photodetector. 各波長についてのデフォーカス位置の説明に供する略線図である。It is a basic diagram with which it uses for description of the defocus position about each wavelength. 各波長についてのフォーカス引込範囲を示す表である。It is a table | surface which shows the focus drawing-in range about each wavelength. 他の実施の形態の光ピックアップの構成を示す略線図である。It is a basic diagram which shows the structure of the optical pick-up of other embodiment.

符号の説明Explanation of symbols

1……光ディスク装置、2……制御部、3……サーボ回路、4……スピンドルモータ、5……送りモータ、6……信号処理部、7……光ピックアップ、8……光ディスク、9……レーザダイオード、10……偏光ビームスプリッタ、11……コリメータレンズ、12……1/4波長板、13……対物レンズ、14……回折格子、15……受光素子。   DESCRIPTION OF SYMBOLS 1 ... Optical disk apparatus, 2 ... Control part, 3 ... Servo circuit, 4 ... Spindle motor, 5 ... Feed motor, 6 ... Signal processing part, 7 ... Optical pick-up, 8 ... Optical disk, 9 ... DESCRIPTION OF SYMBOLS Laser diode, 10 ... Polarizing beam splitter, 11 ... Collimator lens, 12 ... 1/4 wavelength plate, 13 ... Objective lens, 14 ... Diffraction grating, 15 ... Light receiving element.

Claims (9)

それぞれ異なる波長の光ビームを用いて情報を読み出す複数種類の光記録媒体に対応した光ピックアップ装置であって、
上記光記録媒体で反射された光ビームを受光する光検出器と、
上記光記録媒体と上記光検出器との間に設けられ、第1の波長の光ビームに対しては±2次回折光を生成して上記光検出器に入射させ、上記第1の波長の略2倍の波長でなる第2の波長の光ビームに対しては±1次回折光を生成して上記光検出器に入射させる回折格子と
を具えることを特徴とする光ピックアップ装置。
An optical pickup device corresponding to a plurality of types of optical recording media for reading information using light beams of different wavelengths,
A photodetector for receiving the light beam reflected by the optical recording medium;
Provided between the optical recording medium and the optical detector, ± 2nd order diffracted light is generated and incident on the optical detector with respect to the optical beam of the first wavelength, and the first wavelength is approximately An optical pickup device comprising: a diffraction grating that generates ± first-order diffracted light and makes it incident on the photodetector for a light beam having a second wavelength that is twice the wavelength.
上記第1の波長は略405[nm]でなり、上記第2の波長は略660[nm]又は略780[nm]でなる
ことを特徴とする請求項1に記載の光ピックアップ装置。
The optical pickup device according to claim 1, wherein the first wavelength is approximately 405 [nm], and the second wavelength is approximately 660 [nm] or approximately 780 [nm].
上記回折格子は、上記第1の波長の光ビームに対して±2次回折光を生成する第1の格子パターンと、上記第2の波長の光ビームに対して±1次回折光を生成する第2の格子パターンとを重ねた合成格子パターンを有する
ことを特徴とする請求項2に記載の光ピックアップ装置。
The diffraction grating has a first grating pattern that generates ± 2nd order diffracted light with respect to the light beam with the first wavelength, and a second that generates ± 1st order diffracted light with respect to the light beam with the second wavelength. The optical pickup device according to claim 2, wherein the optical pickup device has a composite lattice pattern in which the lattice pattern is superimposed.
上記第1の格子パターンは格子周期L/2かつ格子深さD1でなり、上記第2の格子パターンは格子周期Lかつ格子深さD2でなり、上記合成格子パターンは、略L/4、L/8、L/8、L/4、L/8、L/8の間隔で、格子深さが略D1+D2、D2、0、D1、0、D2でなる
ことを特徴とする請求項3に記載の光ピックアップ装置。
The first grating pattern has a grating period L / 2 and a grating depth D1, the second grating pattern has a grating period L and a grating depth D2, and the synthesized grating pattern has approximately L / 4, L The lattice depth is substantially D1 + D2, D2, 0, D1, 0, D2 at intervals of / 8, L / 8, L / 4, L / 8, and L / 8. Optical pickup device.
上記回折格子の屈折率をnとし、波長λを405[nm]としたとき、上記格子深さD1が略1.6×λ/(n−1)、上記格子深さD2が略0.92×λ/(n−1)でなる
ことを特徴とする請求項4に記載の光ピックアップ装置。
When the refractive index of the diffraction grating is n and the wavelength λ is 405 [nm], the grating depth D1 is approximately 1.6 × λ / (n−1), and the grating depth D2 is approximately 0.92. The optical pickup device according to claim 4, wherein xλ / (n−1).
上記第1の格子パターンは格子周期L/2かつ格子深さD1でなり、上記第2の格子パターンは格子周期Lかつ格子深さD2でなり、上記合成格子パターンは、略L/8、L/4、L/8、L/8、L/4、L/8の間隔で、格子深さが略D1+D2、D2、D1+D2、D1、0、D1でなる
ことを特徴とする請求項3に記載の光ピックアップ装置。
The first grating pattern has a grating period L / 2 and a grating depth D1, the second grating pattern has a grating period L and a grating depth D2, and the synthesized grating pattern has approximately L / 8, L The lattice depth is substantially D1 + D2, D2, D1 + D2, D1, 0, D1 at intervals of / 4, L / 8, L / 8, L / 4, and L / 8. Optical pickup device.
上記回折格子の屈折率をnとし、波長λを405[nm]としたとき、上記格子深さD1が略1.6×λ/(n−1)、上記格子深さD2が略0.92×λ/(n−1)でなる
ことを特徴とする請求項6に記載の光ピックアップ装置。
When the refractive index of the diffraction grating is n and the wavelength λ is 405 [nm], the grating depth D1 is approximately 1.6 × λ / (n−1), and the grating depth D2 is approximately 0.92. The optical pickup device according to claim 6, wherein xλ / (n−1).
上記第1の波長の光ビームの±2次回折光又は上記第2の波長の光ビームの±1次回折光のスポットサイズを上記光検出器で検出した検出結果に基づいて、フォーカスエラー信号を生成する
ことを特徴とする請求項1に記載の光ピックアップ装置。
A focus error signal is generated based on the detection result of detecting the spot size of the ± 2nd order diffracted light of the light beam of the first wavelength or the ± 1st order diffracted light of the light beam of the second wavelength by the photodetector. The optical pickup device according to claim 1.
それぞれ異なる波長の光ビームを用いて情報を読み出す複数種類の光記録媒体に対応した光ディスク装置であって、
上記光記録媒体で反射された光ビームを受光する光検出器と、
上記光記録媒体と上記光検出器との間に設けられ、第1の波長の光ビームに対しては±2次回折光を生成して上記光検出器に入射させ、上記第1の波長の略2倍の波長でなる第2の波長の光ビームに対しては±1次回折光を生成して上記光検出器に入射させる回折格子と
を具えることを特徴とする光ディスク装置。
An optical disc apparatus corresponding to a plurality of types of optical recording media for reading information using light beams of different wavelengths,
A photodetector for receiving the light beam reflected by the optical recording medium;
Provided between the optical recording medium and the optical detector, ± 2nd order diffracted light is generated and incident on the optical detector with respect to the optical beam of the first wavelength, and the first wavelength is approximately An optical disc apparatus comprising: a diffraction grating that generates ± first-order diffracted light and makes it incident on the photodetector for a light beam having a second wavelength that is twice the wavelength.
JP2006039986A 2006-02-16 2006-02-16 Optical pickup device and optical disk device Expired - Fee Related JP4737536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039986A JP4737536B2 (en) 2006-02-16 2006-02-16 Optical pickup device and optical disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039986A JP4737536B2 (en) 2006-02-16 2006-02-16 Optical pickup device and optical disk device

Publications (2)

Publication Number Publication Date
JP2007220215A true JP2007220215A (en) 2007-08-30
JP4737536B2 JP4737536B2 (en) 2011-08-03

Family

ID=38497322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039986A Expired - Fee Related JP4737536B2 (en) 2006-02-16 2006-02-16 Optical pickup device and optical disk device

Country Status (1)

Country Link
JP (1) JP4737536B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140551A (en) * 2007-12-05 2009-06-25 Sony Corp Optical pickup and optical disk drive unit
JP2010146608A (en) * 2008-12-16 2010-07-01 Sony Corp Optical integrated device, method for detecting light, optical pickup, and optical disc apparatus
US7986595B2 (en) 2007-11-22 2011-07-26 Sony Corporation Optical pickup and optical device for three different types of optical discs
WO2020017214A1 (en) * 2018-07-20 2020-01-23 パナソニック株式会社 Light-emitting device, optical device, and wavelength combining method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349050A (en) * 1989-07-17 1991-03-01 Matsushita Electric Ind Co Ltd Optical head device
JP2001256667A (en) * 2000-03-10 2001-09-21 Sankyo Seiki Mfg Co Ltd Optical pickup device and its light-receiving method
JP2004501479A (en) * 2000-05-30 2004-01-15 トムソン ライセンシング ソシエテ アノニム Apparatus for reading from and / or writing to optical recording media
JP2004213854A (en) * 2002-12-30 2004-07-29 Samsung Electro Mech Co Ltd Optical pickup apparatus using hologram optical element and method of forming hologram pattern
WO2004068480A1 (en) * 2003-01-30 2004-08-12 Matsushita Electric Industrial Co., Ltd. Optical head and device and system provided with this
JP2004281034A (en) * 2003-02-27 2004-10-07 Matsushita Electric Ind Co Ltd Optical head device, optical information device using same, computer, optical disk player, car-navigation system, optical disk recorder, and optical disk server
JP2004327003A (en) * 2002-07-26 2004-11-18 Sharp Corp Optical pickup
WO2006013526A2 (en) * 2004-07-27 2006-02-09 Koninklijke Philips Electronics N.V. Diffractive part

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349050A (en) * 1989-07-17 1991-03-01 Matsushita Electric Ind Co Ltd Optical head device
JP2001256667A (en) * 2000-03-10 2001-09-21 Sankyo Seiki Mfg Co Ltd Optical pickup device and its light-receiving method
JP2004501479A (en) * 2000-05-30 2004-01-15 トムソン ライセンシング ソシエテ アノニム Apparatus for reading from and / or writing to optical recording media
JP2004327003A (en) * 2002-07-26 2004-11-18 Sharp Corp Optical pickup
JP2004213854A (en) * 2002-12-30 2004-07-29 Samsung Electro Mech Co Ltd Optical pickup apparatus using hologram optical element and method of forming hologram pattern
WO2004068480A1 (en) * 2003-01-30 2004-08-12 Matsushita Electric Industrial Co., Ltd. Optical head and device and system provided with this
JP2004281034A (en) * 2003-02-27 2004-10-07 Matsushita Electric Ind Co Ltd Optical head device, optical information device using same, computer, optical disk player, car-navigation system, optical disk recorder, and optical disk server
WO2006013526A2 (en) * 2004-07-27 2006-02-09 Koninklijke Philips Electronics N.V. Diffractive part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986595B2 (en) 2007-11-22 2011-07-26 Sony Corporation Optical pickup and optical device for three different types of optical discs
JP2009140551A (en) * 2007-12-05 2009-06-25 Sony Corp Optical pickup and optical disk drive unit
JP2010146608A (en) * 2008-12-16 2010-07-01 Sony Corp Optical integrated device, method for detecting light, optical pickup, and optical disc apparatus
WO2020017214A1 (en) * 2018-07-20 2020-01-23 パナソニック株式会社 Light-emitting device, optical device, and wavelength combining method

Also Published As

Publication number Publication date
JP4737536B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP2011096329A (en) Optical pickup device
JP2005108281A (en) Optical disk drive
JP4737536B2 (en) Optical pickup device and optical disk device
JP4996353B2 (en) Optical pickup and optical information recording / reproducing apparatus
JP2008052888A (en) Optical pickup
JP2008226436A (en) Optical recording medium and apparatus for reading of data
JP2009026348A (en) Optical pickup system
JP2007095247A (en) Optical pickup device and optical disk device
JP4646930B2 (en) Diffraction element position adjustment method
KR101046680B1 (en) Optical pickup and optical device
KR100546351B1 (en) Compatible optical pickup and optical recording and/or reproducing apparatus employing it
JP2005174529A (en) Optical head
JP3970254B2 (en) Optical pickup device
JP2012048794A (en) Optical pickup device
JP6108969B2 (en) Optical head device and multilayer optical disk device
JP2014175030A (en) Optical integrated element, optical head device, and optical disk device
JP2007207355A (en) Optical pickup device
JP2007134016A (en) Optical pickup device
JP2008041230A (en) Information recording medium, information recording apparatus, and information reproduction apparatus
JP2007273019A (en) Optical element and information processor
US20120113784A1 (en) Optical pickup
JP2009289376A (en) Optical head and optical disk drive
JP2011100522A (en) Optical pickup device
JP2008257814A (en) Optical pickup and optical disk drive
JP2011070737A (en) Optical pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees