JP2007218774A - Method of measuring multi-color emission - Google Patents

Method of measuring multi-color emission Download PDF

Info

Publication number
JP2007218774A
JP2007218774A JP2006040650A JP2006040650A JP2007218774A JP 2007218774 A JP2007218774 A JP 2007218774A JP 2006040650 A JP2006040650 A JP 2006040650A JP 2006040650 A JP2006040650 A JP 2006040650A JP 2007218774 A JP2007218774 A JP 2007218774A
Authority
JP
Japan
Prior art keywords
luminescent
measurement
luminescent enzyme
filter
enzymes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006040650A
Other languages
Japanese (ja)
Inventor
Yuujitsu Asai
友実 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2006040650A priority Critical patent/JP2007218774A/en
Publication of JP2007218774A publication Critical patent/JP2007218774A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for simultaneously measuring and calculating the relative quantity of light due to respective emission enzymes in a specimen containing emission enzymes of a plurality of colors, and a method for more precisely performing measurement in the measurement of the specimen of a plate format containing the emission enzymes of a plurality of colors. <P>SOLUTION: In the measurement of the specimen containing the emission enzymes of (N) colors, the specimen is measured using (N) optical filters and the relative quantity of light originating from the respective emission enzymes is calculated from the predetermined transmittances of the respective filters originating from the respective emission enzymes and respective filter transmitted light measuring values. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数色の発光酵素を含む検体中の各発光酵素による相対光量を同時に測定・算出する方法に関する。さらに詳しくは、N色の発光酵素を含む検体中の各発光酵素による相対光量をN枚の光学フィルターを利用して測定し、算出する方法に関する。  The present invention relates to a method for simultaneously measuring and calculating the relative light amount of each luminescent enzyme in a specimen containing a plurality of luminescent enzymes. More specifically, the present invention relates to a method for measuring and calculating the relative light quantity of each luminescent enzyme in a specimen containing N luminescent enzymes using N optical filters.

レホ゜ーター遺伝子を用いた遺伝子発現制御解析は、レホ゜ーター遺伝子に連結されたシス作用性塩基配列要素(フ゜ロモーター、エンハンサー、サイレンサーなどの遺伝子発現制御配列)を含むフ゜ラスミト゛を細胞に導入して、ある条件下において発現されるレホ゜ーター酵素の活性を指標に遺伝子発現制御を評価する手法である。これまで多くのレホ゜ーター酵素がこの評価に用いられてきたが、ホタルルシフェラーセ゛の発光を利用したシステムは感度が高く、活性測定が簡便なことから、現在広く用いられている。  Gene expression control analysis using a reporter gene is performed by introducing a plasmid containing a cis-acting base sequence element (gene expression control sequence such as a promoter, enhancer, silencer, etc.) linked to the reporter gene into a cell. This is a technique for evaluating the regulation of gene expression using the activity of the expressed reporter enzyme as an index. Many reporter enzymes have been used for this evaluation. However, a system utilizing the light emission of firefly luciferase is widely used because of its high sensitivity and simple activity measurement.

しかしながら、レホ゜ーター活性をサンフ゜ル間で評価する際には、トランスフェクション効率、細胞数、生育状態、細胞死等、遺伝子発現制御とは関係しない、レホ゜ーター酵素の絶対量の変化をもたらす要因が存在する。このため、被験配列に連結されたレホ゜ーター遺伝子とあわせて、一定発現(コントロール)フ゜ロモーターに連結された基質特異性、あるいは反応性の異なるレホ゜ーター分子を内部標準として加え、サンフ゜ル間で標準化処理を行う必要がある。このように2つ以上の遺伝子発現を同時に測定するために、これまで種々の遺伝子、特にホタルルシフェラーゼと異なった基質特異性を示すウミシイタケルシフェラーゼ(Renilla luciferase)がクローニングされ用いられてきた。しかし、この方法では発光の機構が異なるため、複数の反応及び測定を行わなければならず煩雑であった。  However, when the reporter activity is evaluated between samples, there are factors that cause changes in the absolute amount of the reporter enzyme that are not related to gene expression control, such as transfection efficiency, cell number, growth state, and cell death. For this reason, it is necessary to add a substrate molecule linked to a constant expression (control) promoter motor or a primer molecule with different reactivity as an internal standard together with a reporter gene linked to a test sequence, and to perform standardization between samples. There is. Thus, in order to simultaneously measure the expression of two or more genes, various genes, particularly Renilla luciferase showing a substrate specificity different from firefly luciferase, has been cloned and used. However, in this method, since the mechanism of luminescence is different, a plurality of reactions and measurements must be performed, which is complicated.

一方、ホタルルシフェラーゼ遺伝子から発光色の異なる変異体を見つける研究(Contag C. et al, Red Shifted luciferase, United Sates Patent 6,495,355 (2002))(特許文献1)や、発光色の異なる4種類のヒカリコメツキムシ由来ルシフェラーゼの単離(Wood K.V., Lam Y.A., Seliger H.H., and McElroy W.D. 1989, 244, 700-702:Complementary DNA Coding Click Beetles Lusiferases Can Elicit Bioluminescence of Different Colors) (非特許文献1)、2色の鉄道虫由来のルシフェラーゼの研究(Viviani V.R., Bechara E.J.H., Ohmiya Y. 1999, Biochemistry, 38, 8271-8279)(非特許文献2)、イリオモテボタル由来ルシフェラーゼの変異体の研究(Viviani V., Uchida A., Suenaga N., Ryufuku M., and Ohmiya Y. 2001, Biochem. Biophys. Res. Commun. 280, 1286-1291)(非特許文献3)などが進められてきた。これらのルシフェラーゼは同じ基質で異なった発光色を示すことで注目された。特に、ホタルルシフェラーゼ変異体はpHにより発光スペクトルが変動してしまうことから、多色測定においてはコメツキムシ、鉄道虫、イリオモテボタル由来ルシフェラーゼなどのようにpHに対して発光スペクトルが変動しないルシフェラーゼが好ましく、3色の発光ルシフェラーゼを用いたアッセイシステムが実用化されている(近江谷ら、マルチ遺伝子転写活性測定システム、WO 2004/099421)(特許文献2)。しかし、これらのルシフェラーゼの発光スペクトルは完全に分離したものではないため、精度よく複数の発光を分離・測定する技術の開発が望まれていた。
米国特許6,495,355 WO 2004/099421 Wood K.V., Lam Y.A., Seliger H.H., and McElroy W.D. 1989, 244, 700-702:Complementary DNA Coding Click Beetles Lusiferases Can Elicit Bioluminescence of Different Colors Viviani V.R., Bechara E.J.H., Ohmiya Y. 1999, Biochemistry, 38, 8271-8279 Viviani V., Uchida A., Suenaga N., Ryufuku M., and Ohmiya Y. 2001, Biochem. Biophys. Res. Commun. 280, 1286-1291
On the other hand, research to find mutants with different luminescent colors from the firefly luciferase gene (Contag C. et al, Red Shifted luciferase, United Sates Patent 6,495,355 (2002)) (Patent Document 1) and four kinds of light beetles with different luminescent colors Isolation of luciferase derived from wood (Wood KV, Lam YA, Seliger HH, and McElroy WD 1989, 244, 700-702: Complementary DNA Coding Click Beetles Lusiferases Can Elicit Bioluminescence of Different Colors) Studies on luciferases derived from insects (Viviani VR, Bechara EJH, Ohmiya Y. 1999, Biochemistry, 38, 8271-8279) (Non-patent Document 2), studies on mutants of luciferases derived from Iriomote butter (Viviani V., Uchida A. Suenaga N., Ryufuku M., and Ohmiya Y. 2001, Biochem. Biophys. Res. Commun. 280, 1286-1291) (Non-Patent Document 3). These luciferases were noted by showing different emission colors on the same substrate. In particular, since the emission spectrum of firefly luciferase mutants varies depending on pH, luciferase whose emission spectrum does not vary with respect to pH, such as click beetle, railroad insect, Iriomote botal luciferase in multicolor measurement, is preferable. An assay system using three-color luminescent luciferases has been put into practical use (Omiya et al., Multi-gene transcription activity measurement system, WO 2004/099421) (Patent Document 2). However, since the luminescence spectra of these luciferases are not completely separated, it has been desired to develop a technique for separating and measuring a plurality of luminescence with high accuracy.
US Patent 6,495,355 WO 2004/099421 Wood KV, Lam YA, Seliger HH, and McElroy WD 1989, 244, 700-702: Complementary DNA Coding Click Beetles Lusiferases Can Elicit Bioluminescence of Different Colors Viviani VR, Bechara EJH, Ohmiya Y. 1999, Biochemistry, 38, 8271-8279 Viviani V., Uchida A., Suenaga N., Ryufuku M., and Ohmiya Y. 2001, Biochem. Biophys. Res. Commun. 280, 1286-1291

本発明の目的は、複数色の発光酵素を含む検体中の各発光酵素による相対光量を測定する方法を提供する。さらには、複数色の発光酵素を含むフ゜レートフォーマットの検体の測定において、より精度よく測定を行う方法を提供する。   An object of the present invention is to provide a method for measuring the relative light amount of each luminescent enzyme in a specimen containing a plurality of luminescent enzymes. Furthermore, the present invention provides a method for measuring with higher accuracy in the measurement of a specimen in a flat format containing a plurality of luminescent enzymes.

上記課題を解決するため、秋山らは(N-1)枚の透過波長帯域の広いフィルターを利用する方法を開示している(秋山ら、複数の発光成分の発光量測定法およびその発光測定装置、特開2004-333457)。本発明者らは鋭意研究を重ねた結果、複数(N)色の発光のうち、最短波長の発光及び最長波長の発光の発光スヘ゜クトルの重なりの少ない領域に着目し、N枚の光学フィルターを用いて分離測定する方法を見出し、本発明を完成するに到った。  In order to solve the above problems, Akiyama et al. Discloses a method using (N-1) filters having a wide transmission wavelength band (Akiyama et al. JP 2004-333457). As a result of intensive research, the present inventors have focused on the region where the light emission spectrum of the shortest wavelength and the light emission spectrum of the longest wavelength of the light emission of a plurality of (N) colors is small, and using N optical filters. Thus, a method for separating and measuring was found and the present invention was completed.

すなわち、本発明は以下のような構成からなる。
項1. N色の発光酵素を含む検体の各発光酵素の活性評価において、N枚の光学フィルターを利用して測定し、あらかじめ決定された各発光酵素に由来する発光の各フィルター透過率と各フィルター透過光測定値より、各発光酵素に由来する相対光量を算出する方法。
項2. Nが3以上である項2に記載の方法。
項3. N色の発光酵素が、緑色発光酵素、橙色発光酵素、赤色発光酵素よりなる群から選択される、項1〜3に記載の方法。
項4. N色の発光酵素が、イリオモテボタル、鉄道虫由来ルシフェラーゼ及びそれらの変異体よりなる群より選択される、項4に記載の方法。
項5. 各発光酵素に由来する相対光量を、行列式を利用して算出する、項1に記載の方法。
項6. プレートフォーマットの検体の測定において、下記の工程をプレート単位で行う、N色の発光酵素を含む検体の測定方法:
(1) 発光基質を各検体を含むウェルにインジェクトする工程、
(2) 各フィルターの透過光を測定する工程、
この際、上記インジェクト工程と、フィルター1枚当たりの透過光を測定する各測定工程の所要時間がほぼ同じ時間となるように調整されている。
プレートフォーマットの検体の測定において、下記の工程をプレート単位で行う、N色の発光酵素を含む検体の測定方法:
項7.N色の発光酵素を含む検体の測定において、N枚の光学フィルターを利用して測定し、あらかじめ決定された各発光酵素に由来する発光の各フィルター透過率と各フィルター透過光測定値より、各発光酵素に由来する相対光量を算出する解析ソフト。
That is, the present invention has the following configuration.
Item 1. In the activity evaluation of each luminescent enzyme in a sample containing N-color luminescent enzyme, measurement was performed using N optical filters, and each filter transmittance and each luminescence derived from each luminescent enzyme determined in advance were measured. A method of calculating the relative light quantity derived from each luminescent enzyme from the measured value of transmitted light from the filter.
Item 2. The method according to Item 2, wherein N is 3 or more.
Item 3. The method according to Items 1 to 3, wherein the N luminescent enzyme is selected from the group consisting of a green luminescent enzyme, an orange luminescent enzyme, and a red luminescent enzyme.
Item 4. The method according to Item 4, wherein the N-color luminescent enzyme is selected from the group consisting of Iriomote botarus, rail worm-derived luciferases, and variants thereof.
Item 5. The method according to Item 1, wherein the relative light amount derived from each luminescent enzyme is calculated using a determinant.
Item 6. In the measurement of a specimen in a plate format, the following steps are performed in units of plates, and a method for measuring a specimen containing an N-color luminescent enzyme:
(1) Injecting a luminescent substrate into a well containing each specimen,
(2) measuring the transmitted light of each filter,
At this time, the time required for the injection process and each measurement process for measuring the transmitted light per filter is adjusted to be substantially the same time.
In the measurement of specimens in plate format, the following steps are performed in units of plates, and a specimen measuring method containing N-color luminescent enzyme:
Item 7. In the measurement of specimens containing N-color luminescent enzymes, measurement is performed using N optical filters, and each filter transmittance of luminescence derived from each luminescent enzyme determined in advance and each filter transmitted light measurement value Analysis software that calculates the relative light quantity derived from each luminescent enzyme.

本発明の方法により、複数色の発光酵素を含む検体中の各発光酵素による相対光量を測定するため、複数の遺伝子の転写活性を同時にモニターするなど、複数のレポーターを用いた種々の生命現象の定量が可能となった。さらに、本発明の方法により複数色の発光酵素を含む検体をプレートフォーマットで解析が行えるため、様々な生命現象の指標となる複数のレポーター量の変動をハイスループットに解析することが可能である。   According to the method of the present invention, in order to measure the relative light intensity of each luminescent enzyme in a specimen containing a plurality of luminescent enzymes, the transcriptional activity of a plurality of genes can be monitored simultaneously. Quantification became possible. Furthermore, since a specimen containing a plurality of luminescent enzymes can be analyzed in a plate format by the method of the present invention, it is possible to analyze a variation in a plurality of reporter amounts serving as indicators of various life phenomena with high throughput.

以下に本発明を詳細に説明する。
発光酵素を含む検体の測定には、微弱発光に適した光電子増倍管、CCDなどの検出器を含む測定機が用いられるが、これに限定されるものではない。本発明における光学フィルターとは透過する光を特定の波長帯域に制限するもので、検体と検出器の間に設置される。
The present invention is described in detail below.
For the measurement of a specimen containing a luminescent enzyme, a measuring instrument including a photomultiplier tube suitable for weak luminescence and a detector such as a CCD is used, but is not limited thereto. The optical filter in the present invention restricts transmitted light to a specific wavelength band, and is placed between a specimen and a detector.

まず、3色の発光酵素を含む検体の測定において、3色の発光酵素によって生成する発光成分Gr、Or、Reを3枚の光学フィルターを用いて同時に測定する方法を説明する。図1に3色の発光酵素によって生成する発光の発光スペクトル及び測定に用いる光学フィルターの光の透過帯域を模式的に示す。  First, a method for simultaneously measuring the luminescent components Gr, Or, and Re generated by the three color luminescent enzymes using three optical filters in the measurement of the specimen containing the three color luminescent enzymes will be described. FIG. 1 schematically shows an emission spectrum of luminescence generated by three color luminescent enzymes and a light transmission band of an optical filter used for measurement.

検体の測定に先立ち、発光成分Grについて、フィルターを使用しない時に対する、フィルター1、2、3を使用したときの測定値から透過率T1g、T2g、T3gを決定する。同様に、発光成分Or、Reについても透過率T1o、T2o、T3o、T1r、T2r、T3rを決定する。3色の発光酵素を含む検体において、生成する発光成分Gr、Or、Reのシグナル値をG、O、R、フィルター1、2、3を用いて測定されるシグナル値をF1、F2、F3とする。各フィルター測定値は、各発光成分に対し当該フィルターを用いて計測される割合(透過率)を掛け合わせた和として表されることから、
F1 = T1g・G + T1o・O + T1r・R
F2 = T2g・G + T2o・O + T2r・R
F3 = T3g・G + T3o・O + T3r・R
の関係式が成り立つ。これを行列式で表すと数1となる。
Prior to the measurement of the specimen, the transmittances T 1g , T 2g , and T 3g are determined for the luminescent component Gr from the measured values when the filters 1, 2, and 3 are used with respect to when the filter is not used. Similarly, the transmittances T 1o , T 2o , T 3o , T 1r , T 2r , and T 3r are determined for the luminescent components Or and Re. In specimens containing three-color luminescent enzymes, the signal values of the luminescent components Gr, Or, and Re that are generated are G, O, R, and the signal values measured using filters 1, 2, and 3 are F 1 , F 2 , and F 3. Each filter measurement value is expressed as the sum of each luminescent component multiplied by the ratio (transmittance) measured using the filter,
F 1 = T 1g・ G + T 1o・ O + T 1r・ R
F 2 = T 2g・ G + T 2o・ O + T 2r・ R
F 3 = T 3g・ G + T 3o・ O + T 3r・ R
The following relational expression holds. When this is expressed by a determinant, Equation 1 is obtained.

この関係式より、測定値F1、F2、F3より各発光酵素によって生成するシグナル値G、O、Rは数2より算出される。 From this relational expression, the signal values G, O, and R generated by each luminescent enzyme are calculated from the measured values F 1 , F 2 , and F 3 using Equation 2.

この方法は、2もしくは3色以上の発光酵素の検体の測定に応用できる。発光酵素がN色からなる場合、N枚のフィルターを用い、各フィルターの透過率をTij(i,j=1〜N)、フィルターjを用いたときの計測値Fi、各発光酵素により生成するシグナル値をLjとすると、次の関係式が得られる。
F1 = T11・L1 + T12・L2 + T13・L3 + ・・・ + T1N・LN
F2 = T21・L1 + T22・L2 + T23・L3 + ・・・ + T2N・LN
・・・
FN = TN1・L1 + TN2・L2 + TN3・L3 + ・・・ + TNN・LN
この関係式から、各フィルター測定値と各発光酵素によるシグナル値の間には数3のように表される。
This method can be applied to the measurement of specimens of two or more luminescent enzymes. When the luminescent enzyme consists of N colors, N filters are used, the transmittance of each filter is Tij (i, j = 1 to N), the measured value Fi when using the filter j, and each luminescent enzyme is generated. When the signal value is Lj, the following relational expression is obtained.
F 1 = T 11・ L 1 + T 12・ L 2 + T 13・ L 3 + ・ ・ ・ + T 1N・ L N
F 2 = T 21・ L 1 + T 22・ L 2 + T 23・ L 3 + ・ ・ ・ + T 2N・ L N
...
F N = T N1・ L 1 + T N2・ L 2 + T N3・ L 3 + ・ ・ ・ + T NN・ L N
From this relational expression, the value measured by each filter and the signal value by each luminescent enzyme are expressed as in Equation 3.

この関係式から、各フィルター測定値F1、F2、・・・、FNより、各発光酵素によって生成するシグナル値L1、L2、・・・、LNは数4より算出される。 From this relation, each filter measurements F 1, F 2, · · ·, than F N, the signal values L 1, L 2 generated by the luciferase, · · ·, L N is calculated from the number 4 .

本発明において用いられる光学フィルターはバンドパスフィルター、ロングパスフィルターいずれも使用可能であるが、透過波長帯域が著しく狭いカットフィルターでは光量が著しく低下することからルシフェラーゼ発光のような微弱発光を検出には向かない。バンドパスフィルターについても透過波長帯域が35 nm以上、より好ましくは50 nm以上であることが好ましい。   The optical filter used in the present invention can be either a band-pass filter or a long-pass filter. However, a cut filter having a remarkably narrow transmission wavelength band significantly reduces the amount of light. Therefore, it is suitable for detecting weak luminescence such as luciferase luminescence. No. The bandpass filter also has a transmission wavelength band of 35 nm or more, more preferably 50 nm or more.

光学フィルターの透過波長帯域は、発光スペクトルが安定している発光酵素ではいずれの帯域と限定されるものではないが、少なくとも2枚のフィルターは、発光スペクトルの重なりの少ない最短発光スペクトルの短波長側、最長発光スペクトルの長波長側のものを使用することが好ましく、第3以上の発光成分の透過が出来る限り小さくなることが好ましいようである。   The transmission wavelength band of the optical filter is not limited to any band in the case of a luminescent enzyme with a stable emission spectrum, but at least two filters have a short wavelength side of the shortest emission spectrum with little overlap of the emission spectrum. It is preferable to use one having the longest emission spectrum on the long wavelength side, and it is preferable that transmission of the third or more light-emitting component is as small as possible.

一方、市販される発光基質は測定に必要とされる時間の間、発光強度が一定になるように工夫されている。しかしながら、基質添加による発光開始時間から異なった時間ポイントで計測を行うと、サンプル間の相対強度にバラツキが含まれてしまうことが多い。そこで、多数の検体を測定する場合には、96ウェル、384ウェルなどのプレートを用いられるが、基質の自動分注機能を保持した測定機を用いることができる場合、発光基質を添加する工程の所要時間と1枚のフィルターを用いて測定する工程の所要時間をでき得る限り同じになるように調整して、サンプル毎に基質添加から計測までの測定ポイントを一定にすることが好ましい。   On the other hand, a commercially available luminescent substrate is devised so that the luminescence intensity is constant during the time required for measurement. However, when the measurement is performed at different time points from the light emission start time due to the addition of the substrate, the relative intensity between samples often includes variations. Therefore, when measuring a large number of specimens, plates such as 96-well and 384-well can be used. However, if a measuring instrument that has an automatic substrate dispensing function can be used, the process of adding a luminescent substrate can be used. It is preferable that the measurement time from the substrate addition to measurement is made constant for each sample by adjusting the required time and the required time for the measurement process using one filter as much as possible.

本発明では、上記インジェクト工程と、フィルター1枚当たりの透過光を測定する各測定工程の所要時間(基質分注時間と読取り時間)がほぼ同じ時間となるように調整されていることが好ましい。測定に使用する機器の仕様により多少の相違は生じるが、基質分注時間と読取り時間の差は、好ましくは1分以内、更に好ましくは30秒以内を目安とする。 これにより、各ウェルが同じような時間経過で測定され、データのバラツキが低減される。   In the present invention, it is preferable that the required time (substrate dispensing time and reading time) of the injection process and each measurement process for measuring the transmitted light per filter is adjusted to be substantially the same time. . Although there are some differences depending on the specifications of the instrument used for the measurement, the difference between the substrate dispensing time and the reading time is preferably within 1 minute, more preferably within 30 seconds. Thereby, each well is measured in the same time course, and the variation in data is reduced.

以下、本発明の実施例を例示することによって、本発明の効果をより一層明確なものとする。   Hereinafter, the effects of the present invention will be further clarified by illustrating examples of the present invention.

実施例1 緑色、橙色、赤色発光酵素のライセートの混合サンプルの測定(1)
CHO-K1細胞を90mmディッシュ3枚に播種し、10% FCSを含むHam's F12培地(日水製薬)中で培養した。翌日、pSLG-SV40 control(東洋紡績、緑色発光酵素)、pSLO-SV40 control(東洋紡績、橙色発光酵素)、pSLR-SV40 control(東洋紡績、赤色発光酵素)の各プラスミド5μgに、500μl Opti-MEM(GIBCO)で希釈された15μl GeneJuice(Novagen)を加え、CHO-K1細胞へトランスフェクションを実施した。翌日、培地を除去後、MultiReporter Assay System -TriplucR- Detection Reagents(東洋紡績)の3 ml Lysis Solutionを加え、各発光酵素を含む細胞ライセートを調製した。このライセートを様々な混合比で混合し、発光基質を加え、測定、算出が適切に行われるかを検証した。
Example 1 Measurement of mixed sample of lysate of green, orange and red luminescent enzyme (1)
CHO-K1 cells were seeded on three 90 mm dishes and cultured in Ham's F12 medium (Nissui Pharmaceutical) containing 10% FCS. The next day, 500 μl Opti-MEM in 5 μg of each plasmid of pSLG-SV40 control (Toyobo, green luminescent enzyme), pSLO-SV40 control (Toyobo, orange luminescent enzyme) and pSLR-SV40 control (Toyobo, red luminescent enzyme) 15 μl GeneJuice (Novagen) diluted with (GIBCO) was added, and transfection was performed on CHO-K1 cells. On the next day, after removing the medium, 3 ml Lysis Solution of MultiReporter Assay System-Tripluc R -Detection Reagents (Toyobo) was added to prepare a cell lysate containing each luminescent enzyme. This lysate was mixed at various mixing ratios, a luminescent substrate was added, and it was verified whether measurement and calculation were performed appropriately.

測定にはプレートリーダー1420 ARVOMX(パーキンエルマー)に、バンドパスフィルター510/60、595/60、660/100をセッティングして行った。  The measurement was performed by setting band pass filters 510/60, 595/60, and 660/100 on a plate reader 1420 ARVOMX (Perkin Elmer).

まず、算出に必要な透過率を決定するために、それぞれのライセート25μlにMultiReporter Assay System -TriplucR- Detection Reagents(東洋紡績)の発光基質Assay Reagent 125μlを加え、各フィルターを用いて測定した。測定値を表1に示す。この測定値より透過率を算出した。その結果を表2に示す。 First, in order to determine the transmittance required for the calculation, 125 μl of luminescent substrate Assay Reagent of MultiReporter Assay System-Tripluc R -Detection Reagents (Toyobo) was added to 25 μl of each lysate, and measurement was performed using each filter. Table 1 shows the measured values. The transmittance was calculated from this measured value. The results are shown in Table 2.

つづいて、各発光酵素のライセートを混合し、測定を実施した。測定値をMicrosoftR Excelに入力し、MINVERSE関数、MMULT関数を用いて数2の関係式より各発光酵素のシグナル値を算出した。結果を表3に示す。また、図2は、SLGについては12サンプルの算出シグナル強度平均値を100%として、SLO、SLRについてはそれぞれSLO(%)/(SLO+SLR)が100または0の時を100%として相対値化してプロットしたグラフである。 Subsequently, each luminescent enzyme lysate was mixed and measured. The measured value was input into Microsoft R Excel, and the signal value of each luminescent enzyme was calculated from the relational expression 2 using the MINVERSE function and the MMULT function. The results are shown in Table 3. In addition, Figure 2 shows the relative value of SLG with the calculated signal intensity average of 12 samples as 100%, and SLO and SLR as 100% when SLO (%) / (SLO + SLR) is 100 or 0, respectively. This is a graph plotted as a graph.

実施例2 測定パラメーターの最適化
96ウェルプレートに3色のライセートの混合液を25μlずつ分注し、MultiReporter Assay System -TriplucR- Detection Reagents(東洋紡績)の発光基質Assay Reagent 125μlを加え、プレートリーダー1420 ARVOMX(パーキンエルマー)を用いて測定した。測定値より各色発光シグナルを算出した。96ウェルプレートのcolumn A及びHのデータを図3に示す。この時、1420 ARVOMXのログを確認し96ウェルへの発光基質の分注に約5分20秒(Injection mode、aspVol=dispVol)、フィルター1枚あたり96ウェルの読取りに2分18秒(1ウェルあたりの測定時間、1sec)要した。
Example 2 Optimization of measurement parameters
Dispense 25 μl of the three-color lysate mixture into a 96-well plate, add 125 μl of MultiReporter Assay System -Tripluc R -Detection Reagents (Toyobo) luminescence substrate Assay Reagent, and plate reader 1420 ARVO MX (PerkinElmer) And measured. The emission signal for each color was calculated from the measured values. The data of 96 well plate column A and H is shown in FIG. At this time, confirm the log of 1420 ARVO MX and dispense the luminescent substrate into 96 wells for approximately 5 minutes 20 seconds (Injection mode, aspVol = dispVol), and read 2 minutes 18 seconds for 96 wells per filter (1 Measurement time per well, 1 sec) was required.

次に、プログラムを96ウェルへの発光基質の分注とフィルター1枚あたりの96ウェルの読取り所要時間をできるだけ揃えるようにプログラムを調整し、96ウェルプレートに3色のライセートの混合液を25μlずつ分注し、測定した。具体的には、96ウェルへの発光基質の分注に約4分55秒(Injection modeをaspVol=dispVolからaspVol=syringeVolへ変更)、96ウェルの読取りにフィルター1枚あたり4分42秒(1ウェルあたりの測定時間を1secから2.5secへ変更)になるようにプログラムを変更した。96ウェルプレートのcolumn A及びHのデータを図4に示す。基質分注時間と読取り時間が調整され、各ウェルが同じような時間経過で測定され、データのバラツキが低減されることが確認された。   Next, adjust the program so that the luminescent substrate is dispensed into 96 wells and the 96-well reading time per filter is aligned as much as possible, and 25 μl each of the three-color lysate mixture is added to the 96-well plate. Dispensing and measuring. Specifically, about 4 minutes 55 seconds (injection mode changed from aspVol = dispVol to aspVol = syringeVol) for dispensing luminescent substrates into 96 wells, 4 minutes 42 seconds per filter for 96 well readings (1 The program was changed so that the measurement time per well was changed from 1 sec to 2.5 sec. The data of 96 well plate column A and H is shown in FIG. Substrate dispensing time and reading time were adjusted and each well was measured over a similar time course, confirming that data variation was reduced.

実施例3 緑色、橙色、赤色発光酵素のライセートの混合サンプルの測定(2)
96ウェルプレートの各ウェルに、表4に示すような割合で調整されたライセートを25μlずつ分注し、、MultiReporter Assay System -TriplucR- Detection Reagents(東洋紡績)の発光基質Assay Reagent 125μlを加え、プレートリーダー1420 ARVOMX(パーキンエルマー)を用いて測定した。測定値より各色発光酵素によるシグナルを算出した。測定プログラムは、96ウェルへの発光基質の分注に約4分55秒(Injection mode、aspVol=syringeVol)、96ウェルの読取りにフィルター1枚あたり4分42秒(1ウェルあたりの測定時間、2.5sec)とした。測定値より各色発光シグナルを算出し、一定量加えられているSLGで標準化されたSLO、SLRをプロットしたグラフを図5に示す。96ウェルのプレートフォーマットにおいて、精度よく測定が行われることが確認された。
Example 3 Measurement of mixed sample of lysate of green, orange and red luminescent enzyme (2)
Dispense 25 μl of lysate adjusted to the ratio shown in Table 4 into each well of the 96-well plate, add 125 μl of MultiReporter Assay System -Tripluc R -Detection Reagents (Toyobo) luminescent substrate Assay Reagent, Measurement was performed using a plate reader 1420 ARVO MX (Perkin Elmer). The signal by each color luminescent enzyme was computed from the measured value. The measurement program consists of approximately 4 minutes and 55 seconds (injection mode, aspVol = syringeVol) for dispensing luminescent substrates into 96 wells, 4 minutes and 42 seconds per filter for 96 well reading (measurement time per well, 2.5 sec). FIG. 5 shows a graph plotting SLO and SLR standardized with SLG to which each color emission signal is calculated from the measured values and a certain amount is added. It was confirmed that measurement was performed with high accuracy in a 96-well plate format.

本発明における多色発光の測定方法は、近年注目される多色発光酵素を用いたアッセイ系の測定に用いられ、このアッセイ系は複雑な細胞内転写制御解析、遺伝子転写を指標としたシグナル伝達系などの解析、さらには化合物スクリーニングの系として利用することができ、創薬・医療などの産業界に寄与することが大である。  The method for measuring multicolor luminescence in the present invention is used for measurement of an assay system using a multicolor luminescent enzyme that has been attracting attention in recent years. This assay system is a signal transduction using complex intracellular transcription control analysis and gene transcription as an index. It can be used as a system for analysis of systems and further for compound screening, and contributes greatly to industries such as drug discovery and medicine.

3色の発光酵素(緑、橙、赤色発光酵素)による発光スペクトルと3枚の光学フィルターの透過帯域の関係を示す概念図である。It is a conceptual diagram which shows the relationship between the emission spectrum by three luminescent enzymes (green, orange, red luminescent enzyme) and the transmission band of three optical filters. 緑、橙、赤色発光酵素からなる検体を測定し、それぞれのシグナル値を算出した結果を示すものである。It shows the result of measuring the sample consisting of green, orange and red luminescent enzymes and calculating the respective signal values. 緑、橙、赤色発光酵素からなる検体を、96ウェルプレートフォーマットでパラメーターを調整せずに測定した際の最前列及び最後列のデータを示す図である。It is a figure which shows the data of the front row | line | column and the last row | line at the time of measuring the sample which consists of green, orange, and red luminescent enzyme in a 96 well plate format, without adjusting a parameter. 緑、橙、赤色発光酵素からなる検体を、96ウェルプレートフォーマットで基質添加所要時間、96ウェル読取り所要時間を調整して測定した際の最前列及び最後列のデータを示す図である。It is a figure which shows the data of the front row | line | column and the last row | line at the time of measuring the test substance which consists of green, orange, and red luminescent enzyme by adjusting the time required for substrate addition and the time required for 96-well reading in a 96 well plate format. 緑、橙、赤色発光酵素からなる検体を、96ウェルプレートフォーマットで測定した際のデータを示す図である。It is a figure which shows the data at the time of measuring the sample which consists of green, orange, and a red luminescent enzyme in 96 well plate format.

Claims (7)

N色の発光酵素を含む検体の各発光酵素の活性評価において、N枚の光学フィルターを利用して測定し、あらかじめ決定された各発光酵素に由来する発光の各フィルター透過率と各フィルター透過光測定値より、各発光酵素に由来する相対光量を算出する方法。   In the activity evaluation of each luminescent enzyme in a sample containing N luminescent enzymes, the measurement is performed using N optical filters, and the filter transmittance and the light transmitted through each filter are determined based on the luminescent enzymes determined in advance. A method of calculating the relative light amount derived from each luminescent enzyme from the measured value. Nが3以上である請求項2に記載の方法。   The method according to claim 2, wherein N is 3 or more. N色の発光酵素が、緑色発光酵素、橙色発光酵素、赤色発光酵素よりなる群から選択される、請求項1〜3に記載の方法。   The method according to claims 1 to 3, wherein the N-color luminescent enzyme is selected from the group consisting of a green luminescent enzyme, an orange luminescent enzyme, and a red luminescent enzyme. N色の発光酵素が、イリオモテボタル、鉄道虫由来ルシフェラーゼ及びそれらの変異体よりなる群より選択される、請求項4に記載の方法。  The method according to claim 4, wherein the N-color luminescent enzyme is selected from the group consisting of Iriomote botal, a railworm luciferase, and variants thereof. 各発光酵素に由来する相対光量を、行列式を利用して算出する、請求項1に記載の方法。   The method according to claim 1, wherein the relative light amount derived from each luminescent enzyme is calculated using a determinant. プレートフォーマットの検体の測定において、下記の工程をプレート単位で行う、N色の発光酵素を含む検体の測定方法:
(1) 発光基質を各検体を含むウェルにインジェクトする工程、
(2) 各フィルターの透過光を測定する工程、
この際、上記インジェクト工程と、フィルター1枚当たりの透過光を測定する各測定工程の所要時間がほぼ同じ時間となるように調整されている。
In the measurement of specimens in plate format, the following steps are performed in units of plates, and a specimen measuring method containing N-color luminescent enzyme:
(1) Injecting a luminescent substrate into a well containing each specimen,
(2) measuring the transmitted light of each filter,
At this time, the time required for the injection process and each measurement process for measuring the transmitted light per filter is adjusted to be substantially the same time.
N色の発光酵素を含む検体の測定において、N枚の光学フィルターを利用して測定し、あらかじめ決定された各発光酵素に由来する発光の各フィルター透過率と各フィルター透過光測定値より、各発光酵素に由来する相対光量を算出する解析ソフト。   In the measurement of specimens containing N-color luminescent enzymes, measurement was performed using N optical filters, and each filter transmittance of luminescence derived from each luminescent enzyme determined in advance and each filter transmitted light measurement value were measured. Analysis software that calculates the relative light intensity derived from the luminescent enzyme.
JP2006040650A 2006-02-17 2006-02-17 Method of measuring multi-color emission Withdrawn JP2007218774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040650A JP2007218774A (en) 2006-02-17 2006-02-17 Method of measuring multi-color emission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040650A JP2007218774A (en) 2006-02-17 2006-02-17 Method of measuring multi-color emission

Publications (1)

Publication Number Publication Date
JP2007218774A true JP2007218774A (en) 2007-08-30

Family

ID=38496236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040650A Withdrawn JP2007218774A (en) 2006-02-17 2006-02-17 Method of measuring multi-color emission

Country Status (1)

Country Link
JP (1) JP2007218774A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133697A (en) * 2007-11-29 2009-06-18 Olympus Corp Luminescence measurement method
WO2009075306A1 (en) * 2007-12-10 2009-06-18 Olympus Corporation Luminescence measurement method and luminescence measurement system
JP2016029928A (en) * 2014-07-29 2016-03-07 国立大学法人横浜国立大学 Light discrimination method, substance detection method, reporter assay method, kit, luciferin-luciferase reaction inhibitor, luciferin-luciferase reaction inhibition method, and device
JPWO2016189628A1 (en) * 2015-05-25 2018-03-08 オリンパス株式会社 Luminescence measurement method
JP2019010115A (en) * 2018-09-13 2019-01-24 国立大学法人横浜国立大学 Luciferin-luciferase reaction inhibitor, luciferin-luciferase reaction inhibition method and kit
US10287556B2 (en) 2014-09-30 2019-05-14 Olympus Corporation Luciferase showing orange luminescence

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499421A (en) * 1990-08-18 1992-03-31 Sadohara Engeijiyou:Kk Liquid fertilizer supplier for tree
JPH0521791A (en) * 1991-07-17 1993-01-29 Nec Kansai Ltd High-voltage field-effect transistor and ic
JPH0661985A (en) * 1992-08-07 1994-03-04 Fujitsu Ltd Redundant system switching control system
JPH06300696A (en) * 1993-03-19 1994-10-28 Ciba Corning Diagnostics Corp Specimen testing device and measuring method
JP2004333457A (en) * 2003-05-02 2004-11-25 Atoo Kk Method and apparatus for measuring amount of luminescence of a plurality of luminescent components
JP2007159567A (en) * 2005-11-16 2007-06-28 National Institute Of Advanced Industrial & Technology Luciferase gene optimized for intracellular luminescense imaging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499421A (en) * 1990-08-18 1992-03-31 Sadohara Engeijiyou:Kk Liquid fertilizer supplier for tree
JPH0521791A (en) * 1991-07-17 1993-01-29 Nec Kansai Ltd High-voltage field-effect transistor and ic
JPH0661985A (en) * 1992-08-07 1994-03-04 Fujitsu Ltd Redundant system switching control system
JPH06300696A (en) * 1993-03-19 1994-10-28 Ciba Corning Diagnostics Corp Specimen testing device and measuring method
JP2004333457A (en) * 2003-05-02 2004-11-25 Atoo Kk Method and apparatus for measuring amount of luminescence of a plurality of luminescent components
JP2007159567A (en) * 2005-11-16 2007-06-28 National Institute Of Advanced Industrial & Technology Luciferase gene optimized for intracellular luminescense imaging

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133697A (en) * 2007-11-29 2009-06-18 Olympus Corp Luminescence measurement method
WO2009075306A1 (en) * 2007-12-10 2009-06-18 Olympus Corporation Luminescence measurement method and luminescence measurement system
JPWO2009075306A1 (en) * 2007-12-10 2011-04-28 オリンパス株式会社 Luminescence measurement method and luminescence measurement system
US8163661B2 (en) 2007-12-10 2012-04-24 Olympus Corporation Luminescence measurement system
JP5601839B2 (en) * 2007-12-10 2014-10-08 オリンパス株式会社 Luminescence measurement method and luminescence measurement system
JP2016029928A (en) * 2014-07-29 2016-03-07 国立大学法人横浜国立大学 Light discrimination method, substance detection method, reporter assay method, kit, luciferin-luciferase reaction inhibitor, luciferin-luciferase reaction inhibition method, and device
US10287556B2 (en) 2014-09-30 2019-05-14 Olympus Corporation Luciferase showing orange luminescence
JPWO2016189628A1 (en) * 2015-05-25 2018-03-08 オリンパス株式会社 Luminescence measurement method
JP2019010115A (en) * 2018-09-13 2019-01-24 国立大学法人横浜国立大学 Luciferin-luciferase reaction inhibitor, luciferin-luciferase reaction inhibition method and kit

Similar Documents

Publication Publication Date Title
JP2007218774A (en) Method of measuring multi-color emission
EP0833939B1 (en) Quenching reagents and assays for enzyme-mediated luminescence
KR101912401B1 (en) Signal encoding and decoding in multiplexed biochemical assays
US8952324B2 (en) Mass analyzing apparatus, analyzing method and calibration sample
Dwidar et al. Development of a histamine aptasensor for food safety monitoring
RU2135586C1 (en) Method of standardizing chemical analysis (versions), atp bioluminescent analysis standardization kit
WO2012002507A1 (en) Immunotoxicity evaluation system using multi-color light emitting cell
KR101516535B1 (en) Methods of evaluating gene expression levels produced by a regulatory molecule-genetic element pair
KR20170134360A (en) Pure dye equipment normalization method and system
Rigoulot et al. Imaging of multiple fluorescent proteins in canopies enables synthetic biology in plants
Kornienko et al. Miniaturization of whole live cell-based GPCR assays using microdispensing and detection systems
El Hamd et al. An integrative analytical approach designed for feasible tranexamic acid assay using O‐phthalaldehyde as a fluorogenic probe: applications to tablets, ampoules, and urine
Didiot et al. Multiplexed reporter gene assays: monitoring the cell viability and the compound kinetics on luciferase activity
Li et al. High throughput DNA concentration determination system based on fluorescence technology
Beal et al. Multicolor plate reader fluorescence calibration
CN108715847A (en) A kind of fast detection method and its application enhancing malachite green fluorescence based on DNA
Jin et al. Visualization of human immunodeficiency virus protease inhibition using a novel Förster resonance energy transfer molecular probe
JP2007330185A (en) Method for detecting two or more luciferases in multispecimen sample
JP2005249760A (en) Method of measuring feeble light spectrum, and instrument therefor
JP4052389B2 (en) Method and apparatus for measuring the amount of luminescence of a plurality of luminescent components
EP1678483A1 (en) Direct observation of molecular modifications in biological test systems by measuring fluorescence lifetime
JP2009142188A (en) Method for extracting multi-color luciferase
JP5332178B2 (en) Method for detecting multicolor luciferase
KR20200005743A (en) Data set correction method for target analyte using analyte-independent signal value
Guo et al. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A131 Notification of reasons for refusal

Effective date: 20111011

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20111107

Free format text: JAPANESE INTERMEDIATE CODE: A761