JP2007217771A - Hard film coated member and its manufacturing method - Google Patents

Hard film coated member and its manufacturing method Download PDF

Info

Publication number
JP2007217771A
JP2007217771A JP2006041766A JP2006041766A JP2007217771A JP 2007217771 A JP2007217771 A JP 2007217771A JP 2006041766 A JP2006041766 A JP 2006041766A JP 2006041766 A JP2006041766 A JP 2006041766A JP 2007217771 A JP2007217771 A JP 2007217771A
Authority
JP
Japan
Prior art keywords
substrate
hard film
hard
hard coating
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006041766A
Other languages
Japanese (ja)
Inventor
Kazuyuki Kubota
和幸 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2006041766A priority Critical patent/JP2007217771A/en
Publication of JP2007217771A publication Critical patent/JP2007217771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard film coated member having excellent oxidation resistance and wear resistance, in particular, improved adhesiveness. <P>SOLUTION: In the hard film coated member with a hard film coated on a base body, the hard film contains metal elements and N, a N-element enriched area is provided on a surface of the base body, wherein the area is formed within 1 μm in the depth direction from the surface of the base body. Its manufacturing method comprises a first step of implanting ions of N element in the surface of the base body, and a second step of coating the hard film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、イオン注入に関すし、より詳細には、イオン注入により基体表面を強化し、被覆層との密着を強化した硬質皮膜被覆部材に関する。   The present invention relates to ion implantation, and more particularly, to a hard film-coated member in which a substrate surface is reinforced by ion implantation and adhesion with a coating layer is reinforced.

基体表面に窒素をイオン注入する技術が、以下の特許文献1から3に開示されている。   Techniques for implanting nitrogen ions into the substrate surface are disclosed in Patent Documents 1 to 3 below.

特開2005−307284JP 2005-307284 A 特開平9−165282号公報Japanese Patent Laid-Open No. 9-165282 特開平5−105460号公報JP-A-5-105460

特許文献1は、超硬合金材料表面に窒素をイオン注入し、その注入層を表層より50nm以上とする技術が開示されている。特許文献2は、超硬合金、サーメット、セラミックス、工具鋼の基材表面に窒素をイオン注入し、表面部分に改質層を形成する技術を開示している。特許文献3は、超硬合金、セラミックスなどの基材の表層内部にイオン注入し、密着性を補助する窒化層を形成する技術を開示している。そこで本願発明の目的は、耐酸化性、耐摩耗性に優れた硬質皮膜について、特に密着性を改善した硬質皮膜被覆部材を提供することである。   Patent Document 1 discloses a technique in which nitrogen is ion-implanted on the surface of a cemented carbide material and the injection layer is set to 50 nm or more from the surface layer. Patent Document 2 discloses a technique in which nitrogen is ion-implanted into the base material surfaces of cemented carbide, cermet, ceramics, and tool steel to form a modified layer on the surface portion. Patent Document 3 discloses a technique for forming a nitride layer that assists adhesion by ion implantation into the surface layer of a base material such as cemented carbide or ceramics. Accordingly, an object of the present invention is to provide a hard film-coated member having improved adhesion, particularly with respect to a hard film having excellent oxidation resistance and wear resistance.

本願発明の硬質皮膜を被覆した部材において、基体に硬質皮膜を被覆した部材において、該硬質皮膜は、金属元素とNを有し、該基体の表面はN元素富化領域を有し、該N元素富化領域は該基体の表面から深さ方向に1μm以内に形成されていることを特徴とする硬質皮膜被覆部材である。上記構成を採用することにより、耐酸化性、耐摩耗性に優れた硬質皮膜を維持しつつ、硬質皮膜と基体間の密着性が改善され、優れた硬質皮膜被覆部材を提供することができる。   In the member coated with the hard coating of the present invention, in the member coated with the hard coating on the substrate, the hard coating has a metal element and N, the surface of the substrate has an N element-enriched region, and the N The element-enriched region is a hard coating member characterized by being formed within 1 μm in the depth direction from the surface of the substrate. By adopting the above configuration, the adhesion between the hard coating and the substrate is improved while maintaining a hard coating excellent in oxidation resistance and wear resistance, and an excellent hard coating coating member can be provided.

本願発明の硬質皮膜被覆部材において、基体のN元素富化領域のN含有量を原子%でQ値とし、該基体の内部のN含有量を原子%でP値とした時、Q>0、P≧0、0<(Q−P)≦10であることが好ましい。また、N元素富化領域をX線光電子分光分析したとき、31から32eVの範囲と、33から35eVの範囲とにピークを有することが好ましい。硬質皮膜被覆部材の基体は炭化タングステン基超硬合金、サーメット合金、高速度鋼、合金工具鋼の何れかであることが好ましい。より好ましくは、硬質皮膜被覆部材の製造方法において、基体表面にN元素のイオン注入を行う第1の工程と、硬質皮膜を被覆する第2の工程とから成り、該第1の工程において該N元素富化領域を、深さ方向に1μm以内の領域に調整する。   In the hard coating member of the present invention, when the N content in the N element-enriched region of the substrate is Q value in atomic% and the N content in the substrate is P value in atomic%, Q> 0, It is preferable that P ≧ 0 and 0 <(Q−P) ≦ 10. Further, when the N element-enriched region is analyzed by X-ray photoelectron spectroscopy, it is preferable to have peaks in the range of 31 to 32 eV and in the range of 33 to 35 eV. The base of the hard coating member is preferably any of tungsten carbide base cemented carbide, cermet alloy, high speed steel, and alloy tool steel. More preferably, in the method of manufacturing a hard film covering member, the method includes a first step of implanting N element ions on the surface of the substrate and a second step of covering the hard film. The element-enriched region is adjusted to a region within 1 μm in the depth direction.

本願発明によって、耐酸化性、耐摩耗性に優れた硬質皮膜を維持しつつ、硬質皮膜と基体間の密着性が改善され、優れた硬質皮膜被覆部材と、その製造方法を提供することができた。   According to the present invention, while maintaining a hard film excellent in oxidation resistance and abrasion resistance, adhesion between the hard film and the substrate is improved, and an excellent hard film coated member and a method for producing the same can be provided. It was.

本願発明の硬質皮膜被覆部材は、密着性を改善させるために、例えばイオン注入法を用いて基体表面にあらかじめNを含有するように調整し、その後、物理蒸着(以下、PVDと記す。)法等により硬質皮膜を被覆したものである。硬質皮膜直下の基体表面には、N元素富化領域が基体の表面から深さ方向に1μm以内に形成されている必要がある。この理由は、PVD法による硬質皮膜被覆の前処理として、あらかじめ超硬合金の基体表面にNを含有させることで、基体表面近傍の酸化物が除去されるからである。また、基体表面の1部が窒化されることにより、例えばPVD法によって硬質皮膜が被覆され、この硬質皮膜は4a、5a、6a族、Al、B、Siから選択される1種以上の金属元素、Nと、C、Oから選択される1種以上の非金属元素を有してもよい。例えば、PVD法によってTiNやTi(CN)、(TiAl)N、(TiAlSi)(ON)などのNを含む硬質皮膜の結晶が、基体表面近傍の結晶とエピタキシャル関係になりやすい。その結果、基体と硬質皮膜との界面の密着強度が向上する。一方、基体表面に酸化物が存在すると、PVD法で被覆するときに印加するバイアス電圧が、有効に作用しない。また絶縁性を有し、被覆対象以外の部分へ放電を発生して、品質上並びに成膜装置に大きな損傷をもたらす。PVD法により硬質皮膜を被覆する際の密着性阻害因子の1つには、基体表面に形成される酸化物がある。N元素富化領域の厚さは、深さ方向の厚さで、少なくとも1nm以上である。好ましくは10nm以上の領域に形成されていることである。これにより、上記効果が有効に作用する。量産製造安定性を考慮すると、確認のしやすい10nm以上が好ましい。また、N元素富化領域の厚さが1μmを超えて存在する場合、基体表面の靭性が低下する不都合がある。従って、PVD法で硬質皮膜を被覆しても密着性は改善されるものの、耐欠損特性が大幅に低下する。そこで、N元素富化領域は基体の表面から深さ方向に1μm以内と設定した。   In order to improve the adhesion, the hard coating member of the present invention is adjusted to contain N in advance on the substrate surface using, for example, an ion implantation method, and then physical vapor deposition (hereinafter referred to as PVD) method. Etc., which are coated with a hard film. An N element-enriched region needs to be formed within 1 μm in the depth direction from the surface of the substrate on the surface of the substrate just below the hard coating. This is because the oxide in the vicinity of the substrate surface is removed by preliminarily containing N in the substrate surface of the cemented carbide as a pretreatment for coating the hard film by the PVD method. Further, by nitriding a part of the substrate surface, a hard film is coated by, for example, the PVD method, and this hard film is one or more metal elements selected from 4a, 5a, 6a group, Al, B, and Si. , N, and one or more nonmetallic elements selected from C and O may be included. For example, crystals of a hard film containing N such as TiN, Ti (CN), (TiAl) N, and (TiAlSi) (ON) are likely to have an epitaxial relationship with crystals near the substrate surface by the PVD method. As a result, the adhesion strength at the interface between the substrate and the hard coating is improved. On the other hand, when an oxide is present on the substrate surface, the bias voltage applied when coating by the PVD method does not work effectively. In addition, it has an insulating property, and a discharge is generated in a portion other than the object to be coated, resulting in serious damage in terms of quality and the film forming apparatus. One of the adhesion inhibiting factors when coating a hard film by the PVD method is an oxide formed on the surface of the substrate. The thickness of the N element-enriched region is at least 1 nm or more in the depth direction. Preferably, it is formed in a region of 10 nm or more. Thereby, the said effect acts effectively. Considering mass production stability, 10 nm or more which is easy to confirm is preferable. Further, when the thickness of the N element-enriched region exceeds 1 μm, there is a disadvantage that the toughness of the substrate surface is lowered. Therefore, even when the hard film is coated by the PVD method, the adhesion is improved, but the fracture resistance is greatly lowered. Therefore, the N element-enriched region was set within 1 μm in the depth direction from the surface of the substrate.

N含有量のP値、Q値は、Q>0、P≧0、0<(Q−P)≦10、であることが好ましい。この理由は、基体表面近傍の機械的強度、靭性を確保するためである。(Q−P)値が10を超えて大きいと、基体表面は高硬度化するものの靭性が低下し、その上に硬質膜を被覆しても界面直下が脆化しているために、耐衝撃強度が低下するため不都合である。更に、(Q−P)>0.1、であることが好ましい。N元素富化領域をX線光電子分光分析(以下、XPS分析と記す。)をしたとき、31から32eVの範囲と、33から35eVの範囲とにピークを有することが好ましい。この理由は、超硬合金の主成分となるWCにNが注入された場合にW(CN)化合物が形成され、これがピークとして現われるからである。基体は炭化タングステン基超硬合金、サーメット合金、高速度鋼、合金工具鋼の何れかであることが好ましい。この理由は、基体にNを注入したときに、基体表面近傍にある化合物がNと結びつき易いからである。しかし、サーメット合金の場合、Ti(CN)など1部Nが含まれた化合物が使用されている。そこで、他の炭化物であるWC、TiC、NbC、Cr、TaCなどが、更にNと結びつくことで、被覆される硬質皮膜の密着性が向上する。より好ましくは、WCが主体に製造される超硬合金が望ましい。 The P value and Q value of the N content are preferably Q> 0, P ≧ 0, and 0 <(Q−P) ≦ 10. The reason for this is to ensure mechanical strength and toughness in the vicinity of the substrate surface. If the (QP) value is greater than 10, the toughness of the substrate surface is increased, but the toughness is reduced. Even if a hard film is coated on the surface, the area immediately below the interface becomes brittle. Is inconvenient. Furthermore, it is preferable that (QP)> 0.1. When the N element-enriched region is subjected to X-ray photoelectron spectroscopy analysis (hereinafter referred to as XPS analysis), it preferably has peaks in the range of 31 to 32 eV and in the range of 33 to 35 eV. This is because a W (CN) compound is formed when N is injected into WC, which is the main component of the cemented carbide, and this appears as a peak. The substrate is preferably any one of tungsten carbide base cemented carbide, cermet alloy, high speed steel, and alloy tool steel. This is because when N is injected into the substrate, a compound in the vicinity of the substrate surface is likely to be associated with N. However, in the case of a cermet alloy, a compound containing 1 part N such as Ti (CN) is used. Thus, other carbides such as WC, TiC, NbC, Cr 2 C 3 , TaC and the like are further combined with N, thereby improving the adhesion of the hard film to be coated. More preferably, a cemented carbide made mainly of WC is desirable.

基体表面にNを含有させるには、イオン注入法を用い、減圧下においてNを含有させることが好ましい。この理由は、Nイオン注入を行うことにより、基体表面に圧縮応力が付与され、その直上に、圧縮応力を有するPVD皮膜の被覆することにより、界面に発生する歪が少なく、密着性が向上するからである。これに対し、未処理の基体表面に、圧縮応力を有するPVD皮膜を被覆すると、PVD皮膜の結晶格子に歪が発生する。この歪のために界面における密着性が改善されない。また、Nイオン注入を行うことにより、基体表面の1部が窒化されるため、特にNを含む硬質皮膜の被覆においては、基体表面の結晶格子縞と硬質皮膜の格子縞とが連続するようになり、密着性が向上する。更に、イオン注入法の検討の結果、Nイオンを基体表面に注入することにより、表面の酸素が減る傾向を示すことを見出した。これに対して、例えば基体が超硬合金のとき、Nを含有した粉末原料を用いると、基体全体にNを含有することになってしまう。その結果、基体そのものの靭性が低下する。また、超硬合金を用いた切削工具の激しい使用環境下では、容易にチッピングが発生し、大きな欠損を誘発する。更に、基体表面に軟化層が形成し、基体の塑性変形性や耐摩耗特性が低下する。このほかに鋼の表面処理では窒化処理法がある。しかし、基体表面に酸化物が形成しやすく、PVD法による被覆時に悪影響を及ぼすため、不都合である。基体表面にNイオンを注入するときの印加バイアス電圧は、1keVから200keVまでの範囲が望ましい。イオン注入は、一般に10keV以上のバイアス電圧を印加するが、本願発明では、1keV以上から注入可能である。1keVを印加した場合、基体表面に富化されたNは0.01%であった。Nは分析の難しい元素であるが、2次イオン質量分析を用いることによって、ppmオーダーでの検出も可能である。極微量のN注入でも密着性向上の効果を有するが、量産において汎用的にNが検出可能になるように50keV以上で印加することが好ましい。しかし、200keVを超えるバイアス電圧では、Nイオンが基体表面に衝突するときのエネルギーが大きくなりすぎる。従って、イオン注入はなされるが、表面に空孔が発生し、表面粗さが悪くなり、その後の硬質皮膜の被覆により、基体表面と硬質皮膜界面に歪が発生し、密着性が低下するので好ましくない。一方、1keV未満でのNイオン注入では、基体表面にNがほとんど検出されず、その上に硬質皮膜を被覆すると密着性向上の効果が確認できない。本願発明を実施するにあたり、被覆装置はイオン注入と硬質皮膜が被覆可能な設備が併設されていることが好ましい。しかし、イオン注入を行った後、別の装置で硬質皮膜を被覆しても、同様の効果が得られる。Nイオン注入後のイオンプレーティングなどのPVD法にて硬質皮膜を考慮し、加熱状態でイオン注入を行うことによって、密着性が著しく向上する。従って、イオン注入とその後の硬質皮膜の被覆を同一装置で行う場合は、加熱状態でイオン注入することが望ましい。   In order to contain N on the surface of the substrate, it is preferable to contain N under reduced pressure by using an ion implantation method. The reason for this is that compressive stress is applied to the surface of the substrate by performing N ion implantation, and the PVD film having compressive stress is coated directly on the surface to thereby reduce the strain generated at the interface and improve the adhesion. Because. On the other hand, when a PVD film having a compressive stress is coated on the surface of the untreated substrate, distortion occurs in the crystal lattice of the PVD film. This distortion does not improve the adhesion at the interface. Further, by performing N ion implantation, a portion of the surface of the base is nitrided, so that the crystal lattice stripes on the surface of the base and the lattice stripes of the hard coating become continuous, particularly in the coating of the hard film containing N. Adhesion is improved. Furthermore, as a result of the examination of the ion implantation method, it has been found that the surface oxygen tends to decrease when N ions are implanted into the substrate surface. On the other hand, for example, when the substrate is a cemented carbide, if a powder raw material containing N is used, the entire substrate will contain N. As a result, the toughness of the substrate itself decreases. In addition, chipping easily occurs under a severe usage environment of a cutting tool using a cemented carbide and induces a large defect. Furthermore, a softening layer is formed on the surface of the base, and the plastic deformability and wear resistance of the base are reduced. In addition, there is a nitriding method for surface treatment of steel. However, it is inconvenient because an oxide is easily formed on the surface of the substrate and adversely affects the coating by the PVD method. The applied bias voltage when N ions are implanted into the substrate surface is preferably in the range of 1 keV to 200 keV. In ion implantation, a bias voltage of 10 keV or more is generally applied, but in the present invention, implantation can be performed from 1 keV or more. When 1 keV was applied, N enriched on the substrate surface was 0.01%. N is an element that is difficult to analyze, but detection in the ppm order is also possible by using secondary ion mass spectrometry. Even a very small amount of N injection has an effect of improving adhesion, but it is preferably applied at 50 keV or more so that N can be detected for general use in mass production. However, when the bias voltage exceeds 200 keV, the energy when N ions collide with the substrate surface becomes too large. Accordingly, although ion implantation is performed, vacancies are generated on the surface, the surface roughness is deteriorated, and the subsequent coating of the hard film causes distortion at the substrate surface and the interface of the hard film, so that the adhesiveness is decreased. Absent. On the other hand, in N ion implantation at less than 1 keV, N is hardly detected on the surface of the substrate, and if a hard film is coated thereon, the effect of improving adhesion cannot be confirmed. In carrying out the present invention, it is preferable that the coating apparatus is additionally provided with equipment capable of coating ion implantation and hard coating. However, the same effect can be obtained by coating the hard film with another apparatus after ion implantation. Adhesion is remarkably improved by performing ion implantation in a heated state in consideration of a hard film by a PVD method such as ion plating after N ion implantation. Therefore, when ion implantation and the subsequent coating of the hard film are performed with the same apparatus, it is desirable to perform ion implantation in a heated state.

イオン注入装置とアークイオンプレーティング(以下、AIPと記す。)を用いて、処理を行った。まず基体の超硬合金製インサート表面上にNイオン注入を行った。イオン注入の印加電圧は100keV、基体温度は200から400℃に維持した。イオン注入後、装置から基体を取り出した。そしてAIP装置内に装填し、(TiAl)N系硬質皮膜を被覆した。蒸発源には(TiAl)N皮膜の金属成分である、Ti、Alを100at%とした場合、Ti:50at%、Al:50at%となるようにターゲット組成を調整した。これによって、Ti−Al合金ターゲット種が限定されるものではない。また、その他の膜種については、必要な金属ターゲットを作成して使用した。反応ガスは、N2ガス、CH4ガス、Ar/O混合ガスを使用し、所定量の酸素や炭素が含まれる硬質皮膜を作成した。被覆条件は、基体温度を400℃、バイアス電圧を、−40Vから−150Vの範囲で印加した。皮膜は、(TiAl)N成膜以外に、TiNや(CrAl)N、(TiAlSi)N、(TiAlNb)Nも準備した。皮膜は、密着性が課題となっている皮膜を選定した。上記手法により本発明例1から10、比較例11から20を作成した。表1に本発明例及び比較例、従来例の基体処理条件、皮膜等を示した。 Processing was performed using an ion implantation apparatus and arc ion plating (hereinafter referred to as AIP). First, N ion implantation was performed on the surface of the cemented carbide insert of the substrate. The applied voltage for ion implantation was maintained at 100 keV, and the substrate temperature was maintained at 200 to 400 ° C. After the ion implantation, the substrate was taken out from the apparatus. And it loaded in the AIP apparatus and coat | covered the (TiAl) N type | system | group hard film. As the evaporation source, when Ti and Al, which are metal components of the (TiAl) N film, are 100 at%, the target composition was adjusted so that Ti: 50 at% and Al: 50 at%. This does not limit the Ti—Al alloy target species. For other film types, necessary metal targets were prepared and used. The reaction gas, using N2 gas, CH4 gas, Ar / O 2 mixed gas to prepare a hard coating that contains a predetermined amount of oxygen and carbon. The coating conditions were a substrate temperature of 400 ° C. and a bias voltage in the range of −40V to −150V. In addition to (TiAl) N film formation, TiN, (CrAl) N, (TiAlSi) N, and (TiAlNb) N were also prepared. As the film, a film whose adhesion is a problem was selected. Inventive Examples 1 to 10 and Comparative Examples 11 to 20 were prepared by the above method. Table 1 shows the substrate processing conditions, films, etc. of the present invention example, comparative example, and conventional example.

表1に示す本発明例2と従来例25について、図1に被覆を行う前の表面状態をXPS分析した結果を示す。本発明例2は、120keVでNイオン注入を施したものであり、一方の従来例25は未処理品である。図1より、Nイオン注入を行った本発明例2は、Nイオン注入を行っていない従来例25と比較してW−O結合を示すピーク強度が低かった。これは、超硬合金表面上の酸素量が低下していると考えられる。本発明例2は、W−C結合を示すピークが、32、34eV付近のW−Nのピークに近い位置にシフトしていることから、Nイオン注入を行うことで、超硬合金表面が部分的に窒化されていることがわかった。本発明例2は、AIP法によって(TiAlS)(CN)被覆を行った。超硬合金と硬質皮膜との界面状態を透過電子顕微鏡(以下、TEMと記す。)を用いて観察した結果を図2に示す。図2より、本発明例2は、Nイオン注入された超硬合金のWC主体の粒子と、硬質皮膜の結晶との間で、整合性の有ることが確認された。これが密着性の向上に有効であった考えられる。注入されたNイオンが超硬合金の基体内部方向にどの程度入り込んでいるかを、オージェ分析を用いて調査した。その結果を図3に示す。図3より、本発明例2は、超硬合金表面から内部に向かって0.4μmの深さまでNが存在していることがわかった。一方、比較例18、19は、バイアス電圧が大きかったため、2.8μm、2μmと深くまでNイオンが注入されていた。   FIG. 1 shows the results of XPS analysis of the surface state before coating for Invention Example 2 and Conventional Example 25 shown in Table 1. Inventive Example 2 is obtained by performing N ion implantation at 120 keV, while Conventional Example 25 is an untreated product. As shown in FIG. 1, Example 2 of the present invention in which N ions were implanted had a lower peak intensity showing W—O bonds than Conventional Example 25 in which N ions were not implanted. This is considered that the amount of oxygen on the surface of the cemented carbide decreases. In Example 2 of the present invention, the peak showing the WC bond is shifted to a position close to the W-N peak in the vicinity of 32, 34 eV. Was found to be nitrided. In Invention Example 2, (TiAlS) (CN) coating was performed by the AIP method. The result of observing the interface state between the cemented carbide and the hard film using a transmission electron microscope (hereinafter referred to as TEM) is shown in FIG. From FIG. 2, it was confirmed that Example 2 of the present invention has consistency between the WC-based particles of the cemented carbide in which N ions are implanted and the crystal of the hard coating. This is considered to be effective in improving the adhesion. The degree of penetration of the implanted N ions into the inside of the cemented carbide substrate was investigated using Auger analysis. The result is shown in FIG. From FIG. 3, it was found that in Example 2 of the present invention, N was present from the cemented carbide surface to the depth of 0.4 μm toward the inside. On the other hand, in Comparative Examples 18 and 19, since the bias voltage was large, N ions were implanted as deep as 2.8 μm and 2 μm.

次に、インサートホーニング部に皮膜剥離の有無を観察することができる切削諸元にて、剥離の有無を確認した。評価は、刃先の欠損又は摩耗等により工具が切削不能となるまで加工を行い、使用不能になったときの切削可能距離を工具寿命とした。表2に切削試験の結果を示した。
(切削諸元)
工具:特殊正面フライス
インサート形状:SEE53タイプ特殊形状
切削方法:ダウンカット方式
被削材形状:巾100mm×長さ250mm
被削材:SKD61、硬さ、HRC42、ダイカスト金型用鋼種
切り込み量:2.0mm
切削速度:150m/min
1刃送り量:0.2mm/刃
切削油:なし
Next, the presence or absence of peeling was confirmed with the cutting specifications that can observe the presence or absence of film peeling on the insert honing portion. The evaluation was performed until the tool became uncut due to chipping or wear of the blade edge, and the cutting possible distance when the tool became unusable was defined as the tool life. Table 2 shows the results of the cutting test.
(Cutting specifications)
Tool: Special face milling insert shape: SEE53 type special shape Cutting method: Down-cut method Workpiece shape: width 100mm x length 250mm
Work material: SKD61, Hardness, HRC42, Steel type for die casting mold Cutting depth: 2.0mm
Cutting speed: 150 m / min
1-blade feed amount: 0.2 mm / blade Cutting oil: None

表2より、本発明例1から10は、硬質皮膜被覆前のNイオン注入により、切削性能が向上することがわかった。これは、硬質皮膜の密着性が向上しているために、切削加工により溶着現象を引き起こしても皮膜剥離が抑制されたからである。その結果、優れた切削性能が得られた。本発明例は、硬質皮膜の高い密着性が要求される加工において、その効果を発揮することがわかった。本発明例2、5は、65m、61mの良好な切削寿命を示した。切削初期から欠損時までインサート刃先部における硬質皮膜の剥離がほとんど観察されず、正常摩耗が推移し寿命に至った。本発明例2は、(TiAl)N皮膜の硬度や潤滑特性を改善させるためにCを添加し、更に潤滑特性を向上させるためにSを添加した。溶着が発生する被加工物の加工では、硬質皮膜の密着性が十分に確保できてなければならない。また、潤滑特性も重要である。その点で本発明例2は、硬質皮膜に添加したCやSが相乗効果を示し、良好な結果を得ることができた。これは、密着性を改善することで、硬質皮膜の特性が十分に発揮されたからである。超硬合金の表面にNイオン注入するときに印加するバイアス電圧が、1keVから200keVまでの範囲であれば、その上に被覆する硬質皮膜の密着性が十分に確保された。従って、十分に満足の行く性能が引き出された。本発明例1、3、6と比較例11、13、16を比較する。何れも硬質皮膜に略同一組成の(TiAl)Nを適用したが、被覆される前のNイオン注入条件、即ちバイアス電圧によって、切削性能が大きく変化することがわかった。単に硬質皮膜を被覆する前にNイオンを注入すれば良いのではなく、適正な添加条件が選定されることが非常に重要であった。本願発明は、硬質皮膜の被覆前にNイオン注入を好適な状態と条件で行い、優れた密着性を得ることができた。密着性が改善されることによって、硬質皮膜の優れた特性を十分に引き出すことが可能となった。一方、比較例、従来例は、硬質皮膜の機械的特性の優れるものもあり、評価初期段階では摩耗が少なかった。しかし、次第に刃先温度が上昇し、溶着現象が発生し始めると、硬質皮膜が大きく剥離し、突発的に欠損に至ってしまった。比較例18、19は、バイアス電圧が大きく、2.8μm、2μmと深くまでNイオンが注入されていたことが原因で、基体表面の靭性が損なわれ、切削評価開始後1分もたたないうちに欠損した。   From Table 2, it was found that in the inventive examples 1 to 10, the cutting performance was improved by N ion implantation before the hard coating was coated. This is because the adhesion of the hard film is improved, and the film peeling is suppressed even if the welding phenomenon is caused by cutting. As a result, excellent cutting performance was obtained. It turned out that the example of this invention exhibits the effect in the process for which the high adhesiveness of a hard film is requested | required. Inventive Examples 2 and 5 showed good cutting lives of 65 m and 61 m. From the beginning of cutting to the time of chipping, almost no peeling of the hard coating was observed at the insert edge, and normal wear changed and the service life was reached. In Invention Example 2, C was added to improve the hardness and lubrication characteristics of the (TiAl) N film, and S was added to further improve the lubrication characteristics. In the processing of workpieces where welding occurs, sufficient adhesion of the hard coating must be ensured. Lubrication characteristics are also important. In that respect, Example 2 of the present invention showed a synergistic effect with C and S added to the hard film, and was able to obtain good results. This is because the characteristics of the hard film were sufficiently exhibited by improving the adhesion. When the bias voltage applied when N ions are implanted into the surface of the cemented carbide is in the range of 1 keV to 200 keV, the adhesion of the hard coating coated thereon is sufficiently secured. Therefore, sufficiently satisfactory performance was drawn. Invention Examples 1, 3, and 6 are compared with Comparative Examples 11, 13, and 16. In each case, (TiAl) N having the same composition was applied to the hard coating, but it was found that the cutting performance greatly varies depending on the N ion implantation conditions before coating, that is, the bias voltage. Rather than simply implanting N ions before coating the hard coating, it was very important to select the proper addition conditions. The present invention was able to obtain excellent adhesion by performing N ion implantation in a suitable state and conditions before coating with the hard coating. By improving the adhesion, the excellent properties of the hard coating can be fully extracted. On the other hand, some of the comparative examples and the conventional examples have excellent mechanical properties of the hard coating, and wear was small at the initial stage of evaluation. However, as the cutting edge temperature gradually increased and the welding phenomenon began to occur, the hard coating was largely peeled off, resulting in a sudden loss. In Comparative Examples 18 and 19, the bias voltage was large and N ions were implanted deeply to 2.8 μm and 2 μm, so the toughness of the substrate surface was impaired, and it took less than 1 minute after the start of cutting evaluation. I lost it.

図1は、本発明例2と従来例25のXPS分析結果を示す。FIG. 1 shows XPS analysis results of Invention Example 2 and Conventional Example 25. 図2は、本発明例2のTEM観察結果を示す。FIG. 2 shows a TEM observation result of Example 2 of the present invention. 図3は、本発明例2のオージェ分析結果を示す。FIG. 3 shows an Auger analysis result of Example 2 of the present invention.

Claims (5)

基体に硬質皮膜を被覆した部材において、該硬質皮膜は、金属元素とNを有し、該基体の表面はN元素富化領域を有し、該N元素富化領域は該基体の表面から深さ方向に1μm以内に形成されていることを特徴とする硬質皮膜被覆部材。 In a member in which a base is coated with a hard coating, the hard coating has a metal element and N, the surface of the base has an N element-enriched region, and the N element-enriched region is deep from the surface of the base. A hard coating member characterized by being formed within 1 μm in the vertical direction. 請求項1記載の硬質皮膜被覆部材において、該N元素富化領域のN含有量を原子%でQ値とし、該基体の内部のN含有量を原子%でP値とした時、Q>0、P≧0、0<(Q−P)≦10であることを特徴とする硬質皮膜被覆部材。 2. The hard coating member according to claim 1, wherein when the N content in the N element-enriched region is Q value in atomic% and the N content in the substrate is P value in atomic%, Q> 0 , P ≧ 0, 0 <(Q−P) ≦ 10. 請求項1又は2に記載の硬質皮膜被覆部材において、該N元素富化領域をX線光電子分光分析したとき、31から32eVの範囲と、33から35eVの範囲とにピークを有することを特徴とする硬質皮膜被覆部材。 3. The hard coating member according to claim 1, wherein when the N element-enriched region is analyzed by X-ray photoelectron spectroscopy, it has peaks in a range of 31 to 32 eV and a range of 33 to 35 eV. Hard film coated member. 請求項1から2に記載のいずれかの硬質皮膜被覆部材において、該基体は炭化タングステン基超硬合金、サーメット合金、高速度鋼、合金工具鋼の何れかであることを特徴とする硬質皮膜被覆部材。 3. The hard coating member according to claim 1, wherein the substrate is any one of tungsten carbide base cemented carbide, cermet alloy, high speed steel, and alloy tool steel. Element. 基体表面にN元素のイオン注入を行う第1の工程と、硬質皮膜を被覆する第2の工程とから成り、該第1の工程において該N元素富化領域を、深さ方向に1μm以内の領域に調整することを特徴とする硬質皮膜被覆部材の製造方法。
It consists of a first step of implanting N element ions on the surface of the substrate and a second step of covering the hard film, and in the first step, the N element-enriched region is within 1 μm in the depth direction. A manufacturing method of a hard coat covering member characterized by adjusting to a field.
JP2006041766A 2006-02-20 2006-02-20 Hard film coated member and its manufacturing method Pending JP2007217771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041766A JP2007217771A (en) 2006-02-20 2006-02-20 Hard film coated member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041766A JP2007217771A (en) 2006-02-20 2006-02-20 Hard film coated member and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007217771A true JP2007217771A (en) 2007-08-30

Family

ID=38495367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041766A Pending JP2007217771A (en) 2006-02-20 2006-02-20 Hard film coated member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007217771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005582A (en) * 2009-06-25 2011-01-13 Kyocera Corp Cutting tool
JP2011089199A (en) * 2009-09-28 2011-05-06 Hitachi Metals Ltd Hard film excellent in lubricating characteristic, application method of the same, and tool for metal plastic working
WO2021187508A1 (en) * 2020-03-19 2021-09-23 株式会社プラズマ総合研究所 Nitriding treatment method and tungsten carbide-based cemented carbide alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005582A (en) * 2009-06-25 2011-01-13 Kyocera Corp Cutting tool
JP2011089199A (en) * 2009-09-28 2011-05-06 Hitachi Metals Ltd Hard film excellent in lubricating characteristic, application method of the same, and tool for metal plastic working
WO2021187508A1 (en) * 2020-03-19 2021-09-23 株式会社プラズマ総合研究所 Nitriding treatment method and tungsten carbide-based cemented carbide alloy
CN115298348A (en) * 2020-03-19 2022-11-04 株式会社等离子体综合研究所 Nitriding method and tungsten carbide series super hard alloy
CN115298348B (en) * 2020-03-19 2024-10-29 株式会社等离子体综合研究所 Nitriding method and tungsten carbide-based cemented carbide

Similar Documents

Publication Publication Date Title
US20090081479A1 (en) Method of making a coated cutting tool and the resulting tool
KR20200019199A (en) Sheath cutting tool
CN109641286B (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and peeling resistance
JP2006225708A (en) Wear resistant film, wear resistant film-coated cutting tool, and method for producing wear resistant film
JP4304170B2 (en) Hard coating
KR20190142359A (en) Sheath cutting tool
JP2009006439A (en) Cutting tool
JP2007217771A (en) Hard film coated member and its manufacturing method
JP2015182169A (en) Surface coated cutting tool
JP2007046103A (en) Hard film
KR20180011148A (en) Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance
JP5995091B2 (en) Surface coated cutting tool with excellent adhesion strength and chipping resistance
JP2020142312A (en) Surface-coated cutting tool
JP2012192480A (en) Surface-coated cutting tool with hard coating layer for exhibiting excellent abnormal damage resistance
WO2019035219A1 (en) Coated cutting tool
JP2006037152A (en) Method for manufacturing member coated with hard film, and film formed by the method
JP3445899B2 (en) Surface coated end mill
JP5850393B2 (en) Surface coated cutting tool
JP4453902B2 (en) Hard coating and hard coating tool
JP2007056324A (en) Hard film
KR20210118093A (en) hard film cutting tool
JP2007056323A (en) Hard film
JP2007084910A (en) Hard coating and its production method
JP2006281362A (en) Surface coated member and cutting tool
JP4676741B2 (en) Hard coating and hard coating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090512

A131 Notification of reasons for refusal

Effective date: 20090515

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090709

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20091112

Free format text: JAPANESE INTERMEDIATE CODE: A02