JP2007217230A - Inorganic and organic bonding powder for sintering and molding, and pump part and pump device - Google Patents

Inorganic and organic bonding powder for sintering and molding, and pump part and pump device Download PDF

Info

Publication number
JP2007217230A
JP2007217230A JP2006039829A JP2006039829A JP2007217230A JP 2007217230 A JP2007217230 A JP 2007217230A JP 2006039829 A JP2006039829 A JP 2006039829A JP 2006039829 A JP2006039829 A JP 2006039829A JP 2007217230 A JP2007217230 A JP 2007217230A
Authority
JP
Japan
Prior art keywords
powder
organic material
inorganic
sintering
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006039829A
Other languages
Japanese (ja)
Other versions
JP4861719B2 (en
Inventor
Hirokazu Takayama
博和 高山
Katsuhiko Sakamoto
勝彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006039829A priority Critical patent/JP4861719B2/en
Publication of JP2007217230A publication Critical patent/JP2007217230A/en
Application granted granted Critical
Publication of JP4861719B2 publication Critical patent/JP4861719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic and organic bonding powder for sintering and molding which enhances bonding strength among aggregate with a small amount of an organic material, gives sufficient strength and stiffness and hardly generates growth defects; and also to provide a pump part and a pump device. <P>SOLUTION: The inorganic and organic bonding powder for sintering and molding is constituted by coating aggregate 1, comprising spherical or bulk powder of an inorganic compound, with a solvent-soluble thermoplastic organic material 3. The inorganic compound is constituted of an oxide, a carbide or a nitride and has a particle diameter of 10-150 μm, and the particle coated with the thermoplastic organic material has a particle diameter of 20-200 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、焼結・成形に用いて好適な無機有機結合粉末及びこの粉末を用いて成形したポンプ部品及びポンプ装置に関するものである。   The present invention relates to an inorganic / organic binder powder suitable for use in sintering and molding, and a pump component and a pump device molded using the powder.

従来、選択レーザー焼結装置(SLS)によって成形物を焼成・成形することが行なわれている。即ち例えば図3に示すように、選択レーザー焼結装置130のチャンバー132内に、無機化合物よりなる球状或いは塊状の粉末からなる骨材に機械的粉砕法で製作した熱可塑性の有機材料の粉末を混合してなる粉末状の素材を供給して、例えば0.1mmの厚さhの粒子層134を形成する。そして炭酸ガスレーザ発生装置等のレーザ光源136からのレーザ光をミラー138を介して粒子層134に照射し、このレーザ光が照射された部分に位置する前記有機材料を選択的に溶融硬化(焼結)し、薄片140を形成する。以下この工程を繰り返して薄片140を順次積層し、所定の形状を成形していく。つまり有機材料を骨材のバインダーとして使用することで積層法にて3次元成形物を製作していた。   Conventionally, a molded product is fired and molded by a selective laser sintering apparatus (SLS). That is, for example, as shown in FIG. 3, in a chamber 132 of a selective laser sintering apparatus 130, a thermoplastic organic material powder produced by a mechanical pulverization method is used for an aggregate made of a spherical or lump powder made of an inorganic compound. A powdery material obtained by mixing is supplied to form a particle layer 134 having a thickness h of, for example, 0.1 mm. Then, the particle layer 134 is irradiated with laser light from a laser light source 136 such as a carbon dioxide laser generator through a mirror 138, and the organic material located in the portion irradiated with the laser light is selectively melt-cured (sintered). And the flakes 140 are formed. Thereafter, this process is repeated, and the thin pieces 140 are sequentially laminated to form a predetermined shape. In other words, a three-dimensional molded product was manufactured by a lamination method using an organic material as an aggregate binder.

以上のようにして成形された成形物は多孔質体であり、そのまま構造物として用いる場合もあり、或いはこの多孔質体からなる成形物にウレタン樹脂やエポキシ樹脂等を含浸して固めて用いる場合もあり、或いはこの多孔質体からなる成形物にエチルシリケートを含浸して焼成2次処理を行なうことで前記有機材料とエチルシリケートを無機物化して構造物や精密鋳造用鋳型材料として用いる場合もあり、何れの場合もその用途に応じた物性が要求される。   The molded product molded as described above is a porous body and may be used as a structure as it is, or when the molded product made of this porous body is impregnated with urethane resin or epoxy resin and used. There are also cases where the porous material is impregnated with ethyl silicate and subjected to a firing secondary treatment to convert the organic material and ethyl silicate into an inorganic material for use as a structure or a mold material for precision casting. In either case, physical properties corresponding to the application are required.

例えばポンプの羽根車やケーシング等の構造物の場合は、強度、剛性或いは靭性のようなものが必要で、通常、SiO2やAl23等の骨材にポリアミドのような有機材料を組み合わせて使用する。また鋳型材料の場合は、粘結材料として使用する有機材料の含有量は、耐熱材料の耐火度を低下させないため極力少なくしなければならない。 For example, in the case of structures such as pump impellers and casings, strength, rigidity, or toughness is required, and usually an organic material such as polyamide is combined with an aggregate such as SiO 2 or Al 2 O 3. To use. In the case of the mold material, the content of the organic material used as the caking material must be reduced as much as possible in order not to lower the fire resistance of the heat-resistant material.

しかしながら上記従来例においては、以下のような問題点があった。
(1)骨材に比べ、有機材料が少ない場合は、十分な混合が難しく、十分な強度が得られなかった。
However, the conventional example has the following problems.
(1) When there were few organic materials compared with aggregate, sufficient mixing was difficult and sufficient intensity was not obtained.

(2)骨材に比べ、有機材料の割合を多くしないと、結合材料として機能しなかった。 (2) It did not function as a binding material unless the proportion of the organic material was increased compared to the aggregate.

(3)骨材に比べ、有機材料が多い場合は、混合した粉末状の骨材と粉末状の有機材料の中で有機材料の多い部分と少ない部分が生じ、有機材料の多い部分において焼結後に十分な剛性が得られなかった。 (3) When there are more organic materials than aggregates, the mixed powdered aggregate and the powdered organic material will have a portion with a lot of organic material and a portion with a small amount of organic material. Later, sufficient rigidity was not obtained.

(4)レーザーによる造形過程で、レーザーを当てた焼結部分のみが熱膨張して熱膨張しない部分を押すことによって焼結部分(薄片140)が変形するのを防止するため、粒子層134全体を予め加熱(燒結する温度よりも少し低い温度、例えばレーザによる焼結温度が187℃の場合に、170℃程度)しておくが、機械的粉砕法で作成した有機材料の粉砕粉と骨材を混合したものには前述のように有機材料の多い部分と少ない部分が生じているので、前記加熱によって有機材料の多い部分における隣接する有機材料同士がくっつき易くなっており、このためレーザーの出力が大きくなるとレーザー照射範囲近くのレーザーを照射していない部分の有機材料の多い部分が凝集してレーザーによって焼結しようとする部分にくっついて目的の焼結形状(レーザーを当てた部分の形状)よりも太った構造物になってしまういわゆるグロス欠陥が発生する恐れがあった。 (4) In order to prevent the sintered portion (slice 140) from being deformed by pressing a portion where only the sintered portion to which the laser is applied is thermally expanded and is not thermally expanded in the modeling process by the laser, the entire particle layer 134 Is preheated (a little lower than the sintering temperature, for example, about 170 ° C. when the laser sintering temperature is 187 ° C.), but the organic material pulverized powder and aggregate prepared by the mechanical pulverization method As described above, there are a large part and a small part of the organic material in the mixture, so that the adjacent organic materials in the part with a large amount of organic material are easily stuck to each other by the heating. When the size of the material increases, the part of the organic material that is not irradiated with the laser near the laser irradiation range aggregates and adheres to the part to be sintered by the laser. So-called gross defects become fat structure than the sintering shape (shape of the portion irradiated with laser) is may occur.

(5)レーザーによる造形過程で、レーザーを当てなかった部分(非焼結部分)は粉末状のままなので粒子層形成用に再使用される。しかしながら前述のように粒子層134はその全体が予め焼結温度に近い温度に加熱されているので、有機材料の多い部分においては隣接する有機材料同士がくっついて成長し、成長した有機材料表面の接触面積がくっつく前の複数の有機材料の接触面積よりも減少し、このため再使用に際して焼成するのに必要な温度が高くなり、レーザーパワーを大きくしなければならなくなっていた。 (5) In the laser molding process, the part not irradiated with the laser (non-sintered part) remains in powder form and is reused for forming the particle layer. However, as described above, since the entire particle layer 134 is heated to a temperature close to the sintering temperature in advance, adjacent organic materials grow in a portion where a large amount of organic material is present, and the surface of the grown organic material surface is grown. The contact area is smaller than the contact area of a plurality of organic materials before sticking, and therefore, the temperature required for firing at the time of reuse increases, and the laser power has to be increased.

(6)有機材料を機械的粉砕法で粉砕するので、必要とされる範囲の粒径以外の粒径のものが多くなり、特に熱可塑性材料等の軟らかい材料の場合はこの問題が大きくなり、焼結・成形用粉末としての回収率が悪かった。
特開2004−90046号公報
(6) Since the organic material is pulverized by a mechanical pulverization method, the number of particles having a particle size other than the required range is increased, and this problem is particularly increased in the case of a soft material such as a thermoplastic material. The recovery rate as a powder for sintering and molding was poor.
Japanese Patent Laid-Open No. 2004-90046

本発明は上述の点に鑑みてなされたものでありその目的は、少ない有機材料で骨材相互の結合力を強く出来て十分な強度・剛性が得られ、グロス欠陥も発生しにくい焼結・成形用無機有機結合粉末及びポンプ部品及びポンプ装置を提供することにある。   The present invention has been made in view of the above-mentioned points, and its purpose is to obtain a sufficient strength and rigidity by strengthening the bonding force between aggregates with a small amount of organic material, and to prevent the occurrence of gross defects. An object of the present invention is to provide an inorganic-organic bonding powder for molding, a pump component, and a pump device.

本願請求項1に記載の発明は、無機化合物よりなる球状或いは塊状の粉末からなる骨材に、溶剤可溶性の熱可塑性有機材料をコーティングしたことを特徴とする焼結・成形用無機有機結合粉末にある。これによって少ない有機材料で粉末相互の結合が容易に行えるようになる。   The invention according to claim 1 of the present invention is an inorganic organic bonded powder for sintering and molding, characterized in that a solvent-soluble thermoplastic organic material is coated on an aggregate made of a spherical or block powder made of an inorganic compound. is there. As a result, the powders can be easily bonded to each other with a small amount of organic material.

即ち図1に示すように骨材1の表面に薄く熱可塑性有機材料3をコーティングしておけば、骨材1表面の熱可塑性有機材料3同士が直接触れるので粉末相互の濡れ性が良く、焼成の際、少ない有機材料で、十分な結合強度が得られる。また上記従来例のように有機材料の粉末同士のみが結合することが無くなり、有機材料が結合するときは骨材も結合するので、有機材料の多い部分と少ない部分が生じずに均一化され、十分な剛性が得られる。また同様に有機材料の多い部分と少ない部分が生じないので、レーザーを照射した部分の周囲の部分がレーザーを照射した焼結部分に結合して太った構造物になることはなく、グロス欠陥が生じにくくなる。また同様に有機材料の多い部分と少ない部分が生じないので、レーザーによる造形過程で、粒子層全体の加熱の際に有機材料の多い部分において隣接する有機材料のみの粉末同士がくっついて成長することはなく、従ってこの粉末の再使用に際してレーザーパワーを大きくする必要もなくなる。   That is, if the thermoplastic organic material 3 is thinly coated on the surface of the aggregate 1 as shown in FIG. 1, the thermoplastic organic material 3 on the surface of the aggregate 1 is in direct contact with each other, so that the wettability between the powders is good and firing is performed. In this case, sufficient bond strength can be obtained with a small amount of organic material. In addition, only the powder of the organic material is not bonded to each other as in the above conventional example, and when the organic material is bonded, the aggregate is also bonded, so that the portion with a lot of the organic material and the portion with a small amount are made uniform, Sufficient rigidity is obtained. Similarly, there are no parts with a lot of organic material and parts with little organic material, so the parts around the part irradiated with the laser do not bond to the sintered part irradiated with the laser and become a fat structure, and gross defects occur. It becomes difficult. Similarly, there are no parts with a lot of organic material and parts with little organic material, so in the modeling process by laser, when the whole particle layer is heated, the powder of only the organic material adjacent to each other in the part with a lot of organic material grows. Therefore, it is not necessary to increase the laser power when the powder is reused.

前記骨材表面への熱可塑性有機材料のコーティングには液体粉砕法を用いることが好ましい。ここで液体粉砕法(ケミカル粉砕法)とは、前記熱可塑性有機材料を溶剤で溶かし、これに骨材を入れて加圧・加温しながら攪拌することで、溶剤を蒸発させ、これによって骨材表面に熱可塑性有機材料が核生成した粉末を得る製造方法のことである。この方法によれば、例え軟らかい熱可塑性有機材料であっても、これを容易に骨材表面に薄くコーティングすることが可能になる。   A liquid pulverization method is preferably used for coating the surface of the aggregate with the thermoplastic organic material. Here, the liquid pulverization method (chemical pulverization method) is a method in which the thermoplastic organic material is dissolved in a solvent, and then the aggregate is put in the solvent and stirred while being pressurized and heated to evaporate the solvent, thereby causing bone It is a manufacturing method for obtaining a powder in which a thermoplastic organic material is nucleated on the material surface. According to this method, even a soft thermoplastic organic material can be easily thinly coated on the aggregate surface.

前記液体粉砕法による骨材表面への熱可塑性有機材料のコーティングの際、図1に示すように一粒一粒の骨材1表面に独立に熱可塑性有機材料3のコーティングをしていくのではなく、図2に示すように複数個の骨材1を一つの有機材料のブロック3−1内部に取り込むようにしても良い。このようにしてもブロック3−1表面全体を同材の有機材料とすることができるので、粉末相互の濡れ性は良好のままで、結合力が低下することはない。   When the thermoplastic organic material is coated on the surface of the aggregate by the liquid pulverization method, as shown in FIG. 1, the surface of the aggregate 1 is not coated with the thermoplastic organic material 3 independently. Alternatively, as shown in FIG. 2, a plurality of aggregates 1 may be taken into one organic material block 3-1. Even if it does in this way, since the whole surface of the block 3-1 can be made of the same organic material, the wettability between the powders remains good and the bonding force does not decrease.

前記焼結・成形用無機有機結合粉末を焼成して成形する成形品は製品(構造物)でも鋳造用の鋳型でも良く、その利用分野は多岐にわたる。   The molded product formed by firing the inorganic organic binder powder for sintering / molding may be a product (structure) or a casting mold, and its application fields are diverse.

本願請求項2に記載の発明は、前記無機化合物は、酸化物又は炭化物又は窒化物によって構成され且つその粒径を10〜150μmとし、さらに熱可塑性有機材料をコーティングした焼結・成形用無機有機結合粉末の粒径を20〜200μmとしたことを特徴とする請求項1に記載の焼結・成形用無機有機結合粉末にある。焼結・成形用無機有機結合粉末の粒径を20μm以上にするのは、それ以下にすると前記図3に示す選択レーザー焼結装置130において粒子層134を設けた際に、選択レーザー焼結装置130内は窒素パージしているので窒素ガスの流れによって粒子層134を構成する粉末が舞い上がり易くなってフィルターを詰まらせる恐れがあるからである。また焼結・成形用無機有機結合粉末の粒径を200μm以下にするのは、それ以上にすると焼結・成形用無機有機結合粉末の寸法精度が悪くなるからである。   The invention according to claim 2 of the present application is such that the inorganic compound is composed of an oxide, a carbide or a nitride, has a particle size of 10 to 150 μm, and is coated with a thermoplastic organic material. 2. The inorganic / organic binder powder for sintering and molding according to claim 1, wherein the particle size of the binder powder is 20 to 200 [mu] m. When the particle size of the inorganic / organic bonding powder for sintering / molding is set to 20 μm or more when the particle layer 134 is provided in the selective laser sintering apparatus 130 shown in FIG. 3, the selective laser sintering apparatus is used. This is because the inside of 130 is purged with nitrogen, so that the powder constituting the particle layer 134 is likely to rise by the flow of nitrogen gas and may clog the filter. Moreover, the reason why the particle size of the inorganic / organic bonding powder for sintering / molding is set to 200 μm or less is that the dimensional accuracy of the inorganic / organic bonding powder for sintering / molding is deteriorated when the particle diameter is increased.

前記酸化物としてはSiO2,Al23,Zr23等が好ましく、炭化物としてはSiC,TiC等が好ましく、窒化物としてはSi34等が好ましい。 The oxide is preferably SiO 2 , Al 2 O 3 , Zr 2 O 3 or the like, the carbide is preferably SiC or TiC, and the nitride is preferably Si 3 N 4 or the like.

前記熱可塑性有機材料としては、ABS樹脂、ポリアミド樹脂、ポリスチレン樹脂、アクリル樹脂、フェノール樹脂、シリコーン樹脂、低密度ポリエチレン(LDPE)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリエーテルサルホン(PES)、ポリプロピレン(PP)、ポリイミド(PI)、ポリブチレンテレフタレート(PBT)、又はポリカーボネ−ト(PC)等であることが好ましい。   Examples of the thermoplastic organic material include ABS resin, polyamide resin, polystyrene resin, acrylic resin, phenol resin, silicone resin, low density polyethylene (LDPE), polyamide (PA), polyethylene terephthalate (PET), polyethersulfone (PES). ), Polypropylene (PP), polyimide (PI), polybutylene terephthalate (PBT), or polycarbonate (PC).

本願請求項3に記載の発明は、前記骨材と熱可塑性有機材料の混合比率を、その用途に求められる物性に応じて、重量%で、(骨材):(熱可塑性有機材料)=99:1〜50:50としたことを特徴とする請求項1に記載の焼結・成形用無機有機結合粉末にある。熱可塑性有機材料は骨材のバインダーとして使用しているが、熱可塑性有機材料を骨材99に対して1以上としたのは、この焼結・成形用無機有機結合粉末を成形できる限界の量だからである(骨材だけでバインダーがないと成形できない)。また熱可塑性有機材料を骨材50に対して50以下としたのは、骨材と骨材の間にバインダーである熱可塑性有機材料が埋められるのであるが、この熱可塑性有機材料の混合比率が骨材同士が互いに接する限界の混合比率だからであり、強度を保つためである。もし骨材同士が互いに接しないとバインダーの強度になってしまい、強度が弱くなってしまう。   In the invention according to claim 3, the mixing ratio of the aggregate and the thermoplastic organic material is expressed by weight% in accordance with the physical properties required for the use, and (aggregate) :( thermoplastic organic material) = 99. The inorganic / organic binder powder for sintering / molding according to claim 1, wherein the inorganic organic binder powder is 1 to 50:50. The thermoplastic organic material is used as a binder for the aggregate, but the reason why the thermoplastic organic material is set to 1 or more with respect to the aggregate 99 is the limit amount that can form this inorganic organic binder powder for sintering and molding. That's why (it can only be formed with aggregate and without binder). The reason why the thermoplastic organic material is 50 or less with respect to the aggregate 50 is that the thermoplastic organic material as a binder is buried between the aggregate and the aggregate, but the mixing ratio of this thermoplastic organic material is This is because the limit of the mixing ratio at which the aggregates contact each other is to maintain strength. If the aggregates do not touch each other, the strength of the binder is increased and the strength is reduced.

本願請求項4に記載の発明は、請求項1又は2又は3に記載の焼結・成形用無機有機結合粉末を焼成することで成形してなることを特徴とするポンプ部品にある。   Invention of Claim 4 of this application exists in the pump component characterized by shape | molding by baking the inorganic organic combined powder for sintering and shaping | molding of Claim 1 or 2 or 3.

本願請求項5に記載の発明は、請求項4に記載のポンプ部品を用いて構成されることを特徴とするポンプ装置にある。   The invention according to claim 5 of the present application is a pump device comprising the pump component according to claim 4.

本願請求項1に記載の発明によれば、少ない有機材料であっても骨材相互の結合力を強く出来て十分な強度・剛性が得られ、安定した物性の造形物を成形できる。またレーザーによる造形過程で、グロス欠陥が生じにくくなる。またレーザーによる造形過程でレーザーを当てなかった非焼結部分の粉末の再使用に際してレーザーパワーを大きくする必要もなくなる。また選択レーザー焼結装置用粉末として必要とされる粒径のものが容易に得られてその回収率が良く、安価に選択レーザー焼結装置用粉末が得られる。   According to the first aspect of the present invention, even a small amount of organic material can strengthen the bonding force between the aggregates to obtain sufficient strength and rigidity, and a molded article having stable physical properties can be formed. In addition, gross defects are less likely to occur during the laser modeling process. Further, it is not necessary to increase the laser power when reusing the powder of the non-sintered portion that was not irradiated with the laser in the modeling process using the laser. In addition, a powder having a required particle size can be easily obtained as the powder for the selective laser sintering apparatus, the recovery rate thereof is good, and the powder for the selective laser sintering apparatus can be obtained at a low cost.

本願請求項2に記載の発明によれば、選択レーザー焼結装置のレーザーによる造形を、容易且つ精度よく行うことができる。   According to the second aspect of the present invention, modeling by a laser of the selective laser sintering apparatus can be easily and accurately performed.

本願請求項3に記載の発明によれば、焼結・成形用無機有機結合粉末を焼成して成形する成形品の用途に応じて必要とされる物性が得られる。   According to the invention described in claim 3 of the present application, the physical properties required depending on the use of the molded product obtained by firing and molding the inorganic organic binder powder for sintering and molding can be obtained.

本願請求項4に記載の発明によれば、本発明にかかる焼結・成形用無機有機結合粉末を用いて、羽根車やケーシング等の各種ポンプ部品を構成できる。   According to the invention described in claim 4 of the present application, various pump parts such as an impeller and a casing can be configured using the inorganic / organic bonding powder for sintering and molding according to the present invention.

本願請求項5に記載の発明によれば、請求項4に記載の部品を用いてポンプ装置を構成できる。   According to the invention described in claim 5 of the present application, the pump device can be configured using the component described in claim 4.

以下、本発明の実施形態を図面を参照して詳細に説明する。
〔実施形態1〕骨材としてSiO2を使用し、熱可塑性有機材料としてポリアミドを使用して構造物用粉末を作成した例
(1)原料構成
SiO2粉末…粒径範囲:30〜100μm、形状:球形、混合割合:50重量%
ポリアミド(ナイロン22)…混合割合:50重量%
(2)製造方法
ポリアミドを芳香族系溶剤に溶解し、SiO2粉末を加えてオートクレーブ(加熱・加圧釜)中で加熱・加圧しながら攪拌し、溶剤を蒸発させ実施形態1にかかる粉末を得た。
(3)粉末粒径範囲:50〜150μm
(4)実施形態1にかかる粉末を用いた成形品の特性
前記粉末を用いて選択レーザー焼結装置によって構造物(JIS試験に使用する、縦×横×高さ=55mm×10mm×5mmの直方体形状の構造物)を製造し、その引っ張り強さ試験と伸び(靭性)試験とを行なった。その結果を以下に示す。
引っ張り強さ:60MPa
伸び(靭性):5%
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Embodiment 1] An example of making a powder for a structure using SiO 2 as an aggregate and polyamide as a thermoplastic organic material (1) Raw material composition SiO 2 powder: particle size range: 30 to 100 μm, shape : Spherical, mixing ratio: 50% by weight
Polyamide (nylon 22) ... Mixing ratio: 50% by weight
(2) Manufacturing method Polyamide is dissolved in an aromatic solvent, and SiO 2 powder is added and stirred in an autoclave (heating / pressurizing kettle) while heating and pressing to evaporate the solvent to obtain a powder according to the first embodiment. It was.
(3) Powder particle size range: 50-150 μm
(4) Characteristics of Molded Product Using Powder According to Embodiment 1 A structure (vertical × horizontal × height = 55 mm × 10 mm × 5 mm rectangular parallelepiped used for JIS test) using a selective laser sintering apparatus using the powder Shape structure) was manufactured, and its tensile strength test and elongation (toughness) test were conducted. The results are shown below.
Tensile strength: 60 MPa
Elongation (toughness): 5%

〔比較例1〕骨材としてSiO2を使用し、熱可塑性有機材料としてポリアミドを使用して構造物用粉末を作成した例
(1)原料構成
SiO2粉末…粒径範囲:30〜100μm、形状:球形、混合割合:50重量%
ポリアミド(ナイロン22)…混合割合:50重量%
(2)製造方法
ポリアミドを機械的粉砕法によって粉砕したものをSiO2の粉末に混合することで比較例1にかかる粉末を得た。
(3)比較例1にかかる粉末を用いた成形品の特性
前記粉末を用いて選択レーザー焼結装置によって構造物(JIS試験に使用する上記寸法と同一寸法の直方体形状の構造物)を製造し、その引っ張り強さ試験と伸び(靭性)試験とを行なった。その結果を以下に示す。
引っ張り強さ:50MPa
伸び(靭性):2%
Comparative Example 1 using SiO 2 as an aggregate, example of creating a structure for powder using polyamide as the thermoplastic organic material (1) Raw material constituting SiO 2 powder ... size range: 30 to 100 [mu] m, the shape : Spherical, mixing ratio: 50% by weight
Polyamide (nylon 22) ... Mixing ratio: 50% by weight
(2) to obtain a powder of Comparative Example 1 by mixing those ground to the SiO 2 powder by mechanical pulverization method a manufacturing method polyamides.
(3) Characteristics of molded product using powder according to Comparative Example 1 Using the powder, a structure (a rectangular parallelepiped structure having the same dimensions as those used in the JIS test) was produced by a selective laser sintering apparatus. The tensile strength test and the elongation (toughness) test were conducted. The results are shown below.
Tensile strength: 50 MPa
Elongation (toughness): 2%

上記実施形態1と比較例1からわかるように、実施形態1にかかる粉末を用いて製造した構造物の方が、比較例1にかかる粉末を用いて製造した構造物よりもその強度及び靭性の何れにおいても優れることが分かった。従ってポンプの羽根車やケーシング等の各種構造物に用いて好適である。   As can be seen from Embodiment 1 and Comparative Example 1 above, the structure manufactured using the powder according to Embodiment 1 is stronger and tougher than the structure manufactured using the powder according to Comparative Example 1. It was found that both were excellent. Therefore, it is suitable for various structures such as a pump impeller and casing.

〔実施形態2〕骨材としてZr23を使用し、熱可塑性有機材料としてシリコーン樹脂を使用して鋳型材料用の粉末を作成した例
(1)原料構成
Zr23粉末…粒径範囲:30〜100μm、形状:球形、混合割合:95重量%
シリコーン樹脂…混合割合:5重量%
(2)製造方法
シリコーン樹脂ワニスをMEK(メチルエチルケトン)に溶解し、Zr23粉末を加えてオートクレーブ中で加熱・加圧しながら攪拌し、溶剤を蒸発させ実施形態2にかかる粉末を得た。
(3)粉末粒径範囲:50〜150μm
(4)実施形態2にかかる粉末を用いた成形品の特性
前記粉末を用いて選択レーザー焼結装置によって構造物(JIS試験に使用する上記寸法と同一寸法の直方体形状の構造物)を製造し、圧縮強さ試験を行なった。その結果を以下に示す。
圧縮強さ:60kg/cm2
[Embodiment 2] Example of making powder for mold material using Zr 2 O 3 as aggregate and silicone resin as thermoplastic organic material (1) Raw material composition Zr 2 O 3 powder ... Particle size range : 30 to 100 μm, shape: spherical, mixing ratio: 95% by weight
Silicone resin ... Mixing ratio: 5% by weight
(2) Production Method A silicone resin varnish was dissolved in MEK (methyl ethyl ketone), Zr 2 O 3 powder was added, and the mixture was stirred while heating and pressurizing in an autoclave, and the solvent was evaporated to obtain a powder according to Embodiment 2.
(3) Powder particle size range: 50-150 μm
(4) Characteristics of molded product using powder according to embodiment 2 Using the powder, a structure (a rectangular parallelepiped structure having the same dimensions as those used in the JIS test) is manufactured by a selective laser sintering apparatus. A compression strength test was conducted. The results are shown below.
Compressive strength: 60 kg / cm 2

〔比較例2〕骨材としてZr23を使用し、熱可塑性有機材料としてシリコーン樹脂を使用して鋳型材料用の粉末を作成した例
(1)原料構成
Zr23粉末…粒径範囲:30〜100μm、形状:球形、混合割合:95重量%
シリコーン樹脂…混合割合:5重量%
(2)製造方法
シリコーン樹脂を機械的粉砕法によって粉砕したものをZr23の粉末に混合することで比較例2にかかる粉末を得た。
(3)比較例2にかかる粉末を用いた成形品の特性
前記粉末を用いて選択レーザー焼結装置によって構造物(JIS試験に使用する上記寸法と同一寸法の直方体形状の構造物)を製造し、圧縮強さ試験を行なった。その結果を以下に示す。
圧縮強さ:50kg/cm2
[Comparative Example 2] Example of making powder for mold material using Zr 2 O 3 as aggregate and using silicone resin as thermoplastic organic material (1) Raw material composition Zr 2 O 3 powder ... Particle size range : 30 to 100 μm, shape: spherical, mixing ratio: 95% by weight
Silicone resin ... Mixing ratio: 5% by weight
(2) those that the manufacturing process silicone resin was ground by mechanical grinding method to obtain a powder according to Comparative Example 2 by mixing a powder of Zr 2 O 3.
(3) Characteristics of molded product using powder according to Comparative Example 2 Using the powder, a structure (a rectangular parallelepiped structure having the same dimensions as those used in the JIS test) was produced by a selective laser sintering apparatus. A compression strength test was conducted. The results are shown below.
Compressive strength: 50 kg / cm 2

上記実施形態2と比較例2からわかるように、実施形態2にかかる粉末を用いて製造した鋳型の方が、比較例2にかかる粉末を用いて製造した鋳型よりもその強度が優れることが分かった。   As can be seen from Embodiment 2 and Comparative Example 2 above, it can be seen that the mold manufactured using the powder according to Embodiment 2 is superior in strength to the mold manufactured using the powder according to Comparative Example 2. It was.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible.

骨材1の表面に熱可塑性有機材料3をコーティングした焼結・成形用無機有機結合粉末の拡大概略図である。1 is an enlarged schematic view of an inorganic organic binder powder for sintering and molding in which a surface of an aggregate 1 is coated with a thermoplastic organic material 3. FIG. 骨材1の表面に熱可塑性有機材料3−1をコーティングした焼結・成形用無機有機結合粉末の拡大概略図である。1 is an enlarged schematic view of an inorganic organic binder powder for sintering / molding in which a surface of an aggregate 1 is coated with a thermoplastic organic material 3-1. 選択レーザー焼結装置130を示す概略図である。It is the schematic which shows the selective laser sintering apparatus 130. FIG.

符号の説明Explanation of symbols

1 骨材
3 熱可塑性有機材料
3−1 熱可塑性有機材料(ブロック)
130 選択レーザ焼結装置
132 チャンバー
134 粒子層
136 レーザ光源
138 ミラー
140 薄片
1 Aggregate 3 Thermoplastic organic material 3-1 Thermoplastic organic material (block)
130 Selective Laser Sintering Device 132 Chamber 134 Particle Layer 136 Laser Light Source 138 Mirror 140 Flakes

Claims (5)

無機化合物よりなる球状或いは塊状の粉末からなる骨材に、溶剤可溶性の熱可塑性有機材料をコーティングしたことを特徴とする焼結・成形用無機有機結合粉末。   An inorganic / organic bonding powder for sintering / molding, characterized in that a solvent-soluble thermoplastic organic material is coated on an aggregate made of a spherical or massive powder made of an inorganic compound. 前記無機化合物は酸化物又は炭化物又は窒化物によって構成され且つその粒径を10〜150μmとし、さらに熱可塑性有機材料をコーティングした焼結・成形用無機有機結合粉末の粒径を20〜200μmとしたことを特徴とする請求項1に記載の焼結・成形用無機有機結合粉末。   The inorganic compound is composed of oxide, carbide, or nitride, and has a particle size of 10 to 150 μm. Further, the particle size of the inorganic organic bonding powder for sintering / molding coated with a thermoplastic organic material is 20 to 200 μm. The inorganic / organic binder powder for sintering and molding according to claim 1. 前記骨材と熱可塑性有機材料の混合比率を、重量%で、99:1〜50:50としたことを特徴とする請求項1に記載の焼結・成形用無機有機結合粉末。   2. The inorganic / organic bonding powder for sintering and molding according to claim 1, wherein a mixing ratio of the aggregate and the thermoplastic organic material is 99: 1 to 50:50 in terms of% by weight. 請求項1又は2又は3に記載の焼結・成形用無機有機結合粉末を焼成することで成形してなることを特徴とするポンプ部品。   A pump part formed by firing the inorganic / organic bonding powder for sintering / molding according to claim 1, 2 or 3. 請求項4に記載のポンプ部品を用いて構成されることを特徴とするポンプ装置。
A pump device comprising the pump component according to claim 4.
JP2006039829A 2006-02-16 2006-02-16 Inorganic organic binder powder and pump parts and pump equipment for sintering and molding Active JP4861719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039829A JP4861719B2 (en) 2006-02-16 2006-02-16 Inorganic organic binder powder and pump parts and pump equipment for sintering and molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039829A JP4861719B2 (en) 2006-02-16 2006-02-16 Inorganic organic binder powder and pump parts and pump equipment for sintering and molding

Publications (2)

Publication Number Publication Date
JP2007217230A true JP2007217230A (en) 2007-08-30
JP4861719B2 JP4861719B2 (en) 2012-01-25

Family

ID=38494914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039829A Active JP4861719B2 (en) 2006-02-16 2006-02-16 Inorganic organic binder powder and pump parts and pump equipment for sintering and molding

Country Status (1)

Country Link
JP (1) JP4861719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071405A1 (en) * 2013-11-18 2015-05-21 Robert Bosch Gmbh Fuel injection pump for an internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365943A (en) * 1986-09-05 1988-03-24 Orient Chem Ind Ltd Granulation method
JPH08157268A (en) * 1994-12-01 1996-06-18 Ube Chem Ind Co Ltd Magnesia based fire resisting particle
JP2004076602A (en) * 2002-08-12 2004-03-11 Ngk Spark Plug Co Ltd Plunger for pump
JP2004090046A (en) * 2002-08-30 2004-03-25 Ebara Corp Precision casting method, its cast product and rotary machine
JP2004122489A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Apparatus for manufacturing three-dimensional shaped article and mold manufacturing method using same
JP2004352573A (en) * 2003-05-29 2004-12-16 Kyocera Corp Sliding device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365943A (en) * 1986-09-05 1988-03-24 Orient Chem Ind Ltd Granulation method
JPH08157268A (en) * 1994-12-01 1996-06-18 Ube Chem Ind Co Ltd Magnesia based fire resisting particle
JP2004076602A (en) * 2002-08-12 2004-03-11 Ngk Spark Plug Co Ltd Plunger for pump
JP2004090046A (en) * 2002-08-30 2004-03-25 Ebara Corp Precision casting method, its cast product and rotary machine
JP2004122489A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Apparatus for manufacturing three-dimensional shaped article and mold manufacturing method using same
JP2004352573A (en) * 2003-05-29 2004-12-16 Kyocera Corp Sliding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071405A1 (en) * 2013-11-18 2015-05-21 Robert Bosch Gmbh Fuel injection pump for an internal combustion engine

Also Published As

Publication number Publication date
JP4861719B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
US20200147900A1 (en) Method for manufacturing composite product from chopped fiber reinforced thermosetting resin by 3d printing
Mirzababaei et al. A review on binder jet additive manufacturing of 316L stainless steel
Chen et al. High-performance ceramic parts with complex shape prepared by selective laser sintering: a review
CN107098714B (en) Silicon carbide-based ceramic part manufacturing method based on 3DP additive manufacturing technology
US9944021B2 (en) Additive manufacturing 3D printing of advanced ceramics
US10392311B2 (en) Composite ceramics and ceramic particles and method for producing ceramic particles and bulk ceramic particles
KR20230113414A (en) Method for the economic manufacture of light components
KR20160103099A (en) Method for manufacturing core, and method for manufacturing turbine member in which core is acquired by said core manufacturing method
CN107043259A (en) A kind of reaction sintering silicon carbide ceramic selective laser sintering forming method
Meshalkin et al. Methods used for the compaction and molding of ceramic matrix composites reinforced with carbon nanotubes
CN104628393A (en) Preparation method of high-performance ceramic
CA3029062A1 (en) Metal objects and methods for making metal objects using disposable molds
US20200338818A1 (en) Method and apparatus for additive manufacturing
CN109692967A (en) A kind of 3D printing bulk powder and preparation method thereof and Method of printing
ATE450484T1 (en) COMPOSITE MATERIAL AND METHOD FOR PRODUCING IT
JP2010515829A (en) Ceramic composite molded body and / or powder metallurgy composite molded body and method for producing the same
Celik Additive manufacturing: science and technology
JP2018015972A (en) Three-dimensional molding method, molded article and three-dimensional molding apparatus
Sarabia-Vallejos et al. Innovation in additive manufacturing using polymers: a survey on the technological and material developments
CN105837219A (en) Preparation method of silicon carbide ceramic part
JP2023520297A (en) A cost-effective way to obtain complex shaped parts
JP2003001368A (en) Method for lamination-shaping and lamination-shaped article
CN107500779B (en) Porous silicon-based structural ceramic and preparation method thereof
JP4861719B2 (en) Inorganic organic binder powder and pump parts and pump equipment for sintering and molding
JP7061925B2 (en) Manufacturing method of sand mold for casting

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Ref document number: 4861719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250