JP2007216493A - Minute structure, mold for transferring minute structure, mold for replica, and its manufacturing method - Google Patents

Minute structure, mold for transferring minute structure, mold for replica, and its manufacturing method Download PDF

Info

Publication number
JP2007216493A
JP2007216493A JP2006039205A JP2006039205A JP2007216493A JP 2007216493 A JP2007216493 A JP 2007216493A JP 2006039205 A JP2006039205 A JP 2006039205A JP 2006039205 A JP2006039205 A JP 2006039205A JP 2007216493 A JP2007216493 A JP 2007216493A
Authority
JP
Japan
Prior art keywords
mold
microstructure
transfer
fine
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006039205A
Other languages
Japanese (ja)
Other versions
JP5088845B2 (en
Inventor
Masahiko Ogino
雅彦 荻野
Takeya Ohashi
健也 大橋
Hiroshi Yoshida
博史 吉田
Katsumichi Ono
勝道 小野
Toshio Kubota
俊夫 久保田
Atsushi Morikawa
敦司 森川
Daigo Nagayama
大悟 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Ibaraki University NUC
Original Assignee
Hitachi Ltd
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Ibaraki University NUC filed Critical Hitachi Ltd
Priority to JP2006039205A priority Critical patent/JP5088845B2/en
Publication of JP2007216493A publication Critical patent/JP2007216493A/en
Application granted granted Critical
Publication of JP5088845B2 publication Critical patent/JP5088845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To duplicate a plurality of molds in each of which a minute structure is formed accurately in a nano-imprint method of a pattern transfer technique for forming a structure having a minute shape. <P>SOLUTION: In the minute structure formed by pushing a mold with a minute uneven pattern formed on the surface to a transcribed body and a mold for transferring a minute structure for forming the minute uneven pattern on the surface of the transcribed body, the minute structure and the mold for transferring the minute structure duplicate the minute unevenness of the mold accurately by reacting a monomer or an oligomer having a terminal reactive functional group which is packed in the minute uneven shape of a master mold. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、微細構造体、微細構造体転写用モールド、レプリカ用モールドおよびその製造方法に関し、特に表面に微細な凹凸パターンが形成されたモールドを被転写体に押し付け、被転写体表面に微細な凹凸パターンを形成するための微細構造転写用モールドに関する。   The present invention relates to a fine structure, a fine structure transfer mold, a replica mold, and a method for manufacturing the same, and in particular, a mold having a fine uneven pattern formed on the surface is pressed against a transfer target, The present invention relates to a microstructure transfer mold for forming an uneven pattern.

近年、半導体集積回路は微細化,集積化が進んでおり、その微細加工を実現するためのパターン転写技術としてフォトリソグラフィ装置の高精度化が進められてきた。しかし、加工方法が光露光の光源の波長に近づき、リソグラフィ技術も限界に近づいてきた。そのため、さらなる微細化,高精度化を進めるために、リソグラフィ技術に代わり、荷電粒子線装置の一種である電子線描画装置が用いられるようになった。   2. Description of the Related Art In recent years, semiconductor integrated circuits have been miniaturized and integrated, and photolithography equipment has been improved in accuracy as a pattern transfer technique for realizing fine processing. However, the processing method has approached the wavelength of the light source for light exposure, and the lithography technology has also approached its limit. Therefore, in order to advance further miniaturization and higher accuracy, an electron beam drawing apparatus, which is a kind of charged particle beam apparatus, has been used in place of lithography technology.

電子線を用いたパターン形成は、i線、エキシマレーザー等の光源を用いたパターン形成における一括露光方法とは異なり、マスクパターンを描画していく方法をとるため、描画するパターンが多ければ多いほど露光(描画)時間がかかり、パターン形成に時間がかかることが欠点とされている。そのため、256メガ、1ギガ、4ギガと、集積度が飛躍的に高まるにつれ、その分パターン形成時間も飛躍的に長くなることになり、スループットが著しく劣ることが懸念される。そこで、電子ビーム描画装置の高速化のために、各種形状のマスクを組み合わせ、それらに一括して電子ビームを照射して複雑な形状の電子ビームを形成する一括図形照射法の開発が進められている。この結果、パターンの微細化が進められる一方で、電子線描画装置を大型化せざるを得ないほか、マスク位置をより高精度に制御する機構が必要になるなど、装置コストが高くなるという欠点があった。   Unlike the batch exposure method in pattern formation using a light source such as i-line or excimer laser, pattern formation using an electron beam takes a method of drawing a mask pattern. The exposure (drawing) takes time and the pattern formation takes time. For this reason, as the degree of integration is dramatically increased to 256 mega, 1 giga, and 4 giga, the pattern formation time is remarkably increased correspondingly, and there is a concern that the throughput is extremely inferior. Therefore, in order to increase the speed of the electron beam lithography system, development of a collective figure irradiation method that combines various shapes of masks and collectively irradiates them with electron beams to form complex shapes of electron beams has been promoted. Yes. As a result, while miniaturization of the pattern is promoted, the electron beam lithography apparatus must be enlarged and a mechanism for controlling the mask position with higher accuracy is required. was there.

これに対し、微細なパターン形成を低コストで行うための技術が下記特許文献1及び2、非特許文献1などにおいて開示されている。これは、基板上に形成したいパターンと同じパターンの凹凸を有するモールドを、被転写基板表面に形成されたレジスト膜層に対して型押しすることで所定のパターンを転写するものであり、特に特許文献2や非特許文献1に記載のナノインプリント技術によれば、シリコンウエハをモールドとして用い、25ナノメートル以下の微細構造を転写により形成可能であるとしている。   On the other hand, techniques for performing fine pattern formation at low cost are disclosed in Patent Documents 1 and 2 and Non-Patent Document 1 described below. This is to transfer a predetermined pattern by embossing a resist film layer formed on the surface of the substrate to be transferred with a mold having the same pattern as the pattern to be formed on the substrate. According to the nanoimprint technology described in Document 2 and Non-Patent Document 1, a silicon wafer is used as a mold, and a fine structure of 25 nanometers or less can be formed by transfer.

米国特許5,259,926号明細書US Pat. No. 5,259,926 米国特許5,772,905号明細書US Pat. No. 5,772,905 S.Y.Chou et al.,Appl.Phys.Lett.,vol.67,p.3114(1955)S. Y. Chou et al. , Appl. Phys. Lett. , Vol. 67, p. 3114 (1955)

しかし、微細パターンを形成可能とされるインプリント技術において、1つのマスターモールドより複数のレプリカを高精度に複製する技術が求められてきた。   However, in the imprint technique capable of forming a fine pattern, a technique for replicating a plurality of replicas with high accuracy from one master mold has been demanded.

以上の技術課題に鑑み、本発明は、バイオデバイスや半導体デバイス、ストレージメディアなどの製造工程において、微細な形状の構造体を形成するためのパターン転写技術であるナノインプリント法に用いられる高精度に微細構造が形成されたモールドを複数個、複製することを課題とする。   In view of the above technical problems, the present invention is highly accurate and finely used in a nanoimprint method, which is a pattern transfer technique for forming a fine-shaped structure in a manufacturing process of biodevices, semiconductor devices, storage media, and the like. It is an object to duplicate a plurality of molds having a structure.

本発明者は、高精度マスターモールドの複製を妨げている要因として、マスターモールドの微細な凹凸形状内に複製用モールド材料が完全に充填しきれないことが原因と考え、本発明に至った。   The present inventor considered that as a factor hindering the replication of the high-precision master mold, it was caused by the fact that the mold material for replication could not be completely filled in the fine uneven shape of the master mold, and reached the present invention.

即ち、本発明は、複製された微細構造体および微細構造体転写用モールドの発明であり、表面に微細な凹凸パターンが形成されたモールドを被転写体に押し付け、形成される微細構造体、および被転写体表面に微細な凹凸パターンを形成するための微細構造転写用モールドにおいて、前記微細構造体および微細構造体転写用モールドは、末端に反応性即ち重合性官能基を有するモノマーまたはオリゴマーをマスターモールドの微細な凹凸形状内に充填させた後、上記末端に反応性官能基を有するモノマーまたはオリゴマーを重合反応させ、モールドの微細な凹凸を高精度に複製されたものである。ここで、末端に反応性官能基を有するモノマーまたはオリゴマーは、反応前に液体であるか、または加熱により流体となる粉体であり、マスターモールドの微細な凹凸形状内に充填される際には低粘度の液体であることが好ましい。更に、マスターモールドの微細な凹凸形状内で加熱、加圧、光照射等のエネルギーを加えることにより反応し固体となるものが好ましい。   That is, the present invention is an invention of a replicated microstructure and a mold for transferring a microstructure, a microstructure having a fine uneven pattern formed on the surface thereof, pressed against the transfer object, and In the microstructure transfer mold for forming a fine uneven pattern on the surface of the transfer object, the microstructure and the mold for transferring the microstructure master a monomer or oligomer having a reactive or polymerizable functional group at the end. After filling in the fine uneven shape of the mold, a monomer or oligomer having a reactive functional group at the terminal is polymerized to replicate the fine unevenness of the mold with high accuracy. Here, the monomer or oligomer having a reactive functional group at the terminal is a powder that becomes a liquid before reaction or becomes a fluid by heating, and is filled into the fine uneven shape of the master mold. A low-viscosity liquid is preferred. Furthermore, the thing which reacts by adding energy, such as a heating, pressurization, and light irradiation within the fine uneven | corrugated shape of a master mold, and becomes solid is preferable.

更に、本発明の末端反応性官能基は反応の際、副生成物を生じない反応であることが高精度の微細凹凸形状を複製する上で好ましい。特に、モノマーおよびオリゴマーの溶融温度よりも高温で反応開始し、反応副生成物が生じないフェニルエチニル基は本発明の微細構造体および微細構造体形成用モールドに用いられるモノマーまたはオリゴマーの反応性官能基として好ましい。このほかビニル基、(メタ)アクリレート基、N置換マレイミド基、エポキシ基等が挙げられる。しかし、本発明の反応性官能基はこれに限定されるものではない。本発明の微細構造体および微細構造体転写用モールドは上記末端に反応性官能基を有するモノマーまたはオリゴマーの重合体から構成されているため、複製の際、モノマーまたはオリゴマーがマスターモールドの微細な凹凸形状内へ確実に充填し、反応の際の副生成物が生じずに硬化するため、高精度なマスターモールドの複製が可能になる。   Furthermore, the terminal-reactive functional group of the present invention is preferably a reaction that does not produce a by-product during the reaction, in order to replicate a highly accurate fine uneven shape. In particular, the phenylethynyl group that initiates the reaction at a temperature higher than the melting temperature of the monomer and oligomer and does not produce a reaction byproduct is the reactive function of the monomer or oligomer used in the microstructure and the mold for forming a microstructure of the present invention. Preferred as a group. In addition, a vinyl group, a (meth) acrylate group, an N-substituted maleimide group, an epoxy group, and the like can be given. However, the reactive functional group of the present invention is not limited to this. Since the microstructure and the mold for transferring a microstructure of the present invention are composed of a polymer of a monomer or oligomer having a reactive functional group at the terminal, the monomer or oligomer is finely uneven in the master mold during replication. Filling into the shape surely and curing without generating a by-product during the reaction makes it possible to replicate the master mold with high accuracy.

更に、本発明者は、マスターモールドから複数の高精度モールド複製を妨げている要因として、複製する微細構造体およびモールド材料の強度不足が原因と考え、本発明に至った。   Furthermore, the present inventor considered the cause of insufficient strength of the microstructure and mold material to be replicated as a factor hindering the replication of a plurality of high-precision molds from the master mold, leading to the present invention.

即ち、本発明は複製された微細構造体および微細構造体転写用モールドの発明であり、表面に微細な凹凸パターンが形成されたモールドを被転写体に押し付け、形成される微細構造体および、被転写体表面に微細な凹凸パターンを形成するための微細構造転写用モールドにおいて、前記微細構造体および微細構造体転写用モールドは、破断強度が100MPa以上の有機化合物であることを特徴とする。   That is, the present invention is an invention of a replicated microstructure and a mold for transferring a microstructure, and a mold having a fine concavo-convex pattern formed on the surface is pressed against the transfer object, In the microstructure transfer mold for forming a fine uneven pattern on the surface of the transfer body, the microstructure and the microstructure transfer mold are organic compounds having a breaking strength of 100 MPa or more.

本発明者はマスターモールドより微細構造体および微細構造体転写用モールドを複製する際に、破断強度の小さな有機化合物を用いた場合、特にアスペクト比の大きな微細凹凸形状の転写において、複製された凹凸の一部が破損し、形状が正確に転写されないことを確認した。例えばマスターモールドから微細構造体および微細構造体転写用モールドを剥離する際や、複製された微細構造体転写用モールドから更にNiメッキなどにより複製を作製する際にメッキ後の複製物から微細構造体転写用モールドを剥離する際に上記のパターン破損が散見されることを確認した。   The present inventor, when replicating the microstructure and the microstructure transfer mold from the master mold, when using an organic compound having a small breaking strength, especially in the transfer of the micro uneven shape having a large aspect ratio, It was confirmed that a part of was damaged and the shape was not accurately transferred. For example, when peeling a fine structure and a fine structure transfer mold from a master mold, or when making a replica from a replicated fine structure transfer mold by Ni plating or the like, the fine structure is obtained from a replica after plating. It was confirmed that the above pattern breakage was occasionally observed when the transfer mold was peeled off.

更にこれらの破損は微細構造体および微細構造体転写用モールドの破断強度が100MPa未満の材料の場合多発することを見出した。ここで、100MPa以上の有機化合物は、末端に反応性官能基を有するモノマーまたはオリゴマーの重合体であることが高精度な複製の作製において好ましい。これらモノマーまたはオリゴマーはイミド結合を有することが破断強度の強い構造を作る上で好ましい。特に下記の構造式の重合体は、モノマーまたはオリゴマーの溶融温度と反応性官能基の反応開始温度が異なりマスターモールドの微細凹凸パターン内に充填された後、反応の副生成物なしで重合し、且つ破断強度が100MPa以上である点において好ましい。しかし、本発明の有機化合物がこれに限定されるものではない。   Furthermore, it has been found that such breakage frequently occurs in the case of a material having a fracture strength of the microstructure and the microstructure transfer mold of less than 100 MPa. Here, the organic compound of 100 MPa or more is preferably a monomer or oligomer polymer having a reactive functional group at the terminal in the production of a highly accurate replica. These monomers or oligomers preferably have an imide bond for making a structure having a high breaking strength. In particular, a polymer having the following structural formula is polymerized without a reaction by-product after the melting temperature of the monomer or oligomer and the reaction start temperature of the reactive functional group are different and filled in the fine uneven pattern of the master mold, And it is preferable at the point whose breaking strength is 100 Mpa or more. However, the organic compound of the present invention is not limited to this.

Figure 2007216493
以上の結果、微細構造体および微細構造体転写用モールド材料として破断強度が100MPa以上の有機化合物材料を用いることでアスペクト比の高いマスターモールドに対しても、高精度な微細構造体および微細構造体転写用モールドの複製が実現できると共に微細構造体転写用モールドから更に複数の複製モールドを作製することができる。
Figure 2007216493
As a result of the above, a highly accurate microstructure and microstructure can be obtained even for a master mold having a high aspect ratio by using an organic compound material having a breaking strength of 100 MPa or more as a microstructure and a mold transfer material for microstructure. The transfer mold can be replicated and a plurality of replica molds can be produced from the microstructure transfer mold.

本発明の末端に反応性基を有するポリイミドオリゴマーを用いることでマスターモールド内への充填性が向上し、充填率が高い複製が可能となる。その結果高精度なレプリカが実現できる。更に、破断強度が100MPa以上の強度が実現できるため複製した際に構造が破壊されること無く複数の複製を作製できる。また、ガラス転移温度が高く、熱ナノインプリント用の微細構造体転写用モールドとしても適用できる。   By using a polyimide oligomer having a reactive group at the terminal of the present invention, the filling property in the master mold is improved, and replication with a high filling rate is possible. As a result, a highly accurate replica can be realized. Furthermore, since a breaking strength of 100 MPa or more can be realized, a plurality of replicas can be produced without destroying the structure when replicated. Further, the glass transition temperature is high, and it can be applied as a microstructure transfer mold for thermal nanoimprint.

先ず、図1を参照しながら、一般的なナノインプリント方法について説明する。シリコン基板等の表面に微小なパターンを有するモールドを作製する。これとは別の基板上に樹脂膜を設ける(a)。図示しない加熱・加圧機構を有するプレス装置を用い、該樹脂のガラス転移温度(Tg)より高い温度(T)で、所定の圧力でモールドを樹脂膜上にプレスする(b)。次いで樹脂膜をTgという低い温度(T)に冷却・硬化させる(c)。モールドと基板を剥離して、モールドの微細なパターンを基板上の樹脂膜に転写する(d)。また、加熱硬化する工程の代わりに、光硬化性の樹脂を用い、加圧成型後に、樹脂に光を照射し、樹脂を硬化させても良い。この際、ガラス等の光透過性のモールドを用いることで、プレス後に、該光透過性のモールドの上方より光を照射して、樹脂を光硬化させ、パターンを転写することができる。   First, a general nanoimprint method will be described with reference to FIG. A mold having a minute pattern on the surface of a silicon substrate or the like is produced. A resin film is provided on another substrate (a). Using a press device having a heating / pressurizing mechanism (not shown), the mold is pressed onto the resin film at a temperature (T) higher than the glass transition temperature (Tg) of the resin at a predetermined pressure (b). Next, the resin film is cooled and cured to a temperature (T) as low as Tg (c). The mold and the substrate are peeled off, and the fine pattern of the mold is transferred to the resin film on the substrate (d). Further, instead of the heat curing step, a photo-curable resin may be used, and after pressure molding, the resin may be irradiated with light to be cured. At this time, by using a light-transmitting mold such as glass, after pressing, light can be irradiated from above the light-transmitting mold, the resin can be photocured, and the pattern can be transferred.

ナノインプリント方法によれば、(1)集積化された極微細パターンを効率良く転写できる、(2)装置コストが安い、(3)複雑な形状に対応できピラー形成なども可能である、等の特徴がある。   According to the nanoimprint method, (1) the integrated ultra-fine pattern can be efficiently transferred, (2) the device cost is low, (3) the complex shape can be handled, and the pillar can be formed. There is.

ナノインプリント法の応用分野については、 i)各種バイオデバイス、ii)DNAチップ等の免疫系分析装置、使い捨てのDNAチップ等、iii)半導体多層配線、iv)プリント基板やRF MEMS、v)光または磁気ストレージ、vi)導波路、回折格子、マイクロレンズ、偏光素子等の光デバイス、フォトニック結晶、vii)シート、viii)LCDディスプレイ、ix)FEDディスプレイ等多数挙げられる。本発明はこれらの分野に適用される。   Regarding the application fields of nanoimprinting methods, i) various biodevices, ii) immune system analyzers such as DNA chips, disposable DNA chips, etc. iii) semiconductor multilayer wiring, iv) printed circuit boards and RF MEMS, v) light or magnetism Examples include storage, vi) optical devices such as waveguides, diffraction gratings, microlenses, polarizing elements, photonic crystals, vii) sheets, viii) LCD displays, and ix) FED displays. The present invention applies to these fields.

本発明において、ナノインプリントとは、形成される凹凸の高さ及び幅が数100μmから数nm程度の範囲の転写を言う。   In the present invention, nanoimprint refers to transfer in which the height and width of the formed irregularities are in the range of several hundreds μm to several nm.

本発明において、モールドおよびマスターモールドは、転写されるべき微細なパターンを有するものであり、モールドおよびマスターモールドに該パターンを形成する方法は特に制限されない。例えば、フォトリソグラフィや電子線描画法等、所望する加工精度に応じて選択される。モールドおよびマスターモールドの材料としては、シリコンウエハ、各種金属材料、ガラス、石英、セラミック、プラスチック等、強度と要求される精度の加工性を有するものであれば良い。具体的には、Si、SiC、SiN、多結晶Si、ガラス、Ni、Cr、Cu、及びこれらを1種以上含むものが好ましいものとして例示される。また、これらモールドおよびマスター表面には有機化合物との接着を防止するための離型処理が施されていることがより好ましい。表面処理の方法としてはシリコーン系の離型剤の他、フッ素系のカップリング剤が好ましい。   In the present invention, the mold and the master mold have a fine pattern to be transferred, and the method for forming the pattern on the mold and the master mold is not particularly limited. For example, it is selected according to desired processing accuracy such as photolithography or electron beam drawing. As materials for the mold and master mold, silicon wafers, various metal materials, glass, quartz, ceramics, plastics and the like may be used as long as they have strength and workability with required accuracy. Specifically, Si, SiC, SiN, polycrystalline Si, glass, Ni, Cr, Cu, and those containing one or more of these are exemplified as preferable examples. Moreover, it is more preferable that the mold and the master surface are subjected to a release treatment for preventing adhesion with an organic compound. As the surface treatment method, a fluorine-based coupling agent is preferable in addition to a silicone-based release agent.

本発明において、破断強度とは微細構造体および微細構造体転写用モールドを構成する材料の単位面積当りの破断に要する力である。   In the present invention, the breaking strength is a force required for breaking per unit area of the material constituting the microstructure and the microstructure transfer mold.

本発明において、微細な構造が転写される被転写体は特に限定されないが、所望する加工精度に応じて選択される。具体的には、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリ塩化ビニール、ポリスチレン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ガラス強化ポリエチレンテレフタレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、液晶性ポリマー、フッ素樹脂、ポリアレート、ポリスルホン、ポリエーテルスルホン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコーン樹脂、ジアリルフタレート樹脂、ポリアミドビスマレイミド、ポリビスアミドトリアゾール等の熱硬化性樹脂、及びこれらを2種以上ブレンドした材料を用いることが可能である。   In the present invention, the transfer target to which a fine structure is transferred is not particularly limited, but is selected according to the desired processing accuracy. Specifically, polyethylene, polypropylene, polyvinyl alcohol, polyvinylidene chloride, polyethylene terephthalate, polyvinyl chloride, polystyrene, ABS resin, AS resin, acrylic resin, polyamide, polyacetal, polybutylene terephthalate, glass reinforced polyethylene terephthalate, polycarbonate, modified Thermoplastic resins such as polyphenylene ether, polyphenylene sulfide, polyether ether ketone, liquid crystalline polymer, fluororesin, polyarate, polysulfone, polyethersulfone, polyamideimide, polyetherimide, thermoplastic polyimide, phenol resin, melamine resin, urea Resin, epoxy resin, unsaturated polyester resin, alkyd resin, silicone resin, diallyl phthalate resin, poly Bromide bismaleimide, poly bisamide thermosetting resin triazole and the like, and it is possible to use two or more kinds of these blended material.

これらの樹脂は基板表面上に数nmから数十μm形成される。また、基板自身がこれらの樹脂でできてもよく、その表面に微細構造体を転写により形成する場合もある。   These resins are formed on the substrate surface from several nm to several tens of μm. Further, the substrate itself may be made of these resins, and a fine structure may be formed on the surface by transfer.

本発明において、支持基板とは微細構造体が形成された硬化した有機物を支持する基板であり、その材質は特に限定されないが、所定の強度を有するもので、微細構造体が形成される有機化合物側の表面が平坦なものであれば良い。具体的には、シリコン、各種金属材料、ガラス、セラミック、プラスチック等が好ましいものとして例示される。   In the present invention, the support substrate is a substrate that supports the cured organic material on which the fine structure is formed, and the material thereof is not particularly limited, but has a predetermined strength, and is an organic compound that forms the fine structure. It is sufficient if the surface on the side is flat. Specifically, silicon, various metal materials, glass, ceramics, plastics and the like are exemplified as preferable ones.

本発明において円筒形基材とは円柱状の鋳造品または円筒形の成形品であり所定の強度を有し中心軸の回りに回転可能である。材質に特に制限は無いが、ステンレスのような合金やセラミックス、エンジニアリングプラスチックなどが強度、成形性などの点より好ましいものとして例示される。また、表面にゴムなどの弾性体が被覆されたものも転写の際の基板に対する追従性が優れている点で望ましい。   In the present invention, the cylindrical base material is a columnar cast product or a cylindrical molded product, and has a predetermined strength and is rotatable around a central axis. Although there is no restriction | limiting in particular in a material, An alloy like stainless steel, ceramics, an engineering plastic etc. are illustrated as a preferable thing from points, such as intensity | strength and a moldability. Further, a material whose surface is covered with an elastic body such as rubber is desirable because it has excellent followability to the substrate during transfer.

本発明において、可とう性のベルト状基材とは2本以上の円柱体に掛渡して回転させることが可能な平帯状のものであり、所定の強度を有し、掛渡された円柱体側面をスムーズに密着移動できる可とう性を有しているものが好ましい。材質は特に制限がないが、ステンレス箔、Ni箔やポリイミドフィルムなどが強度、可とう性の点から好ましいのものとして例示される。   In the present invention, the flexible belt-like base material is a flat belt-like material that can be stretched over two or more cylinders and can be rotated, and has a predetermined strength and is suspended. It is preferable to have a flexibility that allows the side surface to smoothly move in close contact. The material is not particularly limited, but stainless steel foil, Ni foil, polyimide film, and the like are exemplified as preferable materials from the viewpoint of strength and flexibility.

本発明のレプリカ用モールドとはマスターモールドから複製されたモールドであり、このレプリカ用モールドから更にレプリカを作製するための中間的なモールドである。本発明の反転パターンとはパターンの凹部と凸部が反転したパターン形状であることを指す。以下、本発明を図面を参照して実施例により詳細に説明する。   The replica mold of the present invention is a mold replicated from a master mold, and is an intermediate mold for further producing a replica from the replica mold. The reverse pattern of the present invention refers to a pattern shape in which the concave and convex portions of the pattern are reversed. Hereinafter, the present invention will be described in detail by way of examples with reference to the drawings.

図2は、本発明の微細構造体および微細構造体転写用モールド、レプリカ用モールドの製造方法を示すフロー図である。以下、本発明のマスターモールドからの微細構造体および微細構造体転写用モールド、レプリカ用モールドの複製方法について説明する。   FIG. 2 is a flowchart showing a method for manufacturing the microstructure, the microstructure transfer mold, and the replica mold of the present invention. Hereinafter, the microstructure, the microstructure transfer mold, and the replica mold replication method from the master mold of the present invention will be described.

初めに本発明の微細構造体転写用モールド、レプリカ用モールド原料となる末端に反応性官能基を有するオリゴマーの合成方法を示す。まず不活性ガスで置換した100mlのナスフラスコに、ビス(4−アミノフェニル)エーテル(ODA)4mmolをとり、脱水蒸留したN−メチル−2−ピロリドン(NMP)20mlを加えて溶解する。この反応液を室温で静かに攪拌しながら、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)2mmolを固体のまま加え、室温で3〜5時間攪拌した。さらに、この反応液に4−フェニルエチニル無水フタル酸(PEPA)を4mmol加え、室温で3〜5時間攪拌する。この後、無水酢酸、ピリジンを8mmolづつ加え、室温で3〜5時間攪拌し、ポリイミドオリゴマー溶液を得た。作製したポリイミドオリゴマー溶液をメタノール800ml中に滴下し、生じた沈殿物を濾過、乾燥を行うことで、両末端にフェニルエチニル基を有するポリイミドオリゴマーの粉末が得られた。   First, a method for synthesizing an oligomer having a reactive functional group at the terminal, which will be a mold material for a microstructure transfer and a replica mold according to the present invention will be described. First, 4 mmol of bis (4-aminophenyl) ether (ODA) is taken into a 100 ml eggplant flask substituted with an inert gas, and 20 ml of dehydrated distilled N-methyl-2-pyrrolidone (NMP) is added and dissolved. While gently stirring this reaction solution at room temperature, 2 mmol of 4,4 ′-(2,2-hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added as a solid and stirred at room temperature for 3 to 5 hours. . Furthermore, 4 mmol of 4-phenylethynyl phthalic anhydride (PEPA) is added to this reaction solution, and the mixture is stirred at room temperature for 3 to 5 hours. Thereafter, 8 mmol of acetic anhydride and pyridine were added and stirred at room temperature for 3 to 5 hours to obtain a polyimide oligomer solution. The prepared polyimide oligomer solution was dropped into 800 ml of methanol, and the resulting precipitate was filtered and dried to obtain a polyimide oligomer powder having phenylethynyl groups at both ends.

次に、図2に示すように、(a)前記ポリイミドオリゴマーの粉末1を微細な凹凸が形成されたマスターモールド2上に静置し、(b)シランカップリング処理した8インチのSi基板3を図のようにポリイミドオリゴマーが配置されているマスターモールドパターン面と向かい合うように重ね、(c)2MPa、370℃で1時間加圧、加熱してポリイミドオリゴマーを硬化した。最後に、(d)微細な凹凸が形成されたポリイミドオリゴマー粉末の熱硬化反応後の微細構造体4をマスターモールドより剥離した。   Next, as shown in FIG. 2, (a) the polyimide oligomer powder 1 is allowed to stand on a master mold 2 on which fine irregularities are formed, and (b) a silane coupling-treated 8-inch Si substrate 3. Were stacked so as to face the master mold pattern surface on which the polyimide oligomer was arranged as shown in the figure, and (c) the polyimide oligomer was cured by applying pressure and heating at 2 MPa and 370 ° C. for 1 hour. Finally, (d) the microstructure 4 after the thermosetting reaction of the polyimide oligomer powder on which fine irregularities were formed was peeled from the master mold.

前記ポリイミドオリゴマーの粉末1の溶融温度および熱硬化反応温度を調べるために、示差走査熱量測定を行った。測定は、前記ポリイミドオリゴマー粉末を5mgと、対象サンプルとしてアルミナ粉末を10mg量り取り、それぞれ測定用のアルミニウムセルに入れ、昇温速度10℃/minで行った。測定結果より前記ポリイミドオリゴマーの溶融温度は140℃付近、熱硬化反応を示すピークの温度域は320〜400℃であった。   In order to examine the melting temperature and thermosetting reaction temperature of the polyimide oligomer powder 1, differential scanning calorimetry was performed. The measurement was performed by weighing 5 mg of the polyimide oligomer powder and 10 mg of alumina powder as a target sample, putting them in an aluminum cell for measurement, and heating at a rate of 10 ° C./min. From the measurement results, the melting temperature of the polyimide oligomer was around 140 ° C., and the peak temperature range showing the thermosetting reaction was 320 to 400 ° C.

前記ポリイミドオリゴマーの粉末1が熱硬化反応後した硬化物が示す機械的物性を評価するために、以下の方法により引張弾性率、破断応力、ガラス転移温度を測定した。引張試験および動的粘弾性測定用の試験サンプルは、以下の方法で作製した(図3)。
(a)ポリイミドオリゴマーの粉末1と厚さ50μmのスペーサ5を離型処理された下基板6上に配置。
(b)上基板7をポリイミドオリゴマーが配置されている下基板6と向かい合うように配置。
(c)2MPa、370℃で1時間加圧、加熱。
(d)基板6,7より硬化物8を剥離。
In order to evaluate the mechanical properties of the cured product obtained by subjecting the polyimide oligomer powder 1 to a thermosetting reaction, the tensile modulus, breaking stress, and glass transition temperature were measured by the following methods. Test samples for tensile tests and dynamic viscoelasticity measurements were produced by the following method (FIG. 3).
(A) A polyimide oligomer powder 1 and a spacer 5 having a thickness of 50 μm are arranged on a lower substrate 6 subjected to a release treatment.
(B) The upper substrate 7 is disposed so as to face the lower substrate 6 on which the polyimide oligomer is disposed.
(C) Pressurization and heating at 2 MPa and 370 ° C. for 1 hour.
(D) The cured product 8 is peeled off from the substrates 6 and 7.

以上の方法により厚さ50μmのフィルム状硬化物を形成の後、長さ60mm、幅5mmの短冊状に切断し試験サンプルを得た。引張試験は、引張試験機(島津製作所製)を用い、前記試験サンプルの長さ方向の両端15mmを試験冶具で挟み、引張試験を行う試験部分の長さ30mm、幅5mm、厚さ50μmを初期状態とし、引張速度10mm/minで行った。試験結果より前記ポリイミドオリゴマーの粉末1の熱硬化反応後の硬化物引張弾性率は2.66GPa、破断応力は129MPaであった。動的粘弾性測定は、前記サンプルの長さ方向の両端10mmを測定冶具で挟み、動的粘弾性測定を行う試験部分の長さ40mm、幅5mm、厚さ50μmを初期状態とし、昇温速度5℃/minで行った。測定結果より前記ポリイミドオリゴマーの粉末1の熱硬化反応後の硬化物のガラス転移温度は415℃であった。結果を表1に示す。   A film-like cured product having a thickness of 50 μm was formed by the above method, and then cut into strips having a length of 60 mm and a width of 5 mm to obtain test samples. In the tensile test, a tensile tester (manufactured by Shimadzu Corporation) is used, 15 mm of both ends in the length direction of the test sample are sandwiched between test jigs, and the initial length is 30 mm, the width is 5 mm, and the thickness is 50 μm. The test was carried out at a tensile speed of 10 mm / min. From the test results, the cured product tensile elastic modulus after thermosetting reaction of the polyimide oligomer powder 1 was 2.66 GPa, and the breaking stress was 129 MPa. In the dynamic viscoelasticity measurement, 10 mm of both ends in the length direction of the sample are sandwiched between measurement jigs, the initial length is 40 mm, the width is 5 mm, and the thickness is 50 μm of the test portion for performing the dynamic viscoelasticity measurement. It was performed at 5 ° C./min. From the measurement results, the glass transition temperature of the cured product after the thermosetting reaction of the polyimide oligomer powder 1 was 415 ° C. The results are shown in Table 1.

更に形状をSEMにより観察し形成された凹凸の高さを測定し、マスターモールドの高さに対する比率を充填率と定義し評価した。   Furthermore, the height of the unevenness formed by observing the shape with an SEM was measured, and the ratio to the height of the master mold was defined as the filling rate and evaluated.

図4に得られた微細構造体の外観写真(a)および表面SEM像(b)を示す。以上の方法により得られた微細構造体は表面にマスターモールドとは逆の凹凸パターンが形成されている。この微細構造体はガラス転移温度が300℃以上でありポリスチレン等の一般的な熱可塑性樹脂のガラス転移温度よりも高いことから、これら熱可塑性樹脂を被転写体とした熱ナノインプリント用微細構造体転写用モールドとしても用いることができる。また得られた微細構造体は破断強度が100MPa以上であり、めっき等によりアスペクト比が高い複製が可能であることから、レプリカ用モールドとして用いることもできる。   FIG. 4 shows an appearance photograph (a) and a surface SEM image (b) of the microstructure obtained. The microstructure obtained by the above method has an uneven pattern opposite to the master mold formed on the surface. Since this microstructure has a glass transition temperature of 300 ° C. or higher and is higher than the glass transition temperature of general thermoplastic resins such as polystyrene, the microstructure transfer for thermal nanoimprint using these thermoplastic resins as the transfer target It can also be used as a mold. Moreover, since the obtained microstructure has a breaking strength of 100 MPa or more and can be replicated with a high aspect ratio by plating or the like, it can also be used as a replica mold.

実施例1のポリイミドオリゴマーの合成を、ODAを3mmol、6FDAを2mmol、PEPAを2mmol、無水酢酸とピリジンを6mmolづつ加えて行い、ポリイミドオリゴマーの粉末を合成した。次に実施例1と同様の方法により、レプリカ用モールドを作製した。このレプリカ用モールド表面にパラジウムコロイドを付与した後、無電解ニッケルめっき液であるトップケミアロイ66(奥野製薬工業社製)により60℃で3分処理し、無電解ニッケルめっき膜を形成した。   The polyimide oligomer of Example 1 was synthesized by adding 3 mmol of ODA, 2 mmol of 6FDA, 2 mmol of PEPA, and 6 mmol of acetic anhydride and pyridine to synthesize polyimide oligomer powder. Next, a replica mold was produced in the same manner as in Example 1. After applying palladium colloid to the surface of the replica mold, treatment was performed at 60 ° C. for 3 minutes with Top Chemi-Alloy 66 (Okuno Pharmaceutical Co., Ltd.), which is an electroless nickel plating solution, to form an electroless nickel plating film.

次にこの無電解Ni膜を電極として50℃のスルファミン浴に0.5A/dmの電流密度で120分間電解Niめっきを施した。最後にレプリカ用モールドから形成したNiめっきを剥離し、オリジナルマスターと同様のNiめっきレプリカを作製した。この方法を図5に示すように5回繰返し、5枚のNiめっきレプリカを作製した。図5に作製したNiめっきレプリカの表面(a)〜(e)および断面SEM像(f)を示す。このように1枚のレプリカモールドからアスペクト比の高い5枚のNiレプリカを作製することができた。ここでは上記SEMにより観察し、凹凸の深さを測定し、マスターモールドの高さに対する比率を充填率とした。   Next, using this electroless Ni film as an electrode, electrolytic Ni plating was applied to a sulfamine bath at 50 ° C. for 120 minutes at a current density of 0.5 A / dm. Finally, the Ni plating formed from the replica mold was peeled off to produce a Ni plating replica similar to the original master. This method was repeated five times as shown in FIG. 5 to produce five Ni plated replicas. FIG. 5 shows surfaces (a) to (e) and a cross-sectional SEM image (f) of the Ni plating replica produced. Thus, five Ni replicas having a high aspect ratio could be produced from one replica mold. Here, the depth of the unevenness was measured with the SEM, and the ratio to the height of the master mold was defined as the filling rate.

更に、実施例1と同様の方法により示差走査熱量測定を行い、前記ポリイミドオリゴマーの粉末1の溶融温度および熱硬化反応温度を測定した。引張試験、動的粘弾性測定についても同様に試験サンプルを作製して、引張試験より引張弾性率、破断応力を評価し、動的粘弾性測定よりガラス転移温度を測定した。結果を表1に示す。   Further, differential scanning calorimetry was performed in the same manner as in Example 1, and the melting temperature and thermosetting reaction temperature of the polyimide oligomer powder 1 were measured. Test samples were similarly prepared for the tensile test and dynamic viscoelasticity measurement, the tensile modulus and breaking stress were evaluated from the tensile test, and the glass transition temperature was measured from the dynamic viscoelasticity measurement. The results are shown in Table 1.

実施例1のポリイミドオリゴマーの合成を、ODAを4mmol、6FDAを3mmol、PEPAを2mmol、無水酢酸とピリジンを8mmolづつ加えて行い、ポリイミドオリゴマーの粉末を作製した。更に基板として0.7mm厚のガラス基板を用い実施例1と同様の方法により、ガラス基板上に微細構造体を作製した。   The synthesis of the polyimide oligomer of Example 1 was performed by adding 4 mmol of ODA, 3 mmol of 6FDA, 2 mmol of PEPA, and 8 mmol of acetic anhydride and pyridine, thereby preparing a polyimide oligomer powder. Further, a fine structure was produced on the glass substrate by the same method as in Example 1 using a 0.7 mm thick glass substrate as the substrate.

形成された微細構造体形状をSEMにより観察し凹凸の高さを測定し、マスターモールドの高さに対する比率を充填率と定義し評価した。また、実施例1と同様の方法により示差走査熱量測定を行い、前記ポリイミドオリゴマーの粉末1の溶融温度および熱硬化反応温度を測定した。引張試験、動的粘弾性測定についても同様に試験サンプルを作製して、引張試験より引張弾性率、破断応力を評価し、動的粘弾性測定よりガラス転移温度を測定した。結果を表1に示す。   The formed fine structure shape was observed by SEM, the height of the unevenness was measured, and the ratio to the height of the master mold was defined as the filling rate and evaluated. Further, differential scanning calorimetry was performed in the same manner as in Example 1, and the melting temperature and thermosetting reaction temperature of the polyimide oligomer powder 1 were measured. Test samples were similarly prepared for the tensile test and dynamic viscoelasticity measurement, the tensile modulus and breaking stress were evaluated from the tensile test, and the glass transition temperature was measured from the dynamic viscoelasticity measurement. The results are shown in Table 1.

実施例1のポリイミドオリゴマーの合成を、ODAを4mmol、6FDAの代わりにビフェニル−3,4,3’,4’−テトラカルボン酸二無水物(BPDA)2mmol、PEPAを4mmol、無水酢酸とピリジンを8mmolづつ加えて行い、ポリイミドオリゴマーの粉末を作製した。基板として幅20cm、厚さ50μmのポリイミドフィルム(ユーピレックスR:宇部興産製)を用い、実施例1と同様の方法により可とう性の微細構造体転写用モールドを作製した。この微細構造転写用モールドを10cm×15cmに切断したものを5枚作製した。これをシリコーン系接着剤(KE1820:信越シリコーン製)で幅20cm、周長75cmのシームレススチールベルト上に貼り付けベルト状の微細構造転写用モールドを作製した。   The synthesis of the polyimide oligomer of Example 1 was conducted using 4 mmol of ODA, 2 mmol of biphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride (BPDA) instead of 6 FDA, 4 mmol of PEPA, acetic anhydride and pyridine. 8 mmol each was added to prepare a polyimide oligomer powder. A flexible microstructure transfer mold was prepared in the same manner as in Example 1 using a polyimide film (Upilex R: manufactured by Ube Industries) having a width of 20 cm and a thickness of 50 μm as a substrate. Five pieces of this microstructure transfer mold cut into 10 cm × 15 cm were produced. This was pasted on a seamless steel belt having a width of 20 cm and a circumference of 75 cm with a silicone-based adhesive (KE1820: manufactured by Shin-Etsu Silicone) to produce a belt-shaped microstructure transfer mold.

更に形状をSEMにより観察し形成された凹凸の高さを測定し、マスターモールドの高さに対する比率を充填率と定義し評価した。また、実施例1と同様の方法により示差走査熱量測定を行い、前記ポリイミドオリゴマーの粉末1の溶融温度および熱硬化反応温度を測定した。引張試験、動的粘弾性測定についても同様に試験サンプルを作製して、引張試験より引張弾性率、破断応力を評価し、動的粘弾性測定よりガラス転移温度を測定した。結果を表1に示す。   Furthermore, the height of the unevenness formed by observing the shape with an SEM was measured, and the ratio to the height of the master mold was defined as the filling rate and evaluated. Further, differential scanning calorimetry was performed in the same manner as in Example 1, and the melting temperature and thermosetting reaction temperature of the polyimide oligomer powder 1 were measured. Test samples were similarly prepared for the tensile test and dynamic viscoelasticity measurement, the tensile modulus and breaking stress were evaluated from the tensile test, and the glass transition temperature was measured from the dynamic viscoelasticity measurement. The results are shown in Table 1.

実施例4のポリイミドオリゴマーの合成を、ODAを3mmol、BPDAを2mmol、PEPAを2mmol、無水酢酸とピリジンを6mmolづつ加えて行い、ポリイミドオリゴマーの粉末を作製した。次に図6に示すように、(a)表面を離型処理したマスターモールド2上に50μm厚のポリイミドフィルムをスペーサ5として配し、その内側に本実施例のポリイミドオリゴマーの粉末1を静置した。(b)次に、離型処理したSiウエハ9をポリイミドオリゴマーの粉末1上に配した。(c)これを真空プレス内に配し、真空脱気の後、2MPa、370℃で1時間加圧、加熱した。(d)最後にマスターモールド2およびSiウエハ9より硬化物を剥離し、フィルム状の微細構造体4を作製した。作製した微細構造体外観写真を図7に示す。   The synthesis of the polyimide oligomer of Example 4 was performed by adding 3 mmol of ODA, 2 mmol of BPDA, 2 mmol of PEPA, and 6 mmol of acetic anhydride and pyridine to prepare a polyimide oligomer powder. Next, as shown in FIG. 6, (a) a polyimide film having a thickness of 50 μm is arranged as a spacer 5 on the master mold 2 whose surface has been subjected to mold release treatment, and the polyimide oligomer powder 1 of this embodiment is allowed to stand inside. did. (B) Next, the release-treated Si wafer 9 was placed on the polyimide oligomer powder 1. (C) This was placed in a vacuum press, and after vacuum deaeration, it was pressurized and heated at 2 MPa and 370 ° C. for 1 hour. (D) Finally, the cured product was peeled from the master mold 2 and the Si wafer 9 to produce a film-like microstructure 4. A photograph of the appearance of the produced microstructure is shown in FIG.

このSEMにより観察し形成された凹凸の高さを測定し、マスターモールドの高さに対する比率を充填率と定義し評価した。また、実施例1と同様の方法により示差走査熱量測定を行い、前記ポリイミドオリゴマーの粉末1の溶融温度および熱硬化反応温度を測定した。引張試験、動的粘弾性測定についても同様に試験サンプルを作製して、引張試験より引張弾性率、破断応力を評価し、動的粘弾性測定よりガラス転移温度を測定した。結果を表1に示す。   The height of the irregularities formed by observation with this SEM was measured, and the ratio to the height of the master mold was defined as the filling rate and evaluated. Further, differential scanning calorimetry was performed in the same manner as in Example 1, and the melting temperature and thermosetting reaction temperature of the polyimide oligomer powder 1 were measured. Test samples were similarly prepared for the tensile test and dynamic viscoelasticity measurement, the tensile modulus and breaking stress were evaluated from the tensile test, and the glass transition temperature was measured from the dynamic viscoelasticity measurement. The results are shown in Table 1.

実施例4のポリイミドオリゴマーの合成を、ODAを4mmol、BPDAを3mmol、PEPAを2mmol、無水酢酸とピリジンを8mmolづつ加え行い、ポリイミドオリゴマーの粉末を作製した。次に実施例1と同様の方法によりSi基板上に微細構造が形成された微細構造体転写用モールドを作製した。   Synthesis of the polyimide oligomer of Example 4 was performed by adding 4 mmol of ODA, 3 mmol of BPDA, 2 mmol of PEPA, and 8 mmol of acetic anhydride and pyridine, to prepare a polyimide oligomer powder. Next, a microstructure transfer mold in which a microstructure was formed on a Si substrate was produced in the same manner as in Example 1.

更に形状をSEMにより観察し形成された凹凸の高さを測定し、マスターモールドの高さに対する比率を充填率と定義し評価した。また、実施例1と同様の方法により示差走査熱量測定を行い、前記ポリイミドオリゴマーの粉末1の溶融温度および熱硬化反応温度を測定した。引張試験、動的粘弾性測定についても同様に試験サンプルを作製して、引張試験より引張弾性率、破断応力を評価し、動的粘弾性測定よりガラス転移温度を測定した。結果を表1に示す。   Furthermore, the height of the unevenness formed by observing the shape with an SEM was measured, and the ratio to the height of the master mold was defined as the filling rate and evaluated. Further, differential scanning calorimetry was performed in the same manner as in Example 1, and the melting temperature and thermosetting reaction temperature of the polyimide oligomer powder 1 were measured. Test samples were similarly prepared for the tensile test and dynamic viscoelasticity measurement, the tensile modulus and breaking stress were evaluated from the tensile test, and the glass transition temperature was measured from the dynamic viscoelasticity measurement. The results are shown in Table 1.

原料にPEPAを含むポリイミドオリゴマーとしてPETI‐330(宇部興産製)の粉末を使用し、実施例5と同様の方法によりフィルム状の微細構造体を作製した。   Using a powder of PETI-330 (manufactured by Ube Industries) as a polyimide oligomer containing PEPA as a raw material, a film-like microstructure was produced in the same manner as in Example 5.

更に形状をSEMにより観察し形成された凹凸の高さを測定し、マスターモールドの高さに対する比率を充填率と定義し評価した。また、実施例1と同様の方法により示差走査熱量測定を行い、前記ポリイミドオリゴマーの粉末1の溶融温度および熱硬化反応温度を測定した。引張試験、動的粘弾性測定についても同様に試験サンプルを作製して、引張試験より引張弾性率、破断応力を評価し、動的粘弾性測定よりガラス転移温度を測定した。結果を表1に示す。   Furthermore, the height of the unevenness formed by observing the shape with an SEM was measured, and the ratio to the height of the master mold was defined as the filling rate and evaluated. Further, differential scanning calorimetry was performed in the same manner as in Example 1, and the melting temperature and thermosetting reaction temperature of the polyimide oligomer powder 1 were measured. Test samples were similarly prepared for the tensile test and dynamic viscoelasticity measurement, the tensile modulus and breaking stress were evaluated from the tensile test, and the glass transition temperature was measured from the dynamic viscoelasticity measurement. The results are shown in Table 1.

実施例2の方法により、縦10cm、横15cmのNiレプリカモールドを5枚作製した。次に、これらを溶接し溶接部を研磨することで周長75cmのシームレスベルト状Ni金型を作製した。   By the method of Example 2, five Ni replica molds having a length of 10 cm and a width of 15 cm were produced. Next, these were welded and the welded portion was polished to prepare a seamless belt-shaped Ni mold having a circumference of 75 cm.

実施例4で作製した可とう性微細構造体転写用モールドをシリコーン系接着剤(KE1820:信越シリコーン製)により直径10cm、幅20cmのロール表面に接着して、ロール型微細構造転写用モールドを作製した。   The mold for transferring a flexible microstructure produced in Example 4 was adhered to a roll surface having a diameter of 10 cm and a width of 20 cm with a silicone-based adhesive (KE1820: manufactured by Shin-Etsu Silicone) to produce a roll-type microstructure transfer mold. did.

(比較例1)
エチルセルソルブアセテートに平均分子量950000のポリメチルメタクリレート(PMMA)を溶解し12%の溶液を作製した。これをSiウエハ表面にスピンコートして90℃/5分間ホットプレート上でベークし、厚さ1μmの樹脂膜を形成した。次に表面に微細な凹凸が形成された実施例1と同様のマスターモールドを150℃/10分間、4MPaの条件で加圧加熱後、マスターモールドを剥離し、レプリカモールドを作製した。
(Comparative Example 1)
Polymethylmethacrylate (PMMA) having an average molecular weight of 950,000 was dissolved in ethyl cellosolve acetate to prepare a 12% solution. This was spin coated on the Si wafer surface and baked on a hot plate at 90 ° C. for 5 minutes to form a resin film having a thickness of 1 μm. Next, a master mold similar to that in Example 1 having fine irregularities formed on the surface was heated under pressure at 150 ° C./10 minutes under the condition of 4 MPa, and then the master mold was peeled off to produce a replica mold.

このレプリカモールドに実施例2と同様の方法でNiめっきし、ニッケルレプリカを作製した。このNiレプリカの表面をSEMで観察した。観察結果を図8に示す。NiレプリカをPMMAレプリカモールドから剥離する際、レプリカ用モールドの一部が破断しNiレプリカのパターン内に残留していることが確認された。   The replica mold was plated with Ni in the same manner as in Example 2 to produce a nickel replica. The surface of this Ni replica was observed with SEM. The observation results are shown in FIG. When the Ni replica was peeled from the PMMA replica mold, it was confirmed that a part of the replica mold was broken and remained in the pattern of the Ni replica.

同様の方法で作製したSEM評価用サンプルについて形状をSEMにより観察し形成された凹凸の高さを測定し、マスターモールドの高さに対する比率を充填率と定義し評価した。また、実施例1と同様の方法により示差走査熱量測定を行い、前記ポリイミドオリゴマーの粉末1の溶融温度および熱硬化反応温度を測定した。引張試験、動的粘弾性測定についても同様に試験サンプルを作製して、引張試験より引張弾性率、破断応力を評価し、動的粘弾性測定よりガラス転移温度を測定した。結果を表1に示す。   About the sample for SEM evaluation produced by the same method, the shape was observed by SEM, the height of the unevenness | corrugation formed was measured, and the ratio with respect to the height of a master mold was defined as the filling rate, and was evaluated. Further, differential scanning calorimetry was performed in the same manner as in Example 1, and the melting temperature and thermosetting reaction temperature of the polyimide oligomer powder 1 were measured. Test samples were similarly prepared for the tensile test and dynamic viscoelasticity measurement, the tensile modulus and breaking stress were evaluated from the tensile test, and the glass transition temperature was measured from the dynamic viscoelasticity measurement. The results are shown in Table 1.

(比較例2)
実施例1と同様の方法で微細構造体を作製した。その際、ポリイミドオリゴマーの粉末1の代わりに厚さ50μmのポリイミドフィルム(ユーピレックス−r:宇部興産製)を用いた。加圧加熱条件は370℃/6MPaで1時間とした。転写した微細構造体の表面形状をSEMにて観察した。SEM像を図9に示す。このSEMにより観察し形成された凹凸の高さを測定し、マスターモールドの高さに対する比率を充填率と定義し評価した。図4の本発明による微細構造体に比べ高さが小さく、不規則な形状であることが確認された。また、実施例1と同様の方法により引張試験、動的粘弾性測定についても同様に本フィルムを成形して、引張試験より引張弾性率、破断応力を評価し、動的粘弾性測定よりガラス転移温度を測定した。結果を表1に示す。
(Comparative Example 2)
A fine structure was produced in the same manner as in Example 1. At that time, a polyimide film (Upilex-r: manufactured by Ube Industries) having a thickness of 50 μm was used instead of the polyimide oligomer powder 1. The pressure heating condition was 370 ° C./6 MPa for 1 hour. The surface shape of the transferred microstructure was observed with an SEM. An SEM image is shown in FIG. The height of the irregularities formed by observation with this SEM was measured, and the ratio to the height of the master mold was defined as the filling rate and evaluated. It was confirmed that the height was smaller than that of the microstructure according to the present invention in FIG. 4 and the shape was irregular. In addition, this film was formed in the same manner for the tensile test and dynamic viscoelasticity measurement by the same method as in Example 1, the tensile modulus and breaking stress were evaluated from the tensile test, and the glass transition was measured from the dynamic viscoelasticity measurement. The temperature was measured. The results are shown in Table 1.

Figure 2007216493
Figure 2007216493

一般的なナノインプリントの工程を示すフロー図。The flowchart which shows the process of a general nanoimprint. 微細構造体形成工程を示すフロー図。The flowchart which shows a fine structure formation process. 機械的物性評価用サンプル作製工程を示すフロー図。The flowchart which shows the sample preparation process for mechanical property evaluation. 本発明の実施例により作製された微細構造体の外観写真およびSEM像。The external appearance photograph and SEM image of the microstructure produced by the Example of this invention. 本発明の実施例により作製されたNiレプリカの表面および断面SEM像。The surface and cross-sectional SEM image of the Ni replica produced by the Example of this invention. 本発明の実施例の微細構造体作製工程を示すフロー図。The flowchart which shows the microstructure preparation process of the Example of this invention. 本発明の実施例により作成された微細構造体の外観写真。The external appearance photograph of the fine structure produced by the Example of this invention. 比較例によるNiレプリカ表面SEM像。The Ni replica surface SEM image by a comparative example. 比較例による微細構造体表面SEM像。The microstructure surface SEM image by a comparative example.

符号の説明Explanation of symbols

1…ポリイミドオリゴマーの粉末、2…マスターモールド、3…Si基板、4…微細構造体、5…スペーサ、6…下基板、7…上基板、8…硬化物、9…Siウエハ。   DESCRIPTION OF SYMBOLS 1 ... Polyimide oligomer powder, 2 ... Master mold, 3 ... Si substrate, 4 ... Fine structure, 5 ... Spacer, 6 ... Lower substrate, 7 ... Upper substrate, 8 ... Hardened | cured material, 9 ... Si wafer.

Claims (22)

表面に微細な凹凸パターンが形成されたモールドを被転写体に押し付け、被転写体表面に微細な凹凸パターンが形成された微細構造体において、前記微細構造体の破断強度が100MPa以上の有機物であることを特徴とする微細構造体。   A mold having a fine uneven pattern formed on its surface is pressed against a transfer object, and the fine structure having a fine uneven pattern formed on the transfer object surface is an organic substance having a breaking strength of 100 MPa or more. A fine structure characterized by that. 請求項1に記載の微細構造体において、前記微細構造体は末端に反応性官能基を有するモノマーまたはオリゴマーの重合体を含有することを特徴とする微細構造体。   The microstructure according to claim 1, wherein the microstructure contains a monomer or oligomer polymer having a reactive functional group at a terminal. 請求項1に記載の微細構造体において、前記微細構造体は末端にフェニルエチニル基を有するモノマーまたはオリゴマーの重合体を含有することを特徴とする微細構造体。   The microstructure according to claim 1, wherein the microstructure contains a monomer or oligomer polymer having a phenylethynyl group at a terminal. 請求項1に記載の微細構造体において、前記微細構造体は下記の構造を有するモノマーまたはオリゴマーの重合体を含有することを特徴とする微細構造体。
Figure 2007216493
2. The microstructure according to claim 1, wherein the microstructure contains a monomer or oligomer polymer having the following structure.
Figure 2007216493
表面に微細な凹凸パターンが形成されたモールドを被転写体に押し付け、被転写体表面に微細な凹凸パターンを形成するための微細構造転写用モールドにおいて、前記モールドの破断強度が100MPa以上の有機物であることを特徴とする微細構造転写用モールド。   In a microstructure transfer mold for pressing a mold having a fine concavo-convex pattern formed on the surface thereof to a transfer object to form a fine concavo-convex pattern on the surface of the transfer object, the mold has a breaking strength of 100 MPa or more. A mold for fine structure transfer characterized by being. 請求項5に記載の微細構造転写用モールドにおいて、前記微細構造転写用モールドは末端に反応性官能基を有するモノマーまたはオリゴマーの重合体を含有することを特徴とする微細構造転写用モールド。   6. The microstructure transfer mold according to claim 5, wherein the microstructure transfer mold contains a monomer or oligomer polymer having a reactive functional group at a terminal. 請求項5に記載の微細構造転写用モールドにおいて、前記微細構造転写用モールドは末端にフェニルエチニル基を有するモノマーまたはオリゴマーの重合体を含有することを特徴とする微細構造転写用モールド。   6. The microstructure transfer mold according to claim 5, wherein the microstructure transfer mold contains a monomer or oligomer polymer having a phenylethynyl group at a terminal. 請求項5に記載の微細構造転写用モールドにおいて、前記微細構造転写用モールドは下記の構造を有するモノマーまたはオリゴマーの重合体を含有することを特徴とする微細構造転写用モールド。
Figure 2007216493
6. The microstructure transfer mold according to claim 5, wherein the microstructure transfer mold contains a monomer or oligomer polymer having the following structure.
Figure 2007216493
請求項5から8のいずれかに記載の微細構造転写用モールドにおいて、前記微細構造転写用モールドは平坦な支持基板上に形成されていることを特徴とする微細構造体転写用モールド。   9. The microstructure transfer mold according to claim 5, wherein the microstructure transfer mold is formed on a flat support substrate. 請求項5から8のいずれかに記載の微細構造転写用モールドにおいて、前記微細構造転写用モールドは円筒形基材表面上に形成されていることを特徴とする微細構造体転写用モールド。   9. The microstructure transfer mold according to claim 5, wherein the microstructure transfer mold is formed on a surface of a cylindrical base material. 請求項5から8のいずれかに記載の微細構造転写用モールドにおいて、前記微細構造転写用モールドは可とう性のベルト状基板上に形成されていることを特徴とする微細構造体転写用モールド。   9. The microstructure transfer mold according to claim 5, wherein the microstructure transfer mold is formed on a flexible belt-shaped substrate. 表面に微細な凹凸が形成されたマスターモールドから反転パターンを形成した後、前記反転パターンからマスターモールドと同一のパターンを形成するためのレプリカ用モールドにおいて、前記レプリカ用モールドは破断強度が100MPa以上の有機物であることを特徴とするレプリカ用モールド。   In the replica mold for forming the same pattern as the master mold from the reverse pattern after forming the reverse pattern from the master mold having fine irregularities formed on the surface, the replica mold has a breaking strength of 100 MPa or more. A mold for replicas, which is organic. 請求項12に記載のレプリカ用モールドにおいて、前記レプリカ用モールドは末端に反応性官能基を有するモノマーまたはオリゴマーの重合体を含有することを特徴とするレプリカ用モールド。   13. The replica mold according to claim 12, wherein the replica mold contains a monomer or oligomer polymer having a reactive functional group at a terminal. 請求項12に記載のレプリカ用モールドにおいて、前記レプリカ用モールドは末端にフェニルエチニル基を有するモノマーまたはオリゴマーの重合体を含有することを特徴とするレプリカ用モールド。   13. The replica mold according to claim 12, wherein the replica mold contains a monomer or oligomer polymer having a phenylethynyl group at a terminal. 請求項12に記載のレプリカ用モールドにおいて、前記レプリカ用モールドは下記の構造を有するモノマーまたはオリゴマーの重合体を含有することを特徴とするレプリカ用モールド。
Figure 2007216493
13. The replica mold according to claim 12, wherein the replica mold contains a monomer or oligomer polymer having the following structure.
Figure 2007216493
表面に微細な凹凸パターンが形成されたモールドを被転写体に押し付け、被転写体表面に微細な凹凸パターンを形成するための微細構造転写用モールドにおいて、前記微細構造転写用モールドはマスターモールドの反転パターンが形成されたレプリカ用モールドから、反転パターンを取得してマスターモールドと同一のパターンを形成することにより作製され、前記レプリカ用モールドは破断強度が100MPa以上の有機物からなることを特徴とする微細構造体転写用モールド。   A microstructure transfer mold for pressing a mold having a fine concavo-convex pattern formed on the surface thereof to a transfer target to form a fine concavo-convex pattern on the transfer target surface. It is produced by obtaining a reverse pattern from a replica mold on which a pattern is formed and forming the same pattern as the master mold, and the replica mold is made of an organic material having a breaking strength of 100 MPa or more. Mold for structure transfer. 請求項16に記載の微細構造転写用モールドにおいて、前記レプリカ用モールドは末端に反応性官能基を有するモノマーまたはオリゴマーの重合体を含有することを特徴とする微細構造転写用モールド。
17. The microstructure transfer mold according to claim 16, wherein the replica mold contains a monomer or oligomer polymer having a reactive functional group at a terminal.
請求項16に記載の微細構造転写用モールドにおいて、前記レプリカ用モールドは末端にフェニルエチニル基を有するモノマーまたはオリゴマーの重合体を含有することを特徴とする微細構造転写用モールド。   17. The microstructure transfer mold according to claim 16, wherein the replica mold contains a monomer or oligomer polymer having a phenylethynyl group at a terminal. 請求項16に記載の微細構造転写用モールドにおいて、前記レプリカ用モールドは下記の構造を有するモノマーまたはオリゴマーの重合体を含有することを特徴とする微細構造転写用モールド。
Figure 2007216493
17. The microstructure transfer mold according to claim 16, wherein the replica mold contains a monomer or oligomer polymer having the following structure.
Figure 2007216493
表面に微細な凹凸が形成された微細構造体において、微細な凹凸が形成された基板上に原料となる重合性有機化合物を静置する工程、前記基板上に静置された前記有機化合物を覆うように基材を静置する工程、微細な凹凸が形成された基板上で、前記有機化合物及び基材を加圧加熱し、微細な凹凸が形成された基板上で前記有機化合物を硬化させる工程、微細な凹凸が形成された基板と硬化した有機化合物を剥離する工程を含むことを特徴とする微細構造体の製造方法。   In a fine structure having fine irregularities formed on the surface, a step of leaving a polymerizable organic compound as a raw material on a substrate on which fine irregularities are formed, covering the organic compound left on the substrate The step of allowing the base material to stand, the step of pressurizing and heating the organic compound and the base material on the substrate on which fine irregularities are formed, and the step of curing the organic compound on the substrate on which fine irregularities are formed A method for producing a microstructure, comprising a step of peeling a substrate on which fine irregularities are formed and a cured organic compound. 表面に微細な凹凸パターンが形成されたモールドを被転写体に押し付け、被転写体表面に微細な凹凸パターンを形成するための微細構造転写用モールドにおいて、微細な凹凸が形成されたマスターモールド上に原料となる重合性有機化合物を静置する工程、前記マスターモールド上に静置された前記有機化合物を覆うように基材を静置する工程、前記マスターモールド、有機化合物及び基材を加圧加熱し、微細な凹凸が形成された基板上で有機化合物を硬化させる工程及び前記マスターモールドと硬化した有機物を剥離する工程を含むことを特徴とする微細構造転写用モールドの製造方法。   In a microstructure transfer mold for pressing a mold having a fine concavo-convex pattern formed on its surface against a transfer target to form a fine concavo-convex pattern on the surface of the transfer target, on the master mold having the fine concavo-convex formed The step of leaving a polymerizable organic compound as a raw material, the step of standing a base material so as to cover the organic compound placed on the master mold, and heating the master mold, the organic compound and the base material under pressure And a method for producing a microstructure transfer mold, comprising: a step of curing an organic compound on a substrate on which fine irregularities are formed; and a step of separating the cured organic material from the master mold. 表面に微細な凹凸パターンが形成されたモールドを被転写体に押し付け、被転写体表面に微細な凹凸パターンを形成するための微細構造転写用モールドにおいて、微細な凹凸が形成されたマスターモールド上に原料となる重合性有機化合物を静置する工程、前記マスターモールド上に静置された前記有機化合物を覆うように基材を静置する工程、前記マスターモールド、有機化合物、基材を加圧加熱し、微細な凹凸が形成された基板上で前記有機化合物を硬化させる工程、前記マスターモールドと硬化した有機化合物を剥離する工程、前記硬化した有機化合物の表面にメッキ膜を形成する工程及び前記硬化した有機化合物とメッキ膜を剥離する工程を含むことを特徴とする微細構造転写用モールドの製造方法。   In a microstructure transfer mold for pressing a mold having a fine concavo-convex pattern formed on its surface against a transfer target to form a fine concavo-convex pattern on the surface of the transfer target, on the master mold having the fine concavo-convex formed The step of standing the polymerizable organic compound as a raw material, the step of standing the base material so as to cover the organic compound placed on the master mold, the master mold, the organic compound, and the base material being heated under pressure A step of curing the organic compound on a substrate on which fine irregularities are formed, a step of peeling off the cured organic compound from the master mold, a step of forming a plating film on the surface of the cured organic compound, and the curing A method for producing a microstructure transfer mold, comprising a step of peeling a plated film from an organic compound.
JP2006039205A 2006-02-16 2006-02-16 Fine structure, fine structure transfer mold, replica mold, and manufacturing method thereof Expired - Fee Related JP5088845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039205A JP5088845B2 (en) 2006-02-16 2006-02-16 Fine structure, fine structure transfer mold, replica mold, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039205A JP5088845B2 (en) 2006-02-16 2006-02-16 Fine structure, fine structure transfer mold, replica mold, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007216493A true JP2007216493A (en) 2007-08-30
JP5088845B2 JP5088845B2 (en) 2012-12-05

Family

ID=38494270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039205A Expired - Fee Related JP5088845B2 (en) 2006-02-16 2006-02-16 Fine structure, fine structure transfer mold, replica mold, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5088845B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064430A1 (en) * 2006-12-01 2008-06-05 Swinburne University Of Technology Replica moulding of microstructures for supporting microscopic biological material
WO2010074625A1 (en) * 2008-12-22 2010-07-01 Nexam Chemical Ab Acetylenic aromatic polyether
KR101035694B1 (en) * 2008-09-02 2011-05-19 한국기계연구원 Forming method of electroconductive polymer layer having nano pattern
WO2011161944A1 (en) 2010-06-23 2011-12-29 日本曹達株式会社 Process for production of replica mold for imprinting use
JP2012508976A (en) * 2008-11-13 2012-04-12 ネーデルランツ オルガニサティー フォール トゥーゲパストナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー Method for forming a multilevel surface with different wettability areas on a substrate and semiconductor device having the same
WO2012128165A1 (en) * 2011-03-18 2012-09-27 株式会社カネカ Resin-transfer-moldable terminal-modified imide oligomer using 2-phenyl-4,4'-diaminodiphenyl ether and having excellent moldability, mixture thereof, varnish containing same, and cured resin thereof and fiber-reinforced cured resin thereof made by resin transfer molding and having excellent heat resistance
JP2013101391A (en) * 2013-02-08 2013-05-23 Nippon Zeon Co Ltd Container for microscopic observation
US8492507B2 (en) 2008-09-23 2013-07-23 Nexam Chemical Ab Acetylenic polyamide
JP5376029B1 (en) * 2012-09-28 2013-12-25 大日本印刷株式会社 Anti-reflective article
JP2015079093A (en) * 2013-10-16 2015-04-23 キヤノン株式会社 Surface processing method of electrophotographic photoreceptor, and method for manufacturing electrophotographic photoreceptor
CN114919107A (en) * 2022-05-17 2022-08-19 深圳技术大学 High-temperature compression molding device of silicon mold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262450A (en) * 1985-09-13 1987-03-19 Fujitsu Ltd Manufacture of stamper
JPH02130738A (en) * 1988-11-10 1990-05-18 Dainippon Printing Co Ltd Stamper
JP2000219741A (en) * 1998-11-25 2000-08-08 Ube Ind Ltd Terminally modified imide oligomer and its cured item
JP2004524196A (en) * 2001-04-19 2004-08-12 ゼネラル・エレクトリック・カンパニイ Embossing method and embossed article manufactured by the method
JP2005189128A (en) * 2003-12-26 2005-07-14 Hitachi Ltd Fine metal structure, manufacturing method therefor, fine mold and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262450A (en) * 1985-09-13 1987-03-19 Fujitsu Ltd Manufacture of stamper
JPH02130738A (en) * 1988-11-10 1990-05-18 Dainippon Printing Co Ltd Stamper
JP2000219741A (en) * 1998-11-25 2000-08-08 Ube Ind Ltd Terminally modified imide oligomer and its cured item
JP2004524196A (en) * 2001-04-19 2004-08-12 ゼネラル・エレクトリック・カンパニイ Embossing method and embossed article manufactured by the method
JP2005189128A (en) * 2003-12-26 2005-07-14 Hitachi Ltd Fine metal structure, manufacturing method therefor, fine mold and device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064430A1 (en) * 2006-12-01 2008-06-05 Swinburne University Of Technology Replica moulding of microstructures for supporting microscopic biological material
KR101035694B1 (en) * 2008-09-02 2011-05-19 한국기계연구원 Forming method of electroconductive polymer layer having nano pattern
US8492507B2 (en) 2008-09-23 2013-07-23 Nexam Chemical Ab Acetylenic polyamide
US8895438B2 (en) 2008-11-13 2014-11-25 Nederlandse Organisatie Voor Toegepast—Natuurwetenschappelijk Onderzoek Tno Method for forming a multi-level surface on a substrate with areas of different wettability and a semiconductor device having the same
JP2012508976A (en) * 2008-11-13 2012-04-12 ネーデルランツ オルガニサティー フォール トゥーゲパストナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー Method for forming a multilevel surface with different wettability areas on a substrate and semiconductor device having the same
WO2010074625A1 (en) * 2008-12-22 2010-07-01 Nexam Chemical Ab Acetylenic aromatic polyether
WO2011161944A1 (en) 2010-06-23 2011-12-29 日本曹達株式会社 Process for production of replica mold for imprinting use
US9511514B2 (en) 2010-06-23 2016-12-06 Nippon Soda Co., Ltd. Process for production of replica mold for imprinting use
WO2012128165A1 (en) * 2011-03-18 2012-09-27 株式会社カネカ Resin-transfer-moldable terminal-modified imide oligomer using 2-phenyl-4,4'-diaminodiphenyl ether and having excellent moldability, mixture thereof, varnish containing same, and cured resin thereof and fiber-reinforced cured resin thereof made by resin transfer molding and having excellent heat resistance
CN103547568A (en) * 2011-03-18 2014-01-29 株式会社钟化 Resin-transfer-moldable terminal-modified imide oligomer using 2-phenyl-4,4'-diaminodiphenyl ether and having excellent moldability, mixture thereof, varnish containing same, and cured resin thereof and fiber-reinforced cured resin thereof made by re
US9051430B2 (en) 2011-03-18 2015-06-09 Kaneka Corporation Resin-transfer-moldable terminal-modified imide oligomer using 2-phenyl-4,4′diaminodiphenyl ether and having excellent moldability, mixture thereof, varnish containing same, and cured resin thereof and fiber-reinforced cured resin thereof made by resin transfer molding and having excellent heat resistance
JP5376029B1 (en) * 2012-09-28 2013-12-25 大日本印刷株式会社 Anti-reflective article
KR101441272B1 (en) 2012-09-28 2014-09-17 다이니폰 인사츠 가부시키가이샤 Method for manufacturing a molding plate for manufacturing an antireflection article and method for manufacturing an antireflection article
US9427894B2 (en) 2012-09-28 2016-08-30 Dai Nippon Printing Co., Ltd. Anti-reflection article
JP2013101391A (en) * 2013-02-08 2013-05-23 Nippon Zeon Co Ltd Container for microscopic observation
JP2015079093A (en) * 2013-10-16 2015-04-23 キヤノン株式会社 Surface processing method of electrophotographic photoreceptor, and method for manufacturing electrophotographic photoreceptor
CN114919107A (en) * 2022-05-17 2022-08-19 深圳技术大学 High-temperature compression molding device of silicon mold
CN114919107B (en) * 2022-05-17 2024-02-27 深圳技术大学 High-temperature compression molding device of silicon die

Also Published As

Publication number Publication date
JP5088845B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5088845B2 (en) Fine structure, fine structure transfer mold, replica mold, and manufacturing method thereof
TWI416280B (en) Imprint stamp comprising cyclic olefin copolymer
JP4317375B2 (en) Nanoprint apparatus and fine structure transfer method
JP4584754B2 (en) Nanoprint mold, method for producing the same, nanoprint apparatus using the mold, and nanoprint method
Kim et al. Nanopatterning of photonic crystals with a photocurable silica–titania organic–inorganic hybrid material by a UV-based nanoimprint technique
TW200848956A (en) Devices and methods for pattern generation by ink lithography
TW201016442A (en) Reinforced composite stamp for dry transfer printing of semiconductor elements
TW201038594A (en) Curable composition for nanoimprint and cured product
JP2007245702A (en) Method for manufacturing template and processed base material having transfer fine pattern
KR20070084250A (en) Mold and process for production of substrates having transferred micropatterns thereon
del Campo et al. Generating micro-and nanopatterns on polymeric materials
KR20100139018A (en) Optical imprint method, mold duplicating method, and mold duplicate
KR101698838B1 (en) Method and process for metallic stamp replication for large area nanopatterns
JP5689207B2 (en) Nanoimprint resin composition, nanoimprint substrate, and method for producing nanoimprint substrate
KR101355036B1 (en) Mold for imprinting, and method for manufacturing same
JP2004288784A (en) Nano printing apparatus and microstructure transfer method
TW201005430A (en) Mold, process for producing the same, and process for producing substrate having transferred fine pattern
JP2010076333A (en) Molded article, method for making molded article, and method for making transferred article transferred with molded article
TW201100263A (en) Nano-imprint stemplate and mthod for manufacturing the same
JP2011054683A (en) Method for manufacturing metal wiring board and metal wiring board
JP5343682B2 (en) Imprint mold and manufacturing method thereof
JP6030918B2 (en) Irregular pattern forming film, resin composition for forming the film, molded body having the film, and method for producing the molded body having the film
TW201908440A (en) Adhesive member and method of manufacturing adhesive member
JP2011161727A (en) Molding die of optical molded product, method of molding optical molded product, and lens array
KR101321104B1 (en) Method of producing stamp for nano-imprint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees