JP2007215338A - Motor and fuel pump using the same - Google Patents

Motor and fuel pump using the same Download PDF

Info

Publication number
JP2007215338A
JP2007215338A JP2006033509A JP2006033509A JP2007215338A JP 2007215338 A JP2007215338 A JP 2007215338A JP 2006033509 A JP2006033509 A JP 2006033509A JP 2006033509 A JP2006033509 A JP 2006033509A JP 2007215338 A JP2007215338 A JP 2007215338A
Authority
JP
Japan
Prior art keywords
core
coil
circumferential direction
motor
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006033509A
Other languages
Japanese (ja)
Other versions
JP4687491B2 (en
Inventor
Hiromi Sakai
博美 酒井
Kiyoshi Osada
長田  喜芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006033509A priority Critical patent/JP4687491B2/en
Priority to US11/656,935 priority patent/US20070176511A1/en
Priority to DE102007000068A priority patent/DE102007000068A1/en
Publication of JP2007215338A publication Critical patent/JP2007215338A/en
Application granted granted Critical
Publication of JP4687491B2 publication Critical patent/JP4687491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M37/10Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor increased in winding space while being reduced in size, and a fuel pump using the same. <P>SOLUTION: A stator core 30 of an inner rotor type motor is constituted of independently installed six coil cores 32. The coil core 32 includes radially extending teeth 34 and an outer circumferential core 36 which extends to both sides in the circumferential direction on the radial outside of the teeth 34. Both the sides in the circumferential direction of the inner circumferential surface 37 of the outer circumferential core 36 are tilted to the radial inside as both the sides proceed to the circumferentially adjacent coil core 32, relative to a virtual line 100 which connects both ends in the circumferential direction of the inner circumferential surface 37. The teeth 34 side of the inner circumferential surface 37 of the outer circumferential core 36 is positioned on the radial outside far from the virtual line 100 and is recessed. The tilting angle α tilted to the radial inside relative to the virtual line 100 is set to satisfy a relation: 25°≤α≤35°, as the inner circumferential surface 37 on both the sides in the circumferential direction of the outer circumferential core 36 is directed to the circumferentially adjacent coil core 32. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、インナロータ式のブラシレスモータおよびそれを用いた燃料ポンプに関する。   The present invention relates to an inner rotor type brushless motor and a fuel pump using the same.

従来、インナロータ式のブラシレスモータを駆動源として用いた燃料ポンプが知られている(例えば、特許文献1、2参照)。ブラシレスモータには、ブラシモータのように整流子とブラシとの摺動抵抗、整流子とブラシとの間の電気抵抗、ならびに整流子を各セグメントに分割するために設けた溝が受ける流体抵抗による損失の問題が生じない。その結果、ブラシレスモータのモータ効率はブラシモータに比べて高くなり、結果として燃料ポンプの効率が向上する。ここで燃料ポンプの効率とは、(モータ効率)×(ポンプ効率)で表される。モータ効率およびポンプ効率は、燃料ポンプのモータに供給する駆動電流をI、印加する電圧をV、モータのトルクをT、モータの回転数をN、燃料ポンプが吐出する燃料圧力をP、燃料吐出量をQとすると、(モータ効率)=(T×N)/(I×V)、(ポンプ効率)=(P×Q)/(T×N)で表される。つまり、(燃料ポンプの効率)=(モータ効率)×(ポンプ効率)=(P×Q)/(I×V)である。   Conventionally, a fuel pump using an inner rotor type brushless motor as a drive source is known (see, for example, Patent Documents 1 and 2). The brushless motor has a sliding resistance between the commutator and the brush like the brush motor, an electric resistance between the commutator and the brush, and a fluid resistance received by a groove provided to divide the commutator into each segment. There is no loss problem. As a result, the motor efficiency of the brushless motor is higher than that of the brush motor, and as a result, the efficiency of the fuel pump is improved. Here, the fuel pump efficiency is expressed by (motor efficiency) × (pump efficiency). Motor efficiency and pump efficiency are: I for drive current supplied to the motor of the fuel pump, V for applied voltage, T for motor torque, N for motor rotation speed, P for fuel pressure discharged by the fuel pump, and fuel discharge. When the quantity is Q, (motor efficiency) = (T × N) / (I × V), (pump efficiency) = (P × Q) / (T × N). That is, (fuel pump efficiency) = (motor efficiency) × (pump efficiency) = (P × Q) / (I × V).

そして、同等のモータ効率であれば、ブラシモータを用いるよりもブラシレスモータの方がモータを小型化できるので、ブラシレスモータを用いた燃料ポンプを小型化できる。
本願発明者は、このようなインナロータ式のブラシレスモータにおいて、周方向に設置した複数のコイルコアでロータの外周を囲むステータコアを構成することにより、モータの小型化にともない各コイルコアの限られた巻回スペースに、コイルの巻線を容易に、かつ高い占積率で巻回する構成を研究している。ここで占積率とは、巻回空間に占める巻線の断面積の割合である。つまり、占積率が高いと、巻回空間に巻回できる巻線の回数が増加するので、モータを小型化しつつモータ効率を向上できる。
And if it is equivalent motor efficiency, since a motor can be reduced in size rather than using a brush motor, the fuel pump using a brushless motor can be reduced in size.
The inventor of the present application forms a stator core that surrounds the outer periphery of the rotor with a plurality of coil cores installed in the circumferential direction in such an inner rotor type brushless motor. We are studying a structure that easily winds a coil winding in a space with a high space factor. Here, the space factor is the ratio of the cross-sectional area of the winding occupying the winding space. That is, when the space factor is high, the number of windings that can be wound in the winding space increases, so that the motor efficiency can be improved while miniaturizing the motor.

ところで、ステータコアを構成する図4に示す形状のコイルコア300では、ティース302の径方向外側で周方向に延びている外周コア304の内周面305は平面であり、内周面305の周方向両端を結ぶ仮想直線330は内周面305上に位置している。そして、コイル320を巻回するインシュレータ310の外周コア304側のコイル巻回面312は、仮想直線330に沿った平面である。このように、インシュレータ310の外周コア304側のコイル巻回面312が仮想直線330に沿った平面であると、インシュレータ310の開口側からインシュレータ310の巻回空間に巻線を容易に巻回できる。   In the meantime, in the coil core 300 having the shape shown in FIG. 4 constituting the stator core, the inner peripheral surface 305 of the outer peripheral core 304 extending in the circumferential direction on the radially outer side of the teeth 302 is a flat surface, and both ends of the inner peripheral surface 305 in the circumferential direction. A virtual straight line 330 connecting the two is located on the inner peripheral surface 305. A coil winding surface 312 on the outer peripheral core 304 side of the insulator 310 around which the coil 320 is wound is a plane along the virtual straight line 330. Thus, when the coil winding surface 312 on the outer peripheral core 304 side of the insulator 310 is a plane along the virtual straight line 330, the winding can be easily wound from the opening side of the insulator 310 into the winding space of the insulator 310. .

しかしながら、モータの小型化にともない、限られた巻回空間に巻線を所定回数巻回すると、インシュレータ310の開口付近までコイル320が達して周方向に隣接するコイル同士が接近または接触し、コイル同士の絶縁不良を引き起こす恐れがある。また、モータ効率の向上のためには、巻線の巻数を増加することが考えられるが、そのためには、より大きな巻回空間が必要である。したがって、モータを小型化しつつ、巻線の巻回空間を増加することが要求されている。   However, with the miniaturization of the motor, when the winding is wound a predetermined number of times in a limited winding space, the coil 320 reaches the vicinity of the opening of the insulator 310 and the coils adjacent in the circumferential direction approach or come into contact with each other. There is a risk of causing insulation failure between each other. In order to improve the motor efficiency, it is conceivable to increase the number of windings. However, for this purpose, a larger winding space is required. Therefore, it is required to increase the winding space of the winding while reducing the size of the motor.

特開2005−110477号公報JP 2005-110477 A 特開2005−110478号公報JP 2005-110478 A

本発明は上記問題を解決するためになされたものであり、モータを小型化しつつ、巻回空間を増加するモータおよびそれを用いた燃料ポンプを提供することを目的とする。   The present invention has been made to solve the above problems, and an object thereof is to provide a motor that increases the winding space while reducing the size of the motor, and a fuel pump using the motor.

請求項1から5に記載の発明では、外周コアの内周面の周方向両端を結ぶ仮想直線に対し、外周コアの周方向両側の内周面が周方向に隣接するコイルコアに向かうにしたがい内周側に傾斜している。または、外周コアのティース側の内周面が径方向外側に凹んでいる。
この構成によれば、コイルコアを覆うインシュレータの外周コア側のコイル巻回面を極力径方向外側に設置し、インシュレータが形成する巻回空間を増加できる。また、同じ巻数であれば、周方向に隣接するコイル同士の間の隙間が大きくなるので、周方向に隣接するコイル同士の絶縁不良を防止できる。また、巻回空間が大きくなることにより、周方向に隣接するコイル同士が接近しすぎることを防止しつつ巻線の巻数を増加できるので、モータ効率が向上する。
According to the first to fifth aspects of the present invention, the inner peripheral surfaces on both sides in the circumferential direction of the outer peripheral core move toward the coil cores adjacent in the circumferential direction with respect to a virtual straight line connecting both ends in the circumferential direction of the inner peripheral surface of the outer peripheral core. Inclined to the circumferential side. Alternatively, the inner peripheral surface on the teeth side of the outer peripheral core is recessed outward in the radial direction.
According to this structure, the coil winding surface by the side of the outer periphery core of the insulator which covers a coil core is installed in the radial direction outer side as much as possible, and the winding space which an insulator forms can be increased. Moreover, since the clearance gap between the coils adjacent to the circumferential direction will become large if it is the same number of turns, the insulation failure of the coils adjacent to the circumferential direction can be prevented. Further, since the winding space is increased, the number of winding turns can be increased while preventing the adjacent coils in the circumferential direction from being too close to each other, so that the motor efficiency is improved.

特に、請求項2に記載の発明では、仮想直線はインシュレータの外周コア側のコイル巻回面上に位置しているので、コイルコアの外周コア側の開口位置とインシュレータの外周コア側の開口位置とが一致している。したがって、コイルコアの外周コア側の開口からインシュレータの外周コア側のコイル巻回面に沿って、巻線を容易に巻回できる。
また、請求項5に記載の発明では、請求項1から4に記載のモータを用いるので、燃料ポンプを小型化できる。
Particularly, in the invention described in claim 2, since the virtual straight line is located on the coil winding surface on the outer peripheral core side of the insulator, the opening position on the outer peripheral core side of the coil core and the opening position on the outer peripheral core side of the insulator Match. Therefore, the winding can be easily wound along the coil winding surface on the outer peripheral core side of the insulator from the opening on the outer peripheral core side of the coil core.
In the invention according to claim 5, since the motor according to claims 1 to 4 is used, the fuel pump can be reduced in size.

以下、本発明の実施形態を図に基づいて説明する。
本発明の一実施形態によるモータを用いた燃料ポンプを図2に示す。本実施形態の燃料ポンプ10は、例えば排気量が150cc以下の二輪自動車の燃料タンク内に設置されるインタンク式のタービンポンプである。
燃料ポンプ10は、ポンプ12と、ポンプ12を回転駆動するモータ14とを備えている。燃料ポンプ10のハウジングは、ハウジング16、18により構成されている。ハウジング16、18は、それぞれ金属薄板をプレス加工することにより円筒状に形成されており、ハウジング16内にハウジング18が圧入固定されている。ハウジング16は、ポンプ12およびモータ14のハウジングを兼ねており、0.5mm程度の厚みに設定されている。ハウジング16の軸方向両端部は、ポンプケース20およびステータコア30をそれぞれかしめ固定している。ポンプケース22およびステータコア30は、ハウジング18の軸方向両端にそれぞれ突き当てられることにより軸方向の位置決めが成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A fuel pump using a motor according to an embodiment of the present invention is shown in FIG. The fuel pump 10 of the present embodiment is an in-tank type turbine pump installed in a fuel tank of a two-wheeled vehicle having a displacement of 150 cc or less, for example.
The fuel pump 10 includes a pump 12 and a motor 14 that rotationally drives the pump 12. The housing of the fuel pump 10 is composed of housings 16 and 18. The housings 16 and 18 are each formed in a cylindrical shape by pressing a metal thin plate, and the housing 18 is press-fitted and fixed in the housing 16. The housing 16 also serves as a housing for the pump 12 and the motor 14 and has a thickness of about 0.5 mm. The pump case 20 and the stator core 30 are caulked and fixed at both axial ends of the housing 16. The pump case 22 and the stator core 30 are axially positioned by being abutted against both ends of the housing 18 in the axial direction.

ポンプ12は、ポンプケース20、22、およびインペラ24を有しているタービンポンプである。ポンプケース22はハウジング16内に圧入され、ハウジング18に軸方向に突き当てられている。ポンプケース20、22は、回転部材としてのインペラ24を回転自在に収容するポンプケースである。ポンプケース20、22とインペラ24との間に、それぞれC字状のポンプ通路202が形成されている。ポンプケース20に設けられた吸入口200から吸入された燃料は、インペラ24の回転によりポンプ通路202で昇圧され、モータ14側に圧送される。モータ14側に圧送された燃料は、ステータコア30とロータ60との間の燃料通路204を通り、吐出口206からエンジン側に供給される。   The pump 12 is a turbine pump having pump cases 20 and 22 and an impeller 24. The pump case 22 is press-fitted into the housing 16 and abuts against the housing 18 in the axial direction. The pump cases 20 and 22 are pump cases that rotatably accommodate an impeller 24 as a rotating member. C-shaped pump passages 202 are respectively formed between the pump cases 20 and 22 and the impeller 24. The fuel sucked from the suction port 200 provided in the pump case 20 is pressurized in the pump passage 202 by the rotation of the impeller 24 and is pumped to the motor 14 side. The fuel pumped to the motor 14 side passes through the fuel passage 204 between the stator core 30 and the rotor 60 and is supplied from the discharge port 206 to the engine side.

モータ14は、インナロータ式の所謂ブラシレスモータである。モータ14は、ステータコア30、インシュレータ40およびコイル48を有している。図1に示すように、ステータコア30は、周方向に等間隔に6個それぞれ別体に設置されたコイルコア32により構成されている。コイルコア32は、軸方向に積層された磁性鋼板を互いにかしめて形成されている。   The motor 14 is an inner rotor type so-called brushless motor. The motor 14 has a stator core 30, an insulator 40, and a coil 48. As shown in FIG. 1, the stator core 30 is composed of six coil cores 32 that are installed separately at equal intervals in the circumferential direction. The coil core 32 is formed by caulking magnetic steel plates laminated in the axial direction.

コイルコア32は、径方向に延びているティース34と、ティース34の径方向外側において周方向両側に延びる外周コア36とを有している。外周コア36の外周面は円弧状に形成されており、6個のコイルコア32の外周コア36により、ステータコア30の外周部分はほぼ隙間のない円環状に形成されている。外周コア36の内周面37の周方向両端を結ぶ仮想直線100に対し、内周面37の周方向両側は、周方向に隣接しているコイルコア32に向かうにしたがい径方向内側に傾斜している。外周コア36の内周面37のティース34側は、仮想直線100に沿った平面である。つまり、外周コア36の内周面37のティース34側は、仮想直線100よりも径方向外側に位置し凹んでいる。外周コア36のティース34側は外周コア36の周方向両側よりも厚肉になっており、この厚肉部分は磁気回路としては不要な部分である。したがって、外周コア36の内周面37のティース34側を仮想直線100よりも径方向外側に凹ませても、磁気性能は低下しない。外周コア36の周方向両側の内周面37が、周方向に隣接するコイルコア32に向かうにしたがい仮想直線100に対して径方向内側に傾斜している傾斜角度をαとすると、本実施形態では、25°≦α≦35°に設定されている。   The coil core 32 includes a tooth 34 extending in the radial direction and an outer core 36 extending on both sides in the circumferential direction on the radially outer side of the tooth 34. The outer peripheral surface of the outer peripheral core 36 is formed in an arc shape, and the outer peripheral core 36 of the six coil cores 32 forms an outer peripheral portion of the stator core 30 in an annular shape with almost no gap. With respect to the virtual straight line 100 connecting the circumferential ends of the inner circumferential surface 37 of the outer circumferential core 36, both circumferential sides of the inner circumferential surface 37 are inclined radially inward toward the coil core 32 adjacent in the circumferential direction. Yes. The teeth 34 side of the inner peripheral surface 37 of the outer peripheral core 36 is a plane along the virtual straight line 100. That is, the teeth 34 side of the inner peripheral surface 37 of the outer peripheral core 36 is located on the radially outer side than the virtual straight line 100 and is recessed. The teeth 34 side of the outer core 36 is thicker than both sides of the outer core 36 in the circumferential direction, and this thick portion is an unnecessary portion for the magnetic circuit. Therefore, even if the teeth 34 side of the inner peripheral surface 37 of the outer core 36 is recessed radially outward from the virtual straight line 100, the magnetic performance does not deteriorate. In the present embodiment, when the inner circumferential surfaces 37 on both circumferential sides of the outer circumferential core 36 are inclined inward in the radial direction with respect to the imaginary straight line 100 toward the coil core 32 adjacent in the circumferential direction, α is 25 ° ≦ α ≦ 35 °.

一対のインシュレータ40はほぼ同形状に形成されており、それぞれ軸方向両端側から各コイルコア32に嵌合しコイルコア32に取り付けられている。インシュレータ40は、径方向内側に内鍔42、径方向外側に外鍔44をそれぞれ有し、内鍔42と外鍔44との間に巻回空間を形成している。この巻回空間に巻線を巻回することによりコイル48は形成されている。外鍔44は、仮想直線100に対して外周コア36の内周面37が径方向外側に凹んだ平面部分に設けられている。外鍔44の径方向内側面であるコイル巻回面46は仮想直線100に沿った平面であり、コイル巻回面46上に仮想直線100は位置している。つまり、外周コア36の開口位置とインシュレータ40の外鍔44の開口位置とはほぼ一致している。したがって、コイルコア32の外周コア36側の開口から外鍔44のコイル巻回面46に沿って巻線を容易に巻回できる。コイル48は、各コイルコア32毎にインシュレータ40に巻線を集中整列巻することにより形成されている。   The pair of insulators 40 are formed in substantially the same shape, and are fitted to the coil cores 32 by being fitted to the coil cores 32 from both ends in the axial direction. The insulator 40 has an inner flange 42 on the radially inner side and an outer flange 44 on the radially outer side, and forms a winding space between the inner flange 42 and the outer flange 44. The coil 48 is formed by winding a winding in this winding space. The outer casing 44 is provided on a plane portion in which the inner peripheral surface 37 of the outer peripheral core 36 is recessed radially outward with respect to the virtual straight line 100. The coil winding surface 46 that is the radially inner side surface of the outer casing 44 is a plane along the virtual straight line 100, and the virtual straight line 100 is located on the coil winding surface 46. That is, the opening position of the outer peripheral core 36 and the opening position of the outer collar 44 of the insulator 40 are substantially the same. Therefore, the winding can be easily wound along the coil winding surface 46 of the outer casing 44 from the opening on the outer peripheral core 36 side of the coil core 32. The coil 48 is formed by concentrically winding the windings around the insulator 40 for each coil core 32.

図2に示すように、絶縁樹脂材50は、ステータコア30の径方向内周面および径方向外周面を除き、ステータコア30、インシュレータ40およびコイル48を覆っている。エンドカバー52は絶縁樹脂材50により一体に樹脂成形されており、吐出口206を形成している。エンドカバー52から露出してインサート成形されているターミナル56は、コイル48と電気的に接続している。   As shown in FIG. 2, the insulating resin material 50 covers the stator core 30, the insulator 40, and the coil 48 except for the radially inner circumferential surface and the radially outer circumferential surface of the stator core 30. The end cover 52 is integrally molded with the insulating resin material 50 and forms a discharge port 206. The terminal 56 exposed from the end cover 52 and insert-molded is electrically connected to the coil 48.

ロータ60は、シャフト62、および永久磁石64を有し、ステータコア30の内周に回転自在に設置されている。シャフト62の両端部は、軸受け26により回転自在に支持されている。永久磁石64は、PPS(ポリフェニレンスルフィド)、POM(ポリアセタール)等の熱可塑性樹脂材に磁性粉を練り込んで円筒状に形成されたプラスティックマグネットである。永久磁石64は、回転方向に8個の磁極部65を形成している。8個の磁極部65は、コイルコア32と向き合う外周面側に回転方向に交互に異なる磁極を形成するように着磁されている。
このように着磁された永久磁石64を有するロータ60に対し、各コイルコア32に巻回されたコイル48への通電を図示しない制御装置がスイッチングし、ステータコア30を構成するコイルコア32の内周側に生じる磁極を周方向に順次切り換えることにより、ロータ60は回転する。
The rotor 60 includes a shaft 62 and a permanent magnet 64, and is rotatably installed on the inner periphery of the stator core 30. Both ends of the shaft 62 are rotatably supported by the bearing 26. The permanent magnet 64 is a plastic magnet formed into a cylindrical shape by kneading magnetic powder into a thermoplastic resin material such as PPS (polyphenylene sulfide) or POM (polyacetal). The permanent magnet 64 forms eight magnetic pole portions 65 in the rotation direction. The eight magnetic pole portions 65 are magnetized so as to form different magnetic poles alternately in the rotational direction on the outer peripheral surface facing the coil core 32.
A control device (not shown) switches the energization of the coils 48 wound around the coil cores 32 with respect to the rotor 60 having the permanent magnets 64 magnetized in this way, and the inner peripheral side of the coil cores 32 constituting the stator core 30. The rotor 60 is rotated by sequentially switching the magnetic poles generated in the circumferential direction in the circumferential direction.

次に、コイル48を形成する巻線の巻回工程について説明する。
(1)まず、軸方向に積層された磁性鋼板を互いにかしめてコイルコア32を形成する。
(2)コイルコア32の軸方向両端側からインシュレータ40をそれぞれコイルコア32に嵌合して取り付ける。この状態で、外周コア36の開口位置とインシュレータ40の外鍔44の開口位置とはほぼ一致している。
(3)インシュレータ40を取り付けたコイルコア32を、図3に示す巻線装置120の基台122に外周コア36を下にして載置する。コイルコア32を載置する基台122の載置面124は、外周コア36の外周面の凸状円弧面に合わせた凹状円弧面である。コイルコア32の軸方向に沿った基台122の両側、ならびに軸方向両端側には、ガイド130、134がそれぞれボルト等で固定されている。ガイド130の上端のガイド面132は、コイルコア32の軸方向に直線状に延び、かつ巻線142を案内するために巻線142に対して滑らかな凸曲面状に形成されている。また、ガイド134の上端のガイド面136は、インシュレータ40の外鍔44のコイル巻回面46にほぼ沿った直線形状である。また、ガイド面136は、巻線142を案内するために巻線142に対して滑らかな凸曲面状に形成されている。
Next, the winding process for forming the coil 48 will be described.
(1) First, the coil core 32 is formed by caulking magnetic steel plates laminated in the axial direction.
(2) The insulators 40 are fitted and attached to the coil cores 32 from both axial ends of the coil cores 32, respectively. In this state, the opening position of the outer peripheral core 36 and the opening position of the outer flange 44 of the insulator 40 are substantially coincident.
(3) The coil core 32 to which the insulator 40 is attached is placed on the base 122 of the winding device 120 shown in FIG. The mounting surface 124 of the base 122 on which the coil core 32 is mounted is a concave arc surface that matches the convex arc surface of the outer peripheral surface of the outer core 36. Guides 130 and 134 are respectively fixed with bolts or the like on both sides of the base 122 along the axial direction of the coil core 32 and on both ends in the axial direction. The guide surface 132 at the upper end of the guide 130 extends linearly in the axial direction of the coil core 32 and is formed in a smooth convex curved shape with respect to the winding 142 in order to guide the winding 142. The guide surface 136 at the upper end of the guide 134 has a linear shape substantially along the coil winding surface 46 of the outer casing 44 of the insulator 40. Further, the guide surface 136 is formed in a smooth convex curved shape with respect to the winding 142 in order to guide the winding 142.

(4)インシュレータ40を取り付けたコイルコア32を基台122に載置した後、巻線142を供給するノズル140をコイルコア32に近づける。
(5)そして、図3の(A)に示すように、巻線142にテンションを掛けてガイド130の上端のガイド面132に接触させながら、コイルコア32の軸方向にノズル140を移動する。ノズル140がコイルコア32の軸方向端側に達すると、ガイド130のガイド面132からガイド134のガイド面136に巻線142が移動する。そして、巻線142にテンションを掛けてガイド134の上端のガイド面136に接触させながら、巻線142を巻回する。
このようにして、各コイルコア32に取り付けたインシュレータ40に巻線142を集中整列巻する。
(4) After the coil core 32 to which the insulator 40 is attached is placed on the base 122, the nozzle 140 that supplies the winding 142 is brought closer to the coil core 32.
(5) Then, as shown in FIG. 3A, the nozzle 140 is moved in the axial direction of the coil core 32 while applying tension to the winding 142 to contact the guide surface 132 at the upper end of the guide 130. When the nozzle 140 reaches the axial end of the coil core 32, the winding 142 moves from the guide surface 132 of the guide 130 to the guide surface 136 of the guide 134. Then, the winding 142 is wound while tension is applied to the winding 142 to contact the guide surface 136 at the upper end of the guide 134.
In this way, the winding 142 is concentrated and wound around the insulator 40 attached to each coil core 32.

以上説明した上記実施形態では、外周コア36の内周面37の周方向両側が、周方向に隣接するコイルコア32に向かうにしたがい仮想直線100に対して径方向内側に傾斜している。つまり、外周コア36の内周面37のティース34側は仮想直線100よりも径方向外側に凹んでいる。それ故、コイルコア32を覆うインシュレータ40の外周コア36側のコイル巻回面46を極力径方向外側に設置できるので、燃料ポンプ10のモータ14を小型化しつつ、インシュレータ40が形成する巻回空間を増加できる。したがって、同じ巻数であれば、各コイルコア32に巻回されるコイル48の周方向両端位置をティース34側に凹ませることができる。これにより、周方向に隣接するコイル48同士の間の隙間110が図1に示すようにに大きくなるので、周方向に隣接するコイル48同士の絶縁不良を防止できる。また、巻回空間が大きくなることにより、周方向に隣接するコイル48同士が接近しすぎることを防止しつつ巻線の巻数を増加できるので、モータ効率が向上する。   In the embodiment described above, both sides in the circumferential direction of the inner circumferential surface 37 of the outer circumferential core 36 are inclined radially inward with respect to the virtual straight line 100 in the direction toward the coil core 32 adjacent in the circumferential direction. That is, the teeth 34 side of the inner peripheral surface 37 of the outer peripheral core 36 is recessed radially outward from the virtual straight line 100. Therefore, since the coil winding surface 46 on the outer peripheral core 36 side of the insulator 40 covering the coil core 32 can be installed on the radially outer side as much as possible, the winding space formed by the insulator 40 can be reduced while miniaturizing the motor 14 of the fuel pump 10. Can be increased. Therefore, if the number of turns is the same, both circumferential positions of the coils 48 wound around the coil cores 32 can be recessed toward the teeth 34. As a result, the gap 110 between the coils 48 adjacent in the circumferential direction becomes large as shown in FIG. 1, so that poor insulation between the coils 48 adjacent in the circumferential direction can be prevented. Further, since the winding space is increased, the number of windings can be increased while preventing the coils 48 adjacent in the circumferential direction from being too close to each other, so that the motor efficiency is improved.

(他の実施形態)
上記実施形態では、6個のコイルコア32でステータコア30を形成したときに、外周コア36の内周面37の周方向両側が仮想直線100に対して傾斜する傾斜角度αを25°≦α≦35°に設定した。傾斜角度αは、ステータコアを形成するコイルコアの数が増え外周コアの周方向長さが短くなると小さくなり、コイルコアの数が減り外周コアの周方向長さが長くなると大きくなる。例えば、コイルコアの数が4個の場合には40°≦α≦50°に設定され、コイルコアの数が8個の場合には17.5°≦α≦27.52°に設定される。
(Other embodiments)
In the above embodiment, when the stator core 30 is formed by the six coil cores 32, the inclination angle α at which both circumferential sides of the inner peripheral surface 37 of the outer peripheral core 36 are inclined with respect to the virtual straight line 100 is 25 ° ≦ α ≦ 35. Set to °. The inclination angle α decreases as the number of coil cores forming the stator core increases and the circumferential length of the outer core decreases, and increases as the number of coil cores decreases and the circumferential length of the outer core increases. For example, when the number of coil cores is 4, 40 ° ≦ α ≦ 50 ° is set, and when the number of coil cores is 8, 17.5 ° ≦ α ≦ 27.52 °.

尚、傾斜角度αの大きさは上記の範囲に限らず、外周コアの内周面の周方向両端を結ぶ仮想直線に対し、外周コアの周方向両側の内周面が周方向に隣接するコイルコアに向かうにしたがい径方向内側に傾斜していれば、どのような大きさでもよい。
また、モータを小型化しつつ、コイルの巻回空間を増やすためには、外周コアの内周面の周方向両端を結ぶ仮想直線に対し、外周コアの周方向両側の内周面が周方向に隣接しているコイルコアに向けて径方向内側に傾斜している必要はなく、外周コアの内周面の周方向両端を結ぶ仮想直線に対し、外周コアのティース側の内周面が径方向外側に凹んでいる構成でもよい。
In addition, the magnitude | size of inclination-angle (alpha) is not restricted to said range, The coil core with which the internal peripheral surface of the circumferential direction both sides of an outer periphery core adjoins the circumferential direction with respect to the virtual straight line which connects the circumferential direction both ends of the outer peripheral core. As long as it is inclined inward in the radial direction as it goes to, any size may be used.
Also, in order to increase the winding space of the coil while reducing the size of the motor, the inner peripheral surfaces on both sides in the circumferential direction of the outer peripheral core are in the circumferential direction with respect to a virtual straight line connecting both ends of the inner peripheral surface of the outer peripheral core It is not necessary to incline radially inward toward the adjacent coil core, and the inner peripheral surface on the teeth side of the outer peripheral core is radially outer with respect to a virtual straight line connecting both ends of the inner peripheral surface of the outer peripheral core in the circumferential direction. The structure may be recessed.

また、上記実施形態では、燃料ポンプに本発明のモータを適用したが、本発明のモータは燃料ポンプに限らず他の装置の駆動源として用いてもよい。
また、上記実施形態では、巻線を整列巻してコイル48を形成したが、巻線をランダム巻してコイルを形成してもよい。
このように、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
Moreover, in the said embodiment, although the motor of this invention was applied to the fuel pump, you may use the motor of this invention not only as a fuel pump but as a drive source of another apparatus.
In the above embodiment, the coils 48 are formed by aligning the windings. However, the coils may be formed by randomly winding the windings.
As described above, the present invention is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.

(A)は本実施形態によるコイルコアおよびインシュレータを示す断面図、(B)はロータを除いたモータを一方の軸端側から見た図。(A) is sectional drawing which shows the coil core and insulator by this embodiment, (B) is the figure which looked at the motor except a rotor from one axial end side. 本実施形態による燃料ポンプを示す断面図。Sectional drawing which shows the fuel pump by this embodiment. (A)はコイルの巻回工程を示す説明図、(B)は(A)をB方向から見た部分断面図。(A) is explanatory drawing which shows the winding process of a coil, (B) is the fragmentary sectional view which looked at (A) from the B direction. 従来のコイルコアおよびインシュレータを示す断面図。Sectional drawing which shows the conventional coil core and insulator.

符号の説明Explanation of symbols

10:燃料ポンプ、12:ポンプ、14:モータ、30:ステータコア、32:コイルコア、34:ティース、36:外周コア、37:内周面、40:インシュレータ、46:コイル巻回面、48:コイル、60:ロータ、64:永久磁石、100:仮想直線 10: Fuel pump, 12: Pump, 14: Motor, 30: Stator core, 32: Coil core, 34: Teeth, 36: Outer core, 37: Inner circumferential surface, 40: Insulator, 46: Coil winding surface, 48: Coil , 60: rotor, 64: permanent magnet, 100: virtual straight line

Claims (5)

径方向に延びるティースと、前記ティースの径方向外側において周方向に延びる外周コアとを有するコイルコアを周方向に複数設置し、前記外周コアの内周面の周方向両端を結ぶ仮想直線に対し、前記外周コアの周方向両側の内周面が周方向に隣接する前記コイルコアに向かうにしたがい径方向内側に傾斜しているステータコアと、
前記コイルコアを覆い、前記外周コア側のコイル巻回面が前記仮想直線にほぼ沿った平面であるインシュレータと、
前記インシュレータに巻回されるコイルと、
前記ステータコアの内周側に回転自在に設置され、回転方向に交互に異なる磁極を前記ステータコアと向き合う外周面に形成しているロータと、
を備えるモータ。
A plurality of coil cores having a tooth extending in the radial direction and an outer peripheral core extending in the circumferential direction on the radially outer side of the tooth in the circumferential direction, with respect to a virtual straight line connecting the circumferential ends of the inner peripheral surface of the outer core, A stator core that is inclined radially inward as the inner peripheral surfaces on both sides in the circumferential direction of the outer core move toward the coil core adjacent in the circumferential direction;
An insulator that covers the coil core and the coil winding surface on the outer core side is a plane substantially along the virtual straight line;
A coil wound around the insulator;
A rotor that is rotatably installed on the inner peripheral side of the stator core and that has magnetic poles that are alternately different in the rotation direction formed on the outer peripheral surface facing the stator core;
Motor with.
前記仮想直線は前記外周コア側の前記コイル巻回面上に位置している請求項1に記載のモータ。   The motor according to claim 1, wherein the virtual straight line is located on the coil winding surface on the outer peripheral core side. 前記外周コアの周方向両側の前記内周面が周方向に隣接する前記コイルコアに向かうにしたがい前記仮想直線に対して径方向内側に傾斜している傾斜角度をαとすると、前記コイルコアが4個の場合は40°≦α≦50°、前記コイルコアが6個の場合は25°≦α≦35°、前記コイルコアが8個の場合は17.5°≦α≦27.5°である請求項1または2に記載のモータ。   When the inner circumferential surface on both sides in the circumferential direction of the outer peripheral core is inclined radially inward with respect to the virtual straight line as it goes toward the coil core adjacent in the circumferential direction, four coil cores are assumed. In the case of the above, 40 ° ≦ α ≦ 50 °, 25 ° ≦ α ≦ 35 ° when the number of the coil cores is 6, and 17.5 ° ≦ α ≦ 27.5 ° when the number of the coil cores is 8. The motor according to 1 or 2. 径方向に延びるティースと、前記ティースの径方向外側において周方向に延びる外周コアとを有するコイルコアを周方向に複数設置し、前記外周コアの内周面の周方向両端を結ぶ仮想直線に対し、前記外周コアの前記ティース側の内周面が径方向外側に凹んでいるステータコアと、
前記コイルコアを覆い、前記外周コア側のコイル巻回面が前記仮想直線にほぼ沿った平面であるインシュレータと、
前記インシュレータに巻回されるコイルと、
前記ステータコアの内周側に回転自在に設置され、回転方向に交互に異なる磁極を前記ステータコアと向き合う外周面に形成しているロータと、
を備えるモータ。
A plurality of coil cores having a tooth extending in the radial direction and an outer peripheral core extending in the circumferential direction on the radially outer side of the tooth in the circumferential direction, with respect to a virtual straight line connecting the circumferential ends of the inner peripheral surface of the outer core, A stator core in which an inner peripheral surface on the teeth side of the outer peripheral core is recessed radially outward;
An insulator that covers the coil core and the coil winding surface on the outer core side is a plane substantially along the virtual straight line;
A coil wound around the insulator;
A rotor that is rotatably installed on the inner peripheral side of the stator core and that has magnetic poles that are alternately different in the rotation direction formed on the outer peripheral surface facing the stator core;
Motor with.
請求項1から4のいずれか一項に記載のモータと、
前記モータにより駆動され、燃料を吸入し昇圧するポンプと、
を備える燃料ポンプ。



The motor according to any one of claims 1 to 4,
A pump driven by the motor for sucking and boosting fuel;
With fuel pump.



JP2006033509A 2006-02-02 2006-02-10 Motor and fuel pump using the same Active JP4687491B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006033509A JP4687491B2 (en) 2006-02-10 2006-02-10 Motor and fuel pump using the same
US11/656,935 US20070176511A1 (en) 2006-02-02 2007-01-24 Motor and a fuel pump using the same
DE102007000068A DE102007000068A1 (en) 2006-02-02 2007-02-01 Engine and engine using fuel pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033509A JP4687491B2 (en) 2006-02-10 2006-02-10 Motor and fuel pump using the same

Publications (2)

Publication Number Publication Date
JP2007215338A true JP2007215338A (en) 2007-08-23
JP4687491B2 JP4687491B2 (en) 2011-05-25

Family

ID=38493269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033509A Active JP4687491B2 (en) 2006-02-02 2006-02-10 Motor and fuel pump using the same

Country Status (1)

Country Link
JP (1) JP4687491B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937501A (en) * 1995-05-17 1997-02-07 Matsushita Electric Ind Co Ltd Stator for molded motor
JPH10174335A (en) * 1996-12-03 1998-06-26 Matsushita Electric Ind Co Ltd Stator of molded motor
JP2000032689A (en) * 1998-07-13 2000-01-28 Denso Corp Stator of electric motor and its manufacturing method therefor
JP2000078789A (en) * 1998-08-28 2000-03-14 Mitsubishi Electric Corp Stator
JP2003164123A (en) * 2001-11-22 2003-06-06 Nittoku Eng Co Ltd Winding method and winding device
JP2003259572A (en) * 2002-02-27 2003-09-12 Minebea Co Ltd Rotatary electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937501A (en) * 1995-05-17 1997-02-07 Matsushita Electric Ind Co Ltd Stator for molded motor
JPH10174335A (en) * 1996-12-03 1998-06-26 Matsushita Electric Ind Co Ltd Stator of molded motor
JP2000032689A (en) * 1998-07-13 2000-01-28 Denso Corp Stator of electric motor and its manufacturing method therefor
JP2000078789A (en) * 1998-08-28 2000-03-14 Mitsubishi Electric Corp Stator
JP2003164123A (en) * 2001-11-22 2003-06-06 Nittoku Eng Co Ltd Winding method and winding device
JP2003259572A (en) * 2002-02-27 2003-09-12 Minebea Co Ltd Rotatary electric machine

Also Published As

Publication number Publication date
JP4687491B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
US7560839B2 (en) Electric motor and fuel pump having the same
US20070052310A1 (en) Fluid pump and electric motor, and manufacturing method for the same
JP4696855B2 (en) Fuel pump
US20070086905A1 (en) Brushless motor and fluid pump having the same
US7859165B2 (en) Fuel pump and motor device for the same
US9369022B2 (en) Electric motor and fuel pump using the same having circumferential holding grooves for beginning and end portions of coil windings
JP4771137B2 (en) MOTOR MANUFACTURING METHOD AND FUEL PUMP USING THE MOTOR
US20070231120A1 (en) Impeller for fuel pump and fuel pump in which the impeller is employed
US20160238016A1 (en) Fuel pump
JP2010220271A (en) Electric motor
JP2014007941A (en) Brushless motor and fuel pump using it
US20070176511A1 (en) Motor and a fuel pump using the same
JP4587124B2 (en) Fuel pump
JP2006141113A (en) Fuel pump and manufacturing method of the same
JP2007006633A (en) Motor and fuel pump using same
JP2007187145A (en) Fuel pump
JP2007159191A (en) Motor
JP4687491B2 (en) Motor and fuel pump using the same
JP2005204387A (en) Commutator, motor using the same and fuel pump
WO2015040819A1 (en) Fuel pump
JP5142463B2 (en) Fuel pump
JP2008306858A (en) Insulator and motor equipped with the same
JP2005207320A (en) Fuel pump
KR20010022360A (en) Fuel delivery system
CN114696506B (en) Motor and pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R151 Written notification of patent or utility model registration

Ref document number: 4687491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250