JP2007214235A - Solar-ray energy composite using system device - Google Patents

Solar-ray energy composite using system device Download PDF

Info

Publication number
JP2007214235A
JP2007214235A JP2006030613A JP2006030613A JP2007214235A JP 2007214235 A JP2007214235 A JP 2007214235A JP 2006030613 A JP2006030613 A JP 2006030613A JP 2006030613 A JP2006030613 A JP 2006030613A JP 2007214235 A JP2007214235 A JP 2007214235A
Authority
JP
Japan
Prior art keywords
solar
roof
light
condensing
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006030613A
Other languages
Japanese (ja)
Inventor
Toru Fukushima
徹 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006030613A priority Critical patent/JP2007214235A/en
Publication of JP2007214235A publication Critical patent/JP2007214235A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar-ray energy composite using system device capable of reducing light-receiving areas of a solar-ray module and a cell, and capable of improving the efficiency of the power generation of power. <P>SOLUTION: The light-receiving areas are reduced to 30 to 60% in solar-ray power-generator array, modules, and cells applied with conventional plane light-transmitting materials; and the excess heat of a convex-lens focus is suppressed by arranging a concave lens immediately before an object convex-lens focus in a remote body image indicating an optical system for a Galileo-type telescope, and diffusing light. The durability of a solar-ray power-generation module and the cells can be maintained, and the light is condensed in response to the light-receiving areas of the reduced solar-ray power-generation module and the cells. The proportion of the number of projected photoelectrons by a photoelectric effect is proportional to the intensity of the light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、太陽光エネルギーをガリレオ式望遠鏡の光学系で示す凹凸レンズを応用した集光効果太陽光発電と、凸レンズ集光熱のオイル循環パイプを利用した太陽光エネルギー複合システム装置に関するものである。   The present invention relates to a condensing effect solar power generation using a concavo-convex lens that shows solar energy by an optical system of a Galileo telescope, and a solar energy composite system device using an oil circulation pipe for condensing heat of a convex lens.

従来の屋根材においては、ガリレオ式望遠鏡の光学系を示すレンズ集光効果太陽光発電と太陽光レンズ集光熱を複合利用した、太陽光エネルギー複合システム装置がなかった。   In the conventional roofing material, there was no solar energy composite system device that combined use of the lens condensing effect solar power generation and the solar lens condensing heat showing the optical system of the Galileo telescope.

従来の屋根材においては、太陽光発電装置アレイやモジュール及びセルを屋根材の表面に張り合せ設置したものがある(例えば、特許文献3参照。)。   Among conventional roofing materials, there is one in which a photovoltaic power generator array, modules, and cells are attached to the surface of the roofing material (see, for example, Patent Document 3).

従来の太陽光発電装置アレイやモジュール及びセルの受光前面に凸レンズ集光効果を施したものがある(例えば、特許文献1、2参照。)。   Some conventional solar power generation device arrays, modules, and cells have a convex lens condensing effect on the light receiving front surface (see, for example, Patent Documents 1 and 2).

従来の太陽光集光レンズ熱温水装置においては、温水器の表面に円形凸レンズを多数施し太陽光集光レンズ熱を利用したものがある(例えば、特許文献4参照。)。   Some conventional solar condensing lens hot water heaters use solar condensing lens heat by applying a large number of circular convex lenses on the surface of a water heater (see, for example, Patent Document 4).

特開2002−064216号広報Japanese Laid-Open Patent Publication No. 2002-064216 特開2003−46109号広報Japanese Laid-Open Patent Publication No. 2003-46109 特開2005−2772号JP-A-2005-2772 特開2005−69684号JP 2005-69684 A

従来の太陽光発電装置アレイやモジュール及びセルにおいては、ガリレオ式望遠鏡の光学系を示す遠方の物体像を対物凸レンズ焦点の直前に凹レンズを施した太陽光集光レンズ効果発電モジュール及びセルと、太陽集光レンズ効果熱のオイル循環を複合利用できる屋根材の太陽光エネルギー複合システム装置が無かった。   In conventional solar power generation device arrays, modules, and cells, a solar condensing lens effect power generation module and cell in which a distant object image indicating an optical system of a Galileo telescope is provided with a concave lens immediately before the focal point of the objective convex lens, There was no solar energy composite system device for roofing materials that could use the combined use of oil circulation of the condenser lens effect heat.

従来の太陽光発電装置アレイやモジュール及びセルの受光前面に凸レンズ集光効果を施してある太陽光発電装置においては、太陽光発電モジュールやセルの受光面に集光焦点を合わせると温度の過度熱による太陽光発電モジュール及びセルの耐久性維持に問題がある。その太陽光発電モジュール及びセルの受光面に、集光レンズ焦点の過度熱を冷却するために太陽光モジュール及びセルの受光裏面に別途冷却用ガス循環や冷却用水を施すことにより装置にコストが掛かり、又冷却装置の電力消費に問題があった。   In a conventional photovoltaic power generation system in which a convex lens condensing effect is applied to the light receiving front surface of the photovoltaic power generation device array or module and cell, if the light focusing surface is focused on the light receiving surface of the solar power generation module or cell, the temperature is excessively heated. There is a problem in maintaining the durability of the photovoltaic power generation module and the cell. In order to cool excessive heat at the condenser lens focal point on the light receiving surface of the photovoltaic power generation module and the cell, a cooling gas circulation and water for cooling are separately applied to the light receiving back surface of the solar module and the cell, thereby increasing the cost of the apparatus. Also, there was a problem with the power consumption of the cooling device.

従来の太陽光発電装置アレイやモジュール及びセルおいては、受光前面に平面透光材の強化ガラスや強化プラスチックを施して、屋根材の表面に張り合せた太陽光モジュールの平面に対し集光効果が無く電力発電効率向上に問題があった。   In conventional solar power generation device arrays, modules, and cells, the light-receiving front surface is coated with a flat transparent material tempered glass or reinforced plastic, and the light condensing effect is applied to the flat surface of the solar module laminated to the surface of the roofing material. There was a problem in improving power generation efficiency.

従来の太陽光集光レンズ熱温水器においては、温水器の表面透光材に円形凸レンズを複数施し太陽光集光レンズ熱利用した形態であり、本発明の形態とは異なる。   The conventional solar condensing lens hot water heater is a form in which a plurality of circular convex lenses are applied to the surface translucent material of the water heater and the solar condensing lens heat is used, which is different from the form of the present invention.

本発明の目的を達成するために、従来の平面透光材を施した太陽光発電装置アレイやモジュール及びセル受光面積を30%〜60%に縮小してガリレオ式望遠鏡の光学系を示す遠方の物体像を対物凸レンズ焦点の直前に凹レンズを配置し散光することにより凸レンズ焦点の過度熱を抑え太陽光発電モジュール及びセルの耐久性を維持することができて、その縮小した太陽光発電モジュール及びセルの受光面積に応じた集光を施して光電効果の飛び出してくる光電子の数は当てる光の強さに比例することを確保したことで電力の発電効率を向上させることができる。又、太陽光発電モジュールと太陽光発電モジュールの間に屋根材を設けて、その表面に凸レンズの集光熱を利用したオイル循環パイプを設置して、他に設置した温水器にオイル循環し熱交換させることで給湯利用できる太陽光熱と太陽光発電を利用した、太陽光エネルギー複合利用システム装置である。   In order to achieve the object of the present invention, a photovoltaic power generation device array or module having a conventional planar light-transmitting material and a cell light receiving area is reduced to 30% to 60% to show the optical system of a Galileo telescope. A concave lens is disposed immediately before the focal point of the objective convex lens to scatter the object image, thereby suppressing the excessive heat of the focal point of the convex lens and maintaining the durability of the photovoltaic module and the cell. It is possible to improve the power generation efficiency by ensuring that the number of photoelectrons popping out of the photoelectric effect is proportional to the intensity of the applied light by condensing light according to the light receiving area. Also, a roofing material is installed between the photovoltaic module and the photovoltaic module, and an oil circulation pipe that uses the condensing heat of the convex lens is installed on the surface, and oil is circulated to the other installed water heater to exchange heat. It is a solar energy combined use system device using solar heat and solar power generation that can be used for hot water supply.

又、暑い地域や暑い時期と集光の合併において、温度が上がり過ぎる熱による太陽光発電モジュール及びセルの耐久性を保持するために太陽光モジュール及びセルを固定する太陽光モジュールボックス内に空洞を設けて、その空洞内に太陽光モジュール及びセルの裏面から直接伸ばした冷却用アルミ版を数枚施し熱を拡散させて冷却し電力の発電効率を向上させた、太陽光エネルギー複合利用システム装置である。   In addition, in a hot area or in a hot season and a condensing of light, in order to maintain the durability of the photovoltaic module and the cell due to excessive heat, a cavity is formed in the photovoltaic module box for fixing the photovoltaic module and the cell. A solar energy composite utilization system that improves the power generation efficiency by installing several solar panels for cooling that extend directly from the back of the solar module and cells in the cavity and diffusing heat to cool it. is there.

本発明の、ガリレオ式望遠鏡の光学系を応用した強化ガラスや強化プラスチック凹凸レンズ集光効果で光を強めて光電効果の飛び出してくる光電子の数は当てる光の強さに比例することを確保したことで、太陽光モジュール及びセルの受光面積を少なくすることができて電力の発電効率向上させることができる。又、そのレンズ集光による熱を太陽光モジュール及びセルを固定する太陽光モジュールボックス内に空洞を設けた空洞内に太陽光モジュール及びセルの裏面から直接伸ばした冷却用アルミ版を数枚施し熱拡散させて冷却し耐久性を維持させることができる。さらに、太陽光モジュールと太陽光モジュールの間に屋根材を設けて、その表面に太陽光凸レンズ集光効果熱を利用したオイル循環パイプ図の9〜11で示す形態を設置し他に設置した温水器内にオイル循環し熱交換させて給湯利用できる、太陽光エネルギー複合利用システム装置。   The number of photoelectrons popping out of the photoelectric effect is in proportion to the intensity of the applied light by intensifying the light by the condensing effect of the tempered glass or reinforced plastic concave / convex lens applying the optical system of the Galileo telescope of the present invention. As a result, the light receiving areas of the solar modules and cells can be reduced, and the power generation efficiency of power can be improved. In addition, heat from the lens condensing is applied to the solar module box that fixes the solar module and cell, and several aluminum plates for cooling that are directly extended from the back surface of the solar module and cell are applied to the cavity. It can be diffused and cooled to maintain durability. Further, a roofing material is provided between the solar modules and the surface shown in FIGS. 9 to 11 in the oil circulation pipe diagram using the sunlight condensing effect heat of the solar convex lens is installed on the surface, and the hot water installed elsewhere. A solar energy combined utilization system device that can circulate oil in the vessel and exchange heat to use hot water.

本発明の、ガリレオ式望遠鏡の光学系を応用した集光レンズ効果太陽光モジュール及びセル図の1〜7−cで示す形態を屋根材の凸部に施して、その太陽光モジュールとの間に図の8〜8−cで示す形状の屋根材と一体化することで太陽光アレイやモジュール及び温水装置を屋根材の表面に別途設置することが無く屋根の外観や屋根の重量が軽減できる、太陽光エネルギー複合利用システム装置。   The condensing lens effect solar module to which the optical system of the Galileo telescope of the present invention is applied and the form shown by 1 to 7-c in the cell diagram are applied to the convex part of the roof material, and between the solar module By integrating with the roof material having the shape shown by 8-8c in the figure, it is possible to reduce the appearance of the roof and the weight of the roof without separately installing a solar array, a module, and a hot water device on the surface of the roof material. Solar energy combined use system device.

又、冬場に積雪の多い地域においては、太陽光が利用できる時には太陽光凸レンズ集光効果熱のオイル循環パイプ図の9〜11で示す形態を設置して、他に設置した温水器内にオイル循環させ熱交換し給湯利用するが、屋根に積雪の多い時には温水器内の別途エネルギーでオイルを温め屋根に循環させて融雪することにより人による除雪作業を軽減できる、太陽光エネルギー複合利用システム装置。   Also, in areas where there is a lot of snow in the winter, when sunlight is available, install the form shown by 9-11 in the oil circulation pipe diagram of the sunlight convex lens condensing effect heat, and oil in the other installed water heater Circulating and exchanging heat to use hot water supply, but when there is a lot of snow on the roof, a solar energy combined utilization system device that can reduce snow removal work by humans by circulating oil to the roof with extra energy in the water heater and circulating it to the roof .

さらに、積雪のない暑い地域や暑い時期の多い地域においては、図の1〜7−cで示したガリレオ式望遠鏡の光学系を応用した集光レンズ効果太陽光モジュールと隣り合わせた同じ太陽光モジュールの間に図の8〜8−cで示す形状の屋根材幅を狭めた太陽光レンズ集光効果熱のオイル循環パイプ図の9〜11で示す形態の太陽受光時間を減らし、図の1〜7−cで示したガリレオ式望遠鏡の光学系を応用した集光レンズ効果太陽光モジュールを多く設置することにより電力の発電効率を向上させて冷房設備等の他の電力を確保することができる、太陽光エネルギー複合利用システム装置。   Furthermore, in a hot area where there is no snow or a lot of hot periods, the same solar module adjacent to the condensing lens effect solar module using the optical system of the Galileo telescope shown in FIGS. The solar light collecting time of the solar lens condensing effect heat in which the roof material width of the shape shown by 8-8-c in the figure is narrowed between them is reduced, and the solar light receiving time of the form shown by 9-11 in the figure is reduced, and 1-7 in the figure It is possible to improve the power generation efficiency of power by installing many condensing lens effect solar modules applying the optical system of the Galileo telescope shown in -c, and to secure other power such as cooling equipment, Light energy combined use system device.

以下、本発明の実施形態を図1〜図8に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1においては、太陽光エネルギー複合システム装置の平面図で一般家屋や工場・倉庫・車庫・店舗・公共施設・商業施設・農業施設・海上施設・仮施設・ビルの屋上や壁及び土木施設法面に、ガリレオ式望遠鏡の光学系を応用した集光レンズ効果の太陽光発電モジュール及びセル1〜7との間の屋根材8〜8−bの表面に太陽光レンズ効果熱のオイル循環パイプ9〜11を施し、他に設置した図1の下部に示す電力供給設備や熱交換給湯設備をシステム化した形態の太陽光エネルギー複合利用システム装置である。   In FIG. 1, a plan view of a solar energy composite system device is shown in a general house, a factory, a warehouse, a garage, a store, a public facility, a commercial facility, an agricultural facility, a marine facility, a temporary facility, a building rooftop, a wall, and a civil engineering facility law. On the surface, a solar power generation module with a condensing lens effect applying the optical system of a Galileo telescope, and an oil circulation pipe 9 with solar lens effect heat on the surface of the roof material 8-8-b between the cells 1-7. It is a solar energy composite utilization system apparatus of the form which systemized the electric power supply equipment shown in the lower part of FIG.

図2においては、太陽光モジュール及びセル5の受光前面に半円形凸レンズ1の集光焦点F1の直前に凹レンズ3の散光焦点F3で太陽光モジュール及びセル5の受光表面に集光調節して太陽光モジュールボックス形状7に設置し、その太陽光モジュール及びセル5の裏面に太陽光モジュールボックス形状7に設けた空洞内6に冷却アルミ版5−bにおいて過度熱冷却装置を施したガリレオ式望遠鏡の光学系を応用した集光レンズ効果太陽光モジュール及びセル1〜7−cを屋根の凸部に設置し、屋根の凹部に屋根材8〜8−cと一体化した断面図である。   In FIG. 2, the solar module and the cell 5 are focused on the light receiving surface of the solar module and the cell 5 by the diffused focal point F3 of the concave lens 3 immediately before the condensing focus F1 of the semicircular convex lens 1 on the light receiving front surface of the solar module and cell 5. A Galileo telescope that is installed in an optical module box shape 7 and is provided with an excessive heat cooling device in a cooling aluminum plate 5-b in a cavity 6 provided in the solar module box shape 7 on the back surface of the solar module and cell 5. It is sectional drawing which installed the condensing lens effect solar module and the cells 1-7-c which applied the optical system in the convex part of the roof, and was integrated with the roof material 8-8-c in the concave part of the roof.

図3においては、屋根材8〜8−cの表面に太陽光集光凸レンズ9の集光熱利用したオイル循環パイプ10〜11を設置させた断面図である。   In FIG. 3, it is sectional drawing which installed the oil circulation pipes 10-11 using the condensing heat of the sunlight condensing convex lens 9 on the surface of the roof materials 8-8-c.

図4においては、両サイド端部の屋根材17の表面に太陽光集光凸レンズ9と熱によるレンズ保護並びに保温効果の減圧空間9−aを施した集光熱利用のオイル循環パイプ10〜11を設置させた断面図である。   In FIG. 4, the sun light condensing convex lens 9 and the heat-reducing oil circulation pipes 10 to 11 are provided on the surfaces of the roof material 17 at both side ends with a pressure-reducing space 9-a for heat protection and heat retention. It is sectional drawing installed.

図5においては、屋根材の陶器・磁器・セメント・石・金属・強化ガラス・強化プラスチック・強化複合ゴム・炭素カーボン材を軒下瓦8−a・中間の瓦8・上部の瓦8−bに断熱材8−cに複数枚にして設置した形態の縦断面図である。   In FIG. 5, roofing pottery, porcelain, cement, stone, metal, tempered glass, reinforced plastic, reinforced composite rubber, and carbon carbon material are applied to the roof tile 8-a, the middle tile 8, and the upper tile 8-b. It is the longitudinal cross-sectional view of the form installed in multiple sheets in the heat insulating material 8-c.

図6においては、太陽光エネルギー複合システム装置屋根部の縦断面図でガリレオ式望遠鏡の光学系を応用した集光レンズ効果1〜7−cと太陽光集光凸レンズ9〜9−aの集光熱利用のオイル循環パイプ10〜11を屋根に固定する金具11−aを施して、その屋根の軒下瓦8−a・中間の瓦8・上部の瓦8−bに断熱材8−cを軒下から上部までを一枚板の成型した形態の陶器・磁器・セメント・石・金属・強化ガラス・強化プラスチック・強化複合ゴム・炭素カーボン屋根材と、最上部の屋根18形状の陶器・磁器・セメント・石・金属・強化ガラス・強化プラスチック・強化複合ゴム・炭素カーボン屋根材に太陽光モジュールボックス図2で示す7の冷却風洞空間6と接続した2次冷却風洞空間18−aを設けて過度熱気をファン18−cで外に逃す形態の縦断面図である。   In FIG. 6, the condensing lens effect 1-7-c which applied the optical system of the Galileo telescope in the longitudinal cross-sectional view of a solar energy composite system apparatus roof part, and the condensing heat of sunlight condensing convex lenses 9-9-a Metal fittings 11-a for fixing the used oil circulation pipes 10 to 11 to the roof are applied, and the insulating material 8-c is applied to the roof under the roof eave 8-a, the middle roof 8 and the upper roof 8-b from the bottom of the roof. Ceramics, porcelain, cement, stone, metal, tempered glass, reinforced plastic, reinforced composite rubber, carbon-carbon roofing material, and the top 18-shaped pottery, porcelain, cement, A secondary cooling wind tunnel space 18-a connected to the cooling wind tunnel space 6 shown in FIG. 2 is provided on stone, metal, tempered glass, reinforced plastic, reinforced composite rubber, and carbon carbon roofing material to provide excessive hot air. Fan 1 Is a longitudinal sectional view of the embodiment miss out by -c.

図7においては、太陽光モジュールボックス7とガリレオ式望遠鏡の光学系を応用した集光レンズ効果図2で示す1〜4や太陽光発電モジュールやセル図2で示す5を接続する断熱接着材7−cを施した形態の断面図である。   In FIG. 7, a condensing lens effect applying the solar module box 7 and the optical system of the Galileo telescope 1 to 4 shown in FIG. 2, the solar power generation module, and the heat insulating adhesive 7 connecting the cell shown in FIG. It is sectional drawing of the form which gave -c.

図8においては、太陽光モジュール1〜3・5と太陽光モジュールボックス図2で示す7の冷却風洞空間6と接続した2次冷却風洞空間18−a及び2次冷却風洞空間内過度熱気の流れ18−bを示す形態の平面図である。   In FIG. 8, the flow of excessively hot air in the secondary cooling wind tunnel space 18-a and the secondary cooling wind tunnel space connected to the solar wind modules 1 to 3 and 5 and the cooling wind tunnel space 6 shown in FIG. It is a top view of the form which shows 18-b.

ガリレオ式望遠鏡の光学系を応用した集光レンズ効果太陽光アレイの発電と太陽光集光レンズ効果熱のオイル循環を電力供給設備や熱交換給湯設備と複合利用してシステム化した平面図Plan view of a system that combines the power generation of the condensing lens effect solar array and the solar oil circulation of the solar condensing lens effect with the power supply equipment and heat exchange hot water supply equipment applying the optical system of the Galileo telescope ガリレオ望遠鏡の光学系を応用した集光式レンズ効果太陽光モジュールの断面図Cross-sectional view of a condensing lens effect solar module applying the optical system of the Galileo telescope 太陽光レンズ効果熱オイル循環パイプを施した屋根材の断面図Cross section of roofing material with solar lens effect thermal oil circulation pipe 太陽光レンズ効果熱オイル循環パイプを施した屋根材のサイド端部断面図Side end cross section of roofing material with solar lens effect thermal oil circulation pipe 屋根を複数枚形状に施した縦断面図Longitudinal section with multiple roofs 太陽光モジュール集光凸レンズと太陽光凸レンズ集光熱オイル循環パイプを設置した一枚屋根材及び最上部屋根材の縦縦断面図Longitudinal and longitudinal sectional view of a single roofing material and a top roofing material with a solar module condensing convex lens and a solar convex lens condensing thermal oil circulation pipe ガリレオ式望遠鏡の光学系を応用した集光レンズ効果太陽光モジュール及びセルを固定する太陽光モジュールボックスの断面図Cross-sectional view of a condensing lens effect solar module applying a Galileo telescope optical system and a solar module box for fixing a cell 断面図ガリレオ式望遠鏡の光学系を応用した集光レンズ効果太陽光モジュールと最上部屋根材内2次冷却風洞空間との平面図Sectional view Plan view of the condensing lens effect solar module using the optical system of the Galileo telescope and the secondary cooling wind tunnel space in the top roofing material

符号の説明Explanation of symbols

1F 凹レンズ焦点
3F 凸レンズ焦点
1 凹レンズ
2 減圧空間
3 凸レンズ
4 減圧空間
5 太陽光モジュール及びセル
5−a 光反射ミラー
5−b 太陽光モジュール及びセル裏面冷却アルミ版
6 冷却風洞空間
6−a 冷却風洞空間の空気取り入れ口
7 太陽光モジュールボックス
7−a モジュールボックスとレンズ固定ネジ
7−b モジュールボックス固定ネジ
7−c モジュールボックスとレンズ及び屋根材の防水断熱テープ
8 屋根材
8−a 屋根材の最下部形状
8−b 屋根材の最上部形状
8−c 屋根材に接合した断熱材
9 オイル循環パイプの集光レンズ
9−a オイル循環パイプと集光レンズの減圧空間
10 オイル循環パイプとオイル
11 オイル循環パイプと集光レンズの屋根接着板
11−a オイル循環パイプと集光レンズの屋根固定金具
12 モジュールボックスと屋根材との断熱材又は空間
12−a 屋根材の端部の断熱材又は空間
13 モジュールボックスと屋根材を固定算木
14 屋根の防水シート
15 屋根板
16 屋根の垂木材
16−a 屋根の垂木材とサイド端部屋根材の隙間調整材
17 屋根のサイド端部屋根材
18 最上部屋根材
18−a 2次冷却風洞空間
18−b 2次冷却風洞空間の過度熱気の流出状態
18−c 2次冷却風洞空間に設置した過度熱気の流出モーターファン
1F Concave lens focal point 3F Convex lens focal point 1 Concave lens 2 Depressurization space 3 Convex lens 4 Decompression space 5 Solar module and cell 5-a Light reflection mirror 5-b Solar module and cell back surface cooling aluminum plate 6 Cooling wind tunnel space 6-a Cooling wind tunnel space Air intake port 7 Solar module box 7-a Module box and lens fixing screw 7-b Module box fixing screw 7-c Waterproof insulation tape 8 for module box, lens and roofing material 8 Roofing material 8-a Bottom of roofing material Shape 8-b Top shape of roof material 8-c Heat insulation material joined to roof material 9 Condensing lens 9-a of oil circulation pipe Oil circulation pipe and decompression space 10 of condenser lens Oil circulation pipe and oil 11 Oil circulation Pipe and condenser lens roof adhesive plate 11-a Oil circulation pipe and condenser lens roof fixing bracket 12 Insulation or space 12-a between the module box and the roofing material Insulation or space 13 at the end of the roofing material 13 Fixed the modular box 14 and the roofing material 15 Roof waterproof sheet 15 Roof plate 16 Roof hanging wood 16-a Gap adjusting material 17 for roof timber and side edge roof material 17 Roof side edge roof material 18 Top roof material 18-a Secondary cooling wind tunnel space 18-b Outflow state of excessive hot air in secondary cooling wind tunnel space 18 -C Excessive hot air outflow motor fan installed in the secondary cooling wind tunnel space

Claims (7)

本発明は、ガリレオ式望遠鏡の光学系を応用した強化ガラスや強化プラスチックの凹凸レンズ集光効果で光を強めて光電効果の飛び出してくる光電子の数は当てる光の強さに比例することを確保したことで、太陽光モジュール及びセルの受光面積を少なくすることができて電力の発電効率向上させることができる。又、そのレンズ集光による熱を太陽光モジュール及びセルを固定する太陽光モジュールボックス内に空洞を設けて太陽光モジュール及びセルの裏面から直接伸ばした冷却用アルミ版を数枚施し熱拡散させて冷却し耐久性を維持させることができる太陽光モジュール及びセルの図2の1〜7−cで示す形態を特徴とする、太陽光エネルギー複合利用システム装置。   The present invention ensures that the number of photoelectrons popping out of the photoelectric effect is proportional to the intensity of the applied light by strengthening the concave and convex lens condensing effect of tempered glass and reinforced plastic using the optical system of the Galileo telescope. As a result, the light receiving areas of the solar modules and cells can be reduced, and the power generation efficiency of power can be improved. Also, the heat from the lens condensing is diffused by applying a few aluminum plates for cooling that are directly extended from the back of the solar module and cell by providing a cavity in the solar module box that fixes the solar module and cell. The solar energy composite utilization system apparatus characterized by the form shown to 1-7-c of FIG. 2 of the solar cell module and cell which can be cooled and maintain durability. さらに、その太陽光モジュールと太陽光モジュールの間に屋根材を設けた表面に太陽光凸レンズ集光効果熱を利用したオイル循環パイプ図の9〜11で示す形態を設置して、図1の下部に示す温水器内にオイル循環し熱交換させて給湯利用できることを特徴とする、請求項1の太陽光エネルギー複合利用システム装置。   Furthermore, the form shown by 9-11 of the oil circulation pipe figure using sunlight convex lens condensing effect heat is installed in the surface which provided the roofing material between the solar module and the solar module, and the lower part of FIG. The solar energy combined use system device according to claim 1, wherein the hot water heater can be used by circulating oil in the water heater shown in FIG. 本発明は、ガリレオ式望遠鏡の光学系を応用した集光レンズ効果太陽光モジュール及びセル図の1〜7−cで示す形態を屋根材の凸部に設置して、その太陽光モジュール及びセルと図の8〜8−cで示す形状の屋根材と一体化した形態にすることを特徴とする、請求項1又は2の太陽光エネルギー複合利用システム装置。   This invention installs the condensing lens effect solar module which applied the optical system of the Galileo telescope, and the form shown by 1-7-c of a cell figure in the convex part of a roof material, The solar module and cell, The solar energy composite utilization system apparatus according to claim 1 or 2, wherein the solar energy composite utilization system apparatus is integrated with a roof material having a shape indicated by 8-8c in the figure. 又、冬場に積雪の多い地域においては、太陽光が利用できる時には太陽光凸レンズ集光効果熱のオイル循環パイプ図の9〜11で示す形態を設置して、他に設置した温水器内にオイル循環させ熱交換し給湯利用することができて、屋根に積雪の時には温水器内の別途エネルギーでオイルを温め屋根に循環させて融雪することを特徴とする、請求項1、2又は3の太陽光エネルギー複合利用システム装置。   Also, in areas where there is a lot of snow in the winter, when sunlight is available, install the form shown by 9-11 in the oil circulation pipe diagram of the sunlight convex lens condensing effect heat, and oil in the other installed water heater The sun according to claim 1, 2 or 3, characterized in that it can circulate and exchange heat to use hot water, and when snow accumulates on the roof, it melts snow by circulating oil to the roof by heating the oil separately with energy in the water heater. Light energy combined use system device. さらに、積雪のない暑い地域や暑い時期の多い地域においては、太陽光凸レンズ集光効果熱のオイル循環パイプ図の9〜11で示す形態の屋根材幅を狭めて太陽受光時間を減らし、図の1〜7−cで示したガリレオ式望遠鏡の光学系を応用した集光レンズ効果太陽光モジュールの数を多く設置し電力の発電効率向上させたことを特徴とする、請求項1、2、3又は4の太陽光エネルギー複合利用システム装置。   Furthermore, in hot regions where there is no snow or in regions where there are many hot periods, the roof material width shown in 9 to 11 in the sun light condensing effect heat oil circulation pipe diagram is narrowed to reduce the solar light reception time. The power generation efficiency of electric power is improved by installing a large number of condensing lens effect solar modules to which the optical system of the Galileo telescope shown in 1 to 7-c is applied. Or 4 solar energy composite utilization system apparatus. 本発明は、屋根材の陶器・磁器・セメント・石・金属・強化ガラス・強化プラスチック・合成ゴム・炭素カーボン材を軒下屋根材8−a・中間屋根材8・上部屋根材8−b・サイド端部屋根材17・断熱材8−cと最上部に施した屋根材18〜18−bを複数枚形状に施した屋根材形態と、軒下屋根材8−a・中間屋根材8・上部屋根材8−b・サイド端部屋根材17・断熱材8−cや最上部に施した屋根材18〜18−bを一枚成型屋根材にした形態を特徴とする、請求項1、2、3、4又は5の太陽光エネルギー複合利用システム装置。   The present invention is made of roofing materials such as porcelain, porcelain, cement, stone, metal, tempered glass, reinforced plastic, synthetic rubber, and carbon carbon material, eaves roofing material 8-a, intermediate roofing material 8, upper roofing material 8-b, side. The roof material form in which the end roof material 17 and the heat insulating material 8-c and the roof material 18 to 18-b applied to the uppermost part are formed in a plurality of shapes, the eaves roof material 8-a, the intermediate roof material 8, and the upper roof The material 8-b, the side edge roof material 17, the heat insulating material 8-c, and the roof material 18-18-b applied to the uppermost portion are formed into a single molded roof material. 3, 4 or 5 solar energy composite utilization system device. 本発明は、一般家屋や工場・倉庫・車庫・店舗・公共施設・商業施設・農業施設・海上施設・仮施設・ビルの屋上や壁及び土木施設法面に、上記請求項1、2、3、4、5、6で示した屋根材と一体化した集光レンズ効果太陽光モジュール及び太陽光レンズ集光効果熱のオイル循環パイプと、図1の下部で示す電力供給設備や熱交換給湯設備をシステム化した形態を特徴とする、請求項1、2、3、4、5又は6の太陽光エネルギー複合利用システム装置。
The present invention relates to the above-mentioned claims 1, 2, 3 on the slopes of general houses, factories, warehouses, garages, stores, public facilities, commercial facilities, agricultural facilities, maritime facilities, temporary facilities, buildings, and civil engineering facilities. 1, 5 and 6, the condensing lens effect solar module integrated with the roof material, the solar lens condensing effect heat oil circulation pipe, and the power supply equipment and heat exchange hot water supply equipment shown in the lower part of FIG. The solar energy composite utilization system apparatus according to claim 1, 2, 3, 4, 5 or 6, characterized in that the system is configured as a system.
JP2006030613A 2006-02-08 2006-02-08 Solar-ray energy composite using system device Pending JP2007214235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030613A JP2007214235A (en) 2006-02-08 2006-02-08 Solar-ray energy composite using system device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030613A JP2007214235A (en) 2006-02-08 2006-02-08 Solar-ray energy composite using system device

Publications (1)

Publication Number Publication Date
JP2007214235A true JP2007214235A (en) 2007-08-23

Family

ID=38492419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030613A Pending JP2007214235A (en) 2006-02-08 2006-02-08 Solar-ray energy composite using system device

Country Status (1)

Country Link
JP (1) JP2007214235A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149677A (en) * 2013-01-29 2013-06-12 中国科学院光电技术研究所 Big-caliber foundation solar telescope hot field diaphragm cooling device based on jet cooling principle
KR101302063B1 (en) * 2011-08-09 2013-08-29 광주과학기술원 Apparatus of green-house intergrated photovoltaic power generation
WO2013183165A1 (en) * 2012-06-08 2013-12-12 トヨタ自動車株式会社 Solar cell and method for producing light collection optical system for solar cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302063B1 (en) * 2011-08-09 2013-08-29 광주과학기술원 Apparatus of green-house intergrated photovoltaic power generation
WO2013183165A1 (en) * 2012-06-08 2013-12-12 トヨタ自動車株式会社 Solar cell and method for producing light collection optical system for solar cells
CN103149677A (en) * 2013-01-29 2013-06-12 中国科学院光电技术研究所 Big-caliber foundation solar telescope hot field diaphragm cooling device based on jet cooling principle

Similar Documents

Publication Publication Date Title
EP1935032B1 (en) Photovoltaic roof ridge cap and installation method
US20090199892A1 (en) Solar earth module
US9103563B1 (en) Integrated thermal module and back plate structure and related methods
JP5389925B2 (en) Transparent perforated plate glass for heat recovery and air heating by sunlight
US10181815B2 (en) Receiver for PV/T solar energy systems
WO1994016170A1 (en) Roof installed with solar batteries
JPH1062017A (en) Photoelectric-power generating-heat collecting hybrid panel, roof panel and roof unit provided with the photoelectric power generating-heat collecting hybrid panel, solar system and solar system building
US11431289B2 (en) Combination photovoltaic and thermal energy system
JP3163802U (en) Hybrid structure using sunlight and solar heat in buildings
US20110209742A1 (en) Method and Structure for a Cool Roof by Using a Plenum Structure
US20110209743A1 (en) Photovoltaic cell apparatus
EP2118581A1 (en) Roof mountable solar panel
WO2012092446A1 (en) Solar panel modules having structural properties
US20120145223A1 (en) Solar thermal energy collector
US20120024343A1 (en) Method and Structure for a Cool Roof by Using a Plenum Structure
KR20110068840A (en) Utilizing reflected light type solar module system
US20090293940A1 (en) Combination solar collector
KR101079642B1 (en) Heating system using the solar energy
JP2007214235A (en) Solar-ray energy composite using system device
KR101628668B1 (en) Apparatus for controlling temperature of photovoltaic panel
US20140083483A1 (en) Solar tile
WO2010138086A2 (en) Solar energy collecting and transforming apparatus
AU2013201559A1 (en) Solar earth module
RU2612725C1 (en) Hybrid roof solar panel
EP3714220B1 (en) A solar energy concentrating roof module and a solar energy conversion system for a roof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202