JP2007213819A - Secondary battery for large-current discharge - Google Patents

Secondary battery for large-current discharge Download PDF

Info

Publication number
JP2007213819A
JP2007213819A JP2006029188A JP2006029188A JP2007213819A JP 2007213819 A JP2007213819 A JP 2007213819A JP 2006029188 A JP2006029188 A JP 2006029188A JP 2006029188 A JP2006029188 A JP 2006029188A JP 2007213819 A JP2007213819 A JP 2007213819A
Authority
JP
Japan
Prior art keywords
lid
battery
cap
secondary battery
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006029188A
Other languages
Japanese (ja)
Other versions
JP4688688B2 (en
Inventor
Katsunori Suzuki
克典 鈴木
Mikio Oguma
幹男 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2006029188A priority Critical patent/JP4688688B2/en
Publication of JP2007213819A publication Critical patent/JP2007213819A/en
Application granted granted Critical
Publication of JP4688688B2 publication Critical patent/JP4688688B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery for large-current discharge capable of preventing leakage of electrolyte liquid and reducing a power loss at the large-current discharge. <P>SOLUTION: The lithium secondary battery has a metallic upper lid 10 caulked and fixed to a metallic battery can.An electrode group is housed in the battery can. The upper lid 10 has a caulking part 5 where a flange part of a dish-shaped lid case 2 made of aluminum is folded toward upside of the flange part of the nickel-plated metallic lid cap 4 and caulked. Aluminum having a melting point lower than that of iron used as a material for the lid cap 4 is used as the material for the lid case 2. Friction stir welding is applied on four points of the caulking part 5 from upside of the flange part of the folded lid case 2. Formation of pinholes is prevented at lower face side of the lid case 2, and corrosion of the lid cap 4 is prevented because non-aqueous electrolyte liquid does not touch the lid cap 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は大電流放電用二次電池に係り、特に、皿状の蓋ケース及び蓋キャップがかしめられた金属製密閉蓋と金属製電池缶とがかしめ固定された大電流放電用二次電池に関する。   The present invention relates to a secondary battery for large current discharge, and more particularly, to a secondary battery for large current discharge in which a plate-like lid case and a metal sealing lid with a lid cap caulked and a metal battery can are fixed by caulking. .

従来、電気自動車や電動アシスト自転車等の電源には、電気自動車の始動を補助するため大電流放電用二次電池が用いられている。このような大電流放電用二次電池には、多数個(例えば、電気自動車の場合には40〜100個)の二次電池(単電池)を直列に接続した組電池(電池モジュール)が用いられており、各単電池からは大電流(例えば、60〜200アンペア)が供給される。   2. Description of the Related Art Conventionally, a secondary battery for discharging a large current is used as a power source for an electric vehicle, an electrically assisted bicycle or the like to assist the start of the electric vehicle. As such a secondary battery for large current discharge, an assembled battery (battery module) in which a large number (for example, 40 to 100 in the case of an electric vehicle) secondary batteries (unit cells) are connected in series is used. A large current (for example, 60 to 200 amperes) is supplied from each unit cell.

一般に、このような単電池では、正極端子を兼ねる金属製密閉蓋が負極端子を兼ねる金属製電池缶にガスケットを介してかしめ固定されている。密閉蓋は、皿状の蓋ケース及び蓋キャップがかしめられて電気的に接続されており、正極から集電された電位が蓋ケースを通じて蓋キャップに導かれる。ところが、密閉蓋には2ミリオーム程度の電気抵抗が存在するため、組電池としたときの電気抵抗が密閉蓋だけでも総計80〜200ミリオームに達することから、大電流放電により4.8〜40Vもの電力損失(電圧降下)が生じることになる。この電力損失を軽減するために、例えば、外部端子の導通断面積を大きくすると、単電池ひいては組電池全体の重量が増加してしまう、という問題がある。密閉蓋の電気抵抗を減少させるために、本発明者らは、皿状のアルミニウム製蓋ケースのフランジ部と鉄製蓋キャップのフランジ部とがスポット溶接で接合された密閉蓋を用いた二次電池を提案している(特許文献1参照)。また、蓋ケースのフランジ部と蓋キャップのフランジ部とがスポット溶接で接合された後、フランジ部同士がかしめられた密閉蓋を用いた二次電池が開示されている(例えば、特許文献2参照)。   Generally, in such a unit cell, a metal sealing lid that also serves as a positive electrode terminal is caulked and fixed to a metal battery can that also serves as a negative electrode terminal via a gasket. The sealing lid is electrically connected by caulking a dish-like lid case and a lid cap, and the potential collected from the positive electrode is guided to the lid cap through the lid case. However, since the electrical resistance of about 2 milliohms is present in the sealed lid, the electrical resistance when it is an assembled battery reaches a total of 80 to 200 milliohms even with the sealed lid alone, so that it is 4.8 to 40 V due to large current discharge. Power loss (voltage drop) will occur. In order to reduce the power loss, for example, when the conduction cross-sectional area of the external terminal is increased, there is a problem that the weight of the unit cell and the assembled battery is increased. In order to reduce the electrical resistance of the hermetic lid, the present inventors have provided a secondary battery using a hermetic lid in which a flange portion of a dish-shaped aluminum lid case and a flange portion of an iron lid cap are joined by spot welding. (Refer to Patent Document 1). Further, a secondary battery using a sealed lid in which the flange portion of the lid case and the flange portion of the lid cap are joined by spot welding and then the flange portions are caulked is disclosed (for example, see Patent Document 2). ).

特開2000−90892号公報JP 2000-90892 A 特開2002−170531号公報JP 2002-170531 A

しかしながら、スポット溶接では、蓋ケースのフランジ部の下面と蓋キャップのフランジ部の上面とに接触させた電極間に通電することで接合されるため、鉄より融点の低いアルミニウム(合金)製蓋ケースの下面、すなわち、電池内側にピンホール等の欠陥を生じ、溶接痕が残ることがある。アルミニウム製蓋ケースにピンホール等が形成されていても、鉄製蓋キャップにはピンホール等が形成されにくいため、電池蓋の気密検査を行っても蓋ケースのピンホールを検出することができない。このため、電池使用時に、電池内の電解液が蓋ケースのピンホールに浸入し鉄製蓋キャップと接触するおそれがある。この結果、蓋キャップが腐食し、電解液の漏洩に至る、という問題がある。 However, in spot welding, an aluminum (alloy) lid case having a melting point lower than that of iron is used because it is joined by energization between electrodes in contact with the lower surface of the flange portion of the lid case and the upper surface of the flange portion of the lid cap In other words, defects such as pinholes may be generated on the lower surface of the battery, that is, inside the battery, and welding marks may remain. Even if a pinhole or the like is formed in the aluminum lid case, it is difficult to form a pinhole or the like in the iron lid cap. Therefore, even if an airtight inspection of the battery lid is performed, the pinhole in the lid case cannot be detected. For this reason, when using the battery, the electrolyte in the battery may enter the pinhole of the lid case and come into contact with the iron lid cap. As a result, there is a problem that the lid cap is corroded and the electrolyte solution leaks.

本発明は上記事案に鑑み、電解液の漏洩を防止し、大電流放電による電力損失を軽減することができる大電流放電用二次電池を提供することを課題とする。   In view of the above-described case, an object of the present invention is to provide a secondary battery for large current discharge that can prevent leakage of an electrolyte and reduce power loss due to large current discharge.

上記課題を解決するために、本発明は、皿状の蓋ケース及び蓋キャップがかしめられた金属製密閉蓋と金属製電池缶とがかしめ固定された大電流放電用二次電池において、前記蓋ケースには前記蓋キャップより低融点の金属が用いられており、前記蓋キャップのフランジ部と、該蓋キャップのフランジ部より上方側に折り返された前記蓋ケースのフランジ部とが複数箇所で接合部分の塑性流動を伴う摩擦攪拌接合により接合されており、かつ、前記摩擦攪拌接合が前記折り返された蓋ケースのフランジ部側から施されていることを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a secondary battery for large current discharge in which a metal-sealed lid and a metal battery can with a dish-shaped lid case and a lid cap are caulked and fixed. The case is made of a metal having a melting point lower than that of the lid cap, and the flange portion of the lid cap and the flange portion of the lid case folded back above the flange portion of the lid cap are joined at a plurality of locations. It is joined by friction stir welding accompanied by plastic flow of the part, and the friction stir welding is performed from the flange portion side of the folded lid case.

本発明では、蓋キャップのフランジ部と、該蓋キャップのフランジ部より上方側に折り返された蓋ケースのフランジ部とが接合部分の塑性流動を伴う摩擦攪拌接合により接合されており、かつ、摩擦攪拌接合が折り返された蓋ケースのフランジ部側から施されているため、蓋キャップより低融点の蓋ケースの下面側にピンホールが形成されないことから、蓋キャップに電解液が接触せず蓋キャップの腐食が防止されるので、電解液の漏洩を防止することができると共に、摩擦攪拌接合による接合が複数箇所のため、蓋ケース及び蓋キャップ間の電気抵抗が減少するので、大電流放電時に接合部分での電力損失を軽減することができる。   In the present invention, the flange portion of the lid cap and the flange portion of the lid case folded back above the flange portion of the lid cap are joined by friction stir welding with plastic flow of the joint portion, and the friction Since the stir welding is applied from the flange side of the folded lid case, no pinhole is formed on the lower surface side of the lid case, which has a lower melting point than the lid cap. Since corrosion of the battery is prevented, leakage of the electrolyte can be prevented, and since there are multiple joints by friction stir welding, the electrical resistance between the lid case and the lid cap is reduced. The power loss in the part can be reduced.

この場合において、蓋ケースがアルミニウム又はアルミニウム合金を材質としてもよい。また、蓋キャップが炭素鋼、ステンレス鋼、ニッケルのいずれかを材質としてもよい。また、蓋キャップがニッケルメッキされた炭素鋼を材質としてもよい。   In this case, the lid case may be made of aluminum or aluminum alloy. Further, the lid cap may be made of carbon steel, stainless steel, or nickel. The cover cap may be made of nickel-plated carbon steel.

本発明によれば、蓋キャップのフランジ部と、該蓋キャップのフランジ部より上方側に折り返された蓋ケースのフランジ部とが接合部分の塑性流動を伴う摩擦攪拌接合により接合されており、かつ、摩擦攪拌接合が折り返された蓋ケースのフランジ部側から施されているため、蓋ケースの下面側にピンホールが形成されないことから、蓋キャップに電解液が接触せず蓋キャップの腐食が防止されるので、電解液の漏洩を防止することができると共に、摩擦攪拌接合による接合が複数箇所のため、蓋キャップ及び蓋ケース間の電気抵抗が減少するので、大電流放電時の電力損失を軽減することができる、という効果を得ることができる。   According to the present invention, the flange portion of the lid cap and the flange portion of the lid case folded back upward from the flange portion of the lid cap are joined by friction stir welding with plastic flow of the joining portion, and Since the friction stir welding is performed from the flange part side of the folded lid case, no pinhole is formed on the lower surface side of the lid case, so that the electrolyte solution does not contact the lid cap and prevents corrosion of the lid cap Therefore, leakage of the electrolyte can be prevented and the electrical resistance between the lid cap and lid case is reduced because there are multiple joints by friction stir welding, reducing power loss during large current discharge. It is possible to obtain the effect of being able to.

以下、図面を参照して、本発明を適用した大電流放電用リチウム二次電池の実施の形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a lithium secondary battery for large current discharge to which the present invention is applied will be described with reference to the drawings.

(構成)
図1に示すように、本実施形態の大電流放電用リチウム二次電池20は、有底円筒状で上側が金属製上蓋(密閉蓋)10で封口された金属製電池缶1及び帯状の正負極がセパレータを介して断面渦巻状に軸芯の周りに捲回された電極群11を有している。
(Constitution)
As shown in FIG. 1, a lithium secondary battery 20 for discharging a large current according to this embodiment includes a metal battery can 1 having a bottomed cylindrical shape and an upper side sealed with a metal upper lid (sealing lid) 10 and a belt-like positive electrode. The negative electrode has an electrode group 11 wound around an axial core in a spiral shape in cross section via a separator.

電極群11の上側には、軸芯のほぼ延長線上に正極からの電位を集電するための正極集電リングが配置されている。正極集電リングは、軸芯の上端部に固定されている。正極集電リングの周囲から一体に張り出している鍔部周縁には、正極から導出された正極リード片の端部が超音波溶接で接合されている。正極集電リングの上方には、円盤状の上蓋10が配置されている。正極集電リングの上部には複数枚のアルミニウム製リボンを重ね合わせて構成した正極リード板12の一端が固定されており、正極リード板12の他端は上蓋10の下面に溶接で接合されている。   On the upper side of the electrode group 11, a positive electrode current collection ring for collecting a potential from the positive electrode is disposed on a substantially extension line of the shaft core. The positive electrode current collecting ring is fixed to the upper end portion of the shaft core. The edge part of the positive electrode lead piece led out from the positive electrode is joined by ultrasonic welding to the periphery of the flange that integrally projects from the periphery of the positive electrode current collecting ring. A disc-shaped upper lid 10 is disposed above the positive electrode current collecting ring. One end of a positive electrode lead plate 12 formed by stacking a plurality of aluminum ribbons is fixed to the upper portion of the positive electrode current collecting ring, and the other end of the positive electrode lead plate 12 is joined to the lower surface of the upper lid 10 by welding. Yes.

一方、電極群11の下側には負極からの電位を集電するための負極集電リングが配置されている。負極集電リングの内周面には軸芯の下端部外周面が固定されている。負極集電リングの外周縁には、負極から導出された負極リード片の端部が溶接で接合されている。負極集電リングの下部には電気的導通のための銅製の負極リード板が溶接されており、負極リード板は電池缶1の内底面に溶接で接合されている。   On the other hand, a negative electrode current collection ring for collecting a potential from the negative electrode is disposed below the electrode group 11. The outer peripheral surface of the lower end portion of the shaft core is fixed to the inner peripheral surface of the negative electrode current collecting ring. The end of the negative electrode lead piece led out from the negative electrode is joined to the outer peripheral edge of the negative electrode current collecting ring by welding. A copper negative electrode lead plate for electrical conduction is welded to the lower part of the negative electrode current collecting ring, and the negative electrode lead plate is joined to the inner bottom surface of the battery can 1 by welding.

図2及び図3に示すように、上蓋10は、皿状でアルミニウム製の蓋ケース2に、ニッケルメッキを施した鉄製の蓋キャップ4が重ねられており、蓋ケース2のフランジ部と蓋キャップ4のフランジ部とがかしめられてかしめ部5が形成されている。蓋ケース2の材質には、蓋キャップ4の材質に用いた鉄より低融点のアルミニウムが用いられている。かしめ部5では、蓋ケース2のフランジ部が蓋キャップ4の上方側に折り返されている。蓋ケース2には、電池内圧の上昇により開裂するV字状の溝の開裂弁3が形成されている。蓋キャップ4は、中央に電極群11と反対側に突出した凸部を有している。この凸部の上面側及び側面側には、開裂弁3の作動時に電池内部のガスを排気するための通気口8が形成されている。かしめ部5には、例えば、4箇所に、摩擦攪拌接合が施されている。摩擦攪拌接合では、先端部が回転する回転工具(接合回転ツール)が用いられ、折り返された蓋ケース2のフランジ部の上方側(矢印A方向)からかしめ部5に回転ツールを圧接することで施される。 As shown in FIGS. 2 and 3, the upper lid 10 has a dish-shaped aluminum lid case 2 and a nickel-plated iron lid cap 4 superimposed thereon, and the lid portion 2 has a flange portion and a lid cap. The four flange portions are caulked to form a caulking portion 5. The lid case 2 is made of aluminum having a melting point lower than that of the iron used for the lid cap 4. In the caulking portion 5, the flange portion of the lid case 2 is folded back to the upper side of the lid cap 4. The lid case 2 is formed with a V-shaped groove cleaving valve 3 that cleaves when the battery internal pressure increases. The lid cap 4 has a convex portion protruding in the center on the side opposite to the electrode group 11. Vents 8 for exhausting the gas inside the battery when the cleavage valve 3 is operated are formed on the upper surface side and the side surface side of the convex portion. The caulking portion 5 is subjected to friction stir welding, for example, at four locations. In friction stir welding, a rotating tool (joint rotating tool) whose tip is rotated is used, and the rotating tool is pressed against the caulking portion 5 from above the flange portion of the folded lid case 2 (in the direction of arrow A). Applied.

図1に示すように、上蓋10と電池缶1とが絶縁性及び耐熱性の樹脂製ガスケット13を介してかしめ固定されている。このとき、電極群11を収容した電池缶1の内面側で電極群11の上方に、上蓋10を載せるための段付け部を形成する段付け加工が電池缶1に施され、段付け部より上側に上蓋10がかしめ固定される。このため、リチウム二次電池20の内部は密封されており、電池缶1が負極外部端子を兼ね、上蓋10が正極外部端子を兼ねている。また、電池缶1内には、非水電解液が注液されている。非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)との混合溶媒中に電解質として6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものが用いられている。 As shown in FIG. 1, the upper lid 10 and the battery can 1 are caulked and fixed via an insulating and heat resistant resin gasket 13. At this time, the battery can 1 is subjected to a stepping process for forming a stepped portion for placing the upper lid 10 on the inner surface side of the battery can 1 containing the electrode group 11 and above the electrode group 11. The upper lid 10 is caulked and fixed on the upper side. For this reason, the inside of the lithium secondary battery 20 is sealed, the battery can 1 also serves as the negative electrode external terminal, and the upper lid 10 also serves as the positive electrode external terminal. In addition, a non-aqueous electrolyte is injected into the battery can 1. The non-aqueous electrolyte includes 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). Is used.

電極群11は、正極と負極とが、これら正負極が直接接触しないようにセパレータを介し、軸芯の周囲(外側)に捲回されている。セパレータには、本例では、厚さ25μm、幅100mmのポリエチレン多孔膜が使用されている。正極リード片と負極リード片とは、それぞれ電極群11の互いに反対側の両端面に配置されている。電極群11及び正極集電リングの鍔部周面全周には、絶縁被覆が施されている。絶縁被覆には、ポリイミド製の基材の片面にヘキサメタアクリレートの粘着剤が塗布された粘着テープが用いられている。粘着テープは鍔部周面から電極群11の外周面に亘って一重以上巻かれている。   In the electrode group 11, a positive electrode and a negative electrode are wound around (outside) the shaft core via a separator so that the positive and negative electrodes do not directly contact each other. In this example, a polyethylene porous membrane having a thickness of 25 μm and a width of 100 mm is used as the separator. The positive electrode lead piece and the negative electrode lead piece are respectively disposed on both end surfaces of the electrode group 11 on the opposite sides. Insulation coating is applied to the entire circumference of the collar surface of the electrode group 11 and the positive electrode current collector ring. For the insulation coating, an adhesive tape in which a hexamethacrylate adhesive is applied to one side of a polyimide base material is used. The adhesive tape is wound one or more times from the peripheral surface of the collar portion to the outer peripheral surface of the electrode group 11.

電極群11を構成する負極は、負極集電体として厚さ10μmの銅箔を有している。銅箔の両面には、負極活物質として平均粒径20μmの炭素粒子を含む負極合剤が塗着されている。負極合剤には、例えば、炭素粒子の90重量部に対して、バインダ(結着材)のポリフッ化ビニリデン(呉羽化学工業株式会社製、商品名:KF#120)(以下、PVDFと略記する。)の10重量部が配合されている。銅箔に負極合剤を塗着するときには、分散溶媒のN−メチル−2−ピロリドン(以下、NMPと略記する。)が用いられる。銅箔の長寸方向一側の側縁には、負極合剤の未塗着部が形成されている。未塗着部は櫛状に切り欠かれており、切り欠き残部で負極リード片が形成されている。負極は、乾燥後、プレス加工され、幅94.5mmに裁断されている。   The negative electrode constituting the electrode group 11 has a copper foil having a thickness of 10 μm as a negative electrode current collector. A negative electrode mixture containing carbon particles having an average particle diameter of 20 μm as a negative electrode active material is coated on both surfaces of the copper foil. In the negative electrode mixture, for example, relative to 90 parts by weight of carbon particles, a binder (binder) polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd., trade name: KF # 120) (hereinafter abbreviated as PVDF). .) 10 parts by weight is blended. When the negative electrode mixture is applied to the copper foil, a dispersion solvent N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) is used. An uncoated portion of the negative electrode mixture is formed on the side edge on one side in the longitudinal direction of the copper foil. The uncoated part is notched in a comb shape, and a negative electrode lead piece is formed in the notch remaining part. The negative electrode is pressed after drying and cut to a width of 94.5 mm.

一方、正極は、正極集電体として厚さ20μmのアルミニウム箔を有している。アルミニウム箔の両面には、正極活物質として平均粒径10μmのマンガン酸リチウムを含む正極合剤が塗着されている。正極合剤には、例えば、マンガン酸リチウムの85重量部に対して、導電材として平均粒径3μmの炭素粉末の10重量部及びバインダのPVDFの5重量部が配合されている。アルミニウム箔に正極合剤を塗着するときには、分散溶媒のNMPが用いられる。アルミニウム箔の長寸方向一側の側縁には、負極と同様に正極合剤の未塗着部が形成されており、正極リード片が形成されている。正極は、乾燥後、負極と同様にプレス加工され、幅94mmに裁断されている。   On the other hand, the positive electrode has an aluminum foil having a thickness of 20 μm as a positive electrode current collector. On both surfaces of the aluminum foil, a positive electrode mixture containing lithium manganate having an average particle diameter of 10 μm is applied as a positive electrode active material. In the positive electrode mixture, for example, 10 parts by weight of carbon powder having an average particle size of 3 μm and 5 parts by weight of PVDF as a binder are blended with respect to 85 parts by weight of lithium manganate. When applying the positive electrode mixture to the aluminum foil, a dispersion solvent NMP is used. An uncoated portion of the positive electrode mixture is formed on the side edge on one side in the longitudinal direction of the aluminum foil, as in the negative electrode, and a positive electrode lead piece is formed. After drying, the positive electrode is pressed in the same manner as the negative electrode, and is cut to a width of 94 mm.

リチウム二次電池20の組立は、次のようにして行うことができる。まず、上蓋10を作製する。すなわち、蓋ケース2のフランジ部と、蓋キャップ4のフランジ部とを重ね合わせ、蓋ケース2のフランジ部の周縁を蓋キャップ4の上方側に折り返すことでかしめ部5を形成する。次いで、中央がわずかにドーム状ないし球面状に膨らんだ平面状の先端面を持つ回転工具と、接合部分のかしめ部5を下側から支持するバックアップ部材(アンビル)とを用い、かしめ部5に矢印A方向から回転工具を圧接してかしめ部5に摩擦攪拌接合を施すことで、両者を一体に接合して上蓋10を作製する。一方、上述した正極と負極とをセパレータを介して捲回し作製した電極群11を電池缶1に挿入した後、負極側を接続し、上蓋10と電極群11とを正極リード板12を介して電気的に接続する。非水電解液注液後、電池缶1と上蓋10とをガスケット13を介してかしめ固定することで密閉する。リチウム二次電池20は、本例では、直径40mm、高さ114mm、容量6Ahに設定されている。 The assembly of the lithium secondary battery 20 can be performed as follows. First, the upper lid 10 is produced. That is, the flange portion of the lid case 2 and the flange portion of the lid cap 4 are overlapped, and the caulking portion 5 is formed by folding back the peripheral edge of the flange portion of the lid case 2 to the upper side of the lid cap 4. Next, a rotary tool having a flat tip surface slightly swelled in a dome shape or a spherical shape at the center and a backup member (anvil) that supports the caulking portion 5 of the joining portion from the lower side are used. A rotary tool is pressed from the direction of the arrow A and friction stir welding is performed on the caulking portion 5, thereby joining the two together to produce the upper lid 10. On the other hand, after the electrode group 11 produced by winding the positive electrode and the negative electrode through a separator is inserted into the battery can 1, the negative electrode side is connected, and the upper lid 10 and the electrode group 11 are connected via the positive electrode lead plate 12. Connect electrically. After pouring the non-aqueous electrolyte, the battery can 1 and the upper lid 10 are sealed by caulking and fixing via a gasket 13. In this example, the lithium secondary battery 20 is set to have a diameter of 40 mm, a height of 114 mm, and a capacity of 6 Ah.

(作用等) 次に、本実施形態のリチウム二次電池20の作用等について説明する。 (Operation, etc.) Next, the operation and the like of the lithium secondary battery 20 of the present embodiment will be described.

本実施形態のリチウム二次電池20では、蓋ケース2と蓋キャップ4とがかしめられたかしめ部5に摩擦攪拌接合が施されている。摩擦攪拌接合では、回転工具の先端部を回転させながらかしめ部5に圧接することで、摩擦熱によりかしめ部5を構成する蓋ケース2と蓋キャップ4の上面側の一部とを塑性流動させて混ぜ合わせることで一体化させる(折り返された蓋ケース2のフランジ部と蓋キャップ4のフランジ部とを接合する)。このため、一体化した接合部分では、蓋ケース2と蓋キャップ4との異種金属の接触面がなくなるので、通電時の蓋ケース2及び蓋キャップ4間の電気抵抗を低減することができる。また、本実施形態のリチウム二次電池20では、摩擦攪拌接合による接合がかしめ部5の4箇所に施されている。このため、大電流放電時でも電気抵抗の増大が抑制されるので、大電流放電時の電力損失を軽減することができる。 In the lithium secondary battery 20 of the present embodiment, friction stir welding is applied to the caulking portion 5 where the lid case 2 and the lid cap 4 are caulked. In the friction stir welding, the lid case 2 constituting the caulking part 5 and a part on the upper surface side of the lid cap 4 are plastically flowed by frictional heat by pressing the caulking part 5 while rotating the tip of the rotary tool. Are integrated by mixing (the flange portion of the folded lid case 2 and the flange portion of the lid cap 4 are joined). For this reason, since the dissimilar metal contact surface between the lid case 2 and the lid cap 4 is eliminated at the integrated joint portion, the electrical resistance between the lid case 2 and the lid cap 4 during energization can be reduced. Further, in the lithium secondary battery 20 of the present embodiment, joining by friction stir welding is performed at four places of the caulking portion 5. For this reason, since an increase in electrical resistance is suppressed even during large current discharge, power loss during large current discharge can be reduced.

また、本実施形態のリチウム二次電池20では、かしめ部5の摩擦攪拌接合が蓋キャップ4の上方側に折り返された蓋ケース2のフランジ部に回転工具を圧接することで施されている。このため、電池組立後に電池内側に位置する蓋ケース2の下面側では、溶接に伴うピンホール等の形成が防止される。これにより、リチウム二次電池20では、蓋キャップ4に非水電解液が接触せず蓋キャップ4の腐食が防止されるので、非水電解液の漏洩を防止することができ、周囲の機器等への損害を抑えることができる。従って、大電流放電時の電力損失を軽減し、非水電解液の漏液を防止した本実施形態のリチウム二次電池20は、上蓋10の蓋ケース2と蓋キャップ4との接合信頼性を向上させた電池である。 Further, in the lithium secondary battery 20 of the present embodiment, the friction stir welding of the caulking portion 5 is performed by pressing a rotary tool against the flange portion of the lid case 2 that is folded back to the upper side of the lid cap 4. For this reason, formation of a pinhole etc. accompanying welding is prevented on the lower surface side of the lid case 2 located inside the battery after the battery is assembled. Thereby, in the lithium secondary battery 20, since the non-aqueous electrolyte does not contact the lid cap 4 and corrosion of the lid cap 4 is prevented, leakage of the non-aqueous electrolyte can be prevented, and peripheral devices and the like can be prevented. Can reduce damage to the Therefore, the lithium secondary battery 20 of the present embodiment, which reduces power loss during large current discharge and prevents leakage of the nonaqueous electrolyte, has the reliability of joining the lid case 2 and the lid cap 4 of the upper lid 10. It is an improved battery.

更に、本実施形態のリチウム二次電池20では、蓋ケース2の材質が蓋キャップ4の材質より低融点のため、蓋ケース2と正極リード板12とを溶接により容易に溶接で接合することができる。また、蓋キャップ4が蓋ケース2より高融点のため、電池使用時の温度上昇や高温環境下での使用時の変形等を抑制することができる。 Furthermore, in the lithium secondary battery 20 of this embodiment, since the material of the lid case 2 has a lower melting point than the material of the lid cap 4, the lid case 2 and the positive electrode lead plate 12 can be easily joined by welding. it can. In addition, since the lid cap 4 has a higher melting point than the lid case 2, it is possible to suppress temperature rise during battery use, deformation during use in a high temperature environment, and the like.

従来リチウム二次電池では、密閉蓋を構成する蓋ケースと蓋キャップとの接合にスポット溶接が用いられている。スポット溶接では、蓋ケースのフランジ部の下面と蓋キャップのフランジ部の上面とに溶接用電極を接触させ、電極間に通電することで接合されるため、蓋キャップの鉄より融点の低いアルミニウム製の蓋ケースの下面にピンホール等の欠陥を生じ、溶接痕が残ることがある。アルミニウム製蓋ケースにピンホール等が形成されていても、鉄製蓋キャップにはピンホール等が形成されにくいため、電池蓋の気密検査を行っても蓋ケースのピンホールを検出することができない。電池組立後では、蓋ケースの下面側が電池内側となるため、蓋ケース下面が非水電解液にさらされることから、ピンホールに非水電解液が侵入する。このため、ピンホールに浸入した非水電解液が鉄製蓋キャップと接触することから、蓋キャップが腐食し、非水電解液が漏洩することとなる。電池外に漏洩した非水電解液は、当該電池ばかりではなく、例えば、組電池としたときに隣り合う電池や周囲の機器等に腐食等の損害を及ぼすおそれがある。一方、蓋ケースと蓋キャップとでは、材質の金属が異なるため、密閉蓋には異種金属の接触抵抗が存在する。このため、大電流放電により電力損失が生じる。多数の電池を接続した組電池では、全体の抵抗が大きくなり、電力損失も大きくなる。本実施形態は、これらの問題を解決することができる大電流放電用リチウム二次電池である。 Conventionally, in a lithium secondary battery, spot welding is used for joining a lid case and a lid cap constituting a hermetic lid. In spot welding, the welding electrode is brought into contact with the lower surface of the flange portion of the lid case and the upper surface of the flange portion of the lid cap, and is joined by energizing between the electrodes. This may cause defects such as pinholes on the lower surface of the lid case, leaving weld marks. Even if a pinhole or the like is formed in the aluminum lid case, it is difficult to form a pinhole or the like in the iron lid cap. Therefore, even if an airtight inspection of the battery lid is performed, the pinhole in the lid case cannot be detected. After the battery is assembled, the lower surface side of the lid case becomes the inside of the battery, and therefore the lower surface of the lid case is exposed to the non-aqueous electrolyte, so that the non-aqueous electrolyte enters the pinhole. For this reason, since the nonaqueous electrolyte solution that has entered the pinhole comes into contact with the iron lid cap, the lid cap is corroded and the nonaqueous electrolyte solution leaks. The non-aqueous electrolyte leaked out of the battery may cause damage such as corrosion not only to the battery but also to adjacent batteries and surrounding devices when assembled batteries are used. On the other hand, since the metal of the lid case and the lid cap are different from each other, the sealing lid has a contact resistance of different metals. For this reason, power loss occurs due to large current discharge. In an assembled battery in which a large number of batteries are connected, the overall resistance increases and the power loss also increases. The present embodiment is a lithium secondary battery for large current discharge that can solve these problems.

なお、本実施形態のリチウム二次電池20では、かしめ部5の摩擦攪拌接合による接合箇所を4箇所とする例を示したが、本発明はこれに限定されるものではなく、例えば、6箇所、8箇所等でもよい。大電流放電時の電気抵抗の減少を考慮すれば、接合箇所を複数とすることが好ましい。また、本実施形態では、摩擦攪拌接合に用いる回転工具の先端部の形状を例示したが、本発明はこれに限定されるものではなく、接合部分の大きさ等に合わせて変えてもよい。 In addition, in the lithium secondary battery 20 of this embodiment, although the example which sets the joining location by the friction stir welding of the caulking part 5 as 4 places was shown, this invention is not limited to this, For example, 6 places , 8 locations, etc. may be used. In consideration of a decrease in electrical resistance during large current discharge, it is preferable to use a plurality of joints. Moreover, although the shape of the front-end | tip part of the rotary tool used for friction stir welding was illustrated in this embodiment, this invention is not limited to this, You may change according to the magnitude | size etc. of a joining part.

また、本実施形態のリチウム二次電池20では、蓋ケース2をアルミニウム製、蓋キャップ4をニッケルメッキを施した鉄製とする例を示したが、本発明はこれらに限定されるものではない。例えば、蓋ケース2はアルミニウム合金を材質としてもよく、蓋キャップ4は炭素鋼、ステンレス鋼又はニッケルを材質としてもよい。このようにすれば、蓋ケース2を蓋キャップ4より低融点とすることができる。蓋キャップ4にニッケル、銅等の軟質金属をメッキすることにより、蓋キャップ4の表面酸化被膜が容易に剥離して接合界面が活性化して良好な接合がし易くなるが、コスト等の観点から、ニッケルメッキされた炭素鋼を用いることが好ましい。 In the lithium secondary battery 20 of the present embodiment, the lid case 2 is made of aluminum and the lid cap 4 is made of iron with nickel plating, but the present invention is not limited to these. For example, the lid case 2 may be made of an aluminum alloy, and the lid cap 4 may be made of carbon steel, stainless steel, or nickel. In this way, the lid case 2 can have a lower melting point than the lid cap 4. By plating the lid cap 4 with a soft metal such as nickel or copper, the surface oxide film of the lid cap 4 is easily peeled off and the bonding interface is activated to facilitate good bonding. It is preferable to use nickel-plated carbon steel.

更に、本実施形態のリチウム二次電池20では、正極活物質にマンガン酸リチウムを例示したが、本発明はこれに限定されるものではない。本実施形態以外で使用することができる正極活物質としては、例えば、リチウムニッケル複合酸化物やリチウムコバルト複合酸化物等のリチウム遷移金属複合酸化物を用いてもよい。また、本実施形態では、負極活物質に炭素粒子を例示したが、本発明はこれに限定されるものではなく、通常リチウム二次電池に使用される非晶質炭素や黒鉛等の炭素材であればよい。   Furthermore, in the lithium secondary battery 20 of the present embodiment, lithium manganate is exemplified as the positive electrode active material, but the present invention is not limited to this. As the positive electrode active material that can be used other than the present embodiment, for example, a lithium transition metal composite oxide such as a lithium nickel composite oxide or a lithium cobalt composite oxide may be used. In this embodiment, carbon particles are exemplified as the negative electrode active material. However, the present invention is not limited to this, and carbon materials such as amorphous carbon and graphite that are usually used in lithium secondary batteries are used. I just need it.

また更に、本実施形態のリチウム二次電池20では、非水電解液に、エチレンカーボネート等の混合溶媒に6フッ化リン酸リチウムを1モル/リットル程度溶解させたものを例示したが、本発明で用いることのできる非水電解液には特に制限はない。有機溶媒やリチウム塩としては、通常リチウムイオン二次電池に使用されるものであればよく、例えば、カーボネート系、スルホラン系、エーテル系、ラクトン系等の有機溶剤を単体または混合して用いた溶媒中にリチウム塩を溶解させたものを用いることができる。また、有機溶媒の混合比やリチウム塩の含有量にも特に制限されるものではない。   Furthermore, in the lithium secondary battery 20 of the present embodiment, an example in which about 6 mol / liter of lithium hexafluorophosphate is dissolved in a nonaqueous electrolyte solution in a mixed solvent such as ethylene carbonate is illustrated. There is no particular limitation on the non-aqueous electrolyte that can be used in the above. Any organic solvent or lithium salt may be used as long as it is usually used for lithium ion secondary batteries. For example, a solvent using a single organic solvent or a mixture of organic solvents such as carbonates, sulfolanes, ethers, and lactones. What dissolved lithium salt in it can be used. Further, the mixing ratio of the organic solvent and the content of the lithium salt are not particularly limited.

更にまた、本実施形態では、電池容量6Ahの大電流放電用リチウム二次電池20を例示したが、本発明はこれに限定されるものではなく、電池容量3.5Ah以上の電池に好適に適用することができる。また、大電流放電用としては、例えば、エンジン始動時に500アンペア以上を要する電気自動車用の電池にも好適に適用することができ、また、登坂時に動力でアシストする自転車等の電源にも好適である。更に、電池形状、サイズ等についても特に制限されるものではない。   Furthermore, in the present embodiment, the lithium secondary battery 20 for discharging a large current with a battery capacity of 6 Ah is exemplified, but the present invention is not limited to this, and is suitably applied to a battery with a battery capacity of 3.5 Ah or more. can do. In addition, for large current discharge, for example, it can be suitably applied to a battery for an electric vehicle that requires 500 amperes or more when the engine is started, and is also suitable for a power source such as a bicycle that assists with power when climbing up. is there. Further, the battery shape, size, etc. are not particularly limited.

次に、本実施形態に従い作製したリチウム二次電池20の実施例について説明する。なお、比較のために、作製した比較例のリチウム二次電池についても併記する。 Next, examples of the lithium secondary battery 20 manufactured according to the present embodiment will be described. For comparison, the fabricated lithium secondary battery of the comparative example is also shown.

(実施例1) 実施例1では、蓋ケース2の材質に厚さ0.4mmのアルミニウムを用い、蓋キャップ4の材質に約5μm厚のニッケルメッキを施した厚さ0.6mmの鉄を用いた。蓋ケース2の融点は蓋キャップ4の融点より低くなる。上蓋10の作製では、先端の直径Dが3.2mmで、回転工具先端面の中央の膨らみの直径dを直径Dの1/2である1.6mmとし、膨らみの高さhを0.1mmに設定した回転工具を用いた。摩擦攪拌接合による接合箇所は、かしめ部5の4箇所に形成した。 (Example 1) In Example 1, the material of the lid case 2 is 0.4 mm thick aluminum, and the material of the lid cap 4 is approximately 5 μm thick nickel plated 0.6 mm thick iron. It was. The melting point of the lid case 2 is lower than the melting point of the lid cap 4. In the production of the upper lid 10, the diameter D of the tip is 3.2 mm, the diameter d of the bulge at the center of the tip surface of the rotary tool is 1.6 mm which is 1/2 of the diameter D, and the height h of the bulge is 0.1 mm. The rotary tool set to is used. Joining portions by friction stir welding were formed at four places of the caulking portion 5.

(比較例1) 比較例1では、蓋ケースの下面側から実施例1と同様の摩擦攪拌接合を施して作製した上蓋を用いてリチウム二次電池を作製した。 (Comparative example 1) In the comparative example 1, the lithium secondary battery was produced using the upper lid produced by giving the same friction stir welding as Example 1 from the lower surface side of the lid case.

(試験、評価) 実施例1及び比較例1で作製したリチウム二次電池の上蓋について、抵抗値をそれぞれ測定し、かしめ部5の蓋ケースの下面(ケース面)に形成されるピンホールを計数してピンホールの発生確率を求めた。ピンホールの発生確率および抵抗値の測定結果を下表1に示す。 (Test and evaluation) The resistance values of the upper lids of the lithium secondary batteries produced in Example 1 and Comparative Example 1 were measured, and pinholes formed on the lower surface (case surface) of the lid case of the caulking portion 5 were counted. Thus, the probability of occurrence of pinholes was obtained. Table 1 shows the measurement results of pinhole occurrence probability and resistance value.

Figure 2007213819
Figure 2007213819

表1に示すように、蓋ケースの下面側から摩擦攪拌接合を施した比較例1のリチウム二次電池、蓋キャップ4の上方側に折り返された蓋ケースのフランジ部側から摩擦攪拌接合を施した実施例1のリチウム二次電池20では、いずれも、上蓋の抵抗値がおよそ0.10〜0.14mΩであり、優位差は認められなかった。このことから、抵抗(スポット)溶接で接合した場合と比較して同等の導通性が得られることが確認でき、蓋ケースと蓋キャップとをかしめるだけの上蓋より電池抵抗を低減させることができた。また、比較例1の電池では、ケース面のピンホールの発生確率が0.012%であった。これに対して、実施例1の電池では、ピンホールの発生は認められなかった。これは、実施例1で用いた上蓋の作製時には、蓋ケースの下面側はバックアップ部材で支持されるだけであり、原理的にピンホールが発生しなかったと考えられる。このことから、非水電解液の蓋キャップ4への接触が妨げられ蓋キャップの腐食が防止されるため、非水電解液の漏洩を防止することができることが判明した。 As shown in Table 1, the lithium secondary battery of Comparative Example 1 in which the friction stir welding was performed from the lower surface side of the lid case, and the friction stir welding was performed from the flange portion side of the lid case folded back to the upper side of the lid cap 4. In any of the lithium secondary batteries 20 of Example 1, the resistance value of the upper lid was approximately 0.10 to 0.14 mΩ, and no significant difference was recognized. From this, it can be confirmed that the same continuity can be obtained as compared with the case of joining by resistance (spot) welding, and the battery resistance can be reduced from the upper lid simply by caulking the lid case and the lid cap. It was. Further, in the battery of Comparative Example 1, the probability of occurrence of pinholes on the case surface was 0.012%. On the other hand, in the battery of Example 1, no pinhole was observed. This is considered that when the upper lid used in Example 1 was manufactured, the lower surface side of the lid case was only supported by the backup member, and no pinhole was generated in principle. From this, it was found that the non-aqueous electrolyte solution can be prevented from leaking because the contact of the non-aqueous electrolyte solution with the lid cap 4 is prevented and corrosion of the lid cap is prevented.

本発明は電解液の漏洩を防止し、大電流放電による電力損失を軽減することができる大電流放電用二次電池を提供するため、大電流放電用二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。 Since the present invention provides a secondary battery for large current discharge that prevents leakage of electrolyte and can reduce power loss due to large current discharge, and contributes to the manufacture and sale of secondary batteries for large current discharge. Have industrial applicability.

本発明を適用した実施形態の大電流放電用リチウム二次電池を示す断面図である。It is sectional drawing which shows the lithium secondary battery for large current discharge of embodiment to which this invention is applied. 実施形態の大電流放電用リチウム二次電池に用いた上蓋の蓋ケースと蓋キャップとの摩擦攪拌接合の位置及び回転工具を圧接させる方向を模式的に示す断面図である。It is sectional drawing which shows typically the position of the friction stir welding of the cover case and cover cap of the upper cover used for the lithium secondary battery for large current discharge of embodiment, and the direction which presses a rotary tool. 実施形態の大電流放電用リチウム二次電池に用いた上蓋を示す平面図である。It is a top view which shows the upper cover used for the lithium secondary battery for large current discharge of embodiment.

符号の説明Explanation of symbols

1 電池缶 2 蓋ケース 4 蓋キャップ 5 かしめ部10 上蓋(密閉蓋)11 電極群20 大電流放電用リチウム二次電池(大電流放電用二次電池) DESCRIPTION OF SYMBOLS 1 Battery can 2 Lid case 4 Lid cap 5 Caulking part 10 Upper lid (sealing lid) 11 Electrode group 20 Lithium secondary battery for large current discharge (secondary battery for large current discharge)

Claims (4)

皿状の蓋ケース及び蓋キャップがかしめられた金属製密閉蓋と金属製電池缶とがかしめ固定された大電流放電用二次電池において、前記蓋ケースには前記蓋キャップより低融点の金属が用いられており、前記蓋キャップのフランジ部と、該蓋キャップのフランジ部より上方側に折り返された前記蓋ケースのフランジ部とが複数箇所で接合部分の塑性流動を伴う摩擦攪拌接合により接合されており、かつ、前記摩擦攪拌接合が前記折り返された蓋ケースのフランジ部側から施されていることを特徴とする大電流放電用二次電池。   In a secondary battery for high-current discharge in which a metal-sealed lid and a metal battery can with a plate-like lid case and a lid cap are caulked and fixed, a metal having a lower melting point than the lid cap is placed on the lid case. The flange portion of the lid cap and the flange portion of the lid case folded back above the flange portion of the lid cap are joined at a plurality of locations by friction stir welding with plastic flow of the joint portion. And the friction stir welding is performed from the flange portion side of the folded lid case. 前記蓋ケースは、アルミニウム又はアルミニウム合金を材質とすることを特徴とする請求項1に記載の大電流放電用二次電池。 The secondary battery for high current discharge according to claim 1, wherein the lid case is made of aluminum or an aluminum alloy. 前記蓋キャップは、炭素鋼、ステンレス鋼、ニッケルのいずれかを材質とすることを特徴とする請求項1又は請求項2に記載の大電流放電用二次電池。 The secondary battery for high-current discharge according to claim 1 or 2, wherein the lid cap is made of carbon steel, stainless steel, or nickel. 前記蓋キャップは、ニッケルメッキされた炭素鋼を材質とすることを特徴とする請求項1に記載の大電流放電用二次電池。 The secondary battery for high current discharge according to claim 1, wherein the lid cap is made of nickel-plated carbon steel.
JP2006029188A 2006-02-07 2006-02-07 Secondary battery for large current discharge Expired - Fee Related JP4688688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029188A JP4688688B2 (en) 2006-02-07 2006-02-07 Secondary battery for large current discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029188A JP4688688B2 (en) 2006-02-07 2006-02-07 Secondary battery for large current discharge

Publications (2)

Publication Number Publication Date
JP2007213819A true JP2007213819A (en) 2007-08-23
JP4688688B2 JP4688688B2 (en) 2011-05-25

Family

ID=38492079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029188A Expired - Fee Related JP4688688B2 (en) 2006-02-07 2006-02-07 Secondary battery for large current discharge

Country Status (1)

Country Link
JP (1) JP4688688B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530767A (en) * 2006-03-13 2009-08-27 エルジー・ケム・リミテッド Cylindrical secondary battery with high charge / discharge rate
WO2011065009A1 (en) * 2009-11-27 2011-06-03 パナソニック株式会社 Method for charging lithium-ion secondary battery and battery pack
CN102142582A (en) * 2010-01-29 2011-08-03 日立车辆能源株式会社 Sealed battery cell and method of manufacturing the same
WO2011092845A1 (en) * 2010-01-29 2011-08-04 日立ビークルエナジー株式会社 Sealed battery and method for manufacturing same
JP2012243635A (en) * 2011-05-20 2012-12-10 Hitachi Vehicle Energy Ltd Cylindrical secondary battery
WO2013094000A1 (en) * 2011-12-19 2013-06-27 日立ビークルエナジー株式会社 Welded structure in battery, method for forming same, secondary battery cell, and secondary battery module
US20140248510A1 (en) * 2013-03-04 2014-09-04 Honda Motor Co., Ltd Dissimilar-material welded structure and welding method therefor
KR101523064B1 (en) * 2013-02-26 2015-05-26 주식회사 엘지화학 Cap assembly and secondary battery including the same
KR20150069779A (en) * 2013-12-16 2015-06-24 주식회사 엘지화학 Electrochemical device having improved corrosion resistance
CN111542944A (en) * 2017-12-05 2020-08-14 三星Sdi株式会社 Secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090892A (en) * 1998-09-14 2000-03-31 Shin Kobe Electric Mach Co Ltd Secondary battery for discharging heavy current
JP2001357887A (en) * 2000-06-14 2001-12-26 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolytic solution secondary battery
JP2002170531A (en) * 2000-11-30 2002-06-14 Shin Kobe Electric Mach Co Ltd Tubular secondary battery
JP2006099986A (en) * 2004-09-28 2006-04-13 Shin Kobe Electric Mach Co Ltd Secondary battery for high rate discharge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090892A (en) * 1998-09-14 2000-03-31 Shin Kobe Electric Mach Co Ltd Secondary battery for discharging heavy current
JP2001357887A (en) * 2000-06-14 2001-12-26 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolytic solution secondary battery
JP2002170531A (en) * 2000-11-30 2002-06-14 Shin Kobe Electric Mach Co Ltd Tubular secondary battery
JP2006099986A (en) * 2004-09-28 2006-04-13 Shin Kobe Electric Mach Co Ltd Secondary battery for high rate discharge

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530767A (en) * 2006-03-13 2009-08-27 エルジー・ケム・リミテッド Cylindrical secondary battery with high charge / discharge rate
WO2011065009A1 (en) * 2009-11-27 2011-06-03 パナソニック株式会社 Method for charging lithium-ion secondary battery and battery pack
US8610408B2 (en) 2009-11-27 2013-12-17 Panasonic Corporation Lithium ion secondary battery charging method and battery pack
US8409737B2 (en) 2010-01-29 2013-04-02 Hitachi Vehicle Energy, Ltd. Sealed battery cell and method of manufacturing the same
JP2011159441A (en) * 2010-01-29 2011-08-18 Hitachi Vehicle Energy Ltd Sealed battery and its manufacturing method
CN102714284A (en) * 2010-01-29 2012-10-03 日立车辆能源株式会社 Sealed battery and method for manufacturing same
KR101215376B1 (en) 2010-01-29 2012-12-26 히다치 비클 에너지 가부시키가이샤 Sealed battery and method for producing the same
US20130022862A1 (en) * 2010-01-29 2013-01-24 Hitachi Vehicle Energy, Ltd. Sealed cell and method of manufacture thereof
JP5619033B2 (en) * 2010-01-29 2014-11-05 日立オートモティブシステムズ株式会社 Sealed battery and manufacturing method thereof
WO2011092845A1 (en) * 2010-01-29 2011-08-04 日立ビークルエナジー株式会社 Sealed battery and method for manufacturing same
CN102142582A (en) * 2010-01-29 2011-08-03 日立车辆能源株式会社 Sealed battery cell and method of manufacturing the same
US8936869B2 (en) 2010-01-29 2015-01-20 Hitachi Automotive Systems, Ltd. Sealed cell and method of manufacture thereof
JP2012243635A (en) * 2011-05-20 2012-12-10 Hitachi Vehicle Energy Ltd Cylindrical secondary battery
WO2013094000A1 (en) * 2011-12-19 2013-06-27 日立ビークルエナジー株式会社 Welded structure in battery, method for forming same, secondary battery cell, and secondary battery module
JPWO2013094000A1 (en) * 2011-12-19 2015-04-27 日立オートモティブシステムズ株式会社 Welded structure in battery, method for forming the same, secondary battery cell, and secondary battery module
US9722218B2 (en) 2011-12-19 2017-08-01 Hitachi Automotive Systems, Ltd. Welded structure in battery, forming method of the same, secondary battery cell and secondary battery module
KR101523064B1 (en) * 2013-02-26 2015-05-26 주식회사 엘지화학 Cap assembly and secondary battery including the same
US20140248510A1 (en) * 2013-03-04 2014-09-04 Honda Motor Co., Ltd Dissimilar-material welded structure and welding method therefor
US9221233B2 (en) * 2013-03-04 2015-12-29 Honda Motor Co., Ltd Dissimilar-material welded structure and welding method therefor
KR20150069779A (en) * 2013-12-16 2015-06-24 주식회사 엘지화학 Electrochemical device having improved corrosion resistance
KR101631250B1 (en) 2013-12-16 2016-06-16 주식회사 엘지화학 Electrochemical device having improved corrosion resistance
CN111542944A (en) * 2017-12-05 2020-08-14 三星Sdi株式会社 Secondary battery
US11660704B2 (en) 2017-12-05 2023-05-30 Samsung Sdi Co., Ltd. Secondary battery

Also Published As

Publication number Publication date
JP4688688B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4688688B2 (en) Secondary battery for large current discharge
JP5103489B2 (en) Sealed battery
WO2020138492A1 (en) Battery and method for producing same
JP6208687B2 (en) Cylindrical secondary battery and manufacturing method thereof
JP5396349B2 (en) Secondary battery
JP5368345B2 (en) Non-aqueous electrolyte cylindrical battery
KR20100089092A (en) Secondary battery
JP2010272513A (en) Secondary battery
JP5137516B2 (en) Sealed battery
JP5619033B2 (en) Sealed battery and manufacturing method thereof
JP2008066075A (en) Non-aqueous secondary battery
JP5171441B2 (en) Sealed secondary battery
JP3627645B2 (en) Lithium secondary battery
JP5274059B2 (en) Winding battery manufacturing method
JP5248210B2 (en) Lithium ion secondary battery
JP2012128955A (en) Cylindrical secondary battery
JP2002170531A (en) Tubular secondary battery
JP4459559B2 (en) Sealed battery
JP2012185912A (en) Cylindrical secondary cell
WO2024048246A1 (en) Power storage device
JP7340568B2 (en) battery
JP4204366B2 (en) Nonaqueous electrolyte secondary battery
JP2001126682A (en) Sealed battery and method of fabricating it
JPH11339737A (en) Rectangular battery
JP4975993B2 (en) Sealed secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees