JP2007212077A - Air-conditioner - Google Patents

Air-conditioner Download PDF

Info

Publication number
JP2007212077A
JP2007212077A JP2006033489A JP2006033489A JP2007212077A JP 2007212077 A JP2007212077 A JP 2007212077A JP 2006033489 A JP2006033489 A JP 2006033489A JP 2006033489 A JP2006033489 A JP 2006033489A JP 2007212077 A JP2007212077 A JP 2007212077A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
compressor
heat exchanger
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006033489A
Other languages
Japanese (ja)
Inventor
Kazuya Funada
和也 船田
Hiroaki Endo
浩彰 遠藤
Harutaka Adachi
玄貴 安達
Daisuke Toyoda
大介 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2006033489A priority Critical patent/JP2007212077A/en
Publication of JP2007212077A publication Critical patent/JP2007212077A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioner having refrigerant collecting operation for accurately collecting refrigerant while protecting a compressor. <P>SOLUTION: On the shell of the compressor 1, a thermistor 7 is provided for detecting the temperature of the shell. During cooling or heating operation when a refrigerant leak sensor 8 for an indoor heat exchanger 5 detects the leak of refrigerant, refrigerant collecting operation is started to collect the refrigerant from the indoor side to the outdoor side. When the temperature of the shell of the compressor rises and the detected temperature of the thermistor 7 mounted on the surface of the shell is higher than a preset temperature, the refrigerant is determined to be sufficiently collected and the refrigerant collecting operation is finished. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気調和機に係り、より詳細には、室内熱交換器あるいはこれに接続される配管等から冷媒が漏洩する虞がある際、速やかに冷媒を回収し、室内への冷媒漏洩を防止した構成に関する。   The present invention relates to an air conditioner, and more specifically, when there is a risk of refrigerant leaking from an indoor heat exchanger or a pipe connected to the indoor heat exchanger, the refrigerant is quickly collected and the refrigerant leaks into the room. Concerning the prevented configuration.

冷媒漏洩を防止するために、冷媒回路内の冷媒を回収する従来の技術として、例えば、図4(A)に示すような空気調和機30が提示されている。同空気調和機30は、圧縮機31と四方弁32と室外熱交換器33と膨張弁34と室内熱交換器35とを順次接続して冷媒回路を構成するとともに、前記膨張弁34と前記室内熱交換器35との間に電磁開閉弁等による液側開閉弁36を設け、前記室内熱交換器35と前記四方弁32との間に、電磁開閉弁等によるガス側開閉弁37を設けている。又、室内機30bには冷媒のリークを検出する第1リークセンサ38が、室外機30aには第2リークセンサ40が、室内機30bと室外機30aを結ぶ配管30cには、第3リークセンサ39が夫々設けられている(特許文献1参照)。   For example, an air conditioner 30 as shown in FIG. 4A has been proposed as a conventional technique for recovering the refrigerant in the refrigerant circuit in order to prevent refrigerant leakage. The air conditioner 30 configures a refrigerant circuit by sequentially connecting a compressor 31, a four-way valve 32, an outdoor heat exchanger 33, an expansion valve 34, and an indoor heat exchanger 35, and the expansion valve 34 and the indoor A liquid side on / off valve 36 such as an electromagnetic on / off valve is provided between the heat exchanger 35 and a gas side on / off valve 37 such as an electromagnetic on / off valve is provided between the indoor heat exchanger 35 and the four-way valve 32. Yes. The indoor unit 30b includes a first leak sensor 38 that detects refrigerant leakage, the outdoor unit 30a includes a second leak sensor 40, and the pipe 30c that connects the indoor unit 30b and the outdoor unit 30a includes a third leak sensor. 39 is provided (see Patent Document 1).

配管及び器材の劣化等の原因により、これらから冷媒の漏洩し、前記第1リークセンサ38、第2リークセンサ40、第3リークセンサ39のいずれかが冷媒の漏洩を検出すると、暖房運転中では、前記四方弁32が切換えられ、まず冷房運転に移行するようになっている。次に、前記液側開閉弁36が閉鎖され、続いて前記室内熱交換器35及び配管内の冷媒は前記四方弁32を介して前記圧縮機31に吸引されるとともに、同圧縮機31から前記室外熱交換器33に送出されて同室外熱交換器33内に回収されるようになっている。   When the refrigerant leaks from these due to deterioration of piping and equipment, and any of the first leak sensor 38, the second leak sensor 40, and the third leak sensor 39 detects the refrigerant leak, The four-way valve 32 is switched, and first the cooling operation is started. Next, the liquid side on-off valve 36 is closed, and then the refrigerant in the indoor heat exchanger 35 and the piping is sucked into the compressor 31 through the four-way valve 32 and from the compressor 31 to the above-mentioned The heat is sent to the outdoor heat exchanger 33 and collected in the outdoor heat exchanger 33.

前記室外熱交換器33への冷媒回収運転は、予め設定された所定時間継続されるようになっており、所定時間が経過すると、冷媒が全て回収されたと見なされて、前記ガス側開閉弁37が閉鎖されるとともに、前記圧縮機31が停止するようになっている。   The refrigerant recovery operation to the outdoor heat exchanger 33 is continued for a predetermined time set in advance. When the predetermined time elapses, it is considered that all the refrigerant has been recovered, and the gas side on-off valve 37 is operated. Is closed and the compressor 31 is stopped.

しかしながら、予め設定された所定時間、冷媒回収運転を行うことは、所定時間内に冷媒が全て回収されるとは限られず、未回収の状態で冷媒回収運転が停止されてしまうというような虞があった。又、反対に、冷媒が全て回収されたのにもかかわらず、冷媒回収運転が継続されるという場合もあり、そのような場合には、吸引する冷媒がない状態で前記圧縮機31が運転され、同圧縮機31内での冷媒による潤滑、冷却作用が行われず、内部の機器に支障が発生してしまうというような虞があった。   However, performing the refrigerant recovery operation for a predetermined time set in advance does not necessarily mean that all the refrigerant is recovered within the predetermined time, and the refrigerant recovery operation may be stopped in an unrecovered state. there were. On the other hand, the refrigerant recovery operation may be continued even though all the refrigerant has been recovered. In such a case, the compressor 31 is operated in a state where there is no refrigerant to be sucked. The lubrication and cooling action by the refrigerant in the compressor 31 is not performed, and there is a possibility that troubles may occur in the internal equipment.

又、他の従来例として、図4(B)に示す空気調和機50が提示されている。空気調和機を移設あるいは撤去するような場合、室内側及び配管内に滞留する冷媒を室外側に回収するポンプダウン運転が行われるが、同空気調和機50は、ポンプダウン運転に備え以下に示すように冷媒回路及び制御部を構成している。点線51内は室外側であり、点線52内は室内側である。冷媒回路は、圧縮機53と室外熱交換器54と吐出配管サービスバルブ55と室内熱交換器56と吸込配管サービスバルブ57と冷媒圧力検出器21とを順次接続して構成され、前記圧縮機53には、電源59が開閉器60を介して接続されている(特許文献2参照)。   As another conventional example, an air conditioner 50 shown in FIG. 4B is presented. When the air conditioner is relocated or removed, a pump-down operation is performed to collect the refrigerant staying in the indoor side and the pipe outside, and the air conditioner 50 is shown below in preparation for the pump-down operation. Thus, the refrigerant circuit and the control unit are configured. The dotted line 51 is the outdoor side, and the dotted line 52 is the indoor side. The refrigerant circuit is configured by sequentially connecting a compressor 53, an outdoor heat exchanger 54, a discharge pipe service valve 55, an indoor heat exchanger 56, a suction pipe service valve 57, and a refrigerant pressure detector 21, and the compressor 53 A power source 59 is connected via a switch 60 (see Patent Document 2).

制御部には、ポンプダウン運転制御部61が備えられ、同ポンプダウン運転制御部61には、開閉器制御手段62と、計時手段63と、ポンプダウン所定時間設定手段64と、ポンプダウン時間比較手段65とが設けられるとともに、ポンプダウン運転開始を受信する受信器と、前記冷媒圧力検出器と、外気温を検出する外気温検出部と、前記開閉器とが接続されている。   The control unit includes a pump down operation control unit 61. The pump down operation control unit 61 includes a switch control unit 62, a time measuring unit 63, a pump down predetermined time setting unit 64, and a pump down time comparison. Means 65 is provided, and a receiver that receives the start of pump down operation, the refrigerant pressure detector, an outside air temperature detector that detects outside air temperature, and the switch are connected.

前記受信器がポンプダウン運転開始の指示を受信すると、前記ポンプダウン所定時間設定手段64は前記外気温検出部で検出された外気温及び前記冷媒圧力検出器で検出された冷媒温度を基にして、ポンプダウンを行う所定時間を設定するようになっている。これにより、外気温等に起因する冷媒状態の変動にかかわらず、的確なポンプダウン運転を行えるようになっている。   When the receiver receives an instruction to start pump down operation, the pump down predetermined time setting means 64 is based on the outside air temperature detected by the outside air temperature detector and the refrigerant temperature detected by the refrigerant pressure detector. A predetermined time for pumping down is set. As a result, an accurate pump-down operation can be performed regardless of changes in the refrigerant state caused by the outside air temperature or the like.

しかしながら、前記冷媒圧力検出器等の設置が必要とされるとともに、制御系統がやや複雑になってしまい、コストが上昇してしまうというような問題があった。   However, there is a problem that the installation of the refrigerant pressure detector and the like is required, and the control system becomes slightly complicated, resulting in an increase in cost.

特開平6−180166号公報(第2−4頁、第1図)JP-A-6-180166 (page 2-4, FIG. 1) 特開2000−161798号公報(第2−4頁、第1図)Japanese Unexamined Patent Publication No. 2000-161798 (page 2-4, FIG. 1)

本発明は、上記問題点に鑑み、冷媒漏洩やポンプダウン運転の際、的確に冷媒を室外側に回収できるとともに、圧縮機の安全性を確保することができ、又、コストを低減できる空気調和機を提供することを目的とする。   In view of the above problems, the present invention can accurately recover the refrigerant to the outdoor side during refrigerant leakage or pump-down operation, ensure the safety of the compressor, and reduce the cost. The purpose is to provide a machine.

本発明は、上記課題を解決するため、圧縮機と、室外熱交換器と、減圧手段と、室内熱交換器とを順次接続して冷媒回路を構成してなる空気調和機において、前記圧縮機のシ ェルに温度検出手段を設け、室内側から室外側に冷媒の回収を行う冷媒回収運転時、前記温度検出手段で検出された温度が、予め設定された所定温度より高くなると、前記圧縮機を停止させ冷媒回収運転を終了させる構成となっている。又、圧縮機と、室外熱交換器と、減圧手段と、室内熱交換器とを順次接続して冷媒回路を構成してなる空気調和機において、前記圧縮機のシェルに温度検出手段を設け、室内側から室外側に冷媒の回収を行う冷媒回収運転開始時、前記シェルの温度を測定し、回収運転時に、前記温度検出手段で検出された温度が、前記シェルの温度より所定温度以上、上昇すると前記圧縮機を停止させ冷媒回収運転を終了させる構成となっている。   In order to solve the above-described problems, the present invention provides an air conditioner in which a compressor, an outdoor heat exchanger, a decompression unit, and an indoor heat exchanger are sequentially connected to form a refrigerant circuit. In the refrigerant recovery operation in which the temperature detection means is provided in the shell and the refrigerant is recovered from the indoor side to the outdoor side, the compression is performed when the temperature detected by the temperature detection means becomes higher than a predetermined temperature. The machine is stopped and the refrigerant recovery operation is terminated. Further, in an air conditioner configured by sequentially connecting a compressor, an outdoor heat exchanger, a decompression unit, and an indoor heat exchanger to form a refrigerant circuit, a temperature detection unit is provided in the shell of the compressor, The temperature of the shell is measured at the start of the refrigerant recovery operation for recovering the refrigerant from the indoor side to the outdoor side, and the temperature detected by the temperature detecting means during the recovery operation is higher than the shell temperature by a predetermined temperature or more. Then, the compressor is stopped and the refrigerant recovery operation is terminated.

本発明によれば、冷房あるいは暖房運転中に、室内熱交換器の冷媒リークセンサが冷媒の漏洩を検出すると、冷房運転に移行し、室内側から室外側へ冷媒を回収する冷媒回収運転が開始されるようになっている。前記室内熱交換器内の冷媒が減少し、前記圧縮機に充分に冷媒が吸引されないことにより、圧縮機シェル温度が上昇し、シェル表面に取付けられたサーミスタの検出温度が、予め設定された所定温度より高くなると、冷媒が充分に回収されたと判断されて、冷媒回収運転が終了するようになっている。これにより、冷媒の漏洩を的確に防止できる一方、潤滑及び冷却不足により前記圧縮機内部の器材に支障が発生することを防止できるようになっている。又、これにより制御系統が簡素化されコストを低減できる空気調和機とすることができるようになっている。   According to the present invention, during the cooling or heating operation, when the refrigerant leak sensor of the indoor heat exchanger detects the leakage of the refrigerant, the cooling operation is started, and the refrigerant recovery operation for recovering the refrigerant from the indoor side to the outdoor side is started. It has come to be. The refrigerant in the indoor heat exchanger decreases, and the refrigerant is not sufficiently sucked into the compressor, so that the compressor shell temperature rises, and the detection temperature of the thermistor attached to the shell surface is set to a predetermined value. When the temperature is higher than the temperature, it is determined that the refrigerant has been sufficiently recovered, and the refrigerant recovery operation ends. As a result, the leakage of the refrigerant can be prevented accurately, while the occurrence of trouble in the equipment inside the compressor due to insufficient lubrication and cooling can be prevented. Further, this makes it possible to provide an air conditioner that can simplify the control system and reduce the cost.

以下、本発明の実施の形態を、添付図面に基づいた実施例として詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail as examples based on the attached drawings.

図1は本発明による空気調和機の冷媒回路図であり、図2は第一実施例での冷媒回収運転の際のフローチャートである。又、図3は第二実施例でのの冷媒回収運転の際のフローチャートである。   FIG. 1 is a refrigerant circuit diagram of an air conditioner according to the present invention, and FIG. 2 is a flowchart in the refrigerant recovery operation in the first embodiment. FIG. 3 is a flowchart for the refrigerant recovery operation in the second embodiment.

本発明による空気調和機は、図1に示すように、圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁4と、室内熱交換器5とを配管にて順次接続して冷媒回路を構成し、前記膨張弁4と前記室内熱交換器5との間に電磁開閉弁等による液側開閉弁6aを設け、前記室内熱交換器5と前記四方弁2との間に電磁開閉弁等によるガス側開閉弁6bを設けている。尚、これら、液側開閉弁6a及びガス側開閉弁6bは通常時、開放状態となっている。   As shown in FIG. 1, the air conditioner according to the present invention has a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5 sequentially connected by piping. A refrigerant circuit is provided, and a liquid-side on-off valve 6a such as an electromagnetic on-off valve is provided between the expansion valve 4 and the indoor heat exchanger 5, and between the indoor heat exchanger 5 and the four-way valve 2 is provided. A gas side on / off valve 6b is provided by an electromagnetic on / off valve or the like. The liquid side on / off valve 6a and the gas side on / off valve 6b are normally open.

前記室内熱交換器5には、同室内熱交換器5から、もし冷媒が漏洩した際、これを検出する冷媒リークセンサ8が設けられている。又、前記圧縮機1は、密閉容器となる金属性のシェルと、同シェル内に収納された圧縮部とからなり、シェル表面には、これの温度を検出するサーミスタ7が設けられている。尚、前記冷媒リークセンサ8は室外熱交換器5のみならず、冷媒回路に複数個設けてもよい。   The indoor heat exchanger 5 is provided with a refrigerant leak sensor 8 that detects when refrigerant leaks from the indoor heat exchanger 5. The compressor 1 includes a metallic shell serving as a hermetic container and a compression portion housed in the shell, and a thermistor 7 for detecting the temperature of the shell is provided on the shell surface. A plurality of refrigerant leak sensors 8 may be provided not only in the outdoor heat exchanger 5 but also in the refrigerant circuit.

冷房運転時、前記圧縮機1から吐出された高温高圧の冷媒は、前記四方弁2を介して前記室外熱交換器3に流入する。同室外熱交換器3に流入した冷媒は周囲に熱を放出して凝縮し、続いて前記膨張弁4により絞られて断熱膨張し低温低圧となる。低温低圧となった冷媒は次に前記室内熱交換器5に流入し、同室内熱交換器5で周囲を流れる空気から熱を吸収して蒸発する。蒸発した冷媒は前記四方弁2を介して前記圧縮機1に還流するようになっている。又、暖房運転時、前記四方弁2が切換られ、前記圧縮機1から吐出された高温高圧の冷媒は、切換られた前記四方弁2を介して前記室内熱交換器5に流入する。同室内熱交換器5に流入した冷媒は周囲を流れる空気に熱を放出して凝縮し、続いて前記膨張弁4により絞られて断熱膨張し低温低圧となる。低温低圧となった冷媒は次に前記室外熱交換器3に流入し、同室外熱交換器3で熱を吸収して蒸発する。蒸発した冷媒は前記四方弁2を介して前記圧縮機1に還流するようになっている。   During the cooling operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2. The refrigerant that has flowed into the outdoor heat exchanger 3 releases heat to the surroundings and condenses, and is then throttled by the expansion valve 4 to adiabatically expand to a low temperature and low pressure. The low-temperature and low-pressure refrigerant then flows into the indoor heat exchanger 5, and evaporates by absorbing heat from the air flowing around the indoor heat exchanger 5. The evaporated refrigerant is returned to the compressor 1 through the four-way valve 2. During the heating operation, the four-way valve 2 is switched, and the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 5 through the switched four-way valve 2. The refrigerant flowing into the indoor heat exchanger 5 releases heat to the surrounding air and condenses, and is then throttled by the expansion valve 4 to adiabatically expand to a low temperature and low pressure. The refrigerant that has become low temperature and low pressure then flows into the outdoor heat exchanger 3 and absorbs heat in the outdoor heat exchanger 3 to evaporate. The evaporated refrigerant is returned to the compressor 1 through the four-way valve 2.

冷媒回収運転の際、前記圧縮機1に冷媒が吸引されなくなると、冷媒による圧縮部への潤滑及び冷却が行われないことにより、圧縮部とともに、密閉容器としてのシェルの温度が上昇する。図示はしていないが、同空気調和機の制御部には、前記圧縮機1のシェル温度が上昇した際、同圧縮機1内部に支障が生じない範囲で、ある所定温度が設定されている。   When the refrigerant is not sucked into the compressor 1 during the refrigerant recovery operation, lubrication and cooling of the compression part by the refrigerant are not performed, so that the temperature of the shell as the sealed container rises together with the compression part. Although not shown in the drawings, the control unit of the air conditioner is set to a predetermined temperature within a range in which no trouble occurs in the compressor 1 when the shell temperature of the compressor 1 rises. .

次に、冷媒回収運転時の動作について説明する。図2のフローチャートで示すように、冷房あるいは暖房運転中に、前記室内熱交換器5に設けられた冷媒リークセンサ8が冷媒の漏洩を検出すると(STEP1)、冷房運転の場合は冷房運転が継続され、暖房運転の場合は、前記四方弁2が切換られて冷房運転に移行するようになっている(STEP2)。次に、前記液側開閉弁6aが閉鎖されて、前記室外熱交換器3から前記室内熱交換器5への冷媒の流入が阻止されるようになっている(STEP3)。   Next, the operation during the refrigerant recovery operation will be described. As shown in the flowchart of FIG. 2, during cooling or heating operation, when the refrigerant leak sensor 8 provided in the indoor heat exchanger 5 detects leakage of refrigerant (STEP 1), the cooling operation is continued in the cooling operation. In the heating operation, the four-way valve 2 is switched to shift to the cooling operation (STEP 2). Next, the liquid side on-off valve 6a is closed to prevent the refrigerant from flowing from the outdoor heat exchanger 3 into the indoor heat exchanger 5 (STEP 3).

前記圧縮機1の運転は継続され、前記室内熱交換器5内の冷媒及び配管内の冷媒は前記四方弁2を介して前記圧縮機1の吸込側に吸引され、続いて同圧縮機1の吐出側から吐出され、前記四方弁2を介して前記室外熱交換器3内に流入するようになっている。流入した冷媒は、前記液側開閉弁6aが閉鎖されていることにより、順次同室外熱交換器3内に蓄積されていく(STEP4)。   The operation of the compressor 1 is continued, and the refrigerant in the indoor heat exchanger 5 and the refrigerant in the pipe are sucked into the suction side of the compressor 1 through the four-way valve 2, and then the compressor 1 It is discharged from the discharge side and flows into the outdoor heat exchanger 3 through the four-way valve 2. The refrigerant that has flowed in is sequentially accumulated in the outdoor heat exchanger 3 by closing the liquid side on-off valve 6a (STEP 4).

前記室内熱交換器5内の冷媒が減少し、前記圧縮機1に充分に冷媒が吸引されなくなると、冷媒による潤滑及び冷却が行われないことにより、圧縮部及びシェル温度が次第に上昇する。シェル表面に取付けられた前記サーミスタ7の検出温度は、予め設定された所定温度と比較され(STEP5)、所定温度より高くなると、冷媒が充分に回収されたと判断されて、前記ガス側開閉弁6bが閉鎖されるとともに(STEP6)、前記圧縮機1が停止され、冷媒回収運転が終了するようになっている。これにより、空気調和機からの冷媒の漏洩を的確に防止する一方、潤滑及び冷却不足により前記圧縮機1内部の器材に支障が発生することを防止できる冷媒回収運転を行えるようになっている。尚、ポンプダウン運転の際も、冷媒回収運転は同様に行えるようになっている。   When the refrigerant in the indoor heat exchanger 5 decreases and the refrigerant is not sufficiently sucked into the compressor 1, lubrication and cooling by the refrigerant are not performed, so that the compression portion and the shell temperature gradually increase. The detected temperature of the thermistor 7 attached to the shell surface is compared with a predetermined temperature set in advance (STEP 5). When the detected temperature becomes higher than the predetermined temperature, it is determined that the refrigerant has been sufficiently recovered, and the gas side on-off valve 6b. Is closed (STEP 6), the compressor 1 is stopped, and the refrigerant recovery operation is terminated. Thereby, while the refrigerant | coolant leakage from an air conditioner is prevented correctly, the refrigerant | coolant collection | recovery driving | operation which can prevent generating a trouble in the equipment inside the said compressor 1 by lack of lubrication and cooling can be performed now. In the pump down operation, the refrigerant recovery operation can be performed in the same manner.

次に、第二実施例を図3のフローチャートに基づいて説明する。第二実施例においては、冷媒回収運転の開始時に圧縮機1のシェル温度が測定され、制御部には、測定されたシェル温度より、何度以上上昇したかを示す、ある所定温度が設定されている。   Next, a second embodiment will be described based on the flowchart of FIG. In the second embodiment, the shell temperature of the compressor 1 is measured at the start of the refrigerant recovery operation, and a certain predetermined temperature indicating how many times the measured shell temperature has been raised is set in the control unit. ing.

図3のフローチャートにおいて、(STEP3)迄は第一実施例と同様である。次に、冷媒回収運転の開始時に、圧縮機1のシェル温度が測定されるようになっている(STEP4)。測定が完了すると冷媒を室外熱交換器3に回収する冷媒回収運転が開始されるようになっている、(STEP5)。前記室内熱交換器5内の冷媒が減少し、前記圧縮機1に充分に冷媒が吸引されなくなると、圧縮機1のシェル温度が上昇するが、前記サーミスタ7の検出温度が、冷媒回収運転開始時に、測定されたシェル温度より、制御部に設定された所定温度より高くなると、冷媒が充分に回収されたと判断されて、前記ガス側開閉弁6bが閉鎖されるとともに(STEP7)、前記圧縮機1が停止され、冷媒回収運転が終了するようになっている(STEP8)。尚、前記所定温度は、外気温度に基づいて夫々の設定値が所定温度設定テーブルに予め設定されており、冷媒回収運転の開始時に、これから選択されるようになっている。   In the flowchart of FIG. 3, the steps up to (STEP 3) are the same as in the first embodiment. Next, the shell temperature of the compressor 1 is measured at the start of the refrigerant recovery operation (STEP 4). When the measurement is completed, the refrigerant recovery operation for recovering the refrigerant in the outdoor heat exchanger 3 is started (STEP 5). When the refrigerant in the indoor heat exchanger 5 decreases and the refrigerant is not sufficiently sucked into the compressor 1, the shell temperature of the compressor 1 rises, but the detected temperature of the thermistor 7 starts the refrigerant recovery operation. Sometimes, when the measured shell temperature becomes higher than a predetermined temperature set in the control unit, it is determined that the refrigerant has been sufficiently recovered, and the gas side on-off valve 6b is closed (STEP 7), and the compressor 1 is stopped and the refrigerant recovery operation ends (STEP 8). The predetermined temperature is set in advance in the predetermined temperature setting table based on the outside air temperature, and is selected at the start of the refrigerant recovery operation.

本発明による空気調和機を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the air conditioner by this invention. 第一実施例での冷媒回収運転の動作を説明するフローチャートである。It is a flowchart explaining the operation | movement of the refrigerant | coolant collection | recovery driving | operation in a 1st Example. 第二実施例での冷媒回収運転の動作を説明するフローチャートである。It is a flowchart explaining the operation | movement of the refrigerant | coolant collection | recovery driving | operation in a 2nd Example. 従来の空気調和機を示す冷媒回路図及びブロック図である。It is the refrigerant circuit figure and block diagram which show the conventional air conditioner.

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3 室外熱交換器
4 膨張弁
5 室内熱交換器
6a 液側開閉弁
6b ガス側開閉弁
7 サーミスタ
8 冷媒リークセンサ
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Expansion valve 5 Indoor heat exchanger 6a Liquid side on / off valve 6b Gas side on / off valve 7 Thermistor 8 Refrigerant leak sensor

Claims (2)

圧縮機と、室外熱交換器と、減圧手段と、室内熱交換器とを順次接続して冷媒回路を構成してなる空気調和機において、
前記圧縮機のシェルに温度検出手段を設け、室内側から室外側に冷媒の回収を行う冷媒回収運転時、前記温度検出手段で検出された温度が、予め設定された所定温度より高くなると、前記圧縮機を停止させ冷媒回収運転を終了させることを特徴とする空気調和機。
In an air conditioner comprising a refrigerant circuit by sequentially connecting a compressor, an outdoor heat exchanger, a decompression means, and an indoor heat exchanger,
In the refrigerant recovery operation in which the temperature detection means is provided in the shell of the compressor and the refrigerant is recovered from the indoor side to the outdoor side, when the temperature detected by the temperature detection means becomes higher than a predetermined temperature, An air conditioner characterized in that the compressor is stopped to end the refrigerant recovery operation.
圧縮機と、室外熱交換器と、減圧手段と、室内熱交換器とを順次接続して冷媒回路を構成してなる空気調和機において、
前記圧縮機のシェルに温度検出手段を設け、室内側から室外側に冷媒の回収を行う冷媒回収運転開始時、前記シェルの温度を測定し、回収運転時に、前記温度検出手段で検出された温度が、前記シェルの温度より所定温度以上、上昇すると前記圧縮機を停止させ冷媒回収運転を終了させることを特徴とする空気調和機。
In an air conditioner comprising a refrigerant circuit by sequentially connecting a compressor, an outdoor heat exchanger, a decompression means, and an indoor heat exchanger,
Temperature detection means is provided in the shell of the compressor, the temperature of the shell is measured at the start of the refrigerant recovery operation for recovering the refrigerant from the indoor side to the outdoor side, and the temperature detected by the temperature detection means during the recovery operation However, the air conditioner is characterized in that when the temperature rises by a predetermined temperature or more from the temperature of the shell, the compressor is stopped and the refrigerant recovery operation is terminated.
JP2006033489A 2006-02-10 2006-02-10 Air-conditioner Pending JP2007212077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033489A JP2007212077A (en) 2006-02-10 2006-02-10 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033489A JP2007212077A (en) 2006-02-10 2006-02-10 Air-conditioner

Publications (1)

Publication Number Publication Date
JP2007212077A true JP2007212077A (en) 2007-08-23

Family

ID=38490687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033489A Pending JP2007212077A (en) 2006-02-10 2006-02-10 Air-conditioner

Country Status (1)

Country Link
JP (1) JP2007212077A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2407733A4 (en) * 2009-03-12 2015-03-18 Mitsubishi Electric Corp Air conditioning device
US20170198946A1 (en) * 2014-07-28 2017-07-13 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2020134059A (en) * 2019-02-22 2020-08-31 パナソニックIpマネジメント株式会社 Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2407733A4 (en) * 2009-03-12 2015-03-18 Mitsubishi Electric Corp Air conditioning device
US20170198946A1 (en) * 2014-07-28 2017-07-13 Mitsubishi Electric Corporation Air-conditioning apparatus
US10451306B2 (en) * 2014-07-28 2019-10-22 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2020134059A (en) * 2019-02-22 2020-08-31 パナソニックIpマネジメント株式会社 Air conditioner
JP7249536B2 (en) 2019-02-22 2023-03-31 パナソニックIpマネジメント株式会社 air conditioner

Similar Documents

Publication Publication Date Title
JP6935720B2 (en) Refrigeration equipment
JP5484930B2 (en) Air conditioner
JP5481981B2 (en) Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JP6403887B2 (en) Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
JP2017009267A (en) Air-conditioning system
JP6444577B1 (en) Air conditioner
EP3136010B1 (en) Air-conditioning device
JP2011047545A (en) Operation control method of multi-chamber type air conditioner
WO2017191814A1 (en) Refrigeration cycle device
WO2014068819A1 (en) Air conditioner
JP2008082654A (en) Failure diagnostic method for refrigerating device, and refrigerating device
JP2011007379A (en) Air conditioner
JP2005257219A (en) Air conditioner
JP2013204871A (en) Air conditioner
AU2013275605B2 (en) Refrigerating Device
KR100743720B1 (en) Process for sensing badness of LEV in sub-cooling apparatus of multi-type air conditioner
JP2007212077A (en) Air-conditioner
JP5020114B2 (en) Air conditioner
JP2010139122A (en) Air conditioner
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
JP2017142017A (en) Air conditioner
KR20090082582A (en) Level Controlling Apparatus of Gas Heat Pump System
JP2005049057A (en) Refrigerating cycle device
JP2010112639A (en) Multiple chamber air conditioner
JP2017142016A (en) Air conditioner