JP2007211955A - Fixed type constant velocity universal joint - Google Patents

Fixed type constant velocity universal joint Download PDF

Info

Publication number
JP2007211955A
JP2007211955A JP2006035358A JP2006035358A JP2007211955A JP 2007211955 A JP2007211955 A JP 2007211955A JP 2006035358 A JP2006035358 A JP 2006035358A JP 2006035358 A JP2006035358 A JP 2006035358A JP 2007211955 A JP2007211955 A JP 2007211955A
Authority
JP
Japan
Prior art keywords
constant velocity
velocity universal
fixed type
type constant
universal joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006035358A
Other languages
Japanese (ja)
Inventor
Yukio Matsubara
幸生 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006035358A priority Critical patent/JP2007211955A/en
Publication of JP2007211955A publication Critical patent/JP2007211955A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixed type constant velocity universal joint capable of suppressing early exfoliation caused by hydrogen intruding into steel even when a lubricant or a minute amount of mixed water on a contact surface is decomposed and hydrogen is generated. <P>SOLUTION: The fixed type constant velocity universal joint is equipped with an outside joint member having a track groove 25 formed thereon for rolling of a torque transmission member, and allows only an angle displacement between two shafts. A steel material containing C: 0.45-0.65 wt.%, Si: 0.1-1.0 wt.%, Mn: 0.1-1.5 wt.%, V: 0.05-0.3 wt.% as alloy elements within each range, and Fe and unavoidable impurities as the remainder, is used as the outside joint member. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固定型等速自在継手に関するものである。 The present invention relates to a fixed type constant velocity universal joint.

一般に、固定型等速自在継手は、図4に示すように、内球面1に複数のトラック溝2が円周方向等間隔に軸方向に沿って形成された外側継手部材としての外輪3と、外球面4に外輪3のトラック溝2と対をなす複数のトラック溝5が円周方向等間隔に軸方向に沿って形成された内側継手部材としての内輪6と、外輪3のトラック溝2と内輪6のトラック溝5との間に介在してトルクを伝達する複数のボール7と、外輪3の内球面1と内輪6の外球面4との間に介在してボール7を保持するケージ8とを備えている。また、内輪6にはシャフト11が嵌入されている。   In general, as shown in FIG. 4, the fixed type constant velocity universal joint includes an outer ring 3 as an outer joint member in which a plurality of track grooves 2 are formed along the axial direction at equal intervals in the circumferential direction on the inner spherical surface 1; An inner ring 6 as an inner joint member in which a plurality of track grooves 5 paired with the track grooves 2 of the outer ring 3 are formed in the outer spherical surface 4 along the axial direction at equal intervals in the circumferential direction, and the track grooves 2 of the outer ring 3 A plurality of balls 7 that are interposed between the track grooves 5 of the inner ring 6 and transmit torque, and a cage 8 that is interposed between the inner spherical surface 1 of the outer ring 3 and the outer spherical surface 4 of the inner ring 6 and holds the balls 7. And. A shaft 11 is fitted into the inner ring 6.

このような固定型等速自在継手が一定の作動角をとってトルク伝達する際、ボールは外輪のトラック溝底と内輪のトラック溝底とに接触して転がりと滑りを伴いながら揺動する。そのため、外輪には中炭素鋼が用いられ、トラック溝を包含する領域に焼入れ(例えば高周波焼入れ)が施されているものがある(特許文献1)。一方、一般的に内輪には浸炭鋼が用いられ、全周に浸炭焼入れが施されている。   When such a fixed type constant velocity universal joint transmits torque at a constant operating angle, the ball comes into contact with the track groove bottom of the outer ring and the track groove bottom of the inner ring and swings while rolling and sliding. For this reason, medium carbon steel is used for the outer ring, and some of the regions including the track grooves are quenched (for example, induction hardening) (Patent Document 1). On the other hand, carburized steel is generally used for the inner ring, and carburizing and quenching is performed on the entire circumference.

今後の技術動向として、省資源化、省エネ化、コンパクト化などに対応するため、固定型等速自在継手もコンパクト化、常用角の高角化などがなされる方向にあり、それに伴って転がりすべり接触の受け持つ負荷が高まるともに揺動距離が長くなって滑りが増大する傾向にある。
特開2000−213553号公報(第5頁、図3)
Future technical trends are to reduce resources, save energy, and make compact, so that fixed type constant velocity universal joints are also going to be made more compact and higher in common angle. There is a tendency that, as the load of the load increases, the rocking distance becomes longer and the slip increases.
Japanese Unexamined Patent Publication No. 2000-213553 (5th page, FIG. 3)

高面圧下で転がりすべり接触すると、接触表面で潤滑剤や混入した微量の水が分解して水素が発生し、それが鋼中に侵入することがある。水素は鋼の疲労強度を著しく低下させるため、早期剥離を引き起こす原因となる。早期剥離における初期亀裂は、すべりが作用したときに接触領域の縁で大きくなる引っ張り応力によって発生する。前記特許文献1等に記載のものでは、そのような水素が関与する早期剥離に対する耐性は備えていない。   When rolling and sliding contact is performed under high surface pressure, a lubricant or a small amount of mixed water is decomposed on the contact surface to generate hydrogen, which may penetrate into the steel. Hydrogen significantly reduces the fatigue strength of the steel and causes premature delamination. The initial crack in the early peeling is generated by a tensile stress that becomes large at the edge of the contact area when a slip acts. The thing described in the said patent document 1 etc. does not have the tolerance with respect to the early peeling which such hydrogen involves.

本発明は、上記課題に鑑みて、接触表面で潤滑剤や混入した微量の水が分解して水素が発生しても、それが鋼中に侵入することによって起きる早期剥離を抑制することができる固定型等速自在継手を提供する。 In view of the above problems, the present invention can suppress early peeling that occurs when a lubricant or a small amount of mixed water decomposes on the contact surface and hydrogen is generated to enter the steel. A fixed type constant velocity universal joint is provided.

本発明の固定型等速自在継手は、トルク伝達部材転動用のトラック溝が形成された外側継手部材を備え、2軸間の角度変位のみを許容する固定型等速自在継手において、合金元素としてC(炭素):0.45〜0.65wt%、Si(ケイ素):0.1〜1.0wt%、Mn(マンガン):0.1〜1.5wt%、V(バナジウム):0.05〜0.3wt%をそれぞれの範囲内で含有し、残部がFe(鉄)及び不可避的不純物からなる鋼材を、少なくとも前記外側継手部材に用いるものである。   The fixed type constant velocity universal joint of the present invention includes an outer joint member formed with a track groove for rolling a torque transmission member, and is a fixed type constant velocity universal joint that allows only angular displacement between two axes. C (carbon): 0.45-0.65 wt%, Si (silicon): 0.1-1.0 wt%, Mn (manganese): 0.1-1.5 wt%, V (vanadium): 0.05 A steel material containing ˜0.3 wt% in each range and the balance being Fe (iron) and inevitable impurities is used for at least the outer joint member.

高周波焼入した後の焼戻しで微小なV炭化物が析出される。この微小なV炭化物は、素地との整合性がよく、引張疲労特性の劣化を招く拡散性水素を強力にトラップする。このため、水素侵入下における引張疲労特性の劣化を小さく抑えることができる。   Fine V carbide is precipitated by tempering after induction hardening. This minute V carbide has good consistency with the substrate, and strongly traps diffusible hydrogen that causes deterioration of tensile fatigue characteristics. For this reason, the deterioration of the tensile fatigue characteristics under hydrogen intrusion can be suppressed small.

C量の下限を0.45wt%としたのは、高周波焼入によって安定した高硬度を得るのに最低限必要なためである。一方、上限を0.65wt%としたのは、多すぎると素材硬度が上昇して加工性が著しく低下することと、成分偏析防止のための高温拡散熱処理や炭化物の球状化など、特別な熱処理が必要でコストアップにつながるためである。   The lower limit of the amount of C is set to 0.45 wt% because it is the minimum necessary to obtain a stable high hardness by induction hardening. On the other hand, the upper limit is set to 0.65 wt%. When the amount is too large, the material hardness increases and the workability is remarkably lowered, and a special heat treatment such as high-temperature diffusion heat treatment or carbide spheroidization for preventing component segregation. This is necessary and leads to cost increase.

Si量の下限を0.1wt%としたのは、Siはもともと鋼中に含まれるもので、それ以下に減らすことの意義が希薄だからである。一方、上限を1.0wt%としたのは、Siは焼戻による軟化を抑える効果があり、高温用途で用いる安価な鋼材には欠かせないが、多すぎると冷間加工性、熱間加工性が低下するためである。   The reason why the lower limit of the amount of Si is set to 0.1 wt% is that Si is originally contained in steel and the significance of reducing it to less than that is rare. On the other hand, the upper limit is set to 1.0 wt%. Si has an effect of suppressing softening due to tempering, and is indispensable for an inexpensive steel material used in high temperature applications. This is because the property decreases.

Mn量の下限を0.1wt%としたのは、不純物として微量に含まれるSが粒界に偏析するのを防ぐため、Mnと化合させてMnSとして析出させるためである。一方、上限を1.5wt%としたのは、Mnは焼入性を向上させる有効な元素であるが、セメンタイトの中のFe原子と置換して複合炭化物を形成し、素材硬度を上昇させるので、添加しすぎると加工性や被削性が低下するためである。   The reason why the lower limit of the amount of Mn is set to 0.1 wt% is that it is combined with Mn and precipitated as MnS in order to prevent S contained in a trace amount as an impurity from segregating at the grain boundary. On the other hand, the upper limit was set to 1.5 wt%, but Mn is an effective element that improves hardenability, but it replaces Fe atoms in cementite to form composite carbides, increasing the material hardness. If too much is added, workability and machinability are lowered.

VはCと親和性が強いため、焼入前には両者が結合した炭化物の状態で存在する。焼戻によって素地との整合性がよい微小なV炭化物を析出させるためには、焼入加熱時に一旦Vを素地に溶け込ませる必要がある。V量の下限を0.05wt%としたのは、1000℃前後の高周波焼入加熱温度で最低限必要なVを素地に溶け込ませるためである。一方で、Vは非調質状態の素材硬度を著しく高めるので、多く添加しすぎると加工性や成形性が損なわれる。そのため、上限は0.3wt%とした。   Since V has a strong affinity for C, it exists in the form of a carbide in which both are bonded before quenching. In order to precipitate fine V carbide having good consistency with the substrate by tempering, it is necessary to once dissolve V into the substrate during quenching heating. The reason why the lower limit of the amount of V is set to 0.05 wt% is to dissolve the minimum necessary V into the substrate at an induction hardening heating temperature of about 1000 ° C. On the other hand, V significantly increases the hardness of the material in the non-tempered state, so if too much is added, workability and formability are impaired. Therefore, the upper limit was set to 0.3 wt%.

このため、この外側継手部材は、水素が侵入しても引張疲労強度の低下が小さく、しかも、高硬度を得ることができるとともに、焼入れ性や加工性等に優れる。   For this reason, this outer joint member has a small decrease in tensile fatigue strength even when hydrogen enters, and can obtain high hardness, and is excellent in hardenability and workability.

合金成分量に基づいた外側継手部材の硬度の予測値が23≦HRC≦30となるのが好ましい。   The predicted value of the hardness of the outer joint member based on the alloy component amount is preferably 23 ≦ HRC ≦ 30.

ところで、外側継手部材を構成する鋼材は、鍛造後に空冷された状態では非調質状態となる。この非調質状態での硬度が高すぎると、後の機械加工がしにくくなる。一方、軟らかすぎると、非焼入硬化部の疲労強度が十分に得られない。このため、加工性の面からはHRC30以下に抑えるのが望ましい。また、非焼入硬化部の疲労強度としては、従来の中炭素鋼S53Cに対して平均で300MPaであることから、400MPa以上必要ということになる。回転曲げ疲労限度σWbと硬度(HV)との間にσWb=1.54HVなる関係があり、この式にσWb=400MPaを代入して必要な硬度を求めるとHRC23となる。したがって、非焼入硬化部の疲労強度の面からはHRC23以上であることが望ましい。 By the way, the steel material which comprises an outer joint member will be in a non-tempered state in the state cooled by air after forging. If the hardness in this non-tempered state is too high, subsequent machining becomes difficult. On the other hand, if it is too soft, the fatigue strength of the non-quenched hardened portion cannot be obtained sufficiently. For this reason, it is desirable to suppress to HRC30 or less from the viewpoint of workability. In addition, the fatigue strength of the non-quenched hardened portion is 300 MPa on average with respect to the conventional medium carbon steel S53C, so that 400 MPa or more is necessary. There is a relationship of σ Wb = 1.54 HV between the rotational bending fatigue limit σ Wb and the hardness (HV). When σ Wb = 400 MPa is substituted into this equation to obtain the required hardness, HRC23 is obtained. Therefore, it is desirable that it is HRC23 or more from the surface of the fatigue strength of a non-hardening hardening part.

本発明の固定型等速自在継手は、外側継手部材に、水素が侵入しても引張疲労強度の低下が小さい鋼を用いることで、コンパクト化などに伴って転がりすべり接触条件が厳しくなって、接触表面で潤滑材や混入した微量の水が分解して水素が発生しても、それが鋼中に侵入することによって起きる早期剥離を抑制することができる。また、外側継手部材は高硬度を得ることができ、安定した強度を発揮することができる。しかも、焼入れ性及び加工性等に優れ、製造コスト低減を達成できる。   The fixed type constant velocity universal joint of the present invention uses a steel with a small decrease in tensile fatigue strength even when hydrogen enters the outer joint member, so that rolling and sliding contact conditions become severe with downsizing, etc. Even if a lubricant or a small amount of mixed water is decomposed on the contact surface and hydrogen is generated, it is possible to suppress early peeling that occurs when the hydrogen penetrates into the steel. Further, the outer joint member can obtain a high hardness and can exhibit a stable strength. And it is excellent in hardenability, workability, etc., and can reduce manufacturing cost.

特に、外側継手部材の硬度の予測値が23≦HRC≦30とすることによって、外側継手部材は、加工性及び強度性において優れたものとなる。   In particular, when the predicted value of the hardness of the outer joint member satisfies 23 ≦ HRC ≦ 30, the outer joint member is excellent in workability and strength.

以下本発明の実施の形態を図1〜図3に基づいて説明する。   Embodiments of the present invention will be described below with reference to FIGS.

この固定型等速自在継手は、図1に示すように、内球面21に複数のトラック溝22が円周方向等間隔に軸方向に沿って形成された外側継手部材としての外輪23と、外球面24に外輪23のトラック溝22と対をなす複数のトラック溝25が円周方向等間隔に軸方向に沿って形成された内側継手部材としての内輪26と、外輪23のトラック溝22と内輪26のトラック溝25との間に介在してトルクを伝達する複数のボール27と、外輪23の内球面21と内輪26の外球面24との間に介在してボール27を保持するケージ28とを備えている。複数のボール27は、ケージ28に形成されたポケット29に収容されて円周方向等間隔に配置されている。   As shown in FIG. 1, the fixed type constant velocity universal joint includes an outer ring 23 as an outer joint member in which a plurality of track grooves 22 are formed in the inner spherical surface 21 at equal intervals in the circumferential direction, and an outer ring 23. An inner ring 26 as an inner joint member in which a plurality of track grooves 25 paired with the track grooves 22 of the outer ring 23 are formed on the spherical surface 24 along the axial direction at equal intervals in the circumferential direction, and the track grooves 22 and the inner rings of the outer ring 23 are formed. A plurality of balls 27 that transmit torque by being interposed between the 26 track grooves 25, and a cage 28 that holds the balls 27 by being interposed between the inner spherical surface 21 of the outer ring 23 and the outer spherical surface 24 of the inner ring 26. It has. The plurality of balls 27 are accommodated in pockets 29 formed in the cage 28 and arranged at equal intervals in the circumferential direction.

トラック溝22、26とボール27の接点がトラック22、26から外れずに大きな作動角を取り得る構造とするため、外輪23のトラック溝22の曲率中心O1と内輪6のトラック溝25の曲率中心O2とを、継手中心Oに対して等距離だけ軸方向に逆向きにオフセットさせている。すなわち、外輪23のトラック溝22の曲率中心O1を開口側とし、内輪26のトラック溝5の曲率中心O2を奥側にしている。これによって、両トラック溝22、25のそれぞれは、その軸方向中央から外輪底側(奥側)で浅く、外輪開口側で深くなっており、その結果、外輪23の底側(奥側)から開口側へ向けて径方向間隔が徐々に増加する楔状のボールトラックが形成されている。   The center of curvature O1 of the track groove 22 of the outer ring 23 and the center of curvature of the track groove 25 of the inner ring 6 are provided so that the contact point between the track grooves 22 and 26 and the ball 27 can take a large operating angle without being detached from the tracks 22 and 26. O2 is offset in the axial direction by an equal distance from the joint center O in the opposite direction. That is, the center of curvature O1 of the track groove 22 of the outer ring 23 is on the opening side, and the center of curvature O2 of the track groove 5 of the inner ring 26 is on the back side. As a result, each of the track grooves 22 and 25 is shallow on the outer ring bottom side (back side) from the axial center and deep on the outer ring opening side, and as a result, from the bottom side (back side) of the outer ring 23. A wedge-shaped ball track in which the radial interval gradually increases toward the opening side is formed.

そして、この外輪23には、合金元素としてC(炭素):0.45〜0.65wt%、Si(ケイ素):0.1〜1.0wt%、Mn(マンガン):0.1〜1.5wt%、V(バナジウム):0.05〜0.3wt%をそれぞれの範囲内で含有し、残部がFe(鉄)及び不可避的不純物からなる鋼材を用いる。   And in this outer ring | wheel 23, C (carbon): 0.45-0.65 wt%, Si (silicon): 0.1-1.0 wt%, Mn (manganese): 0.1-1. A steel material containing 5 wt%, V (vanadium): 0.05 to 0.3 wt% in the respective ranges, and the balance of Fe (iron) and inevitable impurities is used.

外輪23において、トラック溝を包含する領域に高周波焼入が施され、硬化部が形成されている。ここで、高周波焼入れとは、高周波による表皮硬化を利用した処理物の表面のみを加熱して焼き入れを行うものである。なお、硬化部を形成する場合、高周波焼入れ以外の他の金属熱処理にて行ってもよい。   In the outer ring 23, the region including the track groove is induction hardened to form a hardened portion. Here, induction hardening is performed by heating only the surface of the processed material utilizing skin hardening by high frequency. In addition, when forming a hardening part, you may carry out by metal heat processing other than induction hardening.

C量の下限を0.45wt%としたのは、高周波焼入によって安定した高硬度を得るのに最低限必要なためである。一方、C量の上限を0.65wt%としたのは、多すぎると素材硬度が上昇して加工性が著しく低下することと、成分偏析防止のための高温拡散熱処理や炭化物の球状化など、特別な熱処理が必要でコストアップにつながるためである。   The lower limit of the amount of C is set to 0.45 wt% because it is the minimum necessary to obtain a stable high hardness by induction hardening. On the other hand, the upper limit of the amount of C is 0.65 wt%, if too much, the material hardness increases and the workability is remarkably reduced, and high temperature diffusion heat treatment for preventing component segregation and spheroidization of carbide, This is because a special heat treatment is necessary, leading to an increase in cost.

Si量の下限を0.1wt%としたのは、Siはもともと鋼中に含まれるもので、それ以下に減らすことの意義が希薄だからである。一方、Si量の上限を1.0wt%としたのは、Siは焼戻による軟化を抑える効果があり、高温用途で用いる安価な鋼材には欠かせないが、多すぎると冷間加工性、熱間加工性が低下するためである。   The reason why the lower limit of the amount of Si is set to 0.1 wt% is that Si is originally contained in steel and the significance of reducing it to less than that is rare. On the other hand, the upper limit of Si amount is 1.0 wt%, Si has an effect of suppressing softening due to tempering, and is indispensable for inexpensive steel materials used in high temperature applications, but if too much, cold workability, This is because hot workability is lowered.

Mn量の下限を0.1wt%としたのは、不純物として微量に含まれるSが粒界に偏析するのを防ぐため、Mnと化合させてMnSとして析出させるためである。一方、上限を1.5wt%としたのは、Mnは焼入性を向上させる有効な元素であるが、セメンタイトの中のFe原子と置換して複合炭化物を形成し、素材硬度を上昇させるので、添加しすぎると加工性や被削性が低下するためである。   The reason why the lower limit of the amount of Mn is set to 0.1 wt% is that it is combined with Mn and precipitated as MnS in order to prevent S contained in a trace amount as an impurity from segregating at the grain boundary. On the other hand, the upper limit was set to 1.5 wt%, but Mn is an effective element that improves hardenability, but it replaces Fe atoms in cementite to form composite carbides, increasing the material hardness. If too much is added, workability and machinability are lowered.

VはCと親和性が強いため、焼入前には両者が結合した炭化物の状態で存在する。焼戻によって素地との整合性がよい微小なV炭化物を析出させるためには、焼入加熱時に一旦Vを素地に溶け込ませる必要がある。V量の下限を0.05wt%としたのは、1000℃前後の高周波焼入加熱温度で最低限必要なVを素地に溶け込ませるためである。一方で、Vは非調質状態の素材硬度を著しく高めるので、多く添加しすぎると加工性や成形性が損なわれる。そのため、V量の上限は0.3wt%とした。   Since V has a strong affinity for C, it exists in the form of a carbide in which both are bonded before quenching. In order to precipitate fine V carbide having good consistency with the substrate by tempering, it is necessary to once dissolve V into the substrate during quenching heating. The reason why the lower limit of the amount of V is set to 0.05 wt% is to dissolve the minimum necessary V into the substrate at an induction hardening heating temperature of about 1000 ° C. On the other hand, V significantly increases the hardness of the material in the non-tempered state, so if too much is added, workability and formability are impaired. Therefore, the upper limit of the V amount is set to 0.3 wt%.

また、外輪23の硬度は、合金成分量に基づいた硬度の予測値が23≦HRC(ロックウエル硬さ)≦30となるようにする。合金成分量がわかれば、素材硬度を高精度で予測可能である。実際には、次の数1の式に各合金成分量を代入して求めることができる。   The hardness of the outer ring 23 is set so that the predicted value of hardness based on the amount of alloy components satisfies 23 ≦ HRC (Rockwell hardness) ≦ 30. If the amount of alloy components is known, the material hardness can be predicted with high accuracy. Actually, it can be obtained by substituting each alloy component amount into the following equation (1).

Figure 2007211955
Figure 2007211955

ところで、外輪23を構成する鋼材は、鍛造後に空冷された状態では非調質状態となる。この非調質状態での硬度が高すぎると、後の機械加工がしにくくなる。一方、軟らかすぎると、非焼入硬化部の疲労強度が十分に得られない。今後、コンパクト化などにより、非焼入硬化部にも大きな負荷がかかることを考えると、焼入硬化部だけでなく非焼入硬化部の疲労強度も重要になる。このため、加工性の面からはHRC30以下に抑えるのが望ましい。   By the way, the steel material which comprises the outer ring | wheel 23 will be in a non-tempered state in the state cooled by air after forging. If the hardness in this non-tempered state is too high, subsequent machining becomes difficult. On the other hand, if it is too soft, the fatigue strength of the non-quenched hardened portion cannot be obtained sufficiently. Considering that, in the future, due to downsizing and the like, a large load will be applied to the non-hardened and hardened portion, the fatigue strength of the non-hardened and hardened portion as well as the hardened and hardened portion will be important. For this reason, it is desirable to suppress to HRC30 or less from the viewpoint of workability.

また、非焼入硬化部の疲労強度としては、従来の中炭素鋼S53Cに対して平均で300MPaであることから、400MPa以上必要ということになる。従来から、回転曲げ疲労限度σWbと硬度(HV)との間にσWb=1.54HVなる関係が知られている。この式にσWb=400MPaを代入して必要な硬度を求めるとHRC23となる。したがって、非焼入硬化部の疲労強度の面からはHRC23以上であることが望ましい。 In addition, the fatigue strength of the non-quenched hardened portion is 300 MPa on average with respect to the conventional medium carbon steel S53C, so that 400 MPa or more is necessary. Conventionally, a relationship of σ Wb = 1.54 HV is known between the rotational bending fatigue limit σ Wb and the hardness (HV). Substituting σ Wb = 400 MPa into this equation yields the required hardness, resulting in HRC23. Therefore, it is desirable that it is HRC23 or more from the surface of the fatigue strength of a non-hardening hardening part.

このように、前記のような鋼材を使用した外輪23は、合金元素に0.05wt%以上のVを含有しているので、水素が侵入しても引張疲労強度の低下が小さいものとなる。これは、高周波焼入した後の焼戻しで微小なV炭化物が析出され、この微小なV炭化物は、素地との整合性がよく、引張疲労特性の劣化を招く拡散性水素を強力にトラップするためである。このため、コンパクト化などに伴って転がりすべり接触条件が厳しくなり、接触表面で潤滑剤や混入した微量の水が分解して水素が発生しても、それが鋼中に侵入することによって起きる早期剥離を抑制することができる。また、外側継手部材は高硬度を得ることができ、安定した強度を発揮することができる。しかも、焼入れ性及び加工性等に優れ、製造コスト低減を達成できる。   Thus, since the outer ring 23 using the steel material as described above contains 0.05 wt% or more of V in the alloy element, the decrease in tensile fatigue strength is small even when hydrogen enters. This is because fine V carbide is precipitated by tempering after induction hardening, and this fine V carbide has good consistency with the substrate and strongly traps diffusible hydrogen that causes deterioration of tensile fatigue characteristics. It is. For this reason, rolling and sliding contact conditions become stricter with downsizing, and even if the contact surface is decomposed and a small amount of water is decomposed and hydrogen is generated, it is an early stage that occurs when it enters into steel. Peeling can be suppressed. Further, the outer joint member can obtain a high hardness and can exhibit a stable strength. And it is excellent in hardenability, workability, etc., and can reduce manufacturing cost.

特に、外側継手部材の硬度の予測値が23≦HRC≦30とすることによって、外側継手部材は、加工性及び強度性において優れたものとなる。   In particular, when the predicted value of the hardness of the outer joint member satisfies 23 ≦ HRC ≦ 30, the outer joint member is excellent in workability and strength.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、固定型等速自在継手の外輪23のみを、合金元素としてC:0.45〜0.65wt%、Si:0.1〜1.0wt%、Mn:0.1〜1.5wt%、V:0.05〜0.3wt%をそれぞれの範囲内で含有し、残部がFe及び不可避的不純物からなる鋼材を用いたが、内輪26(内側継手部材)にこの鋼材を用いてもよい。また、固定型等速自在継手として、前記実施形態ではバーフィールド型(BJ)を示したが、軸方向と平行なストレート底を持つアンダーカットフリー型(UJ)の固定式等速自在継手にも適用可能である。さらに、これらバーフィールド型やアンダーカットフリー型以外のトラック溝形状を有する他の固定式等速自在継手にも適用可能である。   As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, only the outer ring 23 of the fixed type constant velocity universal joint is used as an alloy element. C: 0.45-0.65 wt%, Si: 0.1-1.0 wt%, Mn: 0.1-1.5 wt%, V: 0.05-0.3 wt% within each range And although the steel material which the remainder consists of Fe and an unavoidable impurity was used, you may use this steel material for the inner ring | wheel 26 (inner joint member). Moreover, as the fixed type constant velocity universal joint, the bar field type (BJ) is shown in the above embodiment, but the fixed type constant velocity universal joint of the undercut free type (UJ) having a straight bottom parallel to the axial direction is also shown. Applicable. Furthermore, the present invention can also be applied to other fixed type constant velocity universal joints having track groove shapes other than these bar field type and undercut free type.

表1に示す化学成分のC−1〜C−10の試験品(実施品)とC−11〜C−17の試験品(比較品)とを製作して、軸荷重疲労試験を行った。各試験品は最小径部の直径が4mmで長さが約80mmの砂時計状体である。最小径部の中心まで均一に硬化するように、加熱温度1000℃をねらって高周波焼入し、その後に170℃で焼戻を施した。なお、比較品C−11はS53Cである。   C-1 to C-10 test products (implemented products) and C-11 to C-17 test products (comparative products) having chemical components shown in Table 1 were manufactured and subjected to an axial load fatigue test. Each test article is an hourglass-like body having a minimum diameter of 4 mm and a length of about 80 mm. In order to cure uniformly to the center of the minimum diameter portion, induction hardening was performed at a heating temperature of 1000 ° C., and then tempering was performed at 170 ° C. The comparative product C-11 is S53C.

Figure 2007211955
Figure 2007211955

疲労試験に先立ち、試験品に陰極電解法により水素チャージを施した。水素チャージには、1.4g/Lのチオ尿素を添加した0.05mol/Lの希硫酸水溶液を用いた。鋼種によって水素の拡散速度が異なり、また、同じ電流密度でも表面の水素濃度が異なる。それらを予め求めておいた上で、電流密度とチャージ時間を調整し、最小径部の中心まで拡散性水素濃度を均一に3wt−ppmとなるようにした。なお、ここでいう拡散性水素濃度とは、サンプルを180℃/hで昇温したときに常温から350℃までに放出される水素重量のサンプル重量に対する分率のことである。   Prior to the fatigue test, the test product was charged with hydrogen by a cathodic electrolysis method. For hydrogen charging, a 0.05 mol / L dilute sulfuric acid aqueous solution to which 1.4 g / L thiourea was added was used. The diffusion rate of hydrogen differs depending on the steel type, and the hydrogen concentration on the surface differs even at the same current density. After obtaining them in advance, the current density and the charge time were adjusted so that the diffusible hydrogen concentration was uniformly 3 wt-ppm up to the center of the minimum diameter portion. Here, the diffusible hydrogen concentration refers to the fraction of the weight of hydrogen released from room temperature to 350 ° C. when the sample is heated at 180 ° C./h with respect to the sample weight.

試験品に水素チャージした後、直ちに常温大気中で疲労試験を行った。試験における応力比はR=−1であり、負荷周波数は20kHzである。負荷回数が10回に達しても未破断であった場合は試験を打切った。なお、試験品に導入された拡散性水素は、常温でも鋼中を拡散し、時間が経てば散逸してしまう。しかし、今回行った試験はきわめて高速な負荷であり、ごく短時間で負荷回数が10回に達するので、拡散性水素が散逸する余地がない。したがって、疲労強度に及ぼす拡散性水素の影響を合理的に評価することができる。 Immediately after hydrogen charging the test article, a fatigue test was performed in a room temperature atmosphere. The stress ratio in the test is R = -1, and the load frequency is 20 kHz. Even if the number of loadings reached 10 8 times, the test was terminated if it was not broken. In addition, the diffusible hydrogen introduced into the test sample diffuses in the steel even at room temperature and dissipates over time. However, the tests conducted this time are extremely fast loads, and the number of loads reaches 10 8 in a very short time, so there is no room for diffusible hydrogen to dissipate. Therefore, the influence of diffusible hydrogen on fatigue strength can be rationally evaluated.

表2に疲労試験で得られたS/N線図を回帰して求めた10回における疲労強度を示す。Vを0.05wt%以上含む実施品は、そうでない比較品に対して疲労強度が高かった。これは、高周波焼入した後の焼戻で析出する、素地との整合性がよい微小なV炭化物が、引張疲労特性の劣化を招く拡散性水素を強力にトラップしたためと考えられる。なお、比較品C−14、15も微量のVを含むが、それらの疲労強度が低かったのは、焼戻によって析出するV炭化物が不十分であったためと考えられる。 Table regression of S / N diagram obtained in 2 to fatigue test shows the fatigue strength at 10 7 times was determined. The product containing 0.05 wt% or more of V had higher fatigue strength than the comparative product that was not. This is presumably because the minute V carbide that precipitates by tempering after induction hardening and has good consistency with the substrate strongly traps diffusible hydrogen that causes deterioration of tensile fatigue characteristics. The comparative products C-14 and 15 also contain a small amount of V, but their fatigue strength was low because the V carbides precipitated by tempering were insufficient.

Figure 2007211955
Figure 2007211955

外輪23の転がりすべり接触部に作用する最大接触面圧は、今後の使用条件の過酷化を考慮して高く見積もると4GPa程度である。その場合に接触縁に繰返し作用する引張応力は、摩擦を高く見積もって計算上600MPa程度である。また、今回の疲労試験では3wt−ppmの拡散性水素を強制的に導入して影響を見たが、実際にはそれほど多量の水素が侵入するのはごく稀なケースと考えられる。すなわち、10回における疲労強度が600MPa以上であれば、実用に十分に耐えうるものと考えられる。この観点から表2の実施品の10回における疲労強度を見ると、いずれも600MPa以上である。したがって、合金元素として少なくともVを0.05wt%以上含有し、高周波焼入後の焼戻でV炭化物を析出させることが、水素侵入下における疲労強度の低下を抑制するための必要条件といえる。 The maximum contact surface pressure acting on the rolling / sliding contact portion of the outer ring 23 is about 4 GPa when high estimation is made in consideration of severe use conditions in the future. In this case, the tensile stress that repeatedly acts on the contact edge is about 600 MPa in terms of calculation by estimating the friction. Moreover, in this fatigue test, 3 wt-ppm diffusible hydrogen was forcibly introduced and the effect was observed. However, in reality, it is considered rare that a large amount of hydrogen penetrates. In other words, if the fatigue strength at 10 7 times is 600 MPa or more, it is considered that the fatigue strength can sufficiently be put into practical use. Looking at the fatigue strength at 10 7 times Table 2 in products from this viewpoint, it is both 600MPa or more. Therefore, it can be said that it is a necessary condition for suppressing a decrease in fatigue strength under hydrogen penetration by containing at least 0.05 wt% or more of V as an alloy element and precipitating V carbide by tempering after induction hardening.

外輪23にとって、非調質状態とは鍛造後に空冷された状態である。その状態での硬度が高すぎると、後の機械加工がしにくくなる。一方、軟らかすぎると、非焼入硬化部の疲労強度が十分に得られない。今後、コンパクト化などにより、非焼入硬化部にも大きな負荷がかかることを考えると、焼入硬化部だけでなく非焼入硬化部の疲労強度も重要になる。具体的には、加工性の面からはHRC30以下に抑えることが望ましい。一方、非焼入硬化部の疲労強度としては、従来の中炭素鋼S53Cに対して平均で300MPaであることから、400MPa以上必要ということになる。従来から、回転曲げ疲労限度σWbと硬度(HV)との間にσWb=1.54HVなる関係が知られている。この式にσWb=400MPaを代入して必要な硬度を求めるとHRC23となる。したがって、非焼入硬化部の疲労強度の面からはHRC23以上であることが望ましい。 For the outer ring 23, the non-tempered state is a state of being air-cooled after forging. If the hardness in that state is too high, subsequent machining becomes difficult. On the other hand, if it is too soft, the fatigue strength of the non-quenched hardened portion cannot be obtained sufficiently. Considering that, in the future, due to downsizing and the like, a large load will be applied to the non-hardened and hardened portion, the fatigue strength of the non-hardened and hardened portion as well as the hardened and hardened portion will be important. Specifically, it is desirable to suppress to HRC30 or less from the viewpoint of workability. On the other hand, as the fatigue strength of the non-quenched hardened portion, it is 300 MPa on average with respect to the conventional medium carbon steel S53C, so that 400 MPa or more is necessary. Conventionally, a relationship of σ Wb = 1.54 HV is known between the rotational bending fatigue limit σ Wb and the hardness (HV). Substituting σ Wb = 400 MPa into this equation yields the required hardness, resulting in HRC23. Therefore, it is desirable that it is HRC23 or more from the surface of the fatigue strength of a non-hardening hardening part.

C−1a〜C−10aの試験品(実施品)と、C−11a〜C−17aの試験品(比較品)とを製作して、非調質状態の素材硬度を調べた。その結果、表3に示す。各試験品の化学成分は、C−1aはC−1に対応し、C−2aはC−2に対応し、C−3aはC−3に対応し、C−4aはC−4に対応し、C−5aはC−5に対応し、C−6aはC−6に対応し、C−7aはC−7に対応し、C−8aはC−8に対応し、C−9aはC−9に対応し、C−10aはC−10に対応し、C−11aはC−11に対応し、C−12aはC−12に対応し、C−13aはC−13に対応し、C−14aはC−14に対応し、C−15aはC−15に対応し、C−16aはC−16に対応し、C−17aはC−17に対応する。   C-1a to C-10a test products (implemented products) and C-11a to C-17a test products (comparative products) were manufactured, and the material hardness in an untempered state was examined. The results are shown in Table 3. The chemical composition of each test product is as follows: C-1a corresponds to C-1, C-2a corresponds to C-2, C-3a corresponds to C-3, and C-4a corresponds to C-4. C-5a corresponds to C-5, C-6a corresponds to C-6, C-7a corresponds to C-7, C-8a corresponds to C-8, C-9a Corresponds to C-9, C-10a corresponds to C-10, C-11a corresponds to C-11, C-12a corresponds to C-12, C-13a corresponds to C-13 , C-14a corresponds to C-14, C-15a corresponds to C-15, C-16a corresponds to C-16, and C-17a corresponds to C-17.

Figure 2007211955
各試験品は、直径30mm、長さ30mmの中実体とした。各試験品を900℃で1時間保持した後、直ちに自然空冷し、試験品の中心付近の硬度を測定した。その結果、表3に示す結果を得た。実施品の硬度は23≦HRC≦30の範囲にある。一方、比較品はC−16aを除きHRC23未満である。ここで、合金元素C、Si、Mn、Vの各量を従属変数とし、硬度を目的変数として重回帰分析を行った結果、前記数1の式を得た。表3中に示した硬度の予測値とは、各合金成分量を数1の式に代入して求めた値である。図3に硬度の実測値と予測値の関係を示すように、両者にはよい相関が見られる。すなわち、合金成分量がわかれば、素材硬度を高精度で予測可能であることを意味している。したがって、今回の実施品の合金成分C、Si、Mn、Vの構成だけでなく、前記数1の式から求まる硬度の予測値が23≦HRC≦30の条件を満たすような構成であればよいといえる。
Figure 2007211955
Each test article was solid with a diameter of 30 mm and a length of 30 mm. Each test specimen was held at 900 ° C. for 1 hour, and then immediately cooled with natural air, and the hardness near the center of the specimen was measured. As a result, the results shown in Table 3 were obtained. The hardness of the product is in the range of 23 ≦ HRC ≦ 30. On the other hand, comparative products are less than HRC23 except for C-16a. Here, as a result of performing multiple regression analysis using the respective amounts of the alloy elements C, Si, Mn, and V as dependent variables and the hardness as an objective variable, the above equation 1 was obtained. The predicted value of hardness shown in Table 3 is a value obtained by substituting each alloy component amount into the formula (1). As shown in FIG. 3 showing the relationship between the actually measured value of hardness and the predicted value, there is a good correlation between the two. That is, if the alloy component amount is known, it means that the material hardness can be predicted with high accuracy. Therefore, not only the structure of the alloy components C, Si, Mn, and V of the present embodiment product but also the structure in which the predicted value of hardness obtained from the formula 1 satisfies the condition of 23 ≦ HRC ≦ 30. It can be said.

本発明の実施形態を示す固定型等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the fixed type constant velocity universal joint which shows embodiment of this invention. 前記図1のA−A線断面図である。It is the sectional view on the AA line of the said FIG. 硬度の実測値と予測値との関係を示すグラフ図である。It is a graph which shows the relationship between the measured value of hardness, and a predicted value. 従来の固定型等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the conventional fixed type constant velocity universal joint.

符号の説明Explanation of symbols

22 トラック溝 22 Track groove

Claims (2)

トルク伝達部材転動用のトラック溝が形成された外側継手部材を備え、2軸間の角度変位のみを許容する固定型等速自在継手において、合金元素として、C:0.45〜0.65wt%、Si:0.1〜1.0wt%、Mn:0.1〜1.5wt%、V:0.05〜0.3wt%をそれぞれの範囲内で含有し、残部がFe及び不可避的不純物からなる鋼材を、少なくとも前記外側継手部材に用いることを特徴とする固定型等速自在継手。   In a fixed type constant velocity universal joint having an outer joint member formed with a track groove for rolling a torque transmission member and allowing only angular displacement between two axes, C: 0.45 to 0.65 wt% as an alloy element , Si: 0.1 to 1.0 wt%, Mn: 0.1 to 1.5 wt%, V: 0.05 to 0.3 wt% within the respective ranges, the balance from Fe and inevitable impurities A fixed type constant velocity universal joint characterized in that a steel material is used for at least the outer joint member. 合金成分量に基づいた外側継手部材の硬度の予測値が23≦HRC≦30となることを特徴とする請求項1の固定型等速自在継手。   2. The fixed type constant velocity universal joint according to claim 1, wherein a predicted value of the hardness of the outer joint member based on the alloy component amount is 23 ≦ HRC ≦ 30.
JP2006035358A 2006-02-13 2006-02-13 Fixed type constant velocity universal joint Withdrawn JP2007211955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035358A JP2007211955A (en) 2006-02-13 2006-02-13 Fixed type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035358A JP2007211955A (en) 2006-02-13 2006-02-13 Fixed type constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2007211955A true JP2007211955A (en) 2007-08-23

Family

ID=38490580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035358A Withdrawn JP2007211955A (en) 2006-02-13 2006-02-13 Fixed type constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2007211955A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014474A (en) * 2008-07-02 2010-01-21 Ntn Corp Detection method for detecting state of occurrence of contact fatigue damage on fixed type constant velocity universal joint
JP2010014473A (en) * 2008-07-02 2010-01-21 Ntn Corp Detection method of detecting temporal change generated when contact fatigue damage is generated

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014474A (en) * 2008-07-02 2010-01-21 Ntn Corp Detection method for detecting state of occurrence of contact fatigue damage on fixed type constant velocity universal joint
JP2010014473A (en) * 2008-07-02 2010-01-21 Ntn Corp Detection method of detecting temporal change generated when contact fatigue damage is generated

Similar Documents

Publication Publication Date Title
JP3593668B2 (en) Rolling bearing
JP2590645B2 (en) Rolling bearing
EP3088550A1 (en) Carburized-steel-component production method, and carburized steel component
JP5260032B2 (en) Induction hardened steel excellent in cold workability, rolling member made of the steel, and linear motion device using the rolling member
JP2008001943A (en) Rolling and/or sliding parts and manufacturing method thereof
JP2007113027A (en) Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus
JP2007211955A (en) Fixed type constant velocity universal joint
JP2019039044A (en) Rolling slide member and rolling bearing
JP2010236049A (en) Method for manufacturing bearing part excellent in rolling-fatigue characteristics under foreign-matter environment
JP2018021654A (en) Rolling slide member, its manufacturing method, carburization steel material and rolling bearing
JP2000204445A (en) Rolling bearing parts for high temperature use
JP5668283B2 (en) Manufacturing method of rolling sliding member
JP5597976B2 (en) Bearing constituent member, method for manufacturing the same, and rolling bearing provided with the bearing constituent member
JP4608379B2 (en) Rolling parts and rolling bearings using the same
WO2005098057A1 (en) Rolling part and ball bearing
JP2005113257A (en) Rolling bearing
JP2007218396A (en) Sliding type constant velocity universal joint
JP2006138376A (en) Radial needle roller bearing
JP3792542B2 (en) Rolling parts and power transmission parts
JP6457601B2 (en) Rolling bearing
JP2000213553A (en) Constant velocity universal joint
JPH11210767A (en) Rolling bearing
JP2009235444A (en) Method for applying heat-treatment for steel, method for manufacturing machine part, machine part, and rolling bearing
JP2006063355A (en) Rolling bearing and method for manufacturing bearing ring thereof
JPH10184701A (en) Rolling bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512