JP2007211785A - Suction filter unit for gas turbine - Google Patents

Suction filter unit for gas turbine Download PDF

Info

Publication number
JP2007211785A
JP2007211785A JP2007111012A JP2007111012A JP2007211785A JP 2007211785 A JP2007211785 A JP 2007211785A JP 2007111012 A JP2007111012 A JP 2007111012A JP 2007111012 A JP2007111012 A JP 2007111012A JP 2007211785 A JP2007211785 A JP 2007211785A
Authority
JP
Japan
Prior art keywords
filter
gas turbine
efficiency
filter medium
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007111012A
Other languages
Japanese (ja)
Other versions
JP4555317B2 (en
Inventor
Hitoshi Niinuma
仁 新沼
Fumio Nakajima
文男 中島
Katsuhiro Ono
克博 大野
Jun Iizuka
純 飯塚
Toru Baba
透 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2007111012A priority Critical patent/JP4555317B2/en
Publication of JP2007211785A publication Critical patent/JP2007211785A/en
Application granted granted Critical
Publication of JP4555317B2 publication Critical patent/JP4555317B2/en
Expired - Lifetime legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long life suction filter unit for a gas turbine which is an efficient suction filter unit not to deteriorate power generation output and enables filter replacement at regular inspection of the gas turbine which is mandated to be performed once a year. <P>SOLUTION: In the suction filter unit 5 for the gas turbine provided with a dust filter of a plurality of stages, the dust filter is composed of three stage arrangement of a panel type demister 2, a wind up belt type or windsock type pre-filter 3 and a high performance suction filter 4 for the gas turbine from an upstream side in an air flow direction, the high performance suction filter for the gas turbine is composed by closely piling low efficiency filtering material and high efficiency filtering material from the upstream side in the air flow direction, filter material area of each filtering material is set in 25-35 m<SP>2</SP>/unit, filtering material of 10-70% filtering efficiency in relation to 0.3 μm diameter particles is arranged in a layer of the upstream side in the air flow direction, filtering material of 99.97% filtering efficiency in relation to 0.3 μm diameter particles is arranged in a layer of a downstream side in the air flow direction, and pressure drop at a time of flow rate 50 m<SP>3</SP>/minute is maintained in 15-45 mmAq. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガスタービンプラントの空気圧縮機等に対する大気塵の付着を軽減することにより、発電出力の低下を防止し、長時間に亘り空気圧縮機等の洗浄、フィルタの交換を不要とするガスタービン吸気用フィルタユニットに関し、更に詳しくは、フィルタユニットの設置スペースをコンパクト化できるガスタービン吸気用フィルタユニットに関する。   The present invention reduces the generation output by reducing the adhesion of atmospheric dust to an air compressor or the like of a gas turbine plant, and eliminates the need for cleaning the air compressor or replacing a filter over a long period of time. More specifically, the present invention relates to a gas turbine intake filter unit that can reduce the installation space of the filter unit.

図8に示す通り、ガスタービンaは運転時に外気bを吸入する。この外気bには微粉塵や雨水、ミスト、排気ガス中のカーボン微粒子、塩分粒子等の大気塵が浮遊しているので、このような大気塵がガスタービン内部の腐食、汚染の原因となると共に、特に空気圧縮機cに付着して空気圧縮機cの性能低下を生じさせ、発電出力を低下させるという問題がある。そこで大気塵の吸い込みを未然に防止するために、ガスタービンaの空気吸込口dには、空気から大気塵を機械的に分離除去して清浄化するための集塵装置(フィルタユニット)eが設置されている。このフィルタユニットeは、特許文献1にも開示されるように、巻取式帯状ガラス繊維の濾材から成る粗フィルタfと、イオン交換繊維フィルタを折込型とした中性能フィルタgの2段式に構成されている。尚、図中hはガスタービンaのタービン部、iはガスタービンaによって駆動される発電機を示す。前記従来のガスタービン吸気用フィルタユニットは、充分に大気塵を除去できないためガスタービンの発電出力の低下を生じさせ、また、粉塵保持容量が小さいため年2〜3回の頻度でフィルタ交換が必要となる。このため、発電出力を低下させない高効率な吸気用フィルタユニットで年1回義務づけられているガスタービンの定期点検時にフィルタ交換ができる長寿命のガスタービン吸気用フィルタユニットの提案が望まれている。
特開平5−106464号公報
As shown in FIG. 8, the gas turbine a sucks outside air b during operation. Since atmospheric dust such as fine dust, rain water, mist, carbon fine particles in exhaust gas, and salt particles floats in the outside air b, such atmospheric dust causes corrosion and contamination inside the gas turbine. In particular, there is a problem in that it adheres to the air compressor c and causes a reduction in the performance of the air compressor c, thereby reducing the power generation output. Therefore, in order to prevent the inhalation of atmospheric dust, a dust collector (filter unit) e for mechanically separating and removing atmospheric dust from the air is provided at the air inlet d of the gas turbine a. is set up. As disclosed in Patent Document 1, this filter unit e is a two-stage type consisting of a coarse filter f made of a filter material of a take-up type band-like glass fiber and a medium performance filter g in which an ion exchange fiber filter is folded. It is configured. In the drawing, h represents a turbine portion of the gas turbine a, and i represents a generator driven by the gas turbine a. Since the conventional gas turbine intake filter unit cannot sufficiently remove atmospheric dust, the power generation output of the gas turbine is reduced, and the dust holding capacity is small, so the filter needs to be replaced twice or three times a year. It becomes. For this reason, there is a demand for a long-life gas turbine intake air filter unit that can be replaced during a periodic inspection of a gas turbine that is required once a year with a highly efficient intake air filter unit that does not reduce power generation output.
JP-A-5-106464

本発明者等は前記要望に応えるべく、パネル型デミスター、巻取帯状型あるいは吹流し型プレフィルタ、箱型中性能フィルタ、及び箱型高性能フィルタの4段式としたものを提案したが、吸気用フィルタユニットが大きくなり設置スペースと設備費が大となる問題があり、その対策が望まれている。そこで、低圧損、高効率、長寿命の観点から中性能フィルタと高性能フィルタを複合化すればよいという結論に到り、複合化に関する先行技術を参照したが各々に問題があった。まず、設置スペースを小さくする目的で、実開昭62ー132715号公報に、ケーシング内を流れるガスの下流側に所定の能力を有する濾紙を、その上流側に前記濾紙よりも捕集能力の低い濾紙を多段に設けることが開示されているが、フィルタが小さくならず設置スペースを小さくする目的が達成できないという問題がある。また、塩分粒子を除去する目的で、実公平3−35373号公報に、撥水性を有する2枚の濾材の間に空隙部を有する間隔保持体を挟み込むことが開示されているが、これは塩分粒子が水滴となっても上流側の濾材裏面に沿って液滴を落下させるためであり、濾材の厚みが大きくなり、8000時間以上の寿命をもたせるために濾材面積を大きくとることができず、また、圧力損失も大きくなるという問題がある。また、濾過効率(0.1μmDOP)が99.99%以上(いわゆるULPA)の高効率を得る目的で、特開昭54ー94176号公報に、濾材を2層で構成し、気流方向に対して下流側の層には粒径0.3μmの粒子に対して99.97%以上の濾過効率を有する濾材を配し、上流側の層には粒径0.3μmの粒子に対して99.97%未満75%以上の濾過効率を有する濾材を配し、これら2層の濾材を密接に重ね合わせた状態でジグザグ状に折り畳むことが開示されているが、これは2段にするものに比べて寸法上の制約および作り易さの観点から濾材を2層にするとしているが、高効率が目的であり、寿命は考慮されておらずガスタービン用として使用した場合は、濾材の目詰まりが早くフィルタ交換を年2〜3回以上実施する必要があるという問題がある。   In order to meet the above-mentioned demands, the present inventors have proposed a four-stage type of panel type demister, take-up belt type or windsock type prefilter, box type medium performance filter, and box type high performance filter. There is a problem that the size of the filter unit becomes large and the installation space and equipment cost increase, and countermeasures are desired. Thus, from the viewpoint of low pressure loss, high efficiency, and long life, it was concluded that a medium performance filter and a high performance filter should be combined, and the prior art related to the combination was referred to, but each had problems. First, for the purpose of reducing the installation space, Japanese Utility Model Laid-Open No. 62-132715 discloses a filter paper having a predetermined ability on the downstream side of the gas flowing in the casing, and has a lower collection ability than the filter paper on the upstream side. Although it has been disclosed that filter paper is provided in multiple stages, there is a problem that the purpose of reducing the installation space cannot be achieved without reducing the filter. In addition, for the purpose of removing salt particles, Japanese Utility Model Publication No. 3-35373 discloses that a gap holder having a void portion is sandwiched between two filter media having water repellency. This is because even if the particles become water droplets, the droplets are dropped along the back surface of the filter medium on the upstream side, the thickness of the filter medium is increased, and the filter medium area cannot be increased in order to have a lifetime of 8000 hours or more. In addition, there is a problem that the pressure loss increases. In addition, for the purpose of obtaining a high efficiency of filtration efficiency (0.1 μm DOP) of 99.99% or more (so-called ULPA), Japanese Patent Application Laid-Open No. 54-94176 discloses that the filter medium is composed of two layers, A filter medium having a filtration efficiency of 99.97% or more with respect to particles having a particle diameter of 0.3 μm is disposed in the downstream layer, and 99.97 with respect to particles having a particle diameter of 0.3 μm is disposed in the upstream layer. It is disclosed that a filter medium having a filtration efficiency of less than 75% and 75% or more is disposed, and these two layers of filter medium are folded in a zigzag shape in a closely overlapped state. The filter medium is assumed to have two layers from the viewpoint of dimensional constraints and ease of production, but the purpose is high efficiency, and the life is not considered, and when used for gas turbines, the filter medium is clogged quickly. It is necessary to carry out filter replacement 2-3 times a year There is a problem in that that.

本発明のガスタービン吸気用高性能フィルタユニットは、以上の課題を解決するために、防塵用フィルタを複数段設けて成るガスタービン吸気用フィルタユニットにおいて、前記防塵用フィルタが気流方向の上流側より、パネル型デミスター、巻取帯状型あるいは吹流し型プレフィルタ、ガスタービン吸気用高性能フィルタの3段を配置してなり、前記ガスタービン吸気用高性能フィルタは、気流方向の上流側より低効率濾材と高効率濾材を密接して重ね、これら各濾材の濾材面積が25〜35m/台である濾材構成にし、気流方向に対して上流側の層には、粒径0.3μmの粒子に対して10〜70%の濾過効率の濾材を配し、下流側の層には粒径0.3μmの粒子に対して99.97%の濾過効率の濾材を配し、風量50m/分の時の圧力損失を15〜45mmAqとしたことを特徴とする。尚、前記プレフィルタは吹流し型で濾材面積が2〜8m/台であることが好ましい。 In order to solve the above problems, the high performance filter unit for gas turbine intake of the present invention is a gas turbine intake filter unit in which a plurality of dustproof filters are provided. , A panel type demister, a take-up band type or wind-flow type pre-filter, and a high performance filter for gas turbine intake. The high performance filter for intake of the gas turbine has a low efficiency filter medium from the upstream side in the air flow direction. And high-efficiency filter media are closely stacked, the filter media area of each of these filter media is 25-35 m 2 / unit, the upstream layer with respect to the air flow direction, the particles with a particle size of 0.3 μm Te arranged filter media 10% to 70% of filtration efficiency, arranged filter media 99.97% filtration efficiency for particles having a particle diameter of 0.3μm is the layer of the downstream side, of the air flow 50 m 3 / min Characterized in that the pressure loss was 15~45mmAq of. In addition, it is preferable that the said pre filter is a windsock type | mold and a filter medium area is 2-8 m < 2 > / unit.

以上説明したように、本発明のガスタービン吸気用フィルタユニットによれば、例えば法令による年1回の定期点検時のみのフィルタ交換ですむため、フィルタ交換及び圧縮機の洗浄等のメンテナンス作業が軽減される。また、HEPAフィルタ等の高性能フィルタを使用するため、大気塵の付着によるガスタービンの出力低下をおさえられる。また、吸気用フィルタユニットがコンパクトとなり省スペース化が図れ、更に、フィルタが4段式のものに比べて、3段と1段少なくてすむため、使用済みフィルタ等の廃棄物の容積を低減できる。   As described above, according to the gas turbine intake filter unit of the present invention, for example, it is only necessary to replace the filter at the time of a regular inspection once a year by law, so that maintenance work such as filter replacement and compressor cleaning is reduced. Is done. In addition, since a high-performance filter such as a HEPA filter is used, the output of the gas turbine can be reduced due to adhesion of atmospheric dust. In addition, the intake filter unit is compact and space-saving is achieved, and furthermore, the volume of waste such as used filters can be reduced because the filter can be reduced by three stages and one stage compared to a four-stage filter. .

本発明のガスタービン吸気用フィルタユニットを構成する前記パネル型デミスターは、雨水の浸入を防止するためのものであり、従来種々公知のものがあるが、例えば、動植物性繊維および合成繊維をスプリング状にカール加工して多くの小さな弾性体をつくり、これを結合剤で被覆結合したものを板状にして金枠内に封入したものが知られている。このデミスターは、一般には、厚みが10〜50mm、風速2m/sの時の濾過効率(JIS8種,比色法)が15〜60%、圧力損失が1〜10mmAqである。前記デミスターは圧力損失が小さく、即ち、通気抵抗が小さく、水滴に対して濾過効率が高いことが特徴で、また、汚れた場合に枠から外して洗浄することで再使用できる。もちろん、前記パネル型デミスターとして雨水の浸入を屈折路で防ぐようにした屈折型の羽根式エリミネータ等も使用できる。   The panel demister constituting the gas turbine intake filter unit of the present invention is for preventing rainwater from entering, and there are various known ones. For example, animal and vegetable fibers and synthetic fibers are spring-shaped. It is known that a large number of small elastic bodies are made by curling, and these are coated and bonded with a binder into a plate shape and enclosed in a metal frame. In general, the demister has a thickness of 10 to 50 mm, a filtration efficiency (JIS 8 type, colorimetric method) at a wind speed of 2 m / s of 15 to 60%, and a pressure loss of 1 to 10 mmAq. The demister is characterized by low pressure loss, that is, low ventilation resistance and high filtration efficiency with respect to water droplets, and when dirty, it can be reused by removing it from the frame and washing. Of course, as the panel type demister, a refraction type blade type eliminator or the like that prevents rainwater from entering by a refraction path can be used.

また、本発明のガスタービン吸気用フィルタユニットを構成する前記プレフィルタとしては巻取帯状型かあるいは吹流し型を用いるわけであるが、巻取帯状型は図2に示す通り、ガラス繊維製濾材から成る帯状濾材10が吸気空気路11を遮るように張設されており、濾材10が巻き取られている送出用ロール12が上部に設置される一方、その送出用ロール12から取り出された濾材10を巻き取る巻取用ロール13が下部に設置されている。この巻取帯状型プレフィルタは、一般には、濾材材質がガラス繊維及びポリエステル繊維等を用いた不織布であり、濾材厚みが20〜70mm、平均繊維径が15〜60μmで、風速2.5m/sの時の圧力損失が4〜8mmAq、濾過効率(JIS15種,重量法)が60〜90%、粉塵保持容量が500〜1300g/mである。ただし、巻取帯状型は濾材の巻取り用駆動装置の保守メンテナンスが必要となるため完全なメンテナンスフリーとするには、濾材面積を広くした下記吹流し型が好ましい。吹流し型は、図3乃至図5に示す通り、濾材20を多数の袋体21を連続させた形状とし、この濾材20をその開口部22に合わせて複数本の桟23を備えたヘッド部24を介して枠体25に螺子26で取り付けるものである。ただし形態はこれに限定されるものではなく濾材面積を所望のものにできる袋状のものであればよい。この吹流し型プレフィルタは、一般には、濾材は厚みが10〜25mm、材質がポリエステル、アクリル等の有機繊維の乾式不織布、平均繊維径が20〜60μm、目付が300〜600g/m、風速2.5m/sの時の圧力損失が2〜8mmAq、効率(JIS15種,重量法)が60〜90%で、この濾材を用いて濾材面積が2〜8m/台、外形寸法がタテ592mm×ヨコ592mm×奥行き500mmの吹流し型プレフィルタとした。濾材面積が2m/台未満の場合は所望のフィルタユニットの寿命が得られず、濾材面積が8m/台を越える場合は、圧力損失が高くなり好ましくない。従って濾材面積は2〜8m/台が好ましい。尚、このフィルタの性能は風量50m/分の時の圧力損失が2〜8mmAq、効率(JIS15種,重量法)が60〜90%、粉塵保持容量が1000〜4000g/台である。 In addition, as the pre-filter constituting the gas turbine intake filter unit of the present invention, a winding band type or a blower type is used, and the winding band type is formed from a glass fiber filter medium as shown in FIG. The belt-shaped filter medium 10 is stretched so as to block the intake air passage 11, and the feed roll 12 around which the filter medium 10 is wound is installed on the upper side, while the filter medium 10 taken out from the feed roll 12 is provided. A take-up roll 13 is installed at the bottom. In general, the wound belt-shaped prefilter is a nonwoven fabric using glass fiber, polyester fiber, or the like as a filter medium material. The filter medium thickness is 20 to 70 mm, the average fiber diameter is 15 to 60 μm, and the wind speed is 2.5 m / s. The pressure loss is 4 to 8 mmAq, the filtration efficiency (JIS 15 type, weight method) is 60 to 90%, and the dust holding capacity is 500 to 1300 g / m 2 . However, since the winding belt-shaped mold requires maintenance of the filter medium winding drive device, the following blow-off mold with a wide filter medium area is preferable for complete maintenance-free. As shown in FIGS. 3 to 5, the streamer type has a shape in which a large number of bag bodies 21 are made continuous with a filter medium 20, and a head section 24 having a plurality of bars 23 with the filter medium 20 aligned with its opening 22. It attaches to the frame 25 with the screw 26 via. However, the shape is not limited to this, and any shape may be used as long as the filter medium area can be made as desired. In general, this streamer-type prefilter has a filter medium with a thickness of 10 to 25 mm, a dry nonwoven fabric made of organic fibers such as polyester and acrylic, an average fiber diameter of 20 to 60 μm, a basis weight of 300 to 600 g / m 2 , and a wind speed of 2 The pressure loss at 5 m / s is 2 to 8 mmAq, the efficiency (JIS 15 type, weight method) is 60 to 90%, the filter medium area is 2 to 8 m 2 / unit using this filter medium, and the external dimensions are vertical 592 mm × A horizontal pre-filter having a horizontal width of 592 mm and a depth of 500 mm was obtained. When the filter medium area is less than 2 m 2 / unit, the desired filter unit life cannot be obtained, and when the filter medium area exceeds 8 m 2 / unit, the pressure loss increases, which is not preferable. Accordingly, the filter medium area is preferably 2 to 8 m 2 / unit. The performance of this filter is such that the pressure loss is 2 to 8 mmAq when the air volume is 50 m 3 / min, the efficiency (JIS 15 type, weight method) is 60 to 90%, and the dust holding capacity is 1000 to 4000 g / unit.

本発明のガスタービン吸気用高性能フィルタは、高効率濾材と低効率濾材との組み合わせで得られるものであるが、高効率濾材としては、粒径0.3μmの粒子に対して90〜99.99%の濾過効率のものを用いるのが好ましい。これは、90%未満では、ガスタービンの圧縮機の塵埃付着が防止できず、99.99%を越える場合は、塵埃付着防止には有効であるが圧力損失が増大し、寿命が短くなる問題を生ずるからである。また、低効率濾材としては、粒径0.3μmの粒子に対して10〜70%の濾過効率のもを用いるのが好ましい。これは、10%未満では下流側の高効率濾材の負担が大きくなり、70%を越える場合は濾材の目詰まりが早くなる問題が生ずるからである。これら高効率濾材30aと低効率濾材30bは、密接して重ね合わせられ、濾材面積を増加させるために吸気空気の流れ方向に対して凹凸となるようジグザグ状に折り畳んでおり、それを箱型の枠体31にシール材32を介して組み込み、その折り曲げ間隔部にシートを波形に屈折したセパレータ33が挿入されている。尚、図示の様に、セパレータ33の屈折の波高さを挿入方向後端側の高さH1を挿入方向先端側H2の高さより大きくしてテーパー状に形成したいわゆる傾斜型セパレータを用いることにより、通常のセパレータの様に屈折の波高さを全長に亘り均等にしたものに比べてフィルタを多風量で高性能にすることができる。この高性能フィルタは、一般には、各濾材の厚みが0.4〜2.0mm、目付が100〜200g/m、風速5.3cm/sの時の圧力損失が5〜45mmAq、効率(0.3μmDOP)が90〜99.9%で、セパレータは材質がアルミニウム、ステンレス等の金属箔、クラフト、合繊等の紙、ポリアリレート、ポリエチレンテレフタレート等の合成樹脂フィルムで、該濾材をジグザグに折り畳みセパレータを間挿して、濾材面積が25〜35m/台、外形寸法がタテ610mm×ヨコ610mm×奥行き290mmの高性能フィルタとした。濾材面積が25m/台未満では、圧力損失が高くなって寿命が短くなり、35m/台を越えると濾材と濾材の間隔保持ができないという問題がある。従って、濾材面積は25〜35m/台が好ましい。尚、このフィルタの性能は風量50m/分の時の圧力損失が15〜45mmAq、効率(0.3μmDOP)が90〜99.99%、粉塵保持容量が1000〜3000g/台である。
上流側の低効率濾材に下流側の高効率濾材の負荷を軽減するような濾材面積25〜35m/台と通常(21m/台)に比べて大きいものを選択すると共に、例えば、粒径0.3μmの粒子に対して10〜70%の濾過効率の濾材を選択し、下流側の高効率濾材に上流側の低効率濾材からの通過粉塵により圧力損失が増大しないように濾材面積25〜30m/台と大きいものでかつ空気圧縮機の汚れを防止できる、例えば、粒径0.3μmの粒子に対して90〜99.99%の濾過効率の高効率濾材を選択して配するようにした。これら低効率濾材と高効率濾材同士を密接して重ね合わせることにより、厚みを増大させることなく、濾材面積をフィルタ枠内に多く折り込むことができる。
また、ガスタービンの使用開始時の圧力損失が高くなり、初期発電出力の低下がおこるものの、圧縮機が汚れないために1年間を通じてガスタービンの出力低下がおこらないことになる。これに対して、前記箱型高性能フィルタを最下流側に備えないものでは、使用開始時の圧力損失は低いために、初期に高いガスタービンの出力が得られるものの、1年間通して使用すると圧縮機が汚れるために発電出力が低下し始め、結果として前記した箱型高性能フィルタを備えたガスタービンの所定の出力を途中で下回ることになる。
The high-performance filter for gas turbine intake of the present invention is obtained by a combination of a high-efficiency filter medium and a low-efficiency filter medium. As a high-efficiency filter medium, 90-99. It is preferable to use one having a filtration efficiency of 99%. If it is less than 90%, dust adhesion of the compressor of the gas turbine cannot be prevented, and if it exceeds 99.99%, it is effective for preventing dust adhesion, but pressure loss increases and life is shortened. It is because it produces. In addition, as the low efficiency filter medium, it is preferable to use a filter having a filtration efficiency of 10 to 70% with respect to particles having a particle diameter of 0.3 μm. This is because if it is less than 10%, the burden on the high-efficiency filter medium on the downstream side becomes large, and if it exceeds 70%, the filter medium is clogged quickly. These high-efficiency filter media 30a and low-efficiency filter media 30b are closely overlapped and folded in a zigzag shape so as to be uneven with respect to the flow direction of the intake air in order to increase the filter media area. A separator 33 is inserted into the frame 31 via a sealing material 32, and a sheet 33 is bent into a wavy interval portion. As shown in the figure, by using a so-called inclined separator in which the wave height of the refraction of the separator 33 is formed in a tapered shape by making the height H1 on the rear end side in the insertion direction larger than the height on the front end side H2 in the insertion direction. The filter can have high airflow and high performance as compared with a normal separator in which the wave height of refraction is made uniform over the entire length. This high-performance filter generally has a thickness of each filter medium of 0.4 to 2.0 mm, a basis weight of 100 to 200 g / m 2 , a pressure loss of 5 to 45 mmAq at a wind speed of 5.3 cm / s, and an efficiency (0 .3 μm DOP) is 90 to 99.9%, and the separator is made of metal foil such as aluminum or stainless steel, paper such as craft or synthetic fiber, synthetic resin film such as polyarylate or polyethylene terephthalate, and the filter medium is folded in a zigzag manner. Was inserted into a high-performance filter having a filter medium area of 25 to 35 m 2 / unit and outer dimensions of vertical 610 mm × horizontal 610 mm × depth 290 mm. If the area of the filter medium is less than 25 m 2 / unit, the pressure loss becomes high and the life is shortened. If the area exceeds 35 m 2 / unit, there is a problem that the distance between the filter medium and the filter medium cannot be maintained. Therefore, the filter medium area is preferably 25 to 35 m 2 / unit. The performance of this filter is 15 to 45 mmAq in pressure loss when the air volume is 50 m 3 / min, 90 to 99.99% in efficiency (0.3 μm DOP), and 1000 to 3000 g / unit in dust holding capacity.
Select a filter medium area of 25 to 35 m 2 / unit and a normal one (21 m 2 / unit) that reduces the load of the downstream high-efficiency filter medium for the upstream low-efficiency filter medium. A filter medium having a filtration efficiency of 10 to 70% is selected with respect to 0.3 μm particles, and the filter medium area 25 to 25 so that pressure loss does not increase due to dust passing through the low-efficiency filter medium on the upstream side to the high-efficiency filter medium on the downstream side. A high-efficiency filter medium having a filtration efficiency of 90 to 99.99% with respect to particles having a particle size of 0.3 μm, for example, is selected and arranged so as to be as large as 30 m 2 / unit and prevent contamination of the air compressor. I made it. By closely overlapping the low-efficiency filter medium and the high-efficiency filter medium, a large area of the filter medium can be folded into the filter frame without increasing the thickness.
In addition, although the pressure loss at the start of use of the gas turbine increases and the initial power generation output decreases, the compressor does not get dirty, so the gas turbine output does not decrease throughout the year. On the other hand, in the case where the box-type high performance filter is not provided on the most downstream side, the pressure loss at the start of use is low. Since the compressor is contaminated, the power generation output begins to decrease, and as a result, the predetermined output of the gas turbine provided with the box-type high performance filter is lowered halfway.

以下、本発明の実施例を図面に付き説明する。図1は、本発明ガスタービン吸気用フィルタユニットの実施例を示すもので、図略のガスタービンの吸気用ダクトに連設したケーシング1内にガスタービンの連続運転にとって有害な塵埃等の有害物質を吸気空気中から除去するために、パネル型デミスター2、巻取帯状型あるいは吹流し型プレフィルタ3、更に本発明の高性能フィルタ4から成る3段式のフィルタユニット5を設けるようにした。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a gas turbine intake filter unit according to the present invention. In a casing 1 connected to an intake duct of a gas turbine (not shown), harmful substances such as dust harmful to the continuous operation of the gas turbine are shown. Is removed from the intake air, a three-stage filter unit 5 including a panel type demister 2, a winding band type or blown type prefilter 3, and a high performance filter 4 of the present invention is provided.

デミスターは、サラン繊維(サランロック,登録商標)を金枠内に封入固定したもので、定格風速が2.5m/s、圧力損失が3mmAq、濾過効率(JIS8種,重量法)が28%で、寸法がタテ610mm×ヨコ610mm×厚さ35mmのものを前記ケーシング1内に16個(4列4段)設置するようにした。   The demister is made by sealing and fixing Saran fiber (Saranlok, registered trademark) in a metal frame, with a rated wind speed of 2.5 m / s, a pressure loss of 3 mmAq, and a filtration efficiency (JIS8, weight method) of 28%. In the casing 1, 16 pieces (length: 610 mm × width: 610 mm × thickness: 35 mm) were installed in the casing 1 (4 rows and 4 stages).

プレフィルタとして巻取帯状型は、濾材は厚みが50mm、材質がガラス繊維、平均繊維径が流入側30μmで流出側が20μmの密度勾配、効率(JIS15種,重量法)が80%で、この濾材を用いたフィルタの性能は風速2.5m/sの時の圧力損失が6mmAq、粉塵保持容量が1000g/mの自動巻取式で、外形寸法が1200mmのものを前記ケーシング1内に2台設置するようにした。また、吹流し型については、濾材は平均繊維径が35μmのポリエステル繊維を塩ビ系樹脂で結合して厚さ15mm、目付を300g/mとし、風速2.5m/sの時の圧力損失が5mmAq、効率(JIS15種,重量法)が80%の濾材を6山折り畳み金枠で固定して、濾材面積が4m/台、外形寸法がタテ592mm×ヨコ592mm×奥行き500mmのフィルタとした。このフィルタの性能は風量50m/分の時の圧力損失が5mmAq、効率(JIS15種,重量法)が80%、粉塵保持容量が2800g/台で、前記ケーシング1内に16個(4列4段)設置するようにした。 As a pre-filter, the winding belt type has a filter medium with a thickness of 50 mm, a material of glass fiber, an average fiber diameter of 30 μm on the inflow side and a density gradient of 20 μm on the outflow side, and efficiency (JIS 15 types, weight method) of 80%. The performance of the filter using the filter is a self-winding type with a pressure loss of 6 mmAq and a dust holding capacity of 1000 g / m 2 at a wind speed of 2.5 m / s, and with two external dimensions of 1200 mm in the casing 1 Installed. For the streamer type, the filter medium is a polyester fiber having an average fiber diameter of 35 μm bonded with a vinyl chloride resin to a thickness of 15 mm, a basis weight of 300 g / m 2, and a pressure loss of 5 mmAq at a wind speed of 2.5 m / s. A filter medium having an efficiency (JIS 15 type, weight method) of 80% was fixed with six folding metal frames to obtain a filter medium area of 4 m 2 / unit, outer dimensions of 592 mm × width 592 mm × depth 500 mm. The performance of this filter is that the pressure loss is 5 mmAq when the air volume is 50 m 3 / min, the efficiency (JIS 15 type, weight method) is 80%, the dust holding capacity is 2800 g / unit, and 16 pieces in the casing 1 (4 rows 4 Step) It was set up.

高性能フィルタは、低効率濾材(厚み0.3mm、目付60g/m、濾過効率(0.3μmDOP)15%、圧力損失0.9mmAqの平均繊維径2.0μmのガラス繊維と有機繊維の混抄した湿式不織布)と高効率濾材(厚み0.4mm、目付70g/m、濾過効率(0.3μmDOP)99.97%、圧力損失28mmAqの平均繊維径0.8μmのガラス繊維の湿式不織布)を密接して重ね合わせて折り込み、アルミニウム箔の傾斜型セパレータを挿入して、ジグザグ状折込型(箱型)としたもので、フィルタとして圧力損失33mmAq、粉塵保持容量2000g/台、濾過効率(0.3μmDOP)99.97%のものが得られる。この様にして得られた外径寸法がタテ610mm×ヨコ610mm×奥行き290mmのものを前記ケーシング1内に16個(4列4段)設置するようにした。尚、従来のごとく、高効率濾材と低効率濾材を別々に610mm×610mm×290mmのフィルタとして2段に設置した場合には圧力損失が38mmAqと高くなるが、本発明のごとく高効率濾材と低効率濾材を密接して重ね合わせることにより構造上の抵抗が下がりフィルタユニットの圧力損失の低減にも寄与できる。 The high-performance filter is a low-efficiency filter medium (thickness 0.3 mm, basis weight 60 g / m 2 , filtration efficiency (0.3 μm DOP) 15%, pressure loss 0.9 mmAq, average fiber diameter 2.0 μm, glass fiber and organic fiber) Wet nonwoven fabric) and a high-efficiency filter medium (thickness 0.4 mm, basis weight 70 g / m 2 , filtration efficiency (0.3 μm DOP) 99.97%, pressure loss 28 mmAq glass fiber wet nonwoven fabric with an average fiber diameter of 0.8 μm) They are closely overlapped and folded, and an aluminum foil inclined separator is inserted into a zigzag folded type (box type). The filter has a pressure loss of 33 mmAq, a dust holding capacity of 2000 g / unit, a filtration efficiency (0. 3 μm DOP) 99.97% is obtained. Sixteen (four rows and four stages) having an outer diameter of 610 mm × width 610 mm × depth 290 mm obtained in this manner were installed in the casing 1. In addition, when the high-efficiency filter medium and the low-efficiency filter medium are separately installed in two stages as a 610 mm × 610 mm × 290 mm filter as in the past, the pressure loss becomes as high as 38 mmAq. By closely overlapping the efficiency filter media, the structural resistance is lowered, which can contribute to the reduction of the pressure loss of the filter unit.

前記プレフィルタとして巻取帯状型を用いたものを実施例1、吹流し型を用いたものを実施例2とし、更に、前記デミスターを用いずに前記巻取帯状型プレフィルタと前記高性能フィルタの高効率濾材を取り除いて低効率濾材のみとした箱型中性能フィルタの2段式としたものを従来例1、実施例1の高性能フィルタを、低効率濾材と高効率濾材をそれぞれ単層にして箱型中性能フィルタと箱型高性能フィルタとして4段式としたものを比較例1として、それぞれガスタービン吸気用フィルタユニットとして構成し、これらガスタービン吸気用フィルタユニットに外気を連続的に流し続け、その期間中のガスタービンの出力低下を試験すると共に設置スペースの省スペース化について評価した。前記各吸気用フィルタユニットの構成を下記表1に、また試験結果を下記表2に示す。   A pre-filter using a take-up band type is Example 1 and a wind-sink type is used as Example 2. Further, without using the demister, the take-up band pre-filter and the high-performance filter The high-performance filter of Conventional Example 1 and Example 1 is a single-layered high-performance filter of Conventional Example 1 and Example 1, which is a two-stage box-type medium-performance filter that removes the high-efficiency filter medium and contains only the low-efficiency filter medium. A box-type medium-performance filter and a box-type high-performance filter, which have four stages, are each configured as a gas turbine intake filter unit as Comparative Example 1, and external air is allowed to flow continuously through these gas turbine intake filter units. Subsequently, the gas turbine output reduction during that period was tested, and the space saving of the installation space was evaluated. The structure of each intake filter unit is shown in Table 1 below, and the test results are shown in Table 2 below.

Figure 2007211785
Figure 2007211785

Figure 2007211785
Figure 2007211785

前記表から明らかなように、特開平5−106464号公報に記載される様に、従来の巻取帯状型プレフィルタと箱型中性能フィルタの2段式では、長時間の使用においてはガスタービンの出力が10%程度低下する。また、フィルタが目詰まりして寿命がくることにより年2〜3回フィルタ交換及び圧縮機の洗浄作業が必要となる。また、比較例1は、ガスタービンの出力低下については効率99.97%と高効率であるため圧縮機の塵埃付着を防止でき、フィルタ寿命の長期化も図れ、フィルタ交換も年1回ですむが、デミスター、プレフィルタ、中性能フィルタ、高性能フィルタと4段式となりフィルタの設置スペースが膨大となり、設備費もかさむことになる。これに対し、本発明の実施例1は、中性能フィルタと高性能フィルタの複合化が図れ、従来4段式では3300mm長さのフィルタユニットが本発明では2300mmで約1000mmの省スペースが図れると共に濾過効率も比較例1同様に優れるため圧縮機の塵埃付着防止ができて、しかも比較例1よりも粉塵保持容量が低圧損化のため大きくなり結果としてフィルタの長寿命化が更にはかれる。但し、プレフィルタが巻取帯状型で自動であるため駆動装置の関係から駆動部の保守点検が必要となる。また、本発明の実施例2は、実施例1のプレフィルタを吹流し型とすることにより、ガスタービンの出力低下を防止でき、省スペース化が図れると共に8000時間以上のメンテナンスフリーを達成できる。   As is apparent from the above table, as described in Japanese Patent Application Laid-Open No. 5-106464, the conventional two-stage type of winding strip type pre-filter and box type medium performance filter has a gas turbine for long-time use. Is reduced by about 10%. Further, since the filter is clogged and its life is shortened, it is necessary to replace the filter and clean the compressor 2-3 times a year. In Comparative Example 1, the efficiency of gas turbine output reduction is as high as 99.97%, preventing dust from adhering to the compressor, extending the filter life, and replacing the filter once a year. However, the demister, pre-filter, medium performance filter, and high performance filter are four-stage type, and the installation space for the filter becomes enormous, and the equipment cost increases. On the other hand, in the first embodiment of the present invention, a medium performance filter and a high performance filter can be combined, and in the conventional four-stage type, a filter unit having a length of 3300 mm can be saved at 2300 mm and approximately 1000 mm in space. Since the filtration efficiency is excellent as in Comparative Example 1, it is possible to prevent the dust from adhering to the compressor, and the dust holding capacity is larger than that of Comparative Example 1 due to the low pressure loss, resulting in a longer life of the filter. However, since the prefilter is a take-up belt type and automatic, maintenance inspection of the drive unit is necessary due to the drive device. Further, in the second embodiment of the present invention, the prefilter of the first embodiment is made into a blow-off type, so that the output of the gas turbine can be prevented from being reduced, space saving can be achieved, and maintenance free for 8000 hours or more can be achieved.

本発明ガスタービン吸気用フィルタユニットの構成図Configuration of the gas turbine intake filter unit of the present invention 巻取帯状型プレフィルタの部分切断正面図Partial cut front view of a winding band type prefilter 吹流し型プレフィルタの濾材の側面図Side view of the filter media of a streamer type prefilter 前記濾材のヘッド部の正面図Front view of the head of the filter medium 前記吹流し型プレフィルタの平面図Top view of the windsock prefilter 高性能フィルタの斜視図High-performance filter perspective view 前記高性能フィルタの部分切断平面図Partial cut plan view of the high performance filter 従来のガスタービン吸気用フィルタユニットの構成図Configuration of conventional gas turbine intake filter unit

符号の説明Explanation of symbols

1 ケーシング
2 パネル型デミスター
3 巻取帯状型あるいは吹流し型プレフィルタ
4 高性能フィルタ
5 ガスタービン吸気用フィルタユニット
30a 高効率濾材
30b 低効率濾材
31 枠体
32 シール材
33 セパレータ
DESCRIPTION OF SYMBOLS 1 Casing 2 Panel type | mold demister 3 Winding strip | belt-shaped type | mold or a windsock type pre filter 4 High performance filter 5 Gas turbine intake filter unit 30a High efficiency filter medium 30b Low efficiency filter medium 31 Frame 32 Seal material 33 Separator

Claims (2)

防塵用フィルタを複数段設けて成るガスタービン吸気用フィルタユニットにおいて、前記防塵用フィルタが気流方向の上流側より、パネル型デミスター、巻取帯状型あるいは吹流し型プレフィルタ、ガスタービン吸気用高性能フィルタの3段を配置してなり、前記ガスタービン吸気用高性能フィルタは、気流方向の上流側より低効率濾材と高効率濾材を密接して重ね、これら各濾材の濾材面積が25〜35m/台である濾材構成にし、気流方向に対して上流側の層には、粒径0.3μmの粒子に対して10〜70%の濾過効率の濾材を配し、下流側の層には粒径0.3μmの粒子に対して99.97%の濾過効率の濾材を配し、風量50m/分の時の圧力損失を15〜45mmAqとしたことを特徴とするガスタービン吸気用フィルタユニット。 In a gas turbine intake filter unit having a plurality of dustproof filters, the dustproof filter is a panel type demister, a take-up band type or blown type prefilter, and a high performance filter for gas turbine intake from the upstream side in the air flow direction. The high-performance filter for gas turbine intake is in close contact with the low-efficiency filter medium and the high-efficiency filter medium from the upstream side in the airflow direction, and the filter medium area of each of these filter media is 25 to 35 m 2 / The filter medium is a base, and the upstream layer with respect to the airflow direction is provided with a filter medium having a filtration efficiency of 10 to 70% with respect to particles having a particle diameter of 0.3 μm, and the downstream layer has a particle diameter. arranged filter medium 0.3 [mu] m 99.97% filtration efficiency for particles, the filter for a gas turbine inlet air, characterized in that the pressure loss when the air volume 50 m 3 / min was 15~45mmAq Knit. 前記プレフィルタが吹流し型で濾材面積が2〜8m/台であることを特徴とする請求項1記載のガスタービン吸気用フィルタユニット。 2. The gas turbine intake filter unit according to claim 1, wherein the prefilter is a blow-off type and has a filter medium area of 2 to 8 m 2 / unit.
JP2007111012A 2007-04-19 2007-04-19 Gas turbine intake filter unit Expired - Lifetime JP4555317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111012A JP4555317B2 (en) 2007-04-19 2007-04-19 Gas turbine intake filter unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111012A JP4555317B2 (en) 2007-04-19 2007-04-19 Gas turbine intake filter unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004045538A Division JP2004150447A (en) 2004-02-20 2004-02-20 High performance filter for gas turbine inlet, and filter unit for gas turbine inlet using the same

Publications (2)

Publication Number Publication Date
JP2007211785A true JP2007211785A (en) 2007-08-23
JP4555317B2 JP4555317B2 (en) 2010-09-29

Family

ID=38490427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111012A Expired - Lifetime JP4555317B2 (en) 2007-04-19 2007-04-19 Gas turbine intake filter unit

Country Status (1)

Country Link
JP (1) JP4555317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112107939A (en) * 2020-09-02 2020-12-22 刘思达 Transmission type exhaust gas particulate matter adsorption device and use method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494176A (en) * 1978-01-06 1979-07-25 Hitachi Ltd Corpuscle capturing air filter
JPH02137915U (en) * 1989-04-17 1990-11-16
JPH0352610A (en) * 1989-07-20 1991-03-06 Mitsubishi Paper Mills Ltd Filter medium for air filter
JPH03174211A (en) * 1989-12-01 1991-07-29 Mitsubishi Electric Corp Apparatus and method for removing impurity
JPH04334518A (en) * 1991-05-10 1992-11-20 Mitsubishi Electric Corp Filter apparatus
JPH05106464A (en) * 1991-10-15 1993-04-27 Sumitomo Chem Co Ltd Gas turbine
JPH0532176Y2 (en) * 1987-07-28 1993-08-18
JPH05261224A (en) * 1992-03-23 1993-10-12 Hokuetsu Paper Mills Ltd Filter material for air filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494176A (en) * 1978-01-06 1979-07-25 Hitachi Ltd Corpuscle capturing air filter
JPH0532176Y2 (en) * 1987-07-28 1993-08-18
JPH02137915U (en) * 1989-04-17 1990-11-16
JPH0352610A (en) * 1989-07-20 1991-03-06 Mitsubishi Paper Mills Ltd Filter medium for air filter
JPH03174211A (en) * 1989-12-01 1991-07-29 Mitsubishi Electric Corp Apparatus and method for removing impurity
JPH04334518A (en) * 1991-05-10 1992-11-20 Mitsubishi Electric Corp Filter apparatus
JPH05106464A (en) * 1991-10-15 1993-04-27 Sumitomo Chem Co Ltd Gas turbine
JPH05261224A (en) * 1992-03-23 1993-10-12 Hokuetsu Paper Mills Ltd Filter material for air filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112107939A (en) * 2020-09-02 2020-12-22 刘思达 Transmission type exhaust gas particulate matter adsorption device and use method thereof

Also Published As

Publication number Publication date
JP4555317B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4640895B2 (en) High performance filter for gas turbine intake and gas turbine intake filter unit using the same
US7632339B2 (en) Moisture removal apparatus and method
RU2390367C2 (en) Filter of turbine air intake
US7048501B2 (en) Dust collecting filter, dust collecting device, and air intake device for gas turbine
KR100593699B1 (en) Filter construction resistant to the passage of water soluble materials and filtration method
EP2300124B1 (en) Filter construction for use with air in-take for gas turbine and methods
JP5650923B2 (en) Filter cleaning system for gas turbine engine
US20110252759A1 (en) Filter
JP2008106769A (en) Turbine intake air processing device
WO2015112743A1 (en) Filter bag assembly with rigid mesh for reducing filter pressure loss
JP3919696B2 (en) Gas turbine intake filter unit
JPH07253029A (en) Gas turbine intake high performance filter and gas turbine intake filter unit using it
JPH07253028A (en) Gas turbine intake filter unit
JP4555317B2 (en) Gas turbine intake filter unit
JP2010255612A (en) Intake filter unit for gas turbine
JP2004150447A (en) High performance filter for gas turbine inlet, and filter unit for gas turbine inlet using the same
RU79802U1 (en) COMBINED FILTRATION SYSTEM
US20090301042A1 (en) Gradient density engine intake filter media
JP2011007193A (en) Intake air filter unit for gas turbine
JP2010253455A (en) Filter for air conditioner
CN210131485U (en) Filter element module for air filtration
JP2008055331A (en) Filter for air cleaner and air cleaner using it
JP2009047150A (en) Intake filter unit for gas turbine
JP5721526B2 (en) Intake filter device for gas turbine
JP2007046587A (en) Air intake filter unit for gas turbine, and air intake device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term