JP2007210463A - Vehicle state variable detecting device - Google Patents

Vehicle state variable detecting device Download PDF

Info

Publication number
JP2007210463A
JP2007210463A JP2006032794A JP2006032794A JP2007210463A JP 2007210463 A JP2007210463 A JP 2007210463A JP 2006032794 A JP2006032794 A JP 2006032794A JP 2006032794 A JP2006032794 A JP 2006032794A JP 2007210463 A JP2007210463 A JP 2007210463A
Authority
JP
Japan
Prior art keywords
state quantity
vehicle state
vehicle
vertical force
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006032794A
Other languages
Japanese (ja)
Inventor
Hiroshi Isono
宏 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006032794A priority Critical patent/JP2007210463A/en
Publication of JP2007210463A publication Critical patent/JP2007210463A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle state variable detecting device capable of accurately detecting vehicle state variables. <P>SOLUTION: A torque detecting device 11 is provided as a forward and backward force detecting means for detecting forward and backward force to be applied to each of wheels of a vehicle and an upward and downward force detecting device for detecting upward and downward force to be applied to each of the wheels of the vehicle. An ECU as a vehicle state variable computing means computes car speed Vb, travelling resistance Rb, road surface inclination angle θr, grounding load component Fza and car body mass Mb as the vehicle state variables based on driving and braking force Fx as the forward and backward force and the tire grounding load Fz as the upward and downward force. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両に装着された車輪に作用する力を用いて車両における各状態量を検出する車両状態量検出装置に関するものである。   The present invention relates to a vehicle state quantity detection device that detects each state quantity in a vehicle using a force acting on a wheel mounted on the vehicle.

車両の挙動を制御する場合、この車両に搭載された各種のセンサ、例えば、車速センサやGセンサ、車輪速センサなどの検出結果に基づいてエンジン出力、変速機による減速比、ブレーキ装置による制動力などを制御している。例えば、従来、車体速度は、車輪速センサが検出した車輪の回転速度から車輪半径などを推定して算出している。   When controlling the behavior of the vehicle, the engine output, the reduction ratio by the transmission, the braking force by the brake device based on the detection results of various sensors mounted on the vehicle, such as the vehicle speed sensor, the G sensor, and the wheel speed sensor. Etc. are controlled. For example, conventionally, the vehicle body speed is calculated by estimating the wheel radius from the rotational speed of the wheel detected by the wheel speed sensor.

なお、車輪に関して、タイヤ作用力を検出する検出器を設け、この検出器による検出値とそれの時間的変化傾向との少なくとも一方に基づき、その検出器によるタイヤ作用力の検出値が異常であるか否かを判定するものとして、下記特許文献1に記載されたものがある。   In addition, regarding the wheel, a detector for detecting the tire acting force is provided, and the detected value of the tire acting force by the detector is abnormal based on at least one of the detected value by the detector and its temporal change tendency. There exists what was described in following patent document 1 as what determines whether or not.

特開2003−104139号公報JP 2003-104139 A

ところが、車両の運転状態にあっては、このような各種センサが検出した物理量以外に、例えば、車両走行抵抗や車輪半径などの物理量によっても車両の挙動が変化してしまい、高精度な挙動制御を行うことができていない。   However, in the driving state of the vehicle, in addition to the physical quantities detected by these various sensors, the behavior of the vehicle changes depending on the physical quantities such as the vehicle running resistance and the wheel radius. Have not been able to do.

本発明は、このような問題を解決するためのものであって、高精度に車両の状態量を検出可能とした車両状態量検出装置を提供することを目的とする。   The present invention is for solving such a problem, and an object of the present invention is to provide a vehicle state quantity detection device capable of detecting a vehicle state quantity with high accuracy.

上述した課題を解決し、目的を達成するために、本発明の車両状態量検出装置は、車両の各車輪に作用する前後力を検出する前後力検出手段と、前記車両の各車輪に作用する上下力を検出する上下力検出手段と、前記前後力検出手段及び前記上下力検出手段の検出結果に基づいて車両の状態量を演算する車両状態量算出手段とを具えたことを特徴とするものである。   In order to solve the above-described problems and achieve the object, a vehicle state quantity detection device according to the present invention acts on front / rear force detecting means for detecting front / rear force acting on each wheel of the vehicle and on each wheel of the vehicle. A vertical force detection means for detecting vertical force; and a vehicle state quantity calculation means for calculating a vehicle state quantity based on the detection results of the longitudinal force detection means and the vertical force detection means. It is.

本発明の車両状態量検出装置では、前記前後力検出手段及び前記上下力検出手段は、車軸側に固定された第1円盤部材と、前記車輪側に固定されて前記第1円盤部材と同軸上に相対回転自在に支持された第2円盤部材と、前記第1円盤部材に対する前記第2円盤部材の周方向の正転荷重及び逆転荷重を検出する荷重検出手段と、該荷重検出手段が検出した正転荷重及び逆転荷重に基づいて前記車輪に作用する前後力及び上下力を演算するトルク演算出手段とを有することを特徴としている。   In the vehicle state quantity detection device of the present invention, the longitudinal force detection means and the vertical force detection means are a first disk member fixed to the axle side, and fixed to the wheel side and coaxial with the first disk member. A second disk member supported in a relatively rotatable manner, a load detection means for detecting a forward rotation load and a reverse rotation load in the circumferential direction of the second disk member relative to the first disk member, and the load detection means Torque calculation output means for calculating a longitudinal force and a vertical force acting on the wheel based on a forward rotation load and a reverse rotation load.

本発明の車両状態量検出装置では、前記車両状態量算出手段は、車輪速センサが検出した車輪速に基づいて演算した車輪角速度と、前記前後力検出手段が検出した前後力に基づいて演算したスリップ率と、前記上下力検出手段が検出した上下力に基づいて演算した車輪動荷重半径とから車体速度を演算することを特徴としている。   In the vehicle state quantity detection device of the present invention, the vehicle state quantity calculation means calculates based on the wheel angular velocity calculated based on the wheel speed detected by the wheel speed sensor and the longitudinal force detected by the longitudinal force detection means. The vehicle body speed is calculated from the slip ratio and the wheel dynamic load radius calculated based on the vertical force detected by the vertical force detecting means.

本発明の車両状態量検出装置では、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力から、前記上下力検出手段が検出した上下力に基づいて演算した車体前後力を減算して走行抵抗を求めることを特徴としている。   In the vehicle state quantity detection device of the present invention, the vehicle state quantity calculation means subtracts the vehicle body longitudinal force calculated based on the vertical force detected by the vertical force detection means from the longitudinal force detected by the longitudinal force detection means. The running resistance is then obtained.

本発明の車両状態量検出装置では、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力と、前記走行抵抗とから路面傾斜角を演算することを特徴としている。   In the vehicle state quantity detection device according to the present invention, the vehicle state quantity calculation means may calculate a road surface inclination angle from the longitudinal force detected by the longitudinal force detection means, the vertical force detected by the vertical force detection means, and the running resistance. It is characterized by computing.

本発明の車両状態量検出装置では、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力と、前記車体速度とから空気抵抗を演算することを特徴としている。   In the vehicle state quantity detection device of the present invention, the vehicle state quantity calculation means calculates air resistance from the longitudinal force detected by the longitudinal force detection means, the vertical force detected by the vertical force detection means, and the vehicle body speed. It is characterized by computing.

本発明の車両状態量検出装置では、前記車両状態量算出手段は、車輪空気圧センサが検出した空気圧と、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力とから車輪転がり抵抗を演算することを特徴としている。   In the vehicle state quantity detection device of the present invention, the vehicle state quantity calculation means includes an air pressure detected by a wheel air pressure sensor, a longitudinal force detected by the longitudinal force detection means, and a vertical force detected by the vertical force detection means. It is characterized by calculating wheel rolling resistance.

本発明の車両状態量検出装置では、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力と、前記車体速度とから空気抵抗を演算すると共に、車輪空気圧センサが検出した空気圧と、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力とから車輪転がり抵抗を演算し、前記走行抵抗から前記空気抵抗及び車輪転がり抵抗を減算して路面抵抗を求めることを特徴としている。   In the vehicle state quantity detection device of the present invention, the vehicle state quantity calculation means calculates air resistance from the longitudinal force detected by the longitudinal force detection means, the vertical force detected by the vertical force detection means, and the vehicle body speed. Calculating the wheel rolling resistance from the air pressure detected by the wheel air pressure sensor, the longitudinal force detected by the longitudinal force detecting means, and the vertical force detected by the vertical force detecting means, and calculating the air resistance from the running resistance. The road surface resistance is obtained by subtracting the resistance and the wheel rolling resistance.

本発明の車両状態量検出装置では、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力と、前記車体速度とから空力による接地荷重成分を演算することを特徴としている。   In the vehicle state quantity detection device according to the present invention, the vehicle state quantity calculation means includes aerodynamic grounding based on the longitudinal force detected by the longitudinal force detection means, the vertical force detected by the vertical force detection means, and the vehicle body speed. It is characterized by calculating a load component.

本発明の車両状態量検出装置では、前記車両状態量算出手段は、前記上下力検出手段が検出した上下力から、前記前後力検出手段が検出した前後力に基づいて演算した車体上下力を減算して空力による接地荷重成分を求めることを特徴としている。   In the vehicle state quantity detection device of the present invention, the vehicle state quantity calculation means subtracts the vehicle body vertical force calculated based on the longitudinal force detected by the longitudinal force detection means from the vertical force detected by the vertical force detection means. Thus, the ground load component due to aerodynamics is obtained.

本発明の車両状態量検出装置では、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力と、前記車体速度と、路面傾斜角とから前後力成分に応じた車体質量を演算することを特徴としている。   In the vehicle state quantity detection device of the present invention, the vehicle state quantity calculation means includes the longitudinal force detected by the longitudinal force detection means, the vertical force detected by the vertical force detection means, the vehicle body speed, and the road surface inclination angle. And calculating the vehicle body mass according to the longitudinal force component.

本発明の車両状態量検出装置では、前記車両状態量算出手段は、前記上下力検出手段が検出した上下力に空力による接地荷重成分を加味して上下力成分に応じた車体質量を演算し、前記前後力成分に応じた車体質量と、前記上下力成分に応じた車体質量と、車体前後力に応じた重み付け係数に基づいて車体質量を補正することを特徴としている。   In the vehicle state quantity detection device of the present invention, the vehicle state quantity calculation means calculates a vehicle body mass corresponding to the vertical force component by adding a ground load component due to aerodynamics to the vertical force detected by the vertical force detection means, The vehicle body mass is corrected based on a vehicle body mass corresponding to the longitudinal force component, a vehicle body mass corresponding to the vertical force component, and a weighting coefficient corresponding to the vehicle longitudinal force.

本発明の車両状態量検出装置では、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力と、前記車体速度と、路面傾斜角とから前後力成分に応じた車体質量を演算すると共に、前記上下力検出手段が検出した上下力に空力による接地荷重成分を加味して上下力成分に応じた車体質量を演算し、前記前後力成分に応じた車体質量と前記上下力成分に応じた車体質量との偏差に基づいて異常を判定する異常判定手段を設けたことを特徴としている。   In the vehicle state quantity detection device of the present invention, the vehicle state quantity calculation means includes the longitudinal force detected by the longitudinal force detection means, the vertical force detected by the vertical force detection means, the vehicle body speed, and the road surface inclination angle. To calculate the vehicle body mass according to the vertical force component by adding the ground load component due to the aerodynamic force to the vertical force detected by the vertical force detection means. An abnormality determining means for determining an abnormality based on a deviation between a vehicle body mass corresponding to the component and a vehicle body mass corresponding to the vertical force component is provided.

本発明の車両状態量検出装置では、前記路面傾斜角と、前後加速度センサが検出した前後加速度に基づいて演算した実路面傾斜角との偏差に基づいて異常を判定する異常判定手段を設けたことを特徴としている。   In the vehicle state quantity detection device of the present invention, there is provided an abnormality determining means for determining an abnormality based on a deviation between the road surface inclination angle and an actual road surface inclination angle calculated based on the longitudinal acceleration detected by the longitudinal acceleration sensor. It is characterized by.

本発明の車両状態量検出装置によれば、車両の各車輪に作用する前後力を検出する前後力検出手段と、車両の各車輪に作用する上下力を検出する上下力検出手段と、前後力検出手段及び上下力検出手段の検出結果に基づいて車両の状態量を演算する車両状態量算出手段を設けたので、実際に車輪に作用する前後力及び上下力に基づいて車両の状態量を演算するため、車両の運転状態に応じた適正な状態量を検出することとなり、車両状態量の検出精度を向上することができる。   According to the vehicle state quantity detecting device of the present invention, the longitudinal force detecting means for detecting the longitudinal force acting on each wheel of the vehicle, the vertical force detecting means for detecting the vertical force acting on each wheel of the vehicle, and the longitudinal force Since the vehicle state quantity calculation means for calculating the vehicle state quantity based on the detection results of the detection means and the vertical force detection means is provided, the vehicle state quantity is calculated based on the longitudinal force and the vertical force actually acting on the wheels. Therefore, an appropriate state quantity corresponding to the driving state of the vehicle is detected, and the detection accuracy of the vehicle state quantity can be improved.

以下に、本発明に係る車両状態量検出装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of a vehicle state quantity detection device according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明の一実施例に係る車両状態量検出装置における検出方法を表す概略図、図2は、本実施例の車両状態量検出装置を表すブロック構成図、図3は、車体速度を演算する際の規定値の設定方法を表すグラフ、図4は、車体質量を演算する際の重み付け係数の設定方法を表すグラフ、図5は、本実施例の車両状態量検出装置におけるトルク検出装置を表す車軸部の断面図、図6は、図5のVI−VI断面図である。   FIG. 1 is a schematic diagram showing a detection method in a vehicle state quantity detection device according to an embodiment of the present invention, FIG. 2 is a block diagram showing the vehicle state quantity detection device of this embodiment, and FIG. FIG. 4 is a graph showing a setting method of a weighting coefficient when calculating the vehicle body mass, and FIG. 5 is a torque detection in the vehicle state quantity detection device of this embodiment. Sectional drawing of the axle part showing an apparatus and FIG. 6 are VI-VI sectional views of FIG.

実施例1の車両状態量検出装置は、図1に示すように、前後力検出手段及び上下力検出手段を構成するトルク検出装置11により車両の車輪12に作用する前後力及び上下力を検出し、車両状態量算出手段を構成する電子制御ユニット(ECU)13が、検出した車輪に作用する前後力及び上下力に基づいて車両の状態量としての後述する車体速度、路面傾斜角、走行抵抗、車体質量などを演算するものである。   As shown in FIG. 1, the vehicle state quantity detection device according to the first embodiment detects the longitudinal force and the vertical force acting on the vehicle wheel 12 by a torque detection device 11 that constitutes the longitudinal force detection means and the vertical force detection means. An electronic control unit (ECU) 13 that constitutes the vehicle state quantity calculation means, based on the longitudinal force and vertical force acting on the detected wheel, the vehicle body speed, the vehicle body speed, road surface inclination angle, running resistance, which will be described later, It calculates the vehicle body mass.

まず、各車輪12に装着されたトルク検出装置11について説明する。このトルク検出装置11において、図5及び図6に示すように、車軸側に固定された第1円盤部材としてのハブ側ハウジング21と、車輪側に固定された第2円盤部材としてのホイール側ハウジング22とが同軸上に相対回転自在に支持されており、このハブ側ハウジング21とホイール側ハウジング22との間に4つのトルク伝達部T1〜T4が周方向に均等間隔で設けられており、ここに周方向の正転荷重及び逆転荷重を検出する荷重検出手段としての複数の荷重センサS11,S12,S21,S22,S31,S32,S41,S42が装着されている。トルク演算出手段としてのECU13は、各荷重センサS11,S12,S21,S22,S31,S32,S41,S42が検出した正転荷重及び逆転荷重に基づいて各車輪12に作用する前後力及び上下力を演算する。   First, the torque detection device 11 attached to each wheel 12 will be described. In this torque detector 11, as shown in FIGS. 5 and 6, a hub side housing 21 as a first disk member fixed to the axle side and a wheel side housing as a second disk member fixed to the wheel side. 22 is supported on the same axis so as to be relatively rotatable. Four torque transmission portions T1 to T4 are provided between the hub side housing 21 and the wheel side housing 22 at equal intervals in the circumferential direction. A plurality of load sensors S11, S12, S21, S22, S31, S32, S41, and S42 are mounted as load detection means for detecting the forward and reverse loads in the circumferential direction. The ECU 13 serving as torque calculation means is a longitudinal force and a vertical force acting on each wheel 12 based on the forward and reverse loads detected by the load sensors S11, S12, S21, S22, S31, S32, S41, and S42. Is calculated.

即ち、ハブ側ハウジング21は外周部に4つの取付フランジ21aを有しており、各取付フランジ21aがアクスルハウジング23の玉軸受24により車体に対して回転自在に支持されたアクスルハブ25に図示しない締結ボルトで締結されることで、一体に連結されている。一方、ホイール側ハウジング22は、外周部に4つの取付フランジ22aを有しており、各取付フランジ22aに図示しないタイヤが装着されたホイールがハブボルト26により締結されている。   That is, the hub-side housing 21 has four mounting flanges 21a on the outer peripheral portion, and each mounting flange 21a is fastened to an axle hub 25 that is rotatably supported by the ball bearing 24 of the axle housing 23 with respect to the vehicle body. By being fastened with bolts, they are connected together. On the other hand, the wheel-side housing 22 has four mounting flanges 22 a on the outer peripheral portion, and a wheel on which a tire (not shown) is mounted is fastened by hub bolts 26 to each mounting flange 22 a.

また、ハブ側ハウジング21には、リング形状をなすボス部21bの外周部に4つの突起部21cが周方向に均等間隔で形成されている。一方、ホイール側ハウジング22には、内周部に4つの収納部22bが周方向に均等間隔で形成されている。このハブ側ハウジング21の各突起部21cは、ホイール側ハウジング22の各収納部22bに係合し、各突起部21cと各収納部22bにおける左右の保持壁22c,22dとの間にそれぞれボール27がほぼ隙間なく介在している。この場合、各ボール27に対して、アクスルハブ25の軸方向対向したハブ側ハウジング21には断面がV字形状をなすガイド溝21dが周方向に沿って形成されている。従って、各ボール27は、ハブ側ハウジング21とホイール側ハウジング22との間でスラストボールベアリングを構成している。   The hub-side housing 21 is formed with four protrusions 21c at equal intervals in the circumferential direction on the outer periphery of the ring-shaped boss 21b. On the other hand, in the wheel side housing 22, four storage portions 22b are formed in the inner peripheral portion at equal intervals in the circumferential direction. Each protrusion 21c of the hub side housing 21 engages with each storage portion 22b of the wheel side housing 22, and a ball 27 is provided between each protrusion 21c and the left and right holding walls 22c, 22d in each storage portion 22b. Intervenes with almost no gap. In this case, a guide groove 21d having a V-shaped cross section is formed along the circumferential direction in the hub-side housing 21 facing the ball 27 in the axial direction of the axle hub 25. Accordingly, each ball 27 forms a thrust ball bearing between the hub side housing 21 and the wheel side housing 22.

そして、ハブ側ハウジング21の各突起部21cにおけるボール27との接触壁面に上述した荷重センサS11,S12,S21,S22,S31,S32,S41,S42が装着されている。この荷重センサS11,S12,S21,S22,S31,S32,S41,S42は、ハブ側ハウジング21及びホイール側ハウジング22の回転時に、各ボール27から入力する周方向の正回転側荷重及び逆回転側荷重を検出して電気信号として出力するものであり、例えば、圧電素子や歪ゲージを適用することができる。   The load sensors S11, S12, S21, S22, S31, S32, S41, and S42 described above are mounted on the contact wall surfaces of the protrusions 21c of the hub-side housing 21 with the balls 27. The load sensors S11, S12, S21, S22, S31, S32, S41, and S42 are the positive and negative rotational loads in the circumferential direction input from the balls 27 when the hub side housing 21 and the wheel side housing 22 rotate. The load is detected and output as an electrical signal. For example, a piezoelectric element or a strain gauge can be applied.

また、ホイール側ハウジング22の内周部には段付スリーブ28が軸方向に対して位置調整自在に螺合し、ハブ側ハウジング21との間に複数のボール29が周方向に等間隔で介装されており、段付スリーブ28がロックナット30によりホイール側ハウジング22に固定保持されている。従って、各ボール29は、ハブ側ハウジング21及び段付スリーブ28との間でアンギュラボールベアリングを構成しており、ハブ側ハウジング21のボス部21bにおける断面弧状をなす環状軌道面と、段付スリーブ28における平面をなす2つの環状軌道面で転動自在に接触している。   Further, a stepped sleeve 28 is screwed to the inner peripheral portion of the wheel side housing 22 so as to be adjustable in position in the axial direction, and a plurality of balls 29 are interposed between the hub side housing 21 and the hub side housing 21 at equal intervals in the circumferential direction. The stepped sleeve 28 is fixedly held on the wheel-side housing 22 by a lock nut 30. Accordingly, each ball 29 constitutes an angular ball bearing between the hub-side housing 21 and the stepped sleeve 28, and an annular raceway surface having an arc shape in the boss portion 21 b of the hub-side housing 21, and a stepped sleeve The two annular raceway surfaces forming a flat surface at 28 are in contact with each other so as to freely roll.

次に、トルク検出装置11が検出した正回転側荷重及び逆回転側荷重に基づいて車両状態量を算出するECU13の具体的な構成について説明する。ECU13は、図1および図2に示すように、センサ出力演算部31と前後運動状態量演算部32と異常判定部33とを有している。センサ出力演算部31には、トルク検出装置11の各荷重センサS11,S12,S21,S22,S31,S32,S41,S42が検出した正回転側荷重v11,v21,v31,v41及び逆回転側荷重v12,v22,v32,v42が入力されると共に、車輪速センサ34が検出した車輪速度Vt、前後加速度センサ35が検出した車体加速度Gbx、タイヤ空気圧センサ36が検出したタイヤ空気圧Paが入力される。   Next, a specific configuration of the ECU 13 that calculates the vehicle state quantity based on the forward rotation side load and the reverse rotation side load detected by the torque detection device 11 will be described. As shown in FIGS. 1 and 2, the ECU 13 has a sensor output calculation unit 31, a longitudinal motion state amount calculation unit 32, and an abnormality determination unit 33. The sensor output calculation unit 31 includes forward rotation side loads v11, v21, v31, v41 and reverse rotation side loads detected by the load sensors S11, S12, S21, S22, S31, S32, S41, and S42 of the torque detection device 11. v12, v22, v32, and v42 are input, and the wheel speed Vt detected by the wheel speed sensor 34, the vehicle body acceleration Gbx detected by the longitudinal acceleration sensor 35, and the tire air pressure Pa detected by the tire air pressure sensor 36 are input.

そして、このセンサ出力演算部31は、荷重センサS11,S12,S21,S22,S31,S32,S41,S42が検出した正回転側荷重v11,v21,v31,v41及び逆回転側荷重v12,v22,v32,v42に基づいて、下記数式1を用いて前後力としての制駆動力Fxn及び上下力としてのタイヤ接地荷重Fznを演算し、4つの車輪の制駆動力Fx1〜Fx4の総和が車両の制駆動力Fxtとして規定され、4つの車輪のタイヤ接地荷重Fz1〜Fz4の総和が車両のタイヤ接地荷重Fztとして規定される。また、センサ出力演算部31は、車輪速センサ34が検出した車輪速度Vtから車輪角速度θwnを演算する。

Figure 2007210463
The sensor output calculation unit 31 includes forward rotation side loads v11, v21, v31, v41 and reverse rotation side loads v12, v22, detected by the load sensors S11, S12, S21, S22, S31, S32, S41, S42. Based on v32 and v42, the following formula 1 is used to calculate the braking / driving force Fxn as the longitudinal force and the tire ground contact load Fzn as the vertical force, and the sum of the braking / driving forces Fx1 to Fx4 of the four wheels is the vehicle braking force. The driving force Fxt is defined, and the sum of the tire ground contact loads Fz1 to Fz4 of the four wheels is defined as the tire ground contact load Fzt of the vehicle. The sensor output calculation unit 31 calculates the wheel angular velocity θwn from the wheel speed Vt detected by the wheel speed sensor 34.
Figure 2007210463

前後運動状態量演算部32は、センサ出力演算部31から入力した制駆動力Fxn、タイヤ接地荷重Fzn、車輪角速度θwn、車体加速度Gbx、タイヤ空気圧Pamに基づいて車両の状態量としての車体速度、路面傾斜角、走行抵抗、車体質量などを演算する。なお、ここでn,mは4つの車輪を特定するものであり、n,m=1〜4である。そして、異常判定部33は、前後運動状態量演算部32で演算した車体状態量に基づいて荷重センサS11,S12,S21,S22,S31,S32,S41,S42の異常を判定する。   The front-rear motion state quantity calculator 32 is a vehicle speed as a vehicle state quantity based on the braking / driving force Fxn, tire ground load Fzn, wheel angular velocity θwn, vehicle acceleration Gbx, and tire air pressure Pam input from the sensor output calculator 31. The road surface inclination angle, running resistance, vehicle body mass, etc. are calculated. Here, n and m specify four wheels, and n and m = 1 to 4. Then, the abnormality determination unit 33 determines the abnormality of the load sensors S11, S12, S21, S22, S31, S32, S41, and S42 based on the vehicle body state amount calculated by the longitudinal motion state amount calculation unit 32.

ここで、前後運動状態量演算部32による車体状態量の演算方法について具体的に説明する。   Here, a method of calculating the vehicle body state quantity by the longitudinal motion state quantity calculating unit 32 will be specifically described.

[車体速度]
車体速度Vbnは、車輪角速度θwnと車輪動荷重半径rtとスリップ率sとから演算することができ、下記数式2のように規定される。

Figure 2007210463
[Body speed]
The vehicle body speed Vbn can be calculated from the wheel angular speed θwn, the wheel dynamic load radius rt, and the slip ratio s, and is defined as the following Expression 2.
Figure 2007210463

なお、車輪動荷重半径rtは、制駆動力Fxnとタイヤ接地荷重Fznとタイヤ空気圧Pamの状態からの関連性を考慮して関数式及び下記表1に示すマップから定義して補正する。

Figure 2007210463
また、スリップ率sも、制駆動力Fxnとタイヤ接地荷重Fznとタイヤ空気圧Pamの状態からの関連性を考慮して、関数式及び下記表2に示すマップから定義して補正する。
Figure 2007210463
The wheel dynamic load radius rt is defined and corrected from a functional equation and a map shown in Table 1 below in consideration of the relationship from the state of braking / driving force Fxn, tire ground contact load Fzn, and tire air pressure Pam.
Figure 2007210463
In addition, the slip ratio s is also defined and corrected from the functional equation and the map shown in Table 2 below in consideration of the relationship from the state of the braking / driving force Fxn, the tire contact load Fzn, and the tire pressure Pam.
Figure 2007210463

従って、下記数式3のように規定することができる。この場合、図3に示すように、スリップ率sの増加に対して車輪及び路面摩擦係数μは増加するが、スリップ率sが所定値より増加した領域に入ると、車輪及び路面摩擦係数μが低下した後に一定するため、スリップ率s及び車輪角速度θwnが下記範囲にあるときに有効車輪とする。

Figure 2007210463
Therefore, it can be defined as the following Equation 3. In this case, as shown in FIG. 3, the wheel and road surface friction coefficient μ increases as the slip ratio s increases. However, when the slip ratio s enters an area where the slip ratio s increases from a predetermined value, the wheel and road surface friction coefficient μ decreases. In order to be constant after the decrease, the effective wheel is determined when the slip ratio s and the wheel angular velocity θwn are in the following ranges.
Figure 2007210463

このように車輪ごとの車体速度Vb1〜Vb4と有効車輪が判定されると、下記数式4により車体速度Vbaを演算することができる。なお、下記数式4にて、車輪ごとの車体速度Vb1〜Vb4の総和を有効車輪数n(=4)で除算して車体速度Vbnを求めたが、有効車輪数nが減少すれば、総和も減少する。

Figure 2007210463
When the vehicle body speeds Vb 1 to Vb 4 and the effective wheels are determined for each wheel in this way, the vehicle body speed Vba can be calculated by the following mathematical formula 4. In addition, in the following Expression 4, the sum of the vehicle body speeds Vb 1 to Vb 4 for each wheel is divided by the effective wheel number n (= 4) to obtain the vehicle body speed Vbn. If the effective wheel number n decreases, The sum also decreases.
Figure 2007210463

[走行抵抗]
車体前後力Fbxは、車両の制駆動力Fxtから走行抵抗Rbを減算することで、下記数式5のように求めることができる。

Figure 2007210463
従って、走行抵抗Rbは、制駆動力Fxtから車体前後力Fbxを減算することで、下記数式6のように求めることができる。そして、車体前後力Fbxは、制駆動力Fxtと重力gと車体加速度Gbxに基づいて演算した路面傾斜角θrgと車体加速度(車体速度Vbaの微分値)に基づいて演算される。
Figure 2007210463
[Running resistance]
The vehicle longitudinal force Fbx can be obtained by subtracting the running resistance Rb from the braking / driving force Fxt of the vehicle as shown in Equation 5 below.
Figure 2007210463
Therefore, the running resistance Rb can be obtained by subtracting the vehicle body longitudinal force Fbx from the braking / driving force Fxt as shown in Equation 6 below. The vehicle longitudinal force Fbx is calculated based on the road surface inclination angle θrg calculated based on the braking / driving force Fxt, gravity g, and vehicle acceleration Gbx and the vehicle acceleration (differential value of the vehicle speed Vba).
Figure 2007210463

[路面傾斜角]
路面傾斜角θrfは、車両の制駆動力Fxtとタイヤ接地荷重Fztと走行抵抗Rbと車体加速度(車体速度Vbaの微分値)から、下記数式7を用いて演算することができる。

Figure 2007210463
[Road slope angle]
The road surface inclination angle θrf can be calculated from the braking / driving force Fxt of the vehicle, the tire ground contact load Fzt, the running resistance Rb, and the vehicle body acceleration (differential value of the vehicle body speed Vba) using the following Equation 7.
Figure 2007210463

[空気抵抗]
空気抵抗Raは、車両の制駆動力Fxtとタイヤ接地荷重Fztと車体速度Vbaとから、下記数式8を用いて演算することができる。

Figure 2007210463
[Air resistance]
The air resistance Ra can be calculated from the braking / driving force Fxt of the vehicle, the tire ground contact load Fzt, and the vehicle body speed Vba using the following formula 8.
Figure 2007210463

なお、空気抵抗Raは、制駆動力Fxnとタイヤ接地荷重Fznと車体速度Vbaの状態からの関連性を考慮して関数式及び下記表3に示すマップから定義して補正する。

Figure 2007210463
The air resistance Ra is defined and corrected from a functional equation and a map shown in Table 3 below in consideration of the relationship from the state of the braking / driving force Fxn, the tire ground contact load Fzn, and the vehicle body speed Vba.
Figure 2007210463

[車輪転がり抵抗]
車輪転がり抵抗Rtは、タイヤ空気圧Paと制駆動力Fxtとタイヤ接地荷重Fztから、下記数式9を用いて演算することができる。

Figure 2007210463
[Wheel rolling resistance]
The wheel rolling resistance Rt can be calculated from the tire air pressure Pa, the braking / driving force Fxt, and the tire ground contact load Fzt using the following formula 9.
Figure 2007210463

なお、車輪転がり抵抗Rtは、タイヤ空気圧Pamと制駆動力Fxnとタイヤ接地荷重Fznの状態からの関連性を考慮して関数式及び下記表4に示すマップから定義して補正する。

Figure 2007210463
The wheel rolling resistance Rt is defined and corrected from a functional equation and a map shown in Table 4 below in consideration of the relationship from the tire pressure Pam, braking / driving force Fxn, and tire ground contact load Fzn.
Figure 2007210463

[路面抵抗]
路面抵抗Rrは、走行抵抗Rbから空気抵抗Ra及び車輪転がり抵抗Rtを減算することで、下記数式10を用いて求めることができる。

Figure 2007210463
[Road resistance]
The road surface resistance Rr can be obtained by subtracting the air resistance Ra and the wheel rolling resistance Rt from the running resistance Rb using the following formula 10.
Figure 2007210463

[空力による接地荷重成分]
空力による接地荷重成分Fzaは、制駆動力Fxtとタイヤ接地荷重Fztと車体速度Vbaとから、下記数式11を用いて演算することができる。

Figure 2007210463
[Aerodynamic contact load component]
The ground load component Fza due to aerodynamics can be calculated from the braking / driving force Fxt, the tire ground contact load Fzt, and the vehicle body speed Vba using the following Expression 11.
Figure 2007210463

なお、接地荷重成分Fzaは、制駆動力Fxnとタイヤ接地荷重Fznと車体速度Vbaの状態からの関連性を考慮して関数式及び下記表5に示すマップから定義して補正する。

Figure 2007210463
The ground load component Fza is defined and corrected from a functional equation and a map shown in Table 5 below in consideration of the relationship from the states of the braking / driving force Fxn, the tire ground load Fzn, and the vehicle body speed Vba.
Figure 2007210463

また、接地荷重成分Fzaは、タイヤ接地荷重Fztから制駆動力Fxtに基づいて演算した車体上下力を減算して、下記数式12を用いて求めることができる。

Figure 2007210463
The ground load component Fza can be obtained by subtracting the vehicle body vertical force calculated based on the braking / driving force Fxt from the tire ground load Fzt, using the following formula 12.
Figure 2007210463

[車体質量]
車体質量Mbxは、タイヤ接地荷重Fztと制駆動力Fxtと車体速度Vbaと路面傾斜角θrfとから、下記数式13を用いて前後力成分を演算することができる。

Figure 2007210463
[Body mass]
The vehicle body mass Mbx can be calculated as a longitudinal force component using the following Equation 13 from the tire ground contact load Fzt, braking / driving force Fxt, vehicle body speed Vba, and road surface inclination angle θrf.
Figure 2007210463

また、車体質量Mbzは、タイヤ接地荷重Fztに空力による接地荷重成分Fzaを加味して、下記数式14を用いて上下力成分を演算することができる。

Figure 2007210463
Further, the vehicle body mass Mbz can be calculated as a vertical force component by using the following formula 14 by adding the ground load component Fza due to aerodynamics to the tire ground load Fzt.
Figure 2007210463

この場合、車体速度Vbaが規定値(例えば、6km/h)より低いときに、車体質量Mbzを車体質量Mboと特定することができる。また、車体速度Vbaが規定値(例えば、30km/h)より高いときに、車体質量Mbzから車体質量Mboを減算した値を上述した接地荷重成分Fzaと特定することができる。   In this case, when the vehicle body speed Vba is lower than a specified value (for example, 6 km / h), the vehicle body mass Mbz can be specified as the vehicle body mass Mbo. Further, when the vehicle body speed Vba is higher than a specified value (for example, 30 km / h), a value obtained by subtracting the vehicle body mass Mbo from the vehicle body mass Mbz can be specified as the above-described ground load component Fza.

また、前後力成分に応じた車体質量Mbxと上下力成分に応じた車体質量Mbzと車体前後力Fbxに応じた重み付け係数a,bに基づいて車体質量MBを補正するようにしている。即ち、図4に示すように、車体前後力Fbxの増加に伴って1まで増加する車体質量Mbxに応じた重み付け係数aを設定すると共に、a+b=1となるように上下力成分に応じた車体質量Mbzに応じた重み付け係数bを設定する。そして、下記数式15を用いて車体質量Mbを補正する。

Figure 2007210463
Further, the vehicle body mass MB is corrected based on the vehicle body mass Mbx corresponding to the longitudinal force component, the vehicle body mass Mbz corresponding to the vertical force component, and the weighting coefficients a and b corresponding to the vehicle longitudinal force Fbx. That is, as shown in FIG. 4, the weighting coefficient a corresponding to the vehicle body mass Mbx that increases to 1 as the vehicle body longitudinal force Fbx increases is set, and the vehicle body corresponding to the vertical force component so that a + b = 1. A weighting coefficient b corresponding to the mass Mbz is set. Then, the vehicle body mass Mb is corrected using the following formula 15.
Figure 2007210463

次に、異常判定部33による荷重センサS11,S12,S21,S22,S31,S32,S41,S42の異常判定方法について具体的に説明する。   Next, the abnormality determination method of the load sensors S11, S12, S21, S22, S31, S32, S41, and S42 by the abnormality determination unit 33 will be specifically described.

[異常判定1]
前後力成分に応じた車体質量Mbxと上下力成分に応じた車体質量Mbzとの偏差の絶対値に基づいて、タイヤ接地荷重Fzt及び制駆動力Fxtの異常を判定する。即ち、下記数式16のように、前後力成分に応じた車体質量Mbxと上下力成分に応じた車体質量Mbzとの偏差の絶対値が予め設定された規定値より大きいときには、タイヤ接地荷重Fzt及び制駆動力Fxtの異常、つまり、荷重センサS11,S12,S21,S22,S31,S32,S41,S42が異常であると判定する。

Figure 2007210463
[Abnormality judgment 1]
Based on the absolute value of the deviation between the vehicle body mass Mbx corresponding to the longitudinal force component and the vehicle body mass Mbz corresponding to the vertical force component, abnormality of the tire ground contact load Fzt and the braking / driving force Fxt is determined. That is, when the absolute value of the deviation between the vehicle body mass Mbx corresponding to the longitudinal force component and the vehicle body mass Mbz corresponding to the vertical force component is larger than a predetermined value as shown in the following equation 16, the tire ground contact load Fzt and It is determined that the braking / driving force Fxt is abnormal, that is, the load sensors S11, S12, S21, S22, S31, S32, S41, and S42 are abnormal.
Figure 2007210463

[異常判定2]
また、下記数式17のように、前後力成分に応じた車体質量Mbxと上下力成分に応じた車体質量Mbzとの偏差の絶対値が予め設定された規定値より小さく、前後加速度センサ35が検出した車体加速度Gbxに基づいて演算した路面傾斜角θrgと、前述した数式7を用いて演算した路面傾斜角θrfとの偏差の絶対値が予め設定された規定値より大きいときには、路面傾斜角θrgの異常、つまり、前後加速度センサ35が異常であると判定する。

Figure 2007210463
[Abnormality judgment 2]
Further, as shown in Equation 17 below, the absolute value of the deviation between the vehicle body mass Mbx corresponding to the longitudinal force component and the vehicle body mass Mbz corresponding to the vertical force component is smaller than a preset specified value, and is detected by the longitudinal acceleration sensor 35. When the absolute value of the deviation between the road surface inclination angle θrg calculated based on the vehicle body acceleration Gbx and the road surface inclination angle θrf calculated using Equation 7 is larger than a preset specified value, the road surface inclination angle θrg It is determined that there is an abnormality, that is, the longitudinal acceleration sensor 35 is abnormal.
Figure 2007210463

このように本実施例の車両状態量検出装置にあっては、車両の各車輪に作用する前後力を検出する前後力検出手段及び車両の各車輪に作用する上下力を検出する上下力検出手段としてトルク検出装置11を設け、車両状態量算出手段としてのECUがこの前後力としての制駆動力Fx及び上下力としてのタイヤ接地荷重Fzに基づいて車両状態量としての車体速度Vb、走行抵抗Rb、路面傾斜角度θr、接地荷重成分Fza、車体質量Mbなどを演算するようにしている。   Thus, in the vehicle state quantity detection device of the present embodiment, the longitudinal force detection means for detecting the longitudinal force acting on each wheel of the vehicle and the vertical force detection means for detecting the vertical force acting on each wheel of the vehicle. A torque detection device 11 is provided, and an ECU as a vehicle state quantity calculation means is configured so that a vehicle speed Vb and a running resistance Rb as vehicle state quantities are based on the braking / driving force Fx as a longitudinal force and the tire ground contact load Fz as a vertical force. The road surface inclination angle θr, the ground load component Fza, the vehicle body mass Mb, and the like are calculated.

従って、実際に車輪12に作用する前後力としての制駆動力Fx及び上下力としてのタイヤ接地荷重Fzに基づいて車両の状態量を演算するため、車両の運転状態に応じた適正な状態量を検出することとなり、車両状態量の検出精度を向上することができる。   Accordingly, since the vehicle state quantity is calculated based on the braking / driving force Fx as the longitudinal force actually acting on the wheel 12 and the tire ground contact load Fz as the vertical force, an appropriate state quantity corresponding to the driving state of the vehicle is obtained. Thus, the detection accuracy of the vehicle state quantity can be improved.

また、異常判定部33は、前後力成分に応じた車体質量Mbxと上下力成分に応じた車体質量Mbzとの偏差に基づいて、タイヤ接地荷重Fzt及び制駆動力Fxtの異常、つまり、荷重センサS11,S12,S21,S22,S31,S32,S41,S42が異常であると判定している。更に、異常判定部33は、前後加速度センサ35が検出した車体加速度Gbxに基づいて演算した路面傾斜角θrgと、タイヤ接地荷重Fzt及び制駆動力Fxtに基づいて演算した路面傾斜角θrfとの偏差に基づいて路面傾斜角θrgの異常、つまり、前後加速度センサ35が異常であると判定している。従って、車両状態量に応じて各種センサの異常を適正に判定することができる。   Further, the abnormality determination unit 33 determines whether there is an abnormality in the tire ground contact load Fzt and the braking / driving force Fxt based on the deviation between the vehicle body mass Mbx corresponding to the longitudinal force component and the vehicle body mass Mbz corresponding to the vertical force component, that is, a load sensor. It is determined that S11, S12, S21, S22, S31, S32, S41, and S42 are abnormal. Further, the abnormality determination unit 33 deviates between the road surface inclination angle θrg calculated based on the vehicle body acceleration Gbx detected by the longitudinal acceleration sensor 35 and the road surface inclination angle θrf calculated based on the tire ground contact load Fzt and the braking / driving force Fxt. Is determined to be abnormal, that is, the longitudinal acceleration sensor 35 is abnormal. Therefore, abnormality of various sensors can be determined appropriately according to the vehicle state quantity.

その結果、車両の状態量検出を高精度に検出することで、検出した両状態量としての車体速度Vb、走行抵抗Rb、路面傾斜角度θr、接地荷重成分Fza、車体質量Mbなどに基づいてエンジン出力、変速機による減速比、ブレーキ装置による制動力などを制御することで、車両の挙動を高精度に制御することができる。   As a result, by detecting the state quantity of the vehicle with high accuracy, the engine is based on the detected vehicle body speed Vb, travel resistance Rb, road surface inclination angle θr, ground load component Fza, body mass Mb, etc. By controlling the output, the reduction ratio by the transmission, the braking force by the brake device, etc., the behavior of the vehicle can be controlled with high accuracy.

以上のように、本発明に係る車両状態量検出装置は、車両の各車輪に作用する前後力と上下力に基づいて車両状態量を演算するものであり、いずれの種類の車両に用いても好適である。   As described above, the vehicle state quantity detection device according to the present invention calculates the vehicle state quantity based on the longitudinal force and the vertical force acting on each wheel of the vehicle, and can be used for any type of vehicle. Is preferred.

本発明の一実施例に係る車両状態量検出装置における検出方法を表す概略図である。It is the schematic showing the detection method in the vehicle state quantity detection apparatus which concerns on one Example of this invention. 本実施例の車両状態量検出装置を表すブロック構成図である。It is a block block diagram showing the vehicle state quantity detection apparatus of a present Example. 車体速度を演算する際の規定値の設定方法を表すグラフである。It is a graph showing the setting method of the regulation value at the time of calculating vehicle body speed. 車体質量を演算する際の重み付け係数の設定方法を表すグラフである。It is a graph showing the setting method of the weighting coefficient at the time of calculating vehicle body mass. 本実施例の車両状態量検出装置におけるトルク検出装置を表す車軸部の断面図である。It is sectional drawing of the axle part showing the torque detection apparatus in the vehicle state quantity detection apparatus of a present Example. 図5のVI−VI断面図である。It is VI-VI sectional drawing of FIG.

符号の説明Explanation of symbols

11 トルク検出装置
12 車輪
13 電子制御ユニット(ECU、車両状態量算出手段、トルク演算出手段)
21 ハブ側ハウジング(第1円盤部材)
22 ホイール側ハウジング(第2円盤部材)
T1〜T4 トルク伝達部
S11,S12,S21,S22,S31,S32,S41,S42 荷重センサ
31 センサ出力演算部
32 前後運動状態量演算部
33 異常判定部
34 車輪速センサ
35 前後加速度センサ
36 タイヤ空気圧センサ
11 Torque detection device 12 Wheel 13 Electronic control unit (ECU, vehicle state quantity calculation means, torque calculation output means)
21 Hub side housing (first disk member)
22 Wheel side housing (second disk member)
T1 to T4 Torque transmission section S11, S12, S21, S22, S31, S32, S41, S42 Load sensor 31 Sensor output calculation section 32 Longitudinal motion state quantity calculation section 33 Abnormality determination section 34 Wheel speed sensor 35 Longitudinal acceleration sensor 36 Tire pressure Sensor

Claims (14)

車両の各車輪に作用する前後力を検出する前後力検出手段と、前記車両の各車輪に作用する上下力を検出する上下力検出手段と、前記前後力検出手段及び前記上下力検出手段の検出結果に基づいて車両の状態量を演算する車両状態量算出手段とを具えたことを特徴とする車両状態量検出装置。   Longitudinal force detection means for detecting longitudinal force acting on each wheel of the vehicle, vertical force detection means for detecting vertical force acting on each wheel of the vehicle, detection of the longitudinal force detection means and the vertical force detection means A vehicle state quantity detection device comprising vehicle state quantity calculation means for calculating a vehicle state quantity based on the result. 請求項1に記載の車両状態量検出装置において、前記前後力検出手段及び前記上下力検出手段は、車軸側に固定された第1円盤部材と、前記車輪側に固定されて前記第1円盤部材と同軸上に相対回転自在に支持された第2円盤部材と、前記第1円盤部材に対する前記第2円盤部材の周方向の正転荷重及び逆転荷重を検出する荷重検出手段と、該荷重検出手段が検出した正転荷重及び逆転荷重に基づいて前記車輪に作用する前後力及び上下力を演算するトルク演算出手段とを有することを特徴とする車両状態量検出装置。   2. The vehicle state quantity detection device according to claim 1, wherein the longitudinal force detection means and the vertical force detection means are a first disk member fixed to an axle side and the first disk member fixed to the wheel side. A second disk member supported coaxially with the first disk member, load detecting means for detecting a forward rotation load and a reverse rotation load in the circumferential direction of the second disk member with respect to the first disk member, and the load detection means A vehicle state quantity detection device comprising: torque calculation output means for calculating a longitudinal force and a vertical force acting on the wheel based on a forward load and a reverse load detected by the vehicle. 請求項1に記載の車両状態量検出装置において、前記車両状態量算出手段は、車輪速センサが検出した車輪速に基づいて演算した車輪角速度と、前記前後力検出手段が検出した前後力に基づいて演算したスリップ率と、前記上下力検出手段が検出した上下力に基づいて演算した車輪動荷重半径とから車体速度を演算することを特徴とする車両状態量検出装置。   2. The vehicle state quantity detection device according to claim 1, wherein the vehicle state quantity calculation means is based on a wheel angular velocity calculated based on a wheel speed detected by a wheel speed sensor and a longitudinal force detected by the longitudinal force detection means. A vehicle state quantity detecting device that calculates a vehicle body speed from a slip ratio calculated in accordance with the above and a wheel dynamic load radius calculated based on a vertical force detected by the vertical force detecting means. 請求項1に記載の車両状態量検出装置において、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力から、前記上下力検出手段が検出した上下力に基づいて演算した車体前後力を減算して走行抵抗を求めることを特徴とする車両状態量検出装置。   2. The vehicle state quantity detection device according to claim 1, wherein the vehicle state quantity calculation unit calculates a vehicle front-rear direction calculated based on a vertical force detected by the vertical force detection unit from a front-rear force detected by the front-rear force detection unit. A vehicle state quantity detection device characterized in that a driving resistance is obtained by subtracting a force. 請求項4に記載の車両状態量検出装置において、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力と、前記走行抵抗とから路面傾斜角を演算することを特徴とする車両状態量検出装置。   5. The vehicle state quantity detection device according to claim 4, wherein the vehicle state quantity calculation unit includes a longitudinal force detected by the longitudinal force detection unit, a vertical force detected by the vertical force detection unit, and the running resistance. A vehicle state quantity detection device that calculates a road surface inclination angle. 請求項3に記載の車両状態量検出装置において、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力と、前記車体速度とから空気抵抗を演算することを特徴とする車両状態量検出装置。   4. The vehicle state quantity detection device according to claim 3, wherein the vehicle state quantity calculation unit includes a longitudinal force detected by the longitudinal force detection unit, a vertical force detected by the vertical force detection unit, and the vehicle body speed. A vehicle state quantity detection device that calculates air resistance. 請求項1に記載の車両状態量検出装置において、前記車両状態量算出手段は、車輪空気圧センサが検出した空気圧と、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力とから車輪転がり抵抗を演算することを特徴とする車両状態量検出装置。   2. The vehicle state quantity detection device according to claim 1, wherein the vehicle state quantity calculation unit detects an air pressure detected by a wheel air pressure sensor, a longitudinal force detected by the longitudinal force detection unit, and a vertical force detection unit. A vehicle state quantity detection device that calculates a wheel rolling resistance from a vertical force. 請求項4に記載の車両状態量検出装置において、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力と、前記車体速度とから空気抵抗を演算すると共に、車輪空気圧センサが検出した空気圧と、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力とから車輪転がり抵抗を演算し、前記走行抵抗から前記空気抵抗及び車輪転がり抵抗を減算して路面抵抗を求めることを特徴とする車両状態量検出装置。   5. The vehicle state quantity detection device according to claim 4, wherein the vehicle state quantity calculation means includes a longitudinal force detected by the longitudinal force detection means, a vertical force detected by the vertical force detection means, and the vehicle body speed. While calculating the air resistance, calculating the wheel rolling resistance from the air pressure detected by the wheel air pressure sensor, the longitudinal force detected by the longitudinal force detecting means, and the vertical force detected by the vertical force detecting means, the running resistance Subtracting the air resistance and wheel rolling resistance from the vehicle to obtain road resistance, a vehicle state quantity detection device. 請求項3に記載の車両状態量検出装置において、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力と、前記車体速度とから空力による接地荷重成分を演算することを特徴とする車両状態量検出装置。   4. The vehicle state quantity detection device according to claim 3, wherein the vehicle state quantity calculation unit includes a longitudinal force detected by the longitudinal force detection unit, a vertical force detected by the vertical force detection unit, and the vehicle body speed. A vehicle state quantity detection device that calculates a ground load component due to aerodynamics. 請求項1に記載の車両状態量検出装置において、前記車両状態量算出手段は、前記上下力検出手段が検出した上下力から、前記前後力検出手段が検出した前後力に基づいて演算した車体上下力を減算して空力による接地荷重成分を求めることを特徴とする車両状態量検出装置。   2. The vehicle state quantity detection device according to claim 1, wherein the vehicle state quantity calculation unit calculates a vehicle body vertical quantity calculated based on a longitudinal force detected by the longitudinal force detection unit from a vertical force detected by the vertical force detection unit. A vehicle state quantity detection device characterized by subtracting a force to obtain an aerodynamic contact load component. 請求項3に記載の車両状態量検出装置において、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力と、前記車体速度と、路面傾斜角とから前後力成分に応じた車体質量を演算することを特徴とする車両状態量検出装置。   4. The vehicle state quantity detection device according to claim 3, wherein the vehicle state quantity calculation unit includes a longitudinal force detected by the longitudinal force detection unit, a vertical force detected by the vertical force detection unit, the vehicle body speed, A vehicle state quantity detection device that calculates a vehicle body mass corresponding to a longitudinal force component from a road surface inclination angle. 請求項11に記載の車両状態量検出装置において、前記車両状態量算出手段は、前記上下力検出手段が検出した上下力に空力による接地荷重成分を加味して上下力成分に応じた車体質量を演算し、前記前後力成分に応じた車体質量と、前記上下力成分に応じた車体質量と、車体前後力に応じた重み付け係数に基づいて車体質量を補正することを特徴とする車両状態量検出装置。   12. The vehicle state quantity detection device according to claim 11, wherein the vehicle state quantity calculation means calculates a vehicle body mass corresponding to the vertical force component by adding a ground load component due to aerodynamic force to the vertical force detected by the vertical force detection means. A vehicle state quantity detection that calculates and corrects a vehicle body mass based on a vehicle body mass according to the longitudinal force component, a vehicle body mass according to the vertical force component, and a weighting coefficient according to the vehicle longitudinal force apparatus. 請求項3に記載の車両状態量検出装置において、前記車両状態量算出手段は、前記前後力検出手段が検出した前後力と、前記上下力検出手段が検出した上下力と、前記車体速度と、路面傾斜角とから前後力成分に応じた車体質量を演算すると共に、前記上下力検出手段が検出した上下力に空力による接地荷重成分を加味して上下力成分に応じた車体質量を演算し、前記前後力成分に応じた車体質量と前記上下力成分に応じた車体質量との偏差に基づいて異常を判定する異常判定手段を設けたことを特徴とする車両状態量検出装置。   4. The vehicle state quantity detection device according to claim 3, wherein the vehicle state quantity calculation unit includes a longitudinal force detected by the longitudinal force detection unit, a vertical force detected by the vertical force detection unit, the vehicle body speed, Calculate the vehicle body mass according to the longitudinal force component from the road surface inclination angle, calculate the vehicle body mass according to the vertical force component by adding the ground load component due to aerodynamics to the vertical force detected by the vertical force detection means, An apparatus for detecting a vehicle state quantity, comprising: an abnormality determining unit that determines an abnormality based on a deviation between a vehicle body mass corresponding to the longitudinal force component and a vehicle body mass corresponding to the vertical force component. 請求項5に記載の車両状態量検出装置において、前記路面傾斜角と、前後加速度センサが検出した前後加速度に基づいて演算した実路面傾斜角との偏差に基づいて異常を判定する異常判定手段を設けたことを特徴とする車両状態量検出装置。   6. The vehicle state quantity detection device according to claim 5, further comprising: an abnormality determination unit that determines an abnormality based on a deviation between the road surface inclination angle and an actual road surface inclination angle calculated based on the longitudinal acceleration detected by the longitudinal acceleration sensor. A vehicle state quantity detection device provided.
JP2006032794A 2006-02-09 2006-02-09 Vehicle state variable detecting device Pending JP2007210463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032794A JP2007210463A (en) 2006-02-09 2006-02-09 Vehicle state variable detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032794A JP2007210463A (en) 2006-02-09 2006-02-09 Vehicle state variable detecting device

Publications (1)

Publication Number Publication Date
JP2007210463A true JP2007210463A (en) 2007-08-23

Family

ID=38489268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032794A Pending JP2007210463A (en) 2006-02-09 2006-02-09 Vehicle state variable detecting device

Country Status (1)

Country Link
JP (1) JP2007210463A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033350A (en) * 2009-07-29 2011-02-17 Nippon Soken Inc Tire acting force detecting device
JP2013117405A (en) * 2011-12-02 2013-06-13 Ntn Corp Bearing device for wheel with sensor
JP2013140125A (en) * 2012-01-06 2013-07-18 Ntn Corp Bearing device for wheel with sensor and vehicle control device using sensor output thereof
US9404540B2 (en) 2011-09-29 2016-08-02 Ntn Corporation Wheel bearing apparatus with sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297455A (en) * 1997-04-28 1998-11-10 Nissan Motor Co Ltd Brake hydraulic control device for vehicle
JP2003104139A (en) * 2001-07-17 2003-04-09 Toyota Motor Corp Device for detecting tire acting force
JP2003165400A (en) * 2001-09-18 2003-06-10 Toyota Motor Corp Slip state related amount acquisition device and longitudinal force control device
JP2004148903A (en) * 2002-10-29 2004-05-27 Honda Motor Co Ltd Detection device for lowering of air pressure
JP2005220775A (en) * 2004-02-04 2005-08-18 Denso Corp Engine control device
JP2005315154A (en) * 2004-04-28 2005-11-10 Denso Corp Diesel engine control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297455A (en) * 1997-04-28 1998-11-10 Nissan Motor Co Ltd Brake hydraulic control device for vehicle
JP2003104139A (en) * 2001-07-17 2003-04-09 Toyota Motor Corp Device for detecting tire acting force
JP2003165400A (en) * 2001-09-18 2003-06-10 Toyota Motor Corp Slip state related amount acquisition device and longitudinal force control device
JP2004148903A (en) * 2002-10-29 2004-05-27 Honda Motor Co Ltd Detection device for lowering of air pressure
JP2005220775A (en) * 2004-02-04 2005-08-18 Denso Corp Engine control device
JP2005315154A (en) * 2004-04-28 2005-11-10 Denso Corp Diesel engine control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033350A (en) * 2009-07-29 2011-02-17 Nippon Soken Inc Tire acting force detecting device
US9404540B2 (en) 2011-09-29 2016-08-02 Ntn Corporation Wheel bearing apparatus with sensor
JP2013117405A (en) * 2011-12-02 2013-06-13 Ntn Corp Bearing device for wheel with sensor
JP2013140125A (en) * 2012-01-06 2013-07-18 Ntn Corp Bearing device for wheel with sensor and vehicle control device using sensor output thereof

Similar Documents

Publication Publication Date Title
JP6122916B2 (en) System and method for determining tire wear
US7359787B2 (en) Stability control apparatus and load measuring instrument for wheel supporting rolling bearing unit
WO2007105655A1 (en) Preload measuring device for double row rolling bearing unit
KR100445049B1 (en) Bearing assembly with sensors for monitoring loads
US6802208B2 (en) Vehicle wheel bearing and method for controlling a vehicle
WO2013047346A1 (en) Wheel bearing apparatus with sensor
JP2006300086A (en) Rolling bearing unit with load measuring device
US8340881B2 (en) Method and system for assessing vehicle movement
JP4887882B2 (en) Displacement measuring device and load measuring device of rolling bearing unit
JP2004198247A (en) Load measuring apparatus for rolling bearing unit
JP2007210463A (en) Vehicle state variable detecting device
JP2006273108A (en) Vehicle state detector
JP4292955B2 (en) Stability control device
US20060228063A1 (en) Sensor apparatus and rolling bearing apparatus with sensor
CN111775946B (en) Road adhesion forecasting method based on wheel speed high-frequency signal
JP2005199882A (en) Traveling condition stabilizer for vehicle
JP2005321236A (en) Load measuring device of rolling bearing unit
JP2004198210A (en) Load measuring apparatus for rolling bearing unit
JP4487528B2 (en) Load measuring device for rolling bearing unit for wheel support
JP4866684B2 (en) Rolling bearing device for wheels
JP4356499B2 (en) Stability control device
JP5882746B2 (en) BEARING DEVICE WITH SENSOR AND VEHICLE CONTROL DEVICE USING THE SENSOR OUTPUT
JP2008039589A (en) Sensor-equipped roller bearing device
JP2007050804A (en) Stability control device
JP2005075264A (en) Stability controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214