JP2007210361A - Fish-shaped robot - Google Patents

Fish-shaped robot Download PDF

Info

Publication number
JP2007210361A
JP2007210361A JP2006029749A JP2006029749A JP2007210361A JP 2007210361 A JP2007210361 A JP 2007210361A JP 2006029749 A JP2006029749 A JP 2006029749A JP 2006029749 A JP2006029749 A JP 2006029749A JP 2007210361 A JP2007210361 A JP 2007210361A
Authority
JP
Japan
Prior art keywords
fish
robot
gravity
tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006029749A
Other languages
Japanese (ja)
Other versions
JP4255477B2 (en
Inventor
Eihiko Tsukamoto
頴彦 塚本
Kunihisa Fujiwara
邦久 藤原
Minoru Sueda
穣 末田
Tetsuo Ichikizaki
哲雄 市来嵜
Seiji Nomura
聖治 野村
Taisuke Kubota
泰輔 久保田
Yuuzou Kageyama
優造 陰山
Hiroo Nagafuji
浩朗 長藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MHI Solution Technologies Co Ltd
Original Assignee
MHI Solution Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MHI Solution Technologies Co Ltd filed Critical MHI Solution Technologies Co Ltd
Priority to JP2006029749A priority Critical patent/JP4255477B2/en
Publication of JP2007210361A publication Critical patent/JP2007210361A/en
Application granted granted Critical
Publication of JP4255477B2 publication Critical patent/JP4255477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Toys (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fish-shaped robot capable of advancing or retracting itself without depending on swinging of a pinna caudalis or a pinna pectorale. <P>SOLUTION: The fish-shaped robot is constituted so as to be able to swim in the water by swinging a rear part 16 of trunk including the pinna caudalis 17. The inclination in the longitudinal direction is applied to the fish-shaped robot 10 by a gravity center moving mechanism 40. An apparent specific gravity of the fish-shaped robot 10 is adjusted by changing water amount in a float/sink tank 31, and it is constituted so as to be able to advance or retract the fish-shaped robot by making the difference between the buoyant force and a gravity as an impelling force generated thereby without necessarily depending on swinging of the rear part 16 of trunk including the pinna caudalis 17 having a large power consumption. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、尾鰭や胸鰭の遥動によらずとも、この魚状ロボットを前進又は後退させることが可能な魚状ロボットに関する。   The present invention relates to a fish-like robot capable of moving the fish-like robot forward or backward without being moved by a caudal fin or a thorax.

従来、魚状ロボットもしくは人工魚と称せられるものが種々提案され、その幾つかは実用化されている。そのうち、実際の魚の前進機構、水平旋回機構、及び上下運動機構について、それぞれ幾つかの例が示され、そのうちロボットが試作されたことも示されている。(例えば非特許文献1参照。)。   Various types of fish robots or artificial fish have been proposed, some of which have been put into practical use. Among them, some examples of the actual fish advance mechanism, horizontal turning mechanism, and vertical movement mechanism are shown, and it is also shown that a robot was prototyped. (For example, refer nonpatent literature 1.).

しかしながら、その遊泳には尾鰭の揺動等に多大のエネルギを必要とし、それを内蔵のバッテリに依存しようとすれば、頻繁な充電が必要であると言う問題点がある。なお、非特許文献1は上下運動について幾つかの提案をしているが、省エネについて触れていない。   However, there is a problem that the swimming requires a lot of energy for swinging the tail fin and the like, and if it is dependent on the built-in battery, frequent charging is required. Non-Patent Document 1 makes several proposals for vertical movement, but does not mention energy saving.

平田 宏一:魚ロボットの概要,海上技術安全研究所ホームページKoichi Hirata: Outline of Fish Robot, Japan Maritime Safety Institute Home Page

以上のことから、本発明は、上記した従来技術の欠点を除くために、尾鰭や胸鰭の遥動によらずとも、この魚状ロボットを前進又は後退させることが可能な魚状ロボットを提供することにある。   In view of the above, the present invention provides a fish-like robot capable of moving the fish-like robot forward or backward without the swaying of a caudal fin or a pectoral fin in order to eliminate the above-described drawbacks of the prior art. There is.

上記の目的を達するために、請求項1の発明は、外見が魚状に形成された、一体又は略一体のゴム様弾性体の外皮で覆われ、且つ空気が封入された浮沈タンクへ水を送入したり、浮沈タンクから水を排出したりすることによって浮力を制御することが可能であり、且つ尾鰭を含む胴後部を遥動させることによって水中を遊泳することが可能に構成された魚状ロボットであって、この魚状ロボットを任意の俯角又は仰角でその長手方向に傾きが生じるように、重心を長手方向に移動する重心移動機構を搭載しており、それによってその魚状ロボットに長手方向の傾きを与えたうえ、前記浮沈タンクによって、この魚状ロボットの浮力と重力とを不等にし、その浮力と重力との差を推進力として、必ずしも、電力消費の大きい、尾鰭を含む胴後部の遥動によらずとも、この魚状ロボットを前進又は後退させることが可能に構成されている。 In order to achieve the above object, the invention of claim 1 is characterized in that water is supplied to a floating tank that is covered with an outer or outer skin of a rubber-like elastic body that is formed into a fish-like appearance and is sealed with air. It is possible to control buoyancy by sending in or discharging water from the sinking tank, and to swim underwater by swinging the back of the trunk including the tail fin It is equipped with a center-of-gravity movement mechanism that moves the center of gravity in the longitudinal direction so that the fish-like robot tilts in the longitudinal direction at an arbitrary depression or elevation angle. In addition to giving a tilt in the longitudinal direction, the buoyancy and gravity of this fish-like robot are made unequal by the float / sink tank, and the difference between the buoyancy and gravity is used as a driving force, which always includes a caudal fin that consumes a large amount of power. Trunk rear Even irrespective of the swinging, it is configured to be capable of advancing or retracting the fish-like robot.

請求項2の発明は、請求項1の発明の構成に加えて、前記重心移動機構は、前記重錘が長手方向のネジ棒に螺合されており、そのネジ棒の回転によって長手方向に移動するよう構成されている。   According to a second aspect of the present invention, in addition to the configuration of the first aspect of the invention, the center of gravity moving mechanism is configured such that the weight is screwed into a longitudinal screw rod and moved in the longitudinal direction by the rotation of the screw rod. It is configured to

請求項3の発明は、請求項1又は2の発明の構成に加えて、前記魚状ロボットの側方、左右方向又は略左右方向に外に向かって伸びる軸の周りに回動する、少なくとも一対の翼を備えている。 According to a third aspect of the present invention, in addition to the configuration of the first or second aspect of the present invention, at least a pair rotating around an axis extending outward in a lateral direction, a lateral direction, or a substantially lateral direction of the fish-like robot. With wings.

請求項4の発明は、外見が魚状に形成された、一体又は略一体のゴム様弾性体の外皮で覆われ、且つ空気が封入された浮沈タンクへ水を送入したり、浮沈タンクから水を排出したりすることによって浮力を制御することが可能であり、且つ尾鰭を含む胴後部を遥動させることによって水中を遊泳することが可能に構成された魚状ロボットであって、前記浮沈タンクへ水に限定しない任意の液体を送入すること、その浮沈タンクからその液体を排出することが可能に、その液体を貯蔵する補助タンクが付設され、且つその補助タンクはその容積が貯蔵液量に応じて増減容易に可撓性を有し、その容積の増減に応じて、この魚状ロボットを包囲する水が、その補助タンク周囲へ、又はその周囲から容易に移動するよう構成されている。 According to the invention of claim 4, water is fed into a floating tank that is covered with a shell of an integral or substantially integral rubber-like elastic body that is formed in a fish-like appearance, and in which air is enclosed. A fish-like robot configured to control buoyancy by discharging water and to swim underwater by swinging a rear part of the trunk including a tail fin, An auxiliary tank for storing the liquid is attached so that an arbitrary liquid not limited to water can be sent to the tank and the liquid can be discharged from the floating tank, and the volume of the auxiliary tank is the storage liquid. It is flexible so that it can be easily increased or decreased according to the volume, and the water surrounding the fish-like robot can be easily moved around or from the auxiliary tank according to the increase or decrease of the volume. Yes.

請求項5の発明は、請求項1乃至3のいずれか記載の構成に加えて、前記浮沈タンクへ水に限定しない任意の液体を送入すること、その浮沈タンクからその液体を排出することが可能に、その液体を貯蔵する補助タンクが付設され、且つその補助タンクはその容積が貯蔵液量に応じて増減容易に可撓性を有し、その容積の増減に応じて、この魚状ロボットを包囲する水が、その補助タンク周囲へ、又はその周囲から容易に移動するよう構成されている。   In addition to the structure according to any one of claims 1 to 3, the invention of claim 5 is capable of sending an arbitrary liquid not limited to water to the floating tank and discharging the liquid from the floating tank. An auxiliary tank for storing the liquid is attached, and the auxiliary tank is flexible so that its volume can be easily increased or decreased depending on the amount of the stored liquid. Is configured to easily move around or from the auxiliary tank.

請求項1の発明によれば、浮沈タンク内の水量を調節し、この魚状ロボットは、その見掛け比重を、それを包囲する水の比重と同じにした場合、浮力と重力とが等しく、見掛け上無重力状態であり、その他の力が作用しなければ、静止していれば、何時までもその位置に静止し、また動いていても、水の抵抗を受けて減速し、間もなく停止する。それに対して浮沈タンク内の水量の調節によって、この魚状ロボットの見掛け比重を水の比重より、大きくするか、小さくすると、その浮力と重力との差が推進力となって、その魚状ロボットは、その姿勢が水平であれば、そのまま又は略そのままの姿勢で鉛直方向に浮上するか、又は沈降する。その速度は浮力と重力との差の増大に伴って増大する。 According to the first aspect of the present invention, when the amount of water in the float / sink tank is adjusted and the apparent specific gravity is the same as the specific gravity of the surrounding water, the buoyancy and gravity are equal, and the apparent If it is in the upper weightless state and no other force is applied, if it is stationary, it will stay at that position for many hours, and even if it is moving, it will decelerate due to the resistance of water and stop soon. On the other hand, if the apparent specific gravity of this fish-like robot is made larger or smaller than the specific gravity of water by adjusting the amount of water in the float / sink tank, the difference between the buoyancy and gravity becomes the driving force, and the fish-like robot If the posture is horizontal, it floats or sinks in the vertical direction as it is or almost as it is. The velocity increases with increasing difference between buoyancy and gravity.

なお、魚状ロボットは、一般に前部分の幅が大きく、後部分の幅が小さいため、その浮沈時の抗力が前と後で異なり、後部分が前部分よりも僅かに先行し、前後方向に僅かに傾斜する。その傾斜に伴って、この魚状ロボットは、鉛直方向に比べて小さいが、推進力の前後方向分力も僅かながら発生し、後進する。 Note that fish-like robots generally have a large front part and a small rear part, so the drag at the time of their ups and downs is different from the front and back, and the rear part slightly precedes the front part in the front-rear direction. Slightly inclined. Along with the inclination, this fish-like robot is small compared to the vertical direction, but the forward / backward component of the propulsive force is slightly generated and moves backward.

それに対して、この魚状ロボットは、重心移動機構によって重心をその中立点から前方又は後方に移動すれば、重心と浮心が同一鉛直線上に位置するよう、前下向き又は前上向きに、長手方向の傾きを生じるが、そのままの姿勢で静止していて、浮上することも、沈降することもない。しかしながら、この姿勢で、上述のようにこの魚状ロボットの見掛け比重を水の比重より、大きくするか、又は小さくすると、その浮力と重力との差が推進力となって、浮上又は沈降する。しかもその魚状ロボットは、長手方向に傾斜しているため、その長手方向の推進分力を有するため、その浮沈に当たって先行する端部(例えば前下向きの場合は頭部)を先頭に、尾鰭を含む胴後部の遥動によらずとも、魚状ロボットの前後方向の側に近寄った、抵抗最小の方向に前進又は後退することが出来る。その移動速度は浮力と重力との差の増大と共に増大する。 On the other hand, this fish-like robot has a longitudinal direction so that the center of gravity and the buoyant center are located on the same vertical line when the center of gravity is moved forward or backward from the neutral point by the center of gravity moving mechanism. However, it does not float or sink. However, if the apparent specific gravity of the fish-like robot is made larger or smaller than the specific gravity of water in this posture as described above, the difference between the buoyancy and the gravity becomes a propulsive force, so that it floats or sinks. In addition, since the fish-like robot is inclined in the longitudinal direction, it has a propulsive component in the longitudinal direction, so that the leading edge (for example, the head in the case of front-down) heads forward with the caudal fin. It is possible to move forward or backward in the direction of minimum resistance, which is closer to the front-rear direction of the fish-like robot, regardless of the swinging of the rear part of the trunk. The moving speed increases with an increase in the difference between buoyancy and gravity.

従って、上記重心の長手方向の移動と,浮力と重力との差の変更と,を組み合わせ、先ず前下向きにして沈降しながら前進し、次いで前上向きにして浮上しながら前進すると言うジグザグ運動を交互に繰り返すことによって、電力消費の大きい、尾鰭17を含む胴後部16の遥動によらずとも、この魚状ロボット10を前進させることが出来、その省エネ化を図ることが出来る。   Therefore, the longitudinal movement of the center of gravity is combined with the change in the difference between buoyancy and gravity, and the zigzag motion of moving forward while descending forward and then moving forward while moving upward and forward is alternated. By repeating the above, the fish-like robot 10 can be moved forward and energy saving can be achieved regardless of the rocking of the trunk rear portion 16 including the tail fin 17 which consumes a large amount of power.

請求項2の発明によれば、請求項1の発明の効果に加えて、重心移動機構の構成が簡単なうえ、設置空間が小さくて済み、しかも重心制御が正確、容易である。 According to the invention of claim 2, in addition to the effect of the invention of claim 1, the structure of the center-of-gravity moving mechanism is simple, the installation space is small, and the center-of-gravity control is accurate and easy.

請求項3の発明によれば、請求項1又は2の効果に加えて、前記魚状ロボットは、その側方、左右方向又は略左右方向に外に向かって伸びる軸の周りに回動する翼によって、静止中であればその影響を受けることはないが、運動中であれば、その形状、面積、傾きに応じてその揚力又は/及び抗力を受ける。例えば、その翼の面積を出来るだけ大きくし、その翼をその魚状ロボットの長手方向に平行にすれば、それに垂直な方向の抗力が増大するため、同一の浮沈深さに対する水平移動距離が増大し、従って同一水平移動距離に対する浮沈回数が減少し、浮沈切り替えのための浮沈タンクへの給排水に必要な電力消費を節減することが出来る。なお、単に鉛直方向に浮沈する場合は、その魚状ロボットを水平にすると共に、翼はその長手方向に対して垂直にし、浮沈時の抵抗を最小限にすればよい。 According to a third aspect of the invention, in addition to the effect of the first or second aspect, the fish-like robot is a wing that rotates about an axis extending outward in a lateral direction, a lateral direction, or a substantially lateral direction. However, if it is stationary, it will not be affected, but if it is exercising, it will receive lift or / and drag depending on its shape, area, and tilt. For example, if the area of the wing is made as large as possible and the wing is made parallel to the longitudinal direction of the fish-like robot, the drag in the direction perpendicular to it increases, so the horizontal movement distance for the same floating depth increases. Therefore, the number of ups and downs with respect to the same horizontal movement distance is reduced, and the power consumption required for water supply and drainage to the ups and downs tank for the up and down switching can be reduced. If the fish robot simply floats and sinks, the fish-like robot may be leveled and the wings may be perpendicular to the longitudinal direction to minimize the resistance during the sinking.

請求項4の発明によれば、又は請求項5の発明によれば(請求項1乃至3のいずれかの発明の効果に加えて)、この魚状ロボットは、浮沈に当たって、その浮沈タンクから周囲へ水の排出や周囲からの水の導入なしに、それに付設された補助タンクに貯留された液体によって周囲の水と同様の効果を発揮させることが出来る。従って、浮沈タンク用のポンプ・配管の、種々の物質を含む、周囲の水と接触することはなく、前記物質による、汚れ・詰まり・腐食等が防止可能である。 According to the invention of claim 4 or according to the invention of claim 5 (in addition to the effect of any of the inventions of claims 1 to 3), the fish-like robot hits and sinks from its floating tank Without draining water or introducing water from the surroundings, the liquid stored in the auxiliary tank attached thereto can exert the same effect as the surrounding water. Therefore, the pump / pipe for the float / sink tank does not come into contact with the surrounding water containing various substances, and contamination, clogging, corrosion, etc. due to the substances can be prevented.

本発明の魚状ロボットを実施するための最良の形態について図1(a),(b),(c)によって説明すると、10は魚状ロボット、11はそれを覆う外皮であって、中空状一体又は略一体のゴム様弾性体よりなり、しかも、形態・模様・色・触感に至るまでその外観が可能な限り自然魚に似るよう造られている。なお、15は魚状ロボットの胴本体部分、16は胴本体部分15の後方に一体に結合された胴後部、17はその胴後部16の後部、それと一体に結合された尾鰭、18は前記胴本体部分15の前方に一体に結合された頭部である。 The best mode for carrying out the fish-like robot of the present invention will be described with reference to FIGS. 1 (a), (b), and (c). Reference numeral 10 denotes a fish-like robot; It is made of a rubber-like elastic body that is integral or nearly integral, and has an appearance that resembles natural fish as much as possible, from its form, pattern, color, and touch. In addition, 15 is a trunk main body part of the fish-like robot, 16 is a trunk rear part integrally coupled to the rear of the trunk main body part 15, 17 is a rear part of the trunk rear part 16, and a tail fin integrally coupled thereto. It is a head integrally coupled to the front of the main body portion 15.

次に20は、大部分の搭載部品(後述)を水密に収容する水密容器であって、胴本体部分15、頭部18内に配置され、主として両端が開かれた中空円筒21と,前端が閉じられ、後端が開かれた断面円形のキャップ22と,前記中空円筒21の各端部が外嵌された円板23,24と,よりなるが、そのうち円板23は後述する理由から刳り抜かれていると共に、キャップ22の後端部も外嵌されている。その他に図示は省略するが、各円板23,24と,中空円筒21、キャップ25と,の間をシールするOリング、両円板23,24間に張架された複数本の支柱等が存在する。 Next, 20 is a watertight container for watertightly accommodating most mounting components (described later), which is disposed in the trunk main body portion 15 and the head 18 and has a hollow cylinder 21 mainly opened at both ends and a front end. The cap 22 having a circular cross section that is closed and the rear end is opened, and discs 23 and 24 on which the respective ends of the hollow cylinder 21 are externally fitted, of which the disc 23 is turned for the reason described later. While being pulled out, the rear end of the cap 22 is also externally fitted. Although not shown in the drawings, an O-ring that seals between the discs 23 and 24, the hollow cylinder 21 and the cap 25, a plurality of struts stretched between the discs 23 and 24, and the like. Exists.

ここで本発明の主題である、魚状ロボット10の、長手方向の傾斜及び浮力と重力との差を組み合わせ、利用した前進又は後退に関連する構成について記述する。30は魚状ロボット10の見掛け比重を調節する見掛け比重調節部であって、内部に空気が封じ込まれ、水を貯留することが出来る浮沈タンク31、その浮沈タンク31に外(魚状ロボット10周囲)から水を吸入したり、外へ排出したりするポンプ32の他図示されない給排水配管を備えている。なお、前記浮沈タンク31は、前記刳り抜かれた前側の円板23を越えて前方に伸びている。また、上記機器、部品は全て水密容器20内に水密に収納されている。   Here, the configuration related to the forward or backward movement using the combination of the inclination in the longitudinal direction and the difference between buoyancy and gravity of the fish-like robot 10 which is the subject of the present invention will be described. Reference numeral 30 denotes an apparent specific gravity adjusting unit that adjusts the apparent specific gravity of the fish-like robot 10. Air is enclosed inside the float-like tank 31 that can store water and the outside of the float-and-sink tank 31 (the fish-like robot 10 In addition to the pump 32 for sucking water from the surroundings and discharging it to the outside, a water supply / drain pipe (not shown) is provided. The float / sink tank 31 extends forward beyond the hollowed out front disc 23. In addition, all the devices and parts are stored in a watertight container 20 in a watertight manner.

次いで40は魚状ロボット10の重心を長手方向に移動する重心移動機構であって、重錘41、その重錘41を長手方向に貫通し、それに螺合されるネジ棒42、そのネジ棒42を1組の歯車(記号省略)を介して回動させる重錘移動用サーボモータ43、及び前記重錘41の位置を検知するポテンショメータ44を備えている。なお、前記ネジ棒42は必要長さ確保のため、上記刳り抜かれた円板22より前方に伸びており、また、前記重錘41はそのネジ棒42の回動によって長手方向にのみ案内されるよう拘束されている。 Next, 40 is a center-of-gravity moving mechanism that moves the center of gravity of the fish-like robot 10 in the longitudinal direction. The weight 41, a screw rod 42 that passes through the weight 41 in the longitudinal direction and is screwed to the weight 41, and the screw rod 42 Is provided with a weight moving servo motor 43 that rotates the shaft through a pair of gears (not shown), and a potentiometer 44 that detects the position of the weight 41. The screw rod 42 extends forward from the hollowed disc 22 in order to secure the required length, and the weight 41 is guided only in the longitudinal direction by the rotation of the screw rod 42. It is restrained.

さらに50は魚状ロボット10の揚力等を調節する揚力等調節機構であって、上記円板22の刳り貫かれた部分に配置された一対の翼回動用サーボモータ51,51、そのサーボモータ51,51に結合され、刳り貫かれた円板22をその半径方向に貫いて左右方向又は略左右方向(図では僅かに左右下向きに傾斜)に伸びる左右一対の軸(記号省略)にそれぞれ装着された翼51,51を備えている。なお、上記機器、部品は翼51,51を除き容器本体部分20内に水密に収納されている。なお、90はこの魚状ロボット10全体の制御部、95は各部に必要な電力を供給する蓄電池である。 Further, reference numeral 50 denotes a lifting force adjusting mechanism for adjusting the lifting force or the like of the fish-like robot 10, and a pair of wing rotating servomotors 51, 51 disposed in a portion where the disk 22 is perforated, and the servomotor 51. , 51 and attached to a pair of left and right shafts (symbol omitted) extending in the left-right direction or substantially left-right direction (in the figure, slightly inclined to the left and right in the drawing) through the punched disc 22 in the radial direction. Wings 51, 51 are provided. The devices and parts are stored in a watertight manner in the container body 20 except for the wings 51 and 51. In addition, 90 is a control part of this fish-like robot 10 whole, 95 is a storage battery which supplies electric power required for each part.

以上の構成に対する、尾鰭等の揺動によるものを除く作用について説明する。先ず単純な浮沈作用について説明する。この魚状ロボット10は、見掛け比重調整部30を構成する浮沈タンク31内の水量を調節し、その見掛け比重を、それを包囲する水の比重と同じにした場合、浮力と重力とが等しく、見掛け上無重力状態であり、その他の力が作用しなければ、静止していれば、何時までもその位置に静止し、また動いていても、水の抵抗を受けて減速し、間もなく停止する。   A description will be given of the operation of the above configuration excluding that caused by rocking of the tail fin or the like. First, a simple ups and downs action will be described. This fish-like robot 10 adjusts the amount of water in the floating tank 31 constituting the apparent specific gravity adjusting unit 30, and when the apparent specific gravity is the same as the specific gravity of the water surrounding it, the buoyancy and gravity are equal, If it is apparently weightless and no other force is applied, if it is stationary, it will remain at that position until any time, and even if it is moving, it will decelerate due to the resistance of water and will soon stop.

それに対して浮沈タンク31内の水量をポンプ32によって排出又は導入することによってこの魚状ロボット10の見掛け比重を水の比重より、大きくするか、小さくすると、その浮力と重力との差が推進力となって、その魚状ロボット10は、後述するようにその姿勢が水平であれば、そのまま又は略そのままの姿勢で鉛直方向に浮上するか、又は沈降する。その速度は浮力と重力との差の増大に伴って増大する。 On the other hand, when the apparent specific gravity of the fish-like robot 10 is made larger or smaller than the specific gravity of water by discharging or introducing the amount of water in the floating tank 31 by the pump 32, the difference between the buoyancy and gravity is the driving force. Thus, if the posture of the fish-like robot 10 is horizontal as will be described later, the fish-like robot 10 floats or sinks in the vertical direction as it is or almost as it is. The velocity increases with increasing difference between buoyancy and gravity.

なお、魚状ロボット10の重心は、姿勢安定化のため、その鉛直対称面内、浮心(浮力中心:魚状ロボット10内をその搭載品に占有された部分を含めて全て水で満たしたときの重心であって、それに対して浮力が作用する)直下に位置するよう設定されており、その魚状ロボット10を左右幅方向、長手方向のいずれかに傾けようとすると、重心と浮心との間に左右幅方向、長手方向のいずれかのずれが生じ、復元力が作用し、元の姿勢に戻る。 It should be noted that the center of gravity of the fish-like robot 10 is filled with water in the vertical symmetry plane, buoyancy (buoyancy center: the inside of the fish-like robot 10 including the portion occupied by the mounted product) in order to stabilize the posture. The center of gravity and the buoyancy are set when the fish-like robot 10 is tilted in either the left-right width direction or the longitudinal direction. There is a shift in either the left-right width direction or the longitudinal direction between the two, and a restoring force acts to return to the original posture.

次に魚状ロボット10を長手方向に傾斜させた場合について説明する。この魚状ロボット10の重心の長手方向の移動は次のようにして行うことが出来る。すなわち、重心移動機構40を構成する重錘移動用サーボモータ43を回動させると、その回動は1組の歯車を介してネジ棒42へ伝達され、そのネジ棒42が回動する。そのネジ棒42に螺合された重錘41は、前述のように長手方向のみに移動可能に拘束されていて、そのネジ棒42の回動によってその中立点から前方又は後方へ移動し、それに伴って重心も前方又は後方へ移動する。 Next, the case where the fish robot 10 is tilted in the longitudinal direction will be described. The longitudinal movement of the center of gravity of the fish-like robot 10 can be performed as follows. That is, when the weight moving servo motor 43 constituting the gravity center moving mechanism 40 is rotated, the rotation is transmitted to the screw rod 42 through a set of gears, and the screw rod 42 is rotated. The weight 41 screwed to the screw rod 42 is restrained so as to be movable only in the longitudinal direction as described above, and moves forward or backward from the neutral point by the rotation of the screw rod 42. Along with this, the center of gravity also moves forward or backward.

見掛け比重がそれを包囲する水の比重と等しい場合、上述のように重心がその中立点から前方又は後方へ移動すると、重心と浮心が同一鉛直線上に位置するよう、前下向き又は前上向きに、長手方向の傾きを生じる。しかしながら、魚状ロボット10はその姿勢のままで静止していて、浮上することも、沈降することもない。それに対して、この姿勢で、上述のように浮沈タンク31の水量を変化させ、この魚状ロボット10の見掛け比重を水の比重より、大きくするか、又は小さくすると、その浮力と重力との差が推進力となって、浮上又は沈降するが、その浮沈に当たって、先行する端部(例えば前下向きの場合は頭部18)を先頭に、抵抗最小の方向に前進又は後退する。その移動速度は浮力と重力との差の増大と共に増大する。 When the apparent specific gravity is equal to the specific gravity of the water surrounding it, as described above, when the center of gravity moves forward or backward from its neutral point, the center of gravity and the buoyancy are either forward or downward or forward and upward. , Causing a tilt in the longitudinal direction. However, the fish-like robot 10 is still in its posture and does not rise or sink. On the other hand, if the amount of water in the floating tank 31 is changed in this posture as described above, and the apparent specific gravity of the fish-like robot 10 is made larger or smaller than the specific gravity of water, the difference between the buoyancy and gravity is changed. Ascends and sinks as a driving force, but moves forward or backward in the direction of minimum resistance starting from the leading end (for example, the head 18 in the case of front-down) at the top and bottom. The moving speed increases with an increase in the difference between buoyancy and gravity.

前述の抵抗最小の方向に前進又は後退することについてより具体的に説明すると、前記浮力と重力との差に伴って生じる、前下向き又は前上向きに傾斜した魚状ロボット10の推進力Fは、例えば図2(a)に示すように、長手方向に平行な推進分力Fpとそれに垂直な推進分力Fvとに分けられ、その速度Vも長手方向に平行、垂直の分速度Vp,Vvに分けられる。その各分速度Vp,Vvはその魚状ロボット10を包囲する水の抵抗がないとすれば、その経過時間と共に次第に増大する。 More specifically, the advancing or retreating in the direction of the minimum resistance described above, the propulsive force F of the fish-like robot 10 inclined forward and downward or forward and upward caused by the difference between the buoyancy and gravity is: For example, as shown in FIG. 2 (a), it is divided into a thrust component force Fp parallel to the longitudinal direction and a thrust component force Fv perpendicular thereto, and the velocity V is also parallel to the longitudinal direction and perpendicular component velocity Vp, Vv. Divided. The respective speeds Vp and Vv gradually increase with the elapsed time if there is no resistance of water surrounding the fish-like robot 10.

しかしながら、その各分速度Vp,Vvは、その水の抵抗を受けるため、それぞれの推進分力とその分抗力(KpVp,KvVv)とが等しくなる、一定値(終端速度Vpt,Vvt=(推進分力Fp,Fv)/(比例定数Kp,Kv))に落ち着く。なお、比例定数Kp,Kvは、それぞれ断面積Ap,Avと,渦を生じ易いかどうかによって決まる形状係数Dp,Dvと,の積である。しかも、両者について前記比例定数Kp,Kvを比較すると、魚状ロボット10の形状から長手方向の比例定数Kpに比べてそれに垂直な方向の比例定数Kvが著しく大であって、長手方向の推進分力Fpはそれに垂直な推進分力Fvに比べて小さいが、上記終端速度を求める式によって終端速度Vpt,Vvtが決まり、魚状ロボット10はその長手方向に平行な方向に近寄った、抵抗最小の方向に前進又は後退する。 However, since the respective partial speeds Vp and Vv are subjected to the resistance of the water, the respective thrust component forces and the corresponding drag forces (KpVp and KvVv) are equal to each other, and are constant values (terminal velocities Vpt and Vvt = (propulsion minutes). Force Fp, Fv) / (proportional constant Kp, Kv)). The proportional constants Kp and Kv are the products of the cross-sectional areas Ap and Av, respectively, and the shape factors Dp and Dv determined depending on whether or not vortices are easily generated. In addition, when the proportional constants Kp and Kv are compared with each other, the proportional constant Kv in the direction perpendicular to the proportional constant Kp in the longitudinal direction is significantly larger than the proportional constant Kp in the longitudinal direction due to the shape of the fish-like robot 10. Although the force Fp is smaller than the propulsive component force Fv perpendicular thereto, the terminal speeds Vpt and Vvt are determined by the above formula for calculating the terminal speed, and the fish-like robot 10 approaches the direction parallel to the longitudinal direction and has the minimum resistance. Move forward or backward in the direction.

従って、図2(b)に示すように、上記重心の長手方向の移動と,浮力と重力との差の変更と,を組み合わせ、先ず前下向きにして沈降しながら前進し、次いで前上向きにして浮上しながら前進すると言うジグザグ運動を交互に繰り返すことによって、電力消費の大きい、尾鰭17を含む胴後部16の遥動によらずとも、この魚状ロボット10を前進させることが出来、その省エネ化を図ることが出来る。   Therefore, as shown in FIG. 2 (b), the longitudinal movement of the center of gravity and the change in the difference between the buoyancy and gravity are combined, and then first moved forward while sinking, and then moved forward and upward. By alternately repeating the zigzag motion to move forward while ascending, the fish-like robot 10 can be moved forward, regardless of the swaying of the torso part 16 including the tail fin 17, which consumes a large amount of power. Can be planned.

しかも、この重心移動機構40は、それを構成する主要機器、部品が、重錘41、ネジ棒42、重錘移動用サーボモータ43、及びポテンショメータ44であって、ネジ棒42の回動によって重錘41が長手方向に移動し、それによって重心を長手方向に容易に移動することが可能であり、その機構が簡単なうえ、占有空間が小さくて済み、他の手段に比較して重心制御が正確、容易である。 Moreover, the center of gravity moving mechanism 40 includes a weight 41, a screw rod 42, a weight moving servo motor 43, and a potentiometer 44. The weight 41 can be moved in the longitudinal direction, so that the center of gravity can be easily moved in the longitudinal direction, the mechanism is simple and the occupied space is small, and the center of gravity can be controlled as compared with other means. Accurate and easy.

次に魚状ロボット10の揚力等を調節する揚力等調節機構50について説明すると、上記円板23の刳り抜かれた部分に配置された一対の翼回動用サーボモータ51,51、そのサーボモータ51,51に結合され、刳り抜かれた円板23をその半径方向に貫いて左右方向又は略左右方向(図では僅かに左右下向きに傾斜)外側に伸びる左右一対の軸(記号省略)にそれぞれ装着された翼52,52を備えている。なお、上記機器、部品は翼52,52を除き容器本体部分20内に水密に収納されている。 Next, the lift and other adjustment mechanism 50 for adjusting the lift and the like of the fish-like robot 10 will be described. A pair of wing rotating servomotors 51 and 51 arranged in the hollowed portion of the disk 23, the servomotor 51, 51 are attached to a pair of left and right shafts (symbol omitted) extending outwardly in the left-right direction or substantially left-right direction (slightly inclined to the left and right in the figure). Wings 52 and 52 are provided. The devices and parts are stored in a watertight manner in the container body 20 except for the wings 52 and 52.

揚力等調節機構50の作用について説明すると、魚状ロボット10は水平静止状態では、翼51,51を回動するだけでは、浮力と重力との差も変化せず、従ってその挙動に何らの変化を生じない。また、重心を長手に移動しても、単に長手方向に傾斜するだけで、以後静止したままである。しかし、運動中の魚状ロボット10は、翼51,51の傾きに応じた揚力又は/及び抗力を受け、その運動に種々の変化が生じる。 The action of the lifting force adjusting mechanism 50 will be described. When the fish-like robot 10 is in a horizontal stationary state, simply rotating the wings 51, 51 does not change the difference between buoyancy and gravity, and therefore changes in its behavior. Does not occur. Further, even if the center of gravity is moved in the longitudinal direction, it simply tilts in the longitudinal direction and remains stationary thereafter. However, the fish-like robot 10 in motion receives a lift force and / or a drag force according to the inclination of the wings 51 and 51, and various changes occur in the motion.

すなわち例えば、魚状ロボット10を長手方向に傾斜させ、浮力を増減し、浮沈させる場合、その翼51,51を長手方向に水平にすると、それらに平行な方向の抗力は殆ど変化しないが、その面積に応じて、それらに垂直な方向の抗力が増大するため、同一の浮沈深さに対する水平移動距離が増大し、それだけ同一水平移動距離に対する浮沈回数が減少し、浮沈切り替えのための浮沈タンクへの給排水に必要な電力消費を節減することが出来る。 That is, for example, when the fish-like robot 10 is tilted in the longitudinal direction, the buoyancy is increased or decreased, and the wings 51 and 51 are horizontally leveled in the longitudinal direction, the drag in the direction parallel to them hardly changes. Depending on the area, the drag in the direction perpendicular to them increases, so the horizontal movement distance for the same floating depth increases, and the number of floating times for the same horizontal movement distance decreases accordingly, to the floating tank for switching between floating and sinking The power consumption required for water supply and drainage can be reduced.

それに対して単に鉛直方向に浮沈させる場合は、その魚状ロボット10を水平にすると共に、翼51,51は魚状ロボット10の長手方向に対して垂直にすることによって浮沈時の抗力を最小限にすることも可能である。また、水平な姿勢で鉛直又は略鉛直に浮上中、翼51,51の傾きを前上向きにすると、それによって前上向きの揚力を与えることが出来、その魚状ロボット10を重心の移動によらずとも前上向きに前進させることも出来る。 On the other hand, when the fish robot 10 is simply floated and lowered, the fish-like robot 10 is leveled and the wings 51 and 51 are perpendicular to the longitudinal direction of the fish-like robot 10, thereby minimizing the drag force during the float and sink. It is also possible to make it. In addition, when the wings 51 and 51 are tilted forward and upward while ascending vertically or substantially vertically in a horizontal posture, the forward and upward lift force can be applied thereby, and the fish-like robot 10 is moved regardless of the movement of the center of gravity. Both can be moved forward and upward.

ここで本発明の主題ではないが、それぞれ尾鰭17を含む胴後部16の遥動、魚状ロボット10の水平面内での旋回、に関連する構成の一例について説明する。先ず揺動機構60について説明すると、61は弾性変形容易な一枚の金属製の遥動板であって、その前端は前記水密容器20の後側円板24の後方に結合された軸支持部材27の後端に固定されている。62は揺動軸であって、その軸支持部材27上下に鉛直に取り付けられた1対の軸受け(記号省略)に回動自在に支承されている。63,63はその揺動軸62に垂直一体に取り付けられ、その揺動軸62を中心に左右方向に延びる上下1対のレバー、64,64はその各レバー63と前記揺動板61の後部との間に張架された左右1対の金属細線、65は揺動用動力伝達部分であって、前記揺動軸62とそれを駆動する揺動用サーボモータ67との間に介在する、水平軸66その他の部材よりなる。 Here, although not the subject of the present invention, an example of a configuration related to the swing of the rear trunk 16 including the tail fin 17 and the turning of the fish-like robot 10 in the horizontal plane will be described. First, the swing mechanism 60 will be described. Reference numeral 61 denotes a single metal swing plate that is easily elastically deformed, and its front end is a shaft support member coupled to the rear of the rear disk 24 of the watertight container 20. 27 is fixed to the rear end. Reference numeral 62 denotes a rocking shaft, which is rotatably supported by a pair of bearings (symbol omitted) vertically attached to the shaft support member 27. 63 and 63 are vertically attached to the swing shaft 62, and a pair of upper and lower levers extending in the left-right direction around the swing shaft 62. 64 and 64 are rear portions of the lever 63 and the swing plate 61, respectively. A pair of left and right metal thin wires stretched between and 65 is a power transmission portion for swinging, which is interposed between the swinging shaft 62 and a swinging servomotor 67 for driving the horizontal shaft. 66 and other members.

さらに、尾鰭17を含む胴後部16を折り曲げ、魚状ロボット10を水平面内で左右に旋回させる旋回機構70の一例について説明する。71は旋回軸であって、上記軸支持部材27、上記揺動軸62前方の上下に鉛直に取り付けられた1対の軸受け(記号省略)に回動自在に支承されている。72はその旋回軸71に垂直一体に取り付けられ、その旋回軸71を中心に左右水平方向に延びるレバー、73,73はそのレバー72と前記揺動板61の前部との間に張架された左右1対の金属細線、74は旋回用動力伝達部分であって、前記旋回軸71とそれを駆動する旋回用サーボモータ76との間に介在する、前記円板24を貫通する水平軸75その他の複数の部材よりなる。以上の構成によれば、尾鰭17を含む胴後部16を胴本体部分15に対して折り曲げると、尾鰭17を含む胴後部16を揺動させた場合だけでなく、それによらず、上述のように長手方向に傾斜した姿勢で浮沈させる場合でも、魚状ロボット10は左右に旋回させることが可能になる。 Furthermore, an example of a turning mechanism 70 that bends the trunk rear portion 16 including the tail fin 17 and turns the fish-like robot 10 left and right within a horizontal plane will be described. Reference numeral 71 denotes a turning shaft, which is rotatably supported by a pair of bearings (symbol omitted) vertically attached to the shaft support member 27 and the swing shaft 62 in front and above. Reference numeral 72 denotes a lever that is vertically integrated with the pivot shaft 71, and a lever that extends in the horizontal direction about the pivot shaft 71. 73 and 73 are stretched between the lever 72 and the front portion of the swing plate 61. A pair of left and right metal thin wires, 74 is a turning power transmission portion, and is interposed between the turning shaft 71 and a turning servo motor 76 for driving the turning shaft 71, and a horizontal shaft 75 penetrating the disk 24. It consists of a plurality of other members. According to the above configuration, when the trunk rear portion 16 including the tail fin 17 is bent with respect to the trunk main body portion 15, not only when the trunk rear portion 16 including the tail fin 17 is swung but also as described above. Even when the fish robot 10 floats and sinks in a posture inclined in the longitudinal direction, the fish-like robot 10 can be turned left and right.

3番目に上記尾鰭17を含む胴後部16の内部構造について簡単に説明すると、80は複数の円板81(又はそれに準ずる形状の板)が長手方向に隙間を開けて配列された板列部分であって、前記尾鰭17を含む胴後部16を覆う外皮11を内側から支持すると共に、その各円板81は前記遥動板61と一体に結合されていて、その断面形状を全く又は殆ど変えず、且つ円板81同士の隙間を変えることによって前記遥動板61と共に容易に左右に湾曲し、遥動することが可能に構成されている。以上のように構成されることによって尾鰭17を含む胴後部16を自然魚のそれのようにしなやかに遥動させることが可能になる。 Thirdly, the internal structure of the trunk rear portion 16 including the tail fin 17 will be briefly described. A reference numeral 80 denotes a plate row portion in which a plurality of discs 81 (or a plate having a shape equivalent thereto) are arranged with a gap in the longitudinal direction. In addition, the outer skin 11 covering the trunk rear portion 16 including the tail fin 17 is supported from the inside, and the respective discs 81 are integrally coupled to the swing plate 61, and the sectional shape thereof is not changed at all or almost. In addition, by changing the gap between the discs 81, it can be easily bent with the swing plate 61 to the left and right so that it can swing. By being configured as described above, the trunk rear portion 16 including the tail fin 17 can be swayed flexibly like that of natural fish.

その尾鰭17を含む胴後部16の遥動機構60と,上述の見掛け比重調節部30、重心移動機構40及び揚力等調節機構50と,を組み合わせた作用について説明する。見掛け比重調節部30との組み合わせについては、単に前進しながら浮沈するだけであるため、敢えて説明するまでもない。次にこの魚状ロボット10に前記遥動機構60と重心移動機構40とを組み合わせ作動させると、その見掛け比重が水の比重と同じものであっても、上向きに浮上させたり、下向きに沈降させたりすることが可能である。さらにそれに見掛け比重調節部30を組み合わせ、作動させると、その遥動による推力に、上述の浮力と重力との差による、上向き又は下向きに前進させる推力が加わるため、遥動のみよる場合に比較して、それだけ同一水平移動距離当たりの電力消費が節減される。 The combined action of the swing mechanism 60 of the trunk rear part 16 including the tail fin 17, the apparent specific gravity adjusting unit 30, the gravity center moving mechanism 40, and the lift adjusting mechanism 50 will be described. The combination with the apparent specific gravity adjusting unit 30 simply moves up and down, and need not be described. Next, when the fish-like robot 10 is operated in combination with the swing mechanism 60 and the gravity center moving mechanism 40, even if the apparent specific gravity is the same as the specific gravity of water, the fish robot 10 floats upward or sinks downward. It is possible to In addition, when the apparent specific gravity adjusting unit 30 is combined and operated, the thrust generated by the swing is added with the thrust that moves forward or downward due to the difference between the above buoyancy and gravity. Thus, power consumption per horizontal movement distance is reduced accordingly.

次に尾鰭17を含む胴後部16の遥動機構60と翼51,51を含む揚力等調節機構50とを組み合わせると、魚状ロボット10の見掛け比重が水の比重に等しくても、魚状ロボット10の速度と翼51,51の傾斜とに応じて揚力が生じるためその翼51,51の傾きの方向に近寄った方向に浮上又は沈降する。なお、魚状ロボット10はその速度と翼51,51の長手方向の傾きをそのまま維持しておくと、その長手方向の傾きは次第に増す筈あるが、その傾きの増大に伴って重心と浮心との長手方向のずれが増し、復元力が増すため、その傾きの増大も減速し、遂にはその速度と翼51,51の傾きに応じた一定値に落ち着く。それにさらに重錘41の位置の移動を組み合わせれば、いずれか単独よりも魚状ロボット10の長手方向の傾きを大きくすることが出来る。 Next, when the swing mechanism 60 of the trunk rear portion 16 including the tail fin 17 and the lift adjusting mechanism 50 including the wings 51 and 51 are combined, even if the apparent specific gravity of the fish robot 10 is equal to the specific gravity of water, the fish robot Since lift is generated according to the speed of 10 and the inclination of the wings 51, 51, the wing 51, 51 floats or sinks in a direction close to the inclination direction. If the fish-like robot 10 maintains its speed and the inclination of the wings 51, 51 in the longitudinal direction, the inclination in the longitudinal direction will gradually increase. However, as the inclination increases, the center of gravity and buoyancy are increased. Since the displacement in the longitudinal direction increases and the restoring force increases, the increase in the inclination also decelerates, and finally settles to a constant value according to the speed and the inclination of the blades 51, 51. Furthermore, if the movement of the position of the weight 41 is further combined, the inclination in the longitudinal direction of the fish-like robot 10 can be made larger than any one alone.

ここで図3によって可撓性補助タンクについて説明する。すなわち、前記浮沈タンク31へ水に限定しない任意の液体(例えば油)を送入すること、その浮沈タンク31からその液体を排出することが可能に、その液体を貯蔵する補助タンク35が付設され、しかもその補助タンク35はその容積が貯蔵液量に応じて増減容易に可撓性を有し、その容積の増減に応じて、この魚状ロボット10を包囲する水が、その補助タンク31周囲へ、又はその周囲から容易に移動するよう構成されている。 Here, the flexible auxiliary tank will be described with reference to FIG. That is, an auxiliary tank 35 for storing the liquid is attached so that an arbitrary liquid (for example, oil) that is not limited to water can be fed into the float / sink tank 31 and the liquid can be discharged from the float / sink tank 31. Moreover, the volume of the auxiliary tank 35 can be easily increased or decreased according to the amount of stored liquid, and the water surrounding the fish-like robot 10 is increased around the auxiliary tank 31 according to the increase or decrease of the volume. It is configured to move easily to or from its periphery.

以上のよう構成されることによって、この魚状ロボット10は、浮沈に当たって、その浮沈タンク31から周囲へ水の排出や周囲からの水の導入なしに、それに付設された補助タンク35に貯留された液体によって周囲の水と同様の効果を発揮させることが出来る。従って、浮沈タンク31用のポンプ・配管の、種々の物質を含む、周囲の水と接触することはなく、前記物質による、汚れ・詰まり・腐食等が防止可能である。 With this configuration, the fish-like robot 10 was stored in the auxiliary tank 35 attached thereto without being discharged from the floating tank 31 to the surroundings or introduced from the surroundings when floating. The same effect as the surrounding water can be exhibited by the liquid. Accordingly, the pump / pipe for the float / sink tank 31 does not come into contact with surrounding water containing various substances, and contamination, clogging, corrosion, etc. due to the substances can be prevented.

本発明を実施するための最良の形態例であって、(a)はその鉛直縦断面、(b)はその水平断面図、(c)は翼付近の横断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the best form example for implementing this invention, (a) is the vertical longitudinal cross-section, (b) is the horizontal cross-sectional view, (c) is a cross-sectional view of the wing vicinity. 図1の魚状ロボットの挙動を説明する、(a)は推進力、速度のベクトル図、(b)は経路図である。The behavior of the fish-like robot of FIG. 1 will be described. (A) is a vector diagram of propulsive force and speed, and (b) is a route diagram. 本発明を実施するための、浮沈タンクに、任意の液体を送入(a)、又はその浮沈タンクからその液体を排出(b)、可能に、その液体を貯蔵する補助タンクを付設したものを示す側面図である。A liquid tank for carrying out the present invention is provided with an optional liquid (a) or discharged from the liquid tank (b), and an auxiliary tank for storing the liquid is attached. FIG.

符号の説明Explanation of symbols

10 魚状ロボット
11 外皮
15 胴本体部分
16 胴後部
17 尾鰭
18 頭部
20 水密容器
21 中空円筒
22 キャップ
23 円板
24 円板
27 軸支持部材
30 見掛け比重調節部
31 浮沈タンク
32 ポンプ
35 補助タンク
40 重心移動機構
41 重錘
42 ネジ棒
43 重錘移動用サーボモータ
44 ポテンショメータ
50 揚力等調節機構
51 翼回動用サーボモータ
52 翼
60 揺動機構
61 遥動板
62 揺動軸
63 レバー
64 金属細線
65 揺動用動力伝達部分
66 水平軸
67 揺動用サーボモータ
70 旋回機構
71 旋回軸
72 レバー
73 金属細線
74 旋回用動力伝達部分
75 水平軸
76 旋回用サーボモータ
80 板列部分
81 円板
90 制御部
95 蓄電池
DESCRIPTION OF SYMBOLS 10 Fish-like robot 11 Outer skin 15 trunk | drum body part 16 trunk | drum rear part 17 caudal fin 18 head 20 watertight container 21 hollow cylinder 22 cap 23 disk 24 disk 27 shaft support member 30 apparent specific gravity adjustment part 31 float / float tank 32 pump 35 auxiliary tank 40 Center of gravity moving mechanism 41 Weight 42 Screw rod 43 Weight moving servo motor 44 Potentiometer 50 Lifting force adjusting mechanism 51 Wing rotating servo motor 52 Wing 60 Swing mechanism 61 Swing plate 62 Swing shaft 63 Lever 64 Metal wire 65 Swing Dynamic power transmission portion 66 Horizontal shaft 67 Oscillating servo motor 70 Turning mechanism 71 Turning shaft 72 Lever 73 Metal wire 74 Turning power transmission portion 75 Horizontal shaft 76 Turning servo motor 80 Plate row portion 81 Disc 90 Control portion 95 Storage battery

Claims (5)

外見が魚状に形成された、一体又は略一体のゴム様弾性体の外皮で覆われ、且つ空気が封入された浮沈タンクへ水を送入したり、浮沈タンクから水を排出したりすることによって浮力を制御することが可能であり、且つ尾鰭を含む胴後部を遥動させることによって水中を遊泳することが可能に構成された魚状ロボットであって、この魚状ロボットを任意の俯角又は仰角でその長手方向に傾きが生じるように、重心を長手方向に移動する重心移動機構を搭載しており、それによってその魚状ロボットに長手方向の傾きを与えたうえ、前記浮沈タンクによって、この魚状ロボットの浮力と重力とを不等にし、その浮力と重力との差を推進力として、必ずしも、電力消費の大きい尾鰭を含む胴後部の遥動によらずとも、この魚状ロボットを前進又は後退させることが可能に構成されていることを特徴とする魚状ロボット。 To feed water into and out of a float / sink tank that is covered with a rubber-like elastic body that is formed into a fish-like appearance and covered with a rubber-like elastic body. The fish-like robot is configured to be able to control buoyancy and to swim in the water by swinging the rear part of the trunk including the tail fin. It is equipped with a center-of-gravity movement mechanism that moves the center of gravity in the longitudinal direction so that an inclination is generated in the longitudinal direction at an elevation angle, thereby giving the fish-like robot a tilt in the longitudinal direction, and by the floatation tank The buoyancy and gravity of the fish-like robot are made unequal, and the difference between the buoyancy and gravity is used as the driving force, and this fish-like robot is moved forward, not necessarily by the back of the trunk, including the caudal fin, which consumes a lot of power. Or Fish shaped robot, wherein a letting retreat is configured to be. 前記重心移動機構は、前記重錘が長手方向のネジ棒に螺合されており、そのネジ棒の回動によって長手方向に移動するよう構成されていることを特徴とする請求項1に記載の魚状ロボット。 The said gravity center moving mechanism is comprised so that the said weight may be screwed together with the screw rod of a longitudinal direction, and it may be moved to a longitudinal direction by rotation of the screw rod. Fish robot. 前記魚状ロボットの側方、左右方向又は略左右方向に外に向かって伸びる軸の周りに回動する、少なくとも一対の翼を備えていることを特徴とする請求項1又は2に記載の魚状ロボット。 The fish according to claim 1 or 2, further comprising at least a pair of wings that rotate around an axis extending outward in a lateral direction, a lateral direction, or a substantially lateral direction of the fish-like robot. Robot. 外見が魚状に形成された、一体又は略一体のゴム様弾性体の外皮で覆われ、且つ空気が封入された浮沈タンクへ水を送入したり、浮沈タンクから水を排出したりすることによって浮力を制御することが可能であり、且つ尾鰭を含む胴後部を遥動させることによって水中を遊泳することが可能に構成された魚状ロボットであって、前記浮沈タンクへ水に限定しない任意の液体を送入すること、その浮沈タンクからその液体を排出することが可能に、その液体を貯蔵する補助タンクが付設され、且つその補助タンクはその容積が貯蔵液量に応じて増減容易に可撓性を有し、その容積の増減に応じて、この魚状ロボットを包囲する水が、その補助タンク周囲へ、又はその周囲から容易に移動するよう構成されていることを特徴とする魚状ロボット。 To feed water into and out of a float / sink tank that is covered with a rubber-like elastic body that is formed into a fish-like appearance and covered with a rubber-like elastic body. Is a fish-like robot that can control buoyancy and can swim in the water by swinging the rear part of the trunk including the tail fin, and is not limited to water to the float / sink tank An auxiliary tank for storing the liquid is attached so that the liquid can be pumped in and discharged from the floating tank, and the volume of the auxiliary tank can be easily increased or decreased according to the amount of the stored liquid. A fish having flexibility and configured so that water surrounding the fish-like robot easily moves around or from the auxiliary tank according to the increase or decrease of the volume. Robot. 前記浮沈タンクへ水に限定しない任意の液体を送入すること、その浮沈タンクからその液体を排出することが可能に、その液体を貯蔵する補助タンクが付設され、且つその補助タンクはその容積が貯蔵液量に応じて増減容易に可撓性を有し、その容積の増減に応じて、この魚状ロボットを包囲する水が、その補助タンク周囲へ、又はその周囲から容易に移動するよう構成されていることを特徴とする、請求項1乃至3のいずれかに記載の魚状ロボット。
An auxiliary tank for storing the liquid is attached so that an arbitrary liquid not limited to water can be fed into the floating tank and the liquid can be discharged from the floating tank, and the auxiliary tank has a volume of It is flexible so that it can be easily increased or decreased according to the amount of stored liquid, and the water surrounding this fish-like robot can be easily moved around or from the auxiliary tank according to the increase or decrease of its volume. The fish-like robot according to claim 1, wherein the fish-like robot is provided.
JP2006029749A 2006-02-07 2006-02-07 Fish robot Expired - Fee Related JP4255477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029749A JP4255477B2 (en) 2006-02-07 2006-02-07 Fish robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029749A JP4255477B2 (en) 2006-02-07 2006-02-07 Fish robot

Publications (2)

Publication Number Publication Date
JP2007210361A true JP2007210361A (en) 2007-08-23
JP4255477B2 JP4255477B2 (en) 2009-04-15

Family

ID=38489182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029749A Expired - Fee Related JP4255477B2 (en) 2006-02-07 2006-02-07 Fish robot

Country Status (1)

Country Link
JP (1) JP4255477B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767642A (en) * 2010-02-11 2010-07-07 北京大学 Underwater biomimetic robotic fish
KR101003834B1 (en) * 2010-02-03 2010-12-23 에스알시 주식회사 Robot fish
CN102180249A (en) * 2011-04-11 2011-09-14 中国科学院深圳先进技术研究院 Intelligent biomimetic robotic dolphin
CN102411307A (en) * 2011-11-30 2012-04-11 中国科学院自动化研究所 Fast and precise motion control method of C-type starting of bio-mimetic robot fish
KR101178278B1 (en) 2010-04-07 2012-08-29 울산대학교 산학협력단 Fish robot controllable bouoyancy and attitude
KR101236479B1 (en) 2010-12-30 2013-02-22 한국생산기술연구원 Fish Type Robot
JP2013116734A (en) * 2005-10-19 2013-06-13 Go Science Ltd Diving vehicle
CN103196685A (en) * 2013-03-04 2013-07-10 重庆大学 Two-wheel differential wheel type mobile robot experimental platform with adjustable gravity center
CN103625624A (en) * 2013-12-12 2014-03-12 中国人民解放军国防科学技术大学 Flexible bionic thruster
CN103847943A (en) * 2012-12-07 2014-06-11 苏州科技学院 Multiple-joint movement water-proof mechanism used for bionic robot fish
CN104338325A (en) * 2013-08-01 2015-02-11 常州金刚文化科技集团有限公司 Outdoor performance robot
CN104627342A (en) * 2014-12-08 2015-05-20 中国科学院自动化研究所 Gliding machine dolphin
CN104943839A (en) * 2015-07-16 2015-09-30 北京航空航天大学 Novel modular bionic underwater robot based on full-flexible pectoral fins
CN105292418A (en) * 2015-11-23 2016-02-03 南京信息工程大学 Skeleton structure of electromagnetic mechanical fish
CN106184673A (en) * 2016-07-11 2016-12-07 尹钢 Peritoneum row pressure formula high-speed and low-noise ship power propulsion plant and arrangement thereof
WO2017010060A1 (en) * 2015-07-16 2017-01-19 パナソニックIpマネジメント株式会社 Underwater robot
CN107187568A (en) * 2017-06-14 2017-09-22 桂林电子科技大学 A kind of move in mud robot under water of imitative earthworm
CN107466280A (en) * 2017-04-28 2017-12-12 博雅工道(北京)机器人科技有限公司 Machine fish in a kind of simple joint water
CN107648865A (en) * 2017-10-27 2018-02-02 台山燊乐塑胶电子制造有限公司 Can automatic cleaning fish tank toy fish
CN105059511B (en) * 2015-07-28 2018-02-23 中国科学院自动化研究所(洛阳)机器人与智能装备创新研究院 A kind of underwater highly emulated device fish
CN108423147A (en) * 2017-09-28 2018-08-21 范望平 Three-dimensional spiral axis drives the method and its device of bionical power fish
CN109733576A (en) * 2019-03-04 2019-05-10 沈阳航天新光集团有限公司 For ornamental fish humanoid robot
CN110329472A (en) * 2019-07-09 2019-10-15 北京机电工程研究所 A kind of bionic pectoral fin telecontrol equipment
CN110510090A (en) * 2019-09-05 2019-11-29 西北工业大学 Bionical fin propulsive mechanism based on cambered surface free end and axial-rotation cross reed
CN115071919A (en) * 2022-06-16 2022-09-20 华南理工大学 Flexible bionic robot fish based on beam theory and design method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101758916B (en) * 2010-02-11 2012-05-30 北京大学 Autonomous type robotic fish
CN105083510A (en) * 2015-08-31 2015-11-25 浙江大学 Underwater robot
CN109533248A (en) * 2018-10-30 2019-03-29 中国航天空气动力技术研究院 A kind of fish shape fluid media (medium) motion-promotion force device
CN110203359A (en) * 2019-06-03 2019-09-06 中国科学院自动化研究所 Imitative leopard triangular bream Fu fish underwater robot

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118486A (en) * 1974-03-05 1975-09-17
JPH02216389A (en) * 1989-02-17 1990-08-29 Toshiba Corp Underwater inspecting device
JPH09301273A (en) * 1996-05-09 1997-11-25 Kowa Kk Underwater probe device
JPH1086894A (en) * 1996-09-17 1998-04-07 Mitsubishi Heavy Ind Ltd Underwater traveling body ascent/descent controlling method and device thereof
JPH11152085A (en) * 1997-09-18 1999-06-08 Mitsubishi Heavy Ind Ltd Underwater sailing body with oscillating hydrofoil
JP2000001196A (en) * 1998-06-15 2000-01-07 Toshiyuki Nosaka Underwater propelling equipment and underwater traveling equipment
JP2001191985A (en) * 2000-01-05 2001-07-17 Tokai Univ Underwater cruising device
JP2002137791A (en) * 2000-11-02 2002-05-14 Mitsubishi Heavy Ind Ltd Underwater propulsion device
JP2002136775A (en) * 2000-11-02 2002-05-14 Mitsubishi Heavy Ind Ltd Aquarium
JP2003048596A (en) * 2001-08-01 2003-02-18 Toyoji Mukoyama High pressure probe device
JP2006326054A (en) * 2005-05-27 2006-12-07 Mhi Solution Technologies Co Ltd Fish robot

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118486A (en) * 1974-03-05 1975-09-17
JPH02216389A (en) * 1989-02-17 1990-08-29 Toshiba Corp Underwater inspecting device
JPH09301273A (en) * 1996-05-09 1997-11-25 Kowa Kk Underwater probe device
JPH1086894A (en) * 1996-09-17 1998-04-07 Mitsubishi Heavy Ind Ltd Underwater traveling body ascent/descent controlling method and device thereof
JPH11152085A (en) * 1997-09-18 1999-06-08 Mitsubishi Heavy Ind Ltd Underwater sailing body with oscillating hydrofoil
JP2000001196A (en) * 1998-06-15 2000-01-07 Toshiyuki Nosaka Underwater propelling equipment and underwater traveling equipment
JP2001191985A (en) * 2000-01-05 2001-07-17 Tokai Univ Underwater cruising device
JP2002137791A (en) * 2000-11-02 2002-05-14 Mitsubishi Heavy Ind Ltd Underwater propulsion device
JP2002136775A (en) * 2000-11-02 2002-05-14 Mitsubishi Heavy Ind Ltd Aquarium
JP2003048596A (en) * 2001-08-01 2003-02-18 Toyoji Mukoyama High pressure probe device
JP2006326054A (en) * 2005-05-27 2006-12-07 Mhi Solution Technologies Co Ltd Fish robot

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116734A (en) * 2005-10-19 2013-06-13 Go Science Ltd Diving vehicle
KR101003834B1 (en) * 2010-02-03 2010-12-23 에스알시 주식회사 Robot fish
CN101767642A (en) * 2010-02-11 2010-07-07 北京大学 Underwater biomimetic robotic fish
KR101178278B1 (en) 2010-04-07 2012-08-29 울산대학교 산학협력단 Fish robot controllable bouoyancy and attitude
KR101236479B1 (en) 2010-12-30 2013-02-22 한국생산기술연구원 Fish Type Robot
CN102180249B (en) * 2011-04-11 2013-08-07 中国科学院深圳先进技术研究院 Intelligent biomimetic robotic dolphin
CN102180249A (en) * 2011-04-11 2011-09-14 中国科学院深圳先进技术研究院 Intelligent biomimetic robotic dolphin
CN102411307A (en) * 2011-11-30 2012-04-11 中国科学院自动化研究所 Fast and precise motion control method of C-type starting of bio-mimetic robot fish
CN103847943A (en) * 2012-12-07 2014-06-11 苏州科技学院 Multiple-joint movement water-proof mechanism used for bionic robot fish
CN103196685A (en) * 2013-03-04 2013-07-10 重庆大学 Two-wheel differential wheel type mobile robot experimental platform with adjustable gravity center
CN104338325A (en) * 2013-08-01 2015-02-11 常州金刚文化科技集团有限公司 Outdoor performance robot
CN104338325B (en) * 2013-08-01 2016-09-07 江苏金刚文化科技集团股份有限公司 A kind of outdoor performance robot
CN103625624A (en) * 2013-12-12 2014-03-12 中国人民解放军国防科学技术大学 Flexible bionic thruster
CN104627342A (en) * 2014-12-08 2015-05-20 中国科学院自动化研究所 Gliding machine dolphin
CN104943839B (en) * 2015-07-16 2017-04-19 北京航空航天大学 Modular bionic underwater robot based on full-flexible pectoral fins
CN104943839A (en) * 2015-07-16 2015-09-30 北京航空航天大学 Novel modular bionic underwater robot based on full-flexible pectoral fins
WO2017010060A1 (en) * 2015-07-16 2017-01-19 パナソニックIpマネジメント株式会社 Underwater robot
CN105059511B (en) * 2015-07-28 2018-02-23 中国科学院自动化研究所(洛阳)机器人与智能装备创新研究院 A kind of underwater highly emulated device fish
CN105292418A (en) * 2015-11-23 2016-02-03 南京信息工程大学 Skeleton structure of electromagnetic mechanical fish
CN106184673A (en) * 2016-07-11 2016-12-07 尹钢 Peritoneum row pressure formula high-speed and low-noise ship power propulsion plant and arrangement thereof
CN107466280A (en) * 2017-04-28 2017-12-12 博雅工道(北京)机器人科技有限公司 Machine fish in a kind of simple joint water
CN107187568A (en) * 2017-06-14 2017-09-22 桂林电子科技大学 A kind of move in mud robot under water of imitative earthworm
CN108423147A (en) * 2017-09-28 2018-08-21 范望平 Three-dimensional spiral axis drives the method and its device of bionical power fish
CN108423147B (en) * 2017-09-28 2020-10-16 范望平 Method and device for driving bionic power fish by three-dimensional screw shaft
CN107648865A (en) * 2017-10-27 2018-02-02 台山燊乐塑胶电子制造有限公司 Can automatic cleaning fish tank toy fish
CN109733576A (en) * 2019-03-04 2019-05-10 沈阳航天新光集团有限公司 For ornamental fish humanoid robot
CN110329472A (en) * 2019-07-09 2019-10-15 北京机电工程研究所 A kind of bionic pectoral fin telecontrol equipment
CN110510090A (en) * 2019-09-05 2019-11-29 西北工业大学 Bionical fin propulsive mechanism based on cambered surface free end and axial-rotation cross reed
CN115071919A (en) * 2022-06-16 2022-09-20 华南理工大学 Flexible bionic robot fish based on beam theory and design method thereof
CN115071919B (en) * 2022-06-16 2023-09-26 华南理工大学 Flexible bionic robot fish based on beam theory and design method thereof

Also Published As

Publication number Publication date
JP4255477B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP4255477B2 (en) Fish robot
JP2008044545A (en) Fish-shaped robot
US9051036B2 (en) Underwater moving apparatus and moving method thereof
JP4084372B2 (en) Fish robot structure
JP2008018899A (en) Underwater vessel
FI84331B (en) Katamaran-LUFTKUDDEFARTYG.
US5704309A (en) Hybrid boat and underwater watercraft
KR101505781B1 (en) Position control type wave power generating apparatus
US9260173B2 (en) Shallow-draft watercraft propulsion and steering apparatus
CN112061395A (en) Self-adaptive attitude-changing air water surface diving unmanned aerial vehicle and control method thereof
CN110143269B (en) Multi-dimensional motion disc-shaped underwater glider
KR20160000507U (en) Catamaran
JP4690080B2 (en) Unmanned submersible
JP4078421B2 (en) Amphibious ship
US3127863A (en) Sumersible ground effect machine
CN115140279B (en) Novel underwater gliding robot
KR102275493B1 (en) Fish Robot swiming in the Water
CN109178190A (en) A kind of foilcraft with multilayer hydrofoil construction
CN219707300U (en) Autonomous water craft utilizing wave energy
JP5319393B2 (en) Ship with hydrofoil
CN216269842U (en) Hydrofoil underwater vehicle
US8651903B1 (en) Hydro-propulsion apparatus
CN114670996B (en) Three-body underwater robot
TWI778856B (en) Ocean current power generation device
JP2000001196A (en) Underwater propelling equipment and underwater traveling equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees