JP2007209883A - Water quality improvement apparatus - Google Patents

Water quality improvement apparatus Download PDF

Info

Publication number
JP2007209883A
JP2007209883A JP2006031858A JP2006031858A JP2007209883A JP 2007209883 A JP2007209883 A JP 2007209883A JP 2006031858 A JP2006031858 A JP 2006031858A JP 2006031858 A JP2006031858 A JP 2006031858A JP 2007209883 A JP2007209883 A JP 2007209883A
Authority
JP
Japan
Prior art keywords
compressed air
water
air chamber
water quality
quality improvement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006031858A
Other languages
Japanese (ja)
Other versions
JP4489709B2 (en
Inventor
Yutaka Kashima
豊 加島
Hideyuki Takeuchi
秀行 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiho Construction Co Ltd
Original Assignee
Daiho Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiho Construction Co Ltd filed Critical Daiho Construction Co Ltd
Priority to JP2006031858A priority Critical patent/JP4489709B2/en
Publication of JP2007209883A publication Critical patent/JP2007209883A/en
Application granted granted Critical
Publication of JP4489709B2 publication Critical patent/JP4489709B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water quality improvement apparatus which can increase amount of dissolved oxygen into further more retaining water at the bottom layer part, without increasing sizes of machines themselves like a compressed air supply device generating bubbles. <P>SOLUTION: The water quality improvement apparatus is provided with a compressed air chamber 4 having a space storing retaining water of the bottom part 2 of a closed water area 1 and high pressure compressed air 3; an air introducing part 17 sending compressed air 3 into the compressed air chamber 4; and a discharge part 20 discharging the compressed air 3 from the compressed air chamber 4. Following the stream of the compressed air 3 sent from the air introducing part 17 to the compressed air chamber 4, rising toward the water surface of the closed water region 1 from the discharge part 20 as bubbles, the retaining water in the compressed air chamber 4 is discharged from the discharge part 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、内海、港湾、湖沼、池、堀、貯水池、養殖場、水槽、浄化槽等の閉鎖水域に滞留した滞留水の水質を改善する水質改善装置に関するものであり、より詳しくは、流動することのない底層部の滞留水に対して高圧の圧縮空気を送り込むことによって良好な酸素溶存状態に改善する水質改善装置に関するものである。   The present invention relates to a water quality improvement device for improving the quality of stagnant water that has accumulated in closed water areas such as inland seas, harbors, lakes, ponds, moats, reservoirs, farms, aquariums, septic tanks, etc. The present invention relates to a water quality improvement device that improves a good oxygen-dissolved state by sending high-pressure compressed air to the remaining stagnant water in the bottom layer.

従来から、内海、港湾、湖沼、池、堀、貯水池、養殖場、水槽、浄化送等の閉鎖水域では水の交換が行われ難いため、水中の溶存酸素量が極めて少なく、このため有機物が分解され難く、水底には有機分を含む底泥が大量に堆積する。このような有機分を含む底泥は、富栄養化等の水質汚染の原因となり、生息環境の悪化及び周辺への臭気の影響が問題となっていた。   Conventionally, since it is difficult to exchange water in closed water areas such as inland seas, harbors, lakes, ponds, moats, reservoirs, aquaculture farms, aquariums, and purification transports, the amount of dissolved oxygen in the water is extremely low, so organic matter is decomposed It is difficult to do so, and a large amount of bottom mud containing organic components accumulates on the bottom of the water. The bottom mud containing such organic components causes water pollution such as eutrophication, and the deterioration of the habitat environment and the influence of odor on the surroundings have been problems.

そのため、閉鎖水域においては、その水質を改善すべく、底層水に酸素を供給しながら表層水との間で強制的に対流を起こさせる水質改善装置が使用されている。   Therefore, in a closed water area, in order to improve the water quality, a water quality improvement device that forcibly causes convection with surface water while supplying oxygen to the bottom water is used.

例えば、比較的水深の浅い閉鎖水域で使用される水質改善装置としては、図13に示したように、水底に設置された回転軸体50と、その回転軸体50に一方端が取り付けられその回転軸体50から略横向きに延設される長尺管体51と、その長尺管体51に圧縮空気を供給する圧縮空気供給手段52と、圧縮空気供給手段52から長尺管体51まで圧縮空気を送るための配管53と、圧縮空気を所定の方向に向けて吹き出す噴射孔54とを有し、その噴射孔54が、圧縮空気の吹き出しにより長尺管体51に回転方向の推力を与えることができ、かつ長尺管体51上に上昇水流を形成し得るように配設されているものが知られている(特許文献1を参照のこと)。   For example, as shown in FIG. 13, a water quality improvement device used in a closed water area with a relatively shallow water depth is provided with a rotating shaft body 50 installed at the bottom of the water and one end attached to the rotating shaft body 50. A long tubular body 51 extending substantially horizontally from the rotary shaft body 50, a compressed air supply means 52 for supplying compressed air to the long tubular body 51, and from the compressed air supply means 52 to the long tubular body 51. A pipe 53 for sending compressed air and an injection hole 54 for blowing out the compressed air in a predetermined direction. The injection hole 54 applies a thrust in the rotational direction to the long tubular body 51 by blowing out the compressed air. It is known that it can be applied and is arranged so as to form a rising water flow on the long tubular body 51 (see Patent Document 1).

これにより、簡単な構造でありながら、圧縮空気の吹き出しによって長尺管体51を回転させつつ長尺管体51から吹き出された圧縮空気Wが水中を上昇することによって、長尺管体51の回転範囲内の底層水を上昇させる水流を形成することで、長尺管体51の回転範囲での水質を改善することができるといった利点を有している。   As a result, the compressed air W blown from the long tubular body 51 rises in the water while rotating the long tubular body 51 by blowing out compressed air while having a simple structure. By forming the water flow that raises the bottom water in the rotation range, the water quality in the rotation range of the long tubular body 51 can be improved.

また、比較的水深の深い閉鎖水域で使用される比較的規模の大きい水質改善装置としては、図14に示したような、閉鎖性水域から滞留水を汲み上げて送り出す送水ポンプ60と、送水ポンプ60から送り出された水が駆動水として導入され、この水に少なくとも酸素を含む気体を受け入れて、微細な気泡が混入した水を生成しながら送り出す気泡発生器61を地上に備え、気泡発生器61から送り出された気泡混入の水が駆動水として導入され、周囲の滞留水を吸入しながら気泡混入の水と共に噴射する噴流ポンプ62を閉鎖性水域の水底に設置するものが知られている(特許文献2を参照のこと)。   Further, as a relatively large water quality improvement device used in a closed water area having a relatively deep water depth, a water supply pump 60 that pumps up and sends out stagnant water from the closed water area as shown in FIG. The water sent out from the water is introduced as driving water, and a bubble generator 61 that accepts a gas containing at least oxygen in the water and sends out the water mixed with fine bubbles is provided on the ground. It is known that the bubble-mixed water that has been sent out is introduced as drive water, and a jet pump 62 that injects the surrounding stagnant water together with the bubble-mixed water is installed at the bottom of the closed water area (Patent Document). 2).

これにより、噴流ポンプ62から噴射された後の気泡は早期に浮上してしまうことはなく、その気泡を含む水は遠方まで到達し得るため、滞留水への酸素の溶解効率がよく、閉鎖性水域全体の滞留水の循環が行える。
特開2000−317490号公報 特開2005−262200号公報
Thereby, the bubbles after being jetted from the jet pump 62 do not rise early, and the water containing the bubbles can reach far away, so that the dissolution efficiency of oxygen in the stagnant water is good and the closing property Circulate stagnant water throughout the water area.
JP 2000-317490 A JP 2005-262200 A

しかしながら、特許文献1に記載された水質改善装置にあっては、水質を改善する範囲を広げようとする場合には長尺管体51の長さを長くしなければならないが、そうすると長尺管体51が水の中で回転する際の水の抵抗力が大きくなってしまうため、長尺管体51の強度を上げると共に圧縮空気供給手段52から供給される圧縮空気の供給量を増大しなければならない。しかしながら、特許文献1に記載された水質改善装置には、その構造からして長尺管体51の大きさには限界があり、複数の水質改善装置を使用するにしても、その用途が小規模な貯水池、養殖場等の閉鎖水域の水質改善に限られるものであった。   However, in the water quality improvement apparatus described in Patent Document 1, the length of the long tubular body 51 must be increased when attempting to expand the range of improving the water quality. Since the resistance force of water when the body 51 rotates in water increases, the strength of the long tubular body 51 must be increased and the supply amount of compressed air supplied from the compressed air supply means 52 must be increased. I must. However, the water quality improvement device described in Patent Document 1 has a limit in the size of the long tubular body 51 due to its structure, and even if a plurality of water quality improvement devices are used, the application is small. It was limited to improving water quality in closed water areas such as large reservoirs and farms.

また、特許文献2に記載された水質改善装置にあっては、その性能を効果的に発揮するためには、噴流ポンプ62の出口から気泡混入された水を遠方まで到達させるべく底層部の滞留水に高い圧力で噴射しなければならない。そのためには、容量の大きな気泡発生器61、送水ポンプ60及び噴流ポンプ62が必要となると共に、より広範囲の範囲の水質を改善しようとする場合には、それら大規模な水質改善装置を複数使用しなければならず、機械設備に掛かる費用が嵩むといった問題があった。   Moreover, in the water quality improvement apparatus described in Patent Document 2, in order to effectively exhibit the performance, the bottom layer portion is retained so that the water mixed with bubbles from the outlet of the jet pump 62 reaches far away. The water must be injected at a high pressure. For that purpose, a large-capacity bubble generator 61, a water pump 60 and a jet pump 62 are required, and in order to improve the water quality in a wider range, a plurality of such large-scale water quality improvement devices are used. Therefore, there is a problem that the cost for the mechanical equipment increases.

そこで、この発明は、上記のような従来の水質改善装置の問題点を解消すべく、気泡を発生する圧縮空気供給装置等の機械自体の容量を大きくすることなく、より多くの底層部の滞留水へ酸素の溶け込ます量を増大させることのできる水質改善装置を提供することを課題とする。   Therefore, in order to solve the problems of the conventional water quality improvement apparatus as described above, the present invention does not increase the capacity of a machine itself such as a compressed air supply apparatus that generates bubbles, and more stagnation of the bottom layer portion. It is an object of the present invention to provide a water quality improvement device capable of increasing the amount of oxygen dissolved in water.

上記課題を達成するため、請求項1に記載の発明は、閉鎖水域の底層部の滞留水と高圧の圧縮空気を貯めることのできる空間を有する圧縮空気室と、該圧縮空気室内に圧縮空気を送り込むための空気導入部と、前記圧縮空気室内の圧縮空気を排出するための排出部とを有する水質改善装置であって、圧縮空気室の圧縮空気が底層部の滞留水と広く接触させられることにより酸素を溶存させると共に、前記空気導入部から前記圧縮空気室へ送り込まれた圧縮空気が前記排出部から気泡となって前記閉鎖水域の水面方向に上昇する流れに伴って、前記圧縮空気室内の滞留水を前記排出部から排出させるようにしたことを特徴としている。   In order to achieve the above-mentioned object, the invention described in claim 1 includes a compressed air chamber having a space capable of storing stagnant water and high-pressure compressed air in a bottom layer portion of a closed water area, and compressed air in the compressed air chamber. A water quality improvement device having an air introduction section for feeding in and a discharge section for discharging compressed air in the compressed air chamber, wherein the compressed air in the compressed air chamber is widely contacted with retained water in the bottom layer portion The oxygen is dissolved by the air, and the compressed air sent from the air introduction part to the compressed air chamber becomes a bubble from the discharge part and rises in the water surface direction of the closed water area. The stagnant water is discharged from the discharge section.

請求項2に記載の発明は、閉鎖水域の底層部の滞留水と高圧の圧縮空気を貯めることのできる空間を有する圧縮空気室と、該圧縮空気室内に圧縮空気を送り込むための空気導入部と、前記圧縮空気室内の圧縮空気を排出するための排出部とを有する水質改善装置であって、前記圧縮空気室は、底面が開口した立体形状のカバー体と前記閉鎖水域の水底とで形成され、前記カバー体の開口縁部と前記閉鎖水域の水底との接触部を前記排出部として前記圧縮空気が排出できるようにしたことを特徴としている。   The invention according to claim 2 is a compressed air chamber having a space capable of storing the stagnant water in the bottom layer portion of the closed water area and the high-pressure compressed air, and an air introducing portion for sending the compressed air into the compressed air chamber. A water quality improvement device having a discharge part for discharging compressed air in the compressed air chamber, wherein the compressed air chamber is formed by a three-dimensional cover body having an open bottom and a bottom of the closed water area. The compressed air can be discharged by using a contact portion between the opening edge of the cover body and the bottom of the closed water area as the discharge portion.

請求項3に記載の発明は、請求項1に記載の構成に加えて、前記圧縮空気室には、前記底層部の滞留水を導入するための水導入部を有し、前記圧縮空気の流れに伴って連続的に前記圧縮空気室の外の滞留水を前記水導入部から導入して前記排出部から排出させるようにしたことを特徴としている。   According to a third aspect of the present invention, in addition to the configuration of the first aspect, the compressed air chamber has a water introducing portion for introducing the retained water in the bottom layer portion, and the flow of the compressed air Accordingly, the stagnant water outside the compressed air chamber is continuously introduced from the water introduction part and discharged from the discharge part.

請求項4に記載の発明は、請求項3に記載の構成に加えて、前記水導入部と前記排出部との間には、前記圧縮空気室の天井部から下方に向かう仕切壁が設けられており、水圧と空気圧のバランスによって前記滞留水と前記圧縮空気とを隔てる接触界面が形成されるようにしていることを特徴としている。   According to a fourth aspect of the present invention, in addition to the configuration according to the third aspect, a partition wall that extends downward from the ceiling portion of the compressed air chamber is provided between the water introduction portion and the discharge portion. A contact interface that separates the stagnant water and the compressed air is formed by a balance between water pressure and air pressure.

請求項5に記載の発明は、請求項4に記載の構成に加えて、前記水導入部と前記仕切壁との間に少なくとも一つの隔壁が設けられており、隔壁と仕切壁又は隔壁と隔壁とで仕切られた区画内の水位が前記排出部に近いほど高くなるように前記隔壁の高さが設定されていることを特徴としている。   According to a fifth aspect of the invention, in addition to the configuration of the fourth aspect, at least one partition wall is provided between the water introduction portion and the partition wall, and the partition wall and the partition wall or the partition wall and the partition wall are provided. The height of the partition wall is set so that the water level in the section partitioned by is higher as the water level is closer to the discharge part.

請求項6に記載の発明は、請求項4又は5に記載の構成に加えて、前記圧縮空気室が上下に複数配置されており、下段の圧縮空気室と上段の圧縮空気室とは連絡部によって連通されていることを特徴としている。   According to a sixth aspect of the present invention, in addition to the configuration according to the fourth or fifth aspect, a plurality of the compressed air chambers are arranged vertically, and the lower compressed air chamber and the upper compressed air chamber communicate with each other. It is characterized by being connected by.

請求項7に記載の発明は、請求項4又は5に記載の構成に加えて、前記圧縮空気室が並列に配置されており、それぞれの圧縮空気室の一端部に前記水導入部を有し、それぞれの圧縮空気室の他端部は前記排出口を備えた連結部材で一体化されていることを特徴としている。   In addition to the structure of Claim 4 or 5, the invention of Claim 7 has the said compressed air chamber arrange | positioned in parallel, and has the said water introduction part in the one end part of each compressed air chamber. The other end of each compressed air chamber is integrated by a connecting member having the discharge port.

請求項8に記載の発明は、請求項4又は5に記載の構成に加えて、前記圧縮空気室の底面の中央部に前記水導入部と前記空気導入部を設け、前記圧縮空気室の外周部に前記排出部を設け、前記接触界面を撹拌することのできる攪拌装置を設けたことを特徴としている。   According to an eighth aspect of the present invention, in addition to the configuration of the fourth or fifth aspect, the water introduction portion and the air introduction portion are provided at the center of the bottom surface of the compressed air chamber, and the outer periphery of the compressed air chamber is provided. The discharge part is provided in the part, and a stirring device capable of stirring the contact interface is provided.

この発明は、以上のような構成を有するため、請求項1に記載の発明によれば、空気導入部から圧縮空気室内に送り込まれた圧縮空気が圧縮空気室内に滞留水と圧縮空気とが接触する十分な大きさを有する接触界面が形成され、この境界界面によって滞留水への酸素の供給が促進されると共に、排出部を経由して気泡となって閉鎖水域の水面方向に上昇する流れに伴って、圧縮空気室内の滞留水を排出部から排出させるようにしたので、気泡の上昇過程で滞留水に酸素が溶け込むため、圧縮空気室内に滞留水と圧縮空気とが接触する十分な大きさを有する接触界面が形成され、この境界界面によって滞留水への酸素の供給が促進されるため、気泡を発生する空気圧縮装置等の機械自体の大きさを大きくすることなく、より多くの底層部の滞留水へ酸素の溶け込ます量を増大させることのできる水質改善装置が提供できる。   Since the present invention has the above-described configuration, according to the first aspect of the present invention, the compressed air sent from the air introduction portion into the compressed air chamber comes into contact with the retained water and the compressed air. A contact interface having a sufficient size is formed, and this boundary interface promotes the supply of oxygen to the stagnant water, and also becomes a flow that rises in the direction of the water surface of the closed water area as a bubble via the discharge part. At the same time, the stagnant water in the compressed air chamber is discharged from the discharge portion, so that oxygen is dissolved in the stagnant water during the bubble rising process, so that the stagnant water and the compressed air are sufficiently large to come into contact with the compressed air chamber. A contact interface having an air flow is formed, and the supply of oxygen to the stagnant water is promoted by this boundary interface. Therefore, a larger number of bottom layers can be obtained without increasing the size of the machine itself such as an air compression device that generates bubbles. Retention of Water quality improvement device capable of increasing the amount to dissolve oxygen into the can be provided.

請求項2に記載の発明によれば、請求項1に記載の発明の効果に加えて、圧縮空気室を形成するためのカバー体が簡単な構造のもので足りるため、水質改善装置を製作費が少なくて済む。また、圧縮空気の排出部が閉鎖水域の水底に位置しているため、水底地盤内に圧縮空気が侵入することになり、水底の改質と共に水底に含まれる滞留水へ酸素が溶け込むことにも役立つ。   According to the second aspect of the invention, in addition to the effect of the first aspect of the invention, the cover body for forming the compressed air chamber need only have a simple structure. Is less. In addition, since the discharge part of the compressed air is located at the bottom of the closed water area, the compressed air will enter the bottom of the bottom, and the oxygen will dissolve into the retained water contained in the bottom of the water as well as reforming the bottom. Useful.

請求項3に記載の発明によれば、請求項1に記載の発明の効果に加えて、水導入部から導入された底層部にある滞留水が圧縮空気の流れに伴って排出部から排出されて水面部に至ることで、表層水が水導入部へ導入されるといった連続した循環流を発生させることができるため、より効率的に閉鎖水域の水質が改善される。   According to the invention described in claim 3, in addition to the effect of the invention described in claim 1, the accumulated water in the bottom layer introduced from the water introduction part is discharged from the discharge part along with the flow of compressed air. By reaching the water surface portion, it is possible to generate a continuous circulation flow in which surface water is introduced into the water introduction portion, so that the water quality in the closed water area is improved more efficiently.

請求項4に記載の発明によれば、請求項3に記載の発明の効果に加えて、仕切壁の下端部によって圧縮空気室内の水位が規定されて接触界面が形成されるので、この接触界面により滞留水と圧縮空気との接触面積を十分な大きさとすることができ滞留水に酸素が溶け込み易くなるため、より効率的に閉鎖水域の水質が改善される。   According to the invention described in claim 4, in addition to the effect of the invention described in claim 3, since the water level in the compressed air chamber is defined by the lower end portion of the partition wall, the contact interface is formed. As a result, the contact area between the staying water and the compressed air can be made sufficiently large, and oxygen can be easily dissolved in the staying water, so that the water quality in the closed water area can be improved more efficiently.

請求項5に記載の発明によれば、請求項4に記載の発明の効果に加えて、滞留水が隔壁を通過する毎に滞留水内の隔壁の下端部から圧縮空気の気泡が発生し、その気泡がはじける際に発生する渦や乱流により滞留水に酸素が溶け込み易くなるため、より効率的に閉鎖水域の水質が改善される。   According to the invention of claim 5, in addition to the effect of the invention of claim 4, compressed air bubbles are generated from the lower end of the partition wall in the stay water every time the stay water passes through the partition wall, Oxygen easily dissolves in the accumulated water due to vortices and turbulence generated when the bubbles are repelled, so that the water quality in the closed water area is improved more efficiently.

請求項6に記載の発明によれば、請求項4又は5に記載の発明の効果に加えて、圧縮空気室を複数有し、それらの圧縮空気室毎に接触界面が形成されて滞留水と圧縮空気との接触面積を十分な大きさとすることができるため、より効率的に閉鎖水域の水質が改善される。   According to the invention described in claim 6, in addition to the effect of the invention described in claim 4 or 5, a plurality of compressed air chambers are provided, and a contact interface is formed for each of the compressed air chambers. Since the contact area with the compressed air can be made sufficiently large, the water quality of the closed water area can be improved more efficiently.

請求項7に記載の発明によれば、請求項4又は5に記載の発明の効果に加えて、圧縮空気室を複数有し、それらの圧縮空気室毎に接触界面が形成されて滞留水と圧縮空気との接触面積を十分な大きさとすることができるため、より効率的に閉鎖水域の水質が改善される。   According to the invention described in claim 7, in addition to the effect of the invention described in claim 4 or 5, a plurality of compressed air chambers are provided, and a contact interface is formed for each of the compressed air chambers. Since the contact area with the compressed air can be made sufficiently large, the water quality of the closed water area can be improved more efficiently.

請求項8に記載の発明によれば、請求項4又は5に記載の発明の効果に加えて、圧縮空気室の外周部に複数の排出口を設けた場合であっても、水導入部と空気導入部を圧縮空気室の中央部に一つずつ設けることで水質改善装置を完成することができる。また、撹拌装置の撹拌動作により接触界面に乱流を発生させて高圧の圧縮空気を滞留水に混ぜ合わせるこができ、結果として、酸素の溶け込みが促進され、より水質改善効果が高まる。   According to the invention described in claim 8, in addition to the effect of the invention described in claim 4 or 5, even when a plurality of discharge ports are provided in the outer peripheral portion of the compressed air chamber, A water quality improvement apparatus can be completed by providing one air introduction part in the center part of a compressed air chamber. In addition, turbulent flow can be generated at the contact interface by the stirring operation of the stirring device, and high-pressure compressed air can be mixed with the stagnant water. As a result, the dissolution of oxygen is promoted, and the water quality improvement effect is further enhanced.

以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。
[発明の実施の形態1]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 of the Invention

まず、この発明の実施の形態1に係る水質改善装置の構成について説明する。   First, the structure of the water quality improvement apparatus according to Embodiment 1 of the present invention will be described.

図1は、この発明の実施の形態1に係る水質改善装置の一部断面とした正面図である。図2は、図1のA−A断面図である。   FIG. 1 is a front view showing a partial cross section of a water quality improvement apparatus according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view taken along the line AA of FIG.

図1には、圧縮空気3を貯めることのできる空間を有する圧縮空気室4を備えた水質改善槽5を閉鎖水域1の底層部2に設置された状態を示している。水質改善槽5は、天版6と床版7と側壁8で囲まれた直方体をしており、水底9の不陸をなくすために設けた基礎部10の上面に設置されている。水質改善槽5は、一体で形成してもよく、天版6、床版7、側壁8等を別々の部材で形成してもよい。水質改善槽5は、自重で浮力に耐えられる構造が好ましいが、必要に応じて杭やアンカー材によって固定することの他、重垂を加えてもよい。材質としては、比較的質量が高く水中での耐久性のあるコンクリート製や防食塗装を施した鋼製が好適であり、それらの組み合わせとしてもよい。   FIG. 1 shows a state where a water quality improvement tank 5 having a compressed air chamber 4 having a space in which compressed air 3 can be stored is installed in the bottom layer portion 2 of the closed water area 1. The water quality improvement tank 5 is a rectangular parallelepiped surrounded by the top plate 6, the floor slab 7, and the side wall 8, and is installed on the upper surface of the foundation 10 provided to eliminate the unevenness of the bottom 9. The water quality improvement tank 5 may be integrally formed, and the top plate 6, the floor plate 7, the side wall 8 and the like may be formed of separate members. The water quality improvement tank 5 preferably has a structure capable of withstanding its buoyancy by its own weight, but may be added with heavy suspension in addition to being fixed with a pile or an anchor material as necessary. The material is preferably made of concrete having a relatively high mass and durability in water, or steel with anticorrosion coating, or a combination thereof.

水質改善槽5の床版7の長手方向の一端部には、閉鎖水域1の底層部2に位置する滞留水12を圧縮空気室4に導入するための水導入部13を有している。水導入部13には水底2の泥や水中のごみが圧縮空気室4に混入しないようにするため、細かな網目を持ったストレーナ14を設けている。また、水質改善槽5の床版7の長手方向の一端部には、大気中に設けた空気圧縮機15から配管16を介して高圧の圧縮空気3を圧縮空気室4に導入するための空気導入部17が設けられている。空気導入部17は管状をしており、ストレーナ14を貫通して水導入部13から圧縮空気室4内へ取り込まれており、その周囲には圧縮空気の噴出孔18が複数が形成されている。配管16は、固定しやすい鋼管や、フレキシブルで配管しやすいゴム製ホース、樹脂製ホースが使用できる。   At one end in the longitudinal direction of the floor slab 7 of the water quality improvement tank 5, there is a water introduction part 13 for introducing the accumulated water 12 located in the bottom layer part 2 of the closed water area 1 into the compressed air chamber 4. In the water introduction part 13, a strainer 14 having a fine mesh is provided so that mud in the bottom 2 and dirt in the water do not enter the compressed air chamber 4. In addition, air for introducing high-pressure compressed air 3 into the compressed air chamber 4 from the air compressor 15 provided in the atmosphere through a pipe 16 at one end of the floor slab 7 of the water quality improvement tank 5. An introduction part 17 is provided. The air introduction part 17 has a tubular shape, passes through the strainer 14 and is taken into the compressed air chamber 4 from the water introduction part 13, and a plurality of compressed air ejection holes 18 are formed around it. . The pipe 16 can be a steel pipe that is easy to fix, a rubber hose that is flexible and easy to pipe, or a resin hose.

水導入部13と反対側に相当する水質改善槽5の天版6には、圧縮空気3と滞留水12が排出できる排出部20を有している。圧縮空気室4と排出部20との間には、垂直な平面を形成する仕切壁21が設けられている。仕切壁21は、その下端部で圧縮空気3と圧縮空気室4内に導入された滞留水12と圧縮空気室4内に導入された圧縮空気3との接触界面Sの水位を決めるものであり、仕切壁21の下方が圧縮空気室4と排出部20との連通口22となっている。仕切壁21の下端部は厚み方向に傾斜させることで圧縮空気3が排出部20側へ移動し易いようにすると共に、正面から見て例えば鋸歯状の凹凸を形成することで、圧縮空気3が仕切壁21の下端部を通過する際に気泡Bが発生し易くするとよい。   The top plate 6 of the water quality improvement tank 5 corresponding to the opposite side of the water introduction part 13 has a discharge part 20 from which the compressed air 3 and the accumulated water 12 can be discharged. A partition wall 21 that forms a vertical plane is provided between the compressed air chamber 4 and the discharge unit 20. The partition wall 21 determines the water level of the contact interface S between the compressed air 3 and the retained water 12 introduced into the compressed air chamber 4 and the compressed air 3 introduced into the compressed air chamber 4 at the lower end thereof. The lower part of the partition wall 21 is a communication port 22 between the compressed air chamber 4 and the discharge part 20. The lower end portion of the partition wall 21 is inclined in the thickness direction so that the compressed air 3 can easily move toward the discharge portion 20 side, and the compressed air 3 is formed by forming, for example, serrated irregularities when viewed from the front. It is preferable that the bubbles B are easily generated when passing through the lower end of the partition wall 21.

排出部20には、仕切壁21より上方に伸びる筒状の延出部23を設けることで、排出部20から排出する圧縮空気3と滞留水12との流れを特定の方向へ向けると共に、エアーリフト効果を促進させるようにするとよい。   By providing the discharge part 20 with a cylindrical extension part 23 extending upward from the partition wall 21, the flow of the compressed air 3 and the accumulated water 12 discharged from the discharge part 20 is directed in a specific direction, and the air It is advisable to promote the lift effect.

圧縮空気室4内への圧縮空気3の送り込みは、空気圧縮機15に備えられた自動制御装置(図示せず)を利用して連続的に行ってもよいし間欠的に行ってもよい。図1では、空気圧縮機15を水質改善槽5の天版6の上部に設けた脚注24で支えた架台25の上に設置しているが、水質改善槽5の近傍の陸地に設置してもよい。   The compressed air 3 may be fed into the compressed air chamber 4 continuously using an automatic control device (not shown) provided in the air compressor 15 or intermittently. In FIG. 1, the air compressor 15 is installed on a gantry 25 supported by a footnote 24 provided on the top of the top plate 6 of the water quality improvement tank 5, but is installed on a land near the water quality improvement tank 5. Also good.

なお、水質改善槽5の天版6等に透光性のあるアクリル樹脂等を採用れば、水深が浅くて日光の照射が期待できる箇所において、魚介類や海草類の繁殖を促すことが可能となり、緑色植物の生育環境が整い、生物の光合成による酸素放出を損なうこともない。   If a transparent acrylic resin or the like is used for the top plate 6 of the water quality improvement tank 5, it becomes possible to promote the breeding of seafood and seaweeds at places where the water depth is shallow and irradiation with sunlight can be expected. The growth environment of green plants is improved, and oxygen release by photosynthesis of living organisms is not impaired.

次に、この発明の実施の形態1に係る水質改善装置の作用について説明する。   Next, the operation of the water quality improvement apparatus according to Embodiment 1 of the present invention will be described.

水質改善槽5を大気中から水平姿勢を保ったまま閉鎖水域1の水底9へと沈めていって基礎部10に設置した場合、その直後の未だ圧縮空気3を圧縮空気室4へ送り込んでいない状態では、閉鎖水域1の底層部2に位置する滞留水12が水圧で水導入部13から圧縮空気室4に入り込んできて、圧縮空気室4内に閉じこめられた大気中の空気の圧力と閉鎖水域1の水圧とがバランスする位置に接触界面Sが形成される。つまり、仕切壁21の下端部よりも高い位置(水面に近い位置)に接触界面Sが形成されるように仕切壁21の高さが設定されている。   When the water quality improvement tank 5 is submerged into the bottom 9 of the closed water area 1 while maintaining the horizontal posture from the atmosphere and installed on the foundation 10, the compressed air 3 immediately after that has not yet been sent into the compressed air chamber 4. In the state, the stagnant water 12 located in the bottom layer portion 2 of the closed water area 1 enters the compressed air chamber 4 from the water introducing portion 13 by water pressure, and the pressure of the atmospheric air confined in the compressed air chamber 4 and the closed air A contact interface S is formed at a position where the water pressure in the water area 1 is balanced. That is, the height of the partition wall 21 is set so that the contact interface S is formed at a position higher than the lower end portion of the partition wall 21 (position close to the water surface).

そこで、空気圧縮機15を作動させて空気圧縮機15で高圧の圧縮空気3を製造して、その圧縮空気3を空気導入部17の噴出孔18から圧縮空気室4内に送り込んで行くと、圧縮空気室4内の圧縮空気3に接触界面Sが曝されるので酸素が溶存され、かつ、噴出孔18から出た圧縮空気3が圧縮空気室4内の滞留水12の中を通って気泡Bとなって浮力により上昇していき、圧縮空気室4の圧縮空気3へ放出されることになる。これにより、滞留水12へ圧縮空気3が曝されることで滞留水12へ酸素が供給され底層部2の滞留水12の水質が改善される。そして、圧縮空気室4内の圧縮空気3の量が増えてくると圧縮空気3の圧力が高まっていき、圧縮空気室4の滞留水12の水位(接触界面Sの位置)が次第に下がっていくことになり、ついには、仕切壁21の下端部の位置と一致することになる。   Therefore, when the air compressor 15 is operated to produce the high-pressure compressed air 3 with the air compressor 15 and the compressed air 3 is fed into the compressed air chamber 4 from the ejection hole 18 of the air introduction portion 17, Since the contact interface S is exposed to the compressed air 3 in the compressed air chamber 4, oxygen is dissolved, and the compressed air 3 exiting from the ejection holes 18 passes through the retained water 12 in the compressed air chamber 4 to generate bubbles. B is raised by buoyancy and released to the compressed air 3 in the compressed air chamber 4. Thereby, oxygen is supplied to the staying water 12 by exposing the compressed air 3 to the staying water 12, and the quality of the staying water 12 of the bottom layer part 2 is improved. As the amount of compressed air 3 in the compressed air chamber 4 increases, the pressure of the compressed air 3 increases, and the level of the retained water 12 (position of the contact interface S) in the compressed air chamber 4 gradually decreases. Eventually, it coincides with the position of the lower end of the partition wall 21.

その後、連続して高圧の圧縮空気3を圧縮空気室4へ送り続けた場合には、圧縮空気3は仕切壁21の下の連通口22を通って排出部20へ排出される。排出部20から排出される圧縮空気3は仕切壁21を通過することで気泡Bとなりその浮力により水圧の低い水面の方に向かって上昇していくことになるが、このとき圧縮空気室4内の滞留水12が圧縮空気3の上昇に伴って一緒になって水面の方に向かって流れていくことになる。これにより、滞留水12が高圧の圧縮空気3に曝されることで滞留水12へ酸素が供給され、底層部2の滞留水12の水質が改善される。   Thereafter, when the high-pressure compressed air 3 is continuously sent to the compressed air chamber 4, the compressed air 3 is discharged to the discharge portion 20 through the communication port 22 below the partition wall 21. The compressed air 3 discharged from the discharge unit 20 becomes a bubble B by passing through the partition wall 21 and rises toward the water surface having a low water pressure due to its buoyancy. As the compressed air 3 rises, the remaining water 12 flows together toward the water surface. Thereby, oxygen is supplied to the staying water 12 when the staying water 12 is exposed to the high pressure compressed air 3, and the quality of the staying water 12 of the bottom layer part 2 is improved.

排出部20から排出されて水面まで至った滞留水12は水面で水平方向に方向変換されるため、表層部にあった表層水が水平方向に移動することになる。他方、連続して高圧の圧縮空気3を圧縮空気室4へ送り続けた場合には、圧縮空気室4内の圧縮空気3と滞留水12は仕切壁21の下の連通口22を通って排出部20へ排出されることで、反対側の水導入部13の圧力が低くなるため、水導入部13には底層部2にある滞留水12が次から次へと導入されることになる。そのため、閉鎖水域1の表層部の表層水が水底9近くに設けられている水導入部13へと移動することとなり、結果として、底層部2の滞留水12が表層部の表層水へ移動し、表層部の表層水が底層部2の滞留水12へ移動すると行った対流が生じることになる。これにより、底層部2の滞留水12と表層部の表層水との入れ替えにより閉鎖水域1の水質が改善される。
[発明の実施の形態2]
Since the stagnant water 12 discharged from the discharge unit 20 to the water surface is changed in the horizontal direction on the water surface, the surface layer water in the surface layer portion moves in the horizontal direction. On the other hand, when the high-pressure compressed air 3 is continuously sent to the compressed air chamber 4, the compressed air 3 and the accumulated water 12 in the compressed air chamber 4 are discharged through the communication port 22 below the partition wall 21. Since the pressure of the water introduction part 13 on the opposite side is lowered by being discharged to the part 20, the accumulated water 12 in the bottom layer part 2 is introduced into the water introduction part 13 from one to the next. Therefore, the surface layer water in the surface layer portion of the closed water area 1 moves to the water introduction portion 13 provided near the bottom 9, and as a result, the accumulated water 12 in the bottom layer portion 2 moves to the surface layer water in the surface layer portion. When the surface layer water in the surface layer portion moves to the accumulated water 12 in the bottom layer portion 2, the convection performed is generated. Thereby, the water quality of the closed water area 1 is improved by replacing the stagnant water 12 of the bottom layer 2 and the surface water of the surface layer.
[Embodiment 2 of the Invention]

次に、この発明の実施の形態2に係る水質改善装置の構成について説明する。   Next, the configuration of the water quality improvement apparatus according to Embodiment 2 of the present invention will be described.

図3は、この発明の実施の形態2に係る水質改善装置の一部断面とした正面図である。図4は、図3のB−B断面図である。   FIG. 3 is a front view showing a partial cross section of the water quality improving apparatus according to Embodiment 2 of the present invention. 4 is a cross-sectional view taken along line BB in FIG.

図3に示したように、水導入部13と仕切壁21との間に複数の隔壁26が設けられており、隔壁26と仕切壁21又は隔壁26と隔壁26とで仕切られた圧縮空気室4内の水位が排出部20に近いほど高くなるように(この場合、水深HはH1>H2>H3>H4>H5の関係となる)、隔壁26の高さが設定されている。また、隔壁26の下端部は厚み方向に傾斜させることで圧縮空気3が排出部20側へ移動し易いようにすると共に、正面から見て例えば鋸歯状の凹凸を形成することで、圧縮空気3が仕切壁21の下を通過する際に気泡Bが発生し易くするとよい。   As shown in FIG. 3, a plurality of partition walls 26 are provided between the water introduction part 13 and the partition wall 21, and the compressed air chamber partitioned by the partition wall 26 and the partition wall 21 or the partition wall 26 and the partition wall 26. The height of the partition wall 26 is set so that the water level in 4 is higher as the water level is closer to the discharge part 20 (in this case, the water depth H has a relationship of H1> H2> H3> H4> H5). Further, the lower end portion of the partition wall 26 is inclined in the thickness direction so that the compressed air 3 can easily move to the discharge portion 20 side, and the compressed air 3 is formed by forming, for example, serrated irregularities when viewed from the front. It is preferable that the bubbles B are easily generated when passing under the partition wall 21.

図3に示した例では、このような複数の隔壁26を設けることで複数の圧縮空気室4を直列に配置した水質改質槽5を、さらに、図4においては並列に複数配置することで、より水質改善性能を向上させるようにしている。この場合、それぞれの水質改善槽5の長手方向の一端部に水導入部13を有し、水質改善槽5の長手方向の他端部は排出口20を備えた連結部材27で一体化されている。   In the example shown in FIG. 3, by providing such a plurality of partition walls 26, the water quality reforming tank 5 in which a plurality of compressed air chambers 4 are arranged in series is further arranged in parallel in FIG. , Trying to improve the water quality improvement performance more. In this case, each water quality improvement tank 5 has a water introduction part 13 at one end in the longitudinal direction, and the other end in the longitudinal direction of the water quality improvement tank 5 is integrated by a connecting member 27 having a discharge port 20. Yes.

その他の構成は実施の形態1に係る水質改善装置と同様であるため、同じ構成には同じ符号を付してその説明を省略する。   Since the other structure is the same as that of the water quality improvement apparatus which concerns on Embodiment 1, the same code | symbol is attached | subjected to the same structure and the description is abbreviate | omitted.

次に、この発明の実施の形態2に係る水質改善装置の作用について説明する。   Next, the operation of the water quality improvement apparatus according to Embodiment 2 of the present invention will be described.

図3及び図4において、水底9に近い左端の第一の圧縮空気室4aへ空気導入部17の噴出孔18から高圧の圧縮空気3が連続して送り込まれると、隔壁26の下端部まで水位が押し下げられ、第一の圧縮空気室4aに貯まっていた圧縮空気3が第二の圧縮空気室4bへ移動するが、このとき圧縮空気3は気泡Bとなって滞留水12の中を通って第二の圧縮空気室4bへ放出される。同様にして、第二の圧縮空気室4bに貯まっていた圧縮空気3が第三の圧縮空気室4cへ移動するが、このとき圧縮空気3は気泡Bとなって滞留水12の中を通って第三の圧縮空気室4cへ放出される。同様にして、第四の圧縮空気室4d、第五の圧縮空気室4eへと順次圧縮空気3が移動していくことになる。   3 and 4, when the high-pressure compressed air 3 is continuously fed into the first compressed air chamber 4 a at the left end near the water bottom 9 from the ejection hole 18 of the air introduction portion 17, the water level reaches the lower end portion of the partition wall 26. Is pushed down, and the compressed air 3 stored in the first compressed air chamber 4a moves to the second compressed air chamber 4b. At this time, the compressed air 3 becomes bubbles B and passes through the accumulated water 12. It is discharged to the second compressed air chamber 4b. Similarly, the compressed air 3 stored in the second compressed air chamber 4b moves to the third compressed air chamber 4c. At this time, the compressed air 3 becomes bubbles B and passes through the staying water 12. It is discharged into the third compressed air chamber 4c. Similarly, the compressed air 3 sequentially moves to the fourth compressed air chamber 4d and the fifth compressed air chamber 4e.

実施の形態2では、各圧縮空気室には接触界面S1、S2、S3、S4、S5が形成され、圧縮空気は水圧と同圧力に圧縮されており空気と水面が広く接触することにより空気中の酸素が滞留水12に溶存される。また、隔壁26付近で発生する気泡Bが水面ではじけることによる渦や乱流によって滞留水12に圧縮空気3中の酸素が溶け込むことになるが、その回数が複数回に渡って発生するため、滞留水12に溶け込む酸素量が多くなり、より水質の改善が促進される。   In the second embodiment, contact interfaces S1, S2, S3, S4, and S5 are formed in each compressed air chamber, and the compressed air is compressed to the same pressure as the water pressure. Of oxygen is dissolved in the retained water 12. In addition, oxygen in the compressed air 3 is dissolved in the stagnant water 12 due to vortices and turbulent flow caused by the bubbles B generated in the vicinity of the partition wall 26 being repelled on the water surface. The amount of oxygen dissolved in the stagnant water 12 is increased, and the water quality is further improved.

なお、図3に示した水質改善槽5は横断面を一様として、各区画の圧縮空気室4内の水位が順次高くなるように隔壁26の高さを調整しているが、図5及び図6のように、各圧縮空気室4を水導入部13と排出部20を有するほぼ同一形態のユニット化した水質改善槽5uで構成し、かつ、水質改善槽5uを縦列して圧縮空気室4内の水位の低い方の水質改善槽5uの排出部20と圧縮空気室4内の水位の高い方の水質改善槽5uの水導入部13とを接続するようにしてもよい。この場合には、同様の形態をした水質改善槽5uを組み合わせることで、所望の水質改善装置が得られることになるので、製造が容易となる。   The water quality improvement tank 5 shown in FIG. 3 has a uniform cross section, and the height of the partition wall 26 is adjusted so that the water level in the compressed air chamber 4 of each section is sequentially increased. As shown in FIG. 6, each compressed air chamber 4 is composed of a unitized water quality improvement tank 5u having a water introduction part 13 and a discharge part 20, and the water quality improvement tanks 5u are cascaded to form a compressed air chamber. The discharge part 20 of the water quality improvement tank 5u with the lower water level in 4 may be connected to the water introduction part 13 of the water quality improvement tank 5u with the higher water level in the compressed air chamber 4. In this case, since a desired water quality improvement device can be obtained by combining the water quality improvement tanks 5u having the same form, manufacture is facilitated.

また、図5及び図6に示した水質改善槽5uでは、底面部に相当する床版7を有していない点に特徴がある。   The water quality improvement tank 5u shown in FIGS. 5 and 6 is characterized in that it does not have the floor slab 7 corresponding to the bottom surface.

天版6と床版7と側壁8で囲まれた直方体の水質改質槽5を水底9に設けた基礎部10の上に設置した場合には、基礎部10がべた基礎の場合は勿論、独立又は連続した基礎(架台)を使用したとしても、水底9と水質改質槽5の床板7との間隔がほとんどない状態になるため、水底9の活性化が阻害されることになる。   When the rectangular parallelepiped water quality reforming tank 5 surrounded by the top plate 6, the floor slab 7 and the side wall 8 is installed on the foundation 10 provided on the bottom 9, the foundation 10 is of course a solid foundation. Even if an independent or continuous foundation (frame) is used, there is almost no space between the water bottom 9 and the floor plate 7 of the water quality reforming tank 5, and thus the activation of the water bottom 9 is inhibited.

これに対して、図5及び図6に示した水質改善槽5uのように、底面部に相当する床版7を有していない水質改善槽5uの側壁8の下端部を水底9に設置した脚柱28で支える構造を採用すれば、水底9と水質改善槽5uとの間の滞留水12に高圧の圧縮空気3によって酸素を溶け込ませることができ、良好な酸素溶存状態に改善することが可能となる。
[発明の実施の形態3]
On the other hand, like the water quality improvement tank 5u shown in FIG.5 and FIG.6, the lower end part of the side wall 8 of the water quality improvement tank 5u which does not have the floor slab 7 equivalent to a bottom face part was installed in the water bottom 9. If the structure supported by the pedestal 28 is adopted, oxygen can be dissolved in the stagnant water 12 between the bottom 9 and the water quality improvement tank 5u by the high-pressure compressed air 3, which can be improved to a good oxygen-dissolved state. It becomes possible.
Embodiment 3 of the Invention

図7は、この発明の実施の形態3に係る水質改善装置の一部断面とした正面図である。図8は、図7のD−D断面図である。   FIG. 7: is the front view made into the partial cross section of the water quality improvement apparatus which concerns on Embodiment 3 of this invention. 8 is a cross-sectional view taken along the line DD of FIG.

図7には、圧縮空気室4を上下に複数配置した例を示している。下段の圧縮空気室4Lと上段の圧縮空気室4Uとは、下段の圧縮空気室4Lの排出部20と上段の圧縮空気室4Uの水導入部13とを連結する連絡部19によって連通されている。下段の圧縮空気室4Lの水導入部13と下段の圧縮空気室4Uの仕切壁21との間、及び上段の圧縮空気室4Uの水導入部13と上段の圧縮空気室4Uの仕切壁21との間には、複数の隔壁26が設けられており、隔壁26と仕切壁21又は隔壁26と隔壁26とで仕切られた圧縮空気室4a,4b,4c,4d,4e,4f内の水位が排出部20に近いほど高くなるように(この場合、水深HはH1>H2>H3>H4>H5>H6の関係となる)、隔壁26の高さが設定されている。   FIG. 7 shows an example in which a plurality of compressed air chambers 4 are arranged vertically. The lower compressed air chamber 4L and the upper compressed air chamber 4U communicate with each other by a connecting portion 19 that connects the discharge portion 20 of the lower compressed air chamber 4L and the water introduction portion 13 of the upper compressed air chamber 4U. . Between the water inlet 13 of the lower compressed air chamber 4L and the partition wall 21 of the lower compressed air chamber 4U, and the water inlet 13 of the upper compressed air chamber 4U and the partition wall 21 of the upper compressed air chamber 4U A plurality of partition walls 26 are provided between them, and the water levels in the compressed air chambers 4a, 4b, 4c, 4d, 4e, 4f partitioned by the partition walls 26 and the partition walls 21 or the partition walls 26 and the partition walls 26 are determined. The height of the partition wall 26 is set so as to be higher as it is closer to the discharge unit 20 (in this case, the water depth H has a relationship of H1> H2> H3> H4> H5> H6).

仕切壁21や隔壁26の直前に活性炭や牡蠣殻を網袋に詰めた水質浄化材30を配置することで、水質の改善を促進させるようにしている。水質浄化材30は網袋単位で洗浄や交換をすることできるのでメンテナンスが容易である。   Immediately before the partition wall 21 and the partition wall 26, a water purification material 30 in which activated carbon or oyster shells are packed in a net bag is arranged to promote improvement in water quality. Since the water purification material 30 can be washed and replaced in a net bag unit, maintenance is easy.

図7に示した例では、階層を2段としているが、水深の深い場所ではより段数を増やしてもよい。   In the example shown in FIG. 7, the hierarchy is two stages, but the number of stages may be increased in a deep water place.

この場合には、圧縮空気3と滞留水12との接触面積の増大と、隔壁26付近で発生する気泡Bが水面ではじけることによる渦や乱流によって滞留水12に圧縮空気3中の酸素が溶け込む機会も増大させることができるため、水質改善槽5の設置面積を増やすことなく、水質の改善が促進される。
[発明の実施の形態4]
In this case, due to an increase in the contact area between the compressed air 3 and the stagnant water 12 and the vortices and turbulence caused by the bubbles B generated near the partition wall 26 repelling on the water surface, the oxygen in the compressed air 3 is absorbed in the stagnant water 12. Since the opportunity to melt | dissolve can also be increased, the improvement of water quality is promoted, without increasing the installation area of the water quality improvement tank 5. FIG.
[Embodiment 4 of the Invention]

図9は、この発明の実施の形態4に係る水質改善装置の一部断面とした正面図である。   FIG. 9 is a front view of a partial cross section of a water quality improvement apparatus according to Embodiment 4 of the present invention.

図9において、水質改善槽5の中央部の圧縮空気室4の床版7の中央に水導入部13を有しており、中央部の圧縮空気室4の左右の側壁8,8に隔壁26,26を有し、水質改善槽5の左右の圧縮空気室4の外側にそれぞれ排出部20が設けられている。   In FIG. 9, the water introduction part 13 is provided in the center of the floor slab 7 of the compressed air chamber 4 at the center of the water quality improvement tank 5, and the partition walls 26 are provided on the left and right side walls 8, 8 of the compressed air chamber 4 at the center. , 26, and the discharge portions 20 are respectively provided outside the left and right compressed air chambers 4 of the water quality improvement tank 5.

中央部の圧縮空気室4内には隔壁26の下端部より下方に、圧縮空気室4内の滞留水12接触界面Sを強制的に撹拌することのできる垂直方向の回転軸31を有する撹拌翼29が回転自在に設けられている。周方向に等間隔で複数配置される撹拌翼29が支持アーム30を介して回転軸31の下端部に固定されており、回転軸31の中央部は水質改善槽5の天版6に設けた軸受32で支承され、回転軸31の上端部は水質改善槽5の天版6上に設けた駆動部架台33に固定されている駆動モータ34の駆動軸(図示せず)に連結された駆動伝達部35によって回転されるようになっている。回転軸31は中空状をしており、その上部先端には自在継手36を介して圧縮空気3を供給するための配管16が接続されている。そして、配管16から供給された圧縮空気3は回転軸31の中空部を通って、支持アーム30から撹拌翼29の背面に至る空気導入部17を通り、撹拌翼29の背面に上向きに形成された噴出孔18から圧縮空気室4内に排出されるようになっている。   A stirring blade having a vertical rotating shaft 31 in the central compressed air chamber 4 below the lower end of the partition wall 26 and capable of forcibly stirring the stay water 12 contact interface S in the compressed air chamber 4. 29 is rotatably provided. A plurality of stirring blades 29 arranged at equal intervals in the circumferential direction are fixed to the lower end portion of the rotating shaft 31 via the support arm 30, and the central portion of the rotating shaft 31 is provided on the top plate 6 of the water quality improvement tank 5. A drive supported by a bearing 32 and having an upper end connected to a drive shaft (not shown) of a drive motor 34 fixed to a drive unit base 33 provided on the top plate 6 of the water quality improvement tank 5 at the upper end of the rotary shaft 31. It is rotated by the transmission unit 35. The rotating shaft 31 has a hollow shape, and a pipe 16 for supplying the compressed air 3 is connected to an upper end of the rotating shaft 31 via a universal joint 36. The compressed air 3 supplied from the pipe 16 passes through the hollow portion of the rotating shaft 31, passes through the air introduction portion 17 from the support arm 30 to the back surface of the stirring blade 29, and is formed upward on the back surface of the stirring blade 29. In addition, the air is discharged from the jet hole 18 into the compressed air chamber 4.

これにより、撹拌翼29による接触界面Sを撹拌する撹拌動作により、接触界面Sに乱流を発生させて高圧の圧縮空気3を滞留水12に混ぜ合わせるこができ、結果として、酸素の溶け込みが促進され、より水質改善効果が高まる。水質改善槽5の中央部の圧縮空気室4内の滞留水12は撹拌翼29に撹拌されながら高圧の圧縮空気3が吹き込まれることになるから、撹拌翼29によって積極的に滞留水12に乱流を発生させている分だけ酸素の溶け込みが促進され、より水質改善効果が高まる。   Thereby, by the stirring operation which stirs the contact interface S by the stirring blade 29, a turbulent flow is generated in the contact interface S, and the high-pressure compressed air 3 can be mixed with the stagnant water 12. As a result, oxygen is dissolved. It is promoted and the water quality improvement effect increases. The stagnant water 12 in the compressed air chamber 4 in the center of the water quality improvement tank 5 is blown into the stagnant water 12 by the agitating blade 29 because the high-pressure compressed air 3 is blown in while being agitated by the agitating blade 29. Oxygen dissolution is promoted as much as the flow is generated, and the water quality improvement effect is further enhanced.

なお、図9に示した例では、撹拌翼29の駆動系である駆動モータ34、駆動伝達部35を水中に設けているが、水上に設置してもよい。
[発明の実施の形態5]
In the example illustrated in FIG. 9, the drive motor 34 and the drive transmission unit 35 that are the drive system of the stirring blade 29 are provided in the water, but may be installed on the water.
[Embodiment 5 of the Invention]

図10は、この発明の実施の形態5に係る水質改善装置の一部断面とした正面図である。   FIG. 10: is the front view made into the partial cross section of the water quality improvement apparatus which concerns on Embodiment 5 of this invention.

図10において、水質改善槽5の圧縮空気室4の床版7の中央部に水導入部13を有しており、圧縮空気室4の左右の側壁8,8に排出部20,20を有している。左右の排出部20,20と圧縮空気室4との間には、それぞれ仕切壁21,21が設けられている。   In FIG. 10, the water introduction part 13 is provided at the center of the floor slab 7 of the compressed air chamber 4 of the water quality improvement tank 5, and the discharge parts 20, 20 are provided on the left and right side walls 8, 8 of the compressed air chamber 4. is doing. Partition walls 21 and 21 are provided between the left and right discharge parts 20 and 20 and the compressed air chamber 4, respectively.

図10では、水面に浮かんでいる台船37に水質改善槽5をワイヤ等の吊部材38にて吊り下げて、閉鎖水域1の底層部2に設置できるようにしている。   In FIG. 10, the water quality improvement tank 5 is suspended from a trolley 37 floating on the water surface by a suspension member 38 such as a wire so that it can be installed on the bottom layer 2 of the closed water area 1.

台船37の上には空気圧縮機15が設置されている。圧縮空気室4の中央部には、滞留水12の表面である接触界面Sを強制的に撹拌することのできる水平方向の回転軸39を有するスクリュー部材40が回転自在に設けられている。スクリュー部材40の一端部は、圧縮空気室4の中央部の水質改善槽5の天版6に設けられたスクリュー駆動装置41に連結されており、スクリュー部材40の他端部は、水質改善槽5の天版6から下方に向けて設けられた吊下支保部材42に設けた軸受43に支承されている。スクリュー部材40は、その他端部が仕切壁21に接近するだけの長さを有していることが望ましい。また、滞留水12の表面である接触界面Sの水の流れは圧縮空気室4の中央部から仕切壁21へ向かうようにスクリュー部材40の回転方向が決められる。   An air compressor 15 is installed on the carriage 37. A screw member 40 having a horizontal rotating shaft 39 capable of forcibly stirring the contact interface S which is the surface of the staying water 12 is rotatably provided in the central portion of the compressed air chamber 4. One end of the screw member 40 is connected to a screw drive device 41 provided on the top plate 6 of the water quality improvement tank 5 in the center of the compressed air chamber 4, and the other end of the screw member 40 is connected to the water quality improvement tank. 5 is supported by a bearing 43 provided on a suspension support member 42 provided downward from the top plate 6. It is desirable that the screw member 40 has such a length that the other end portion approaches the partition wall 21. Further, the direction of rotation of the screw member 40 is determined so that the flow of water at the contact interface S, which is the surface of the accumulated water 12, is directed from the central portion of the compressed air chamber 4 toward the partition wall 21.

台船37上の空気圧縮機15に接続されている配管16の先端部には空気導入部17が設けられており、圧縮空気室4の床版7の中央にある水導入部13に接近して空気導入部17の噴出孔18が形成されている。   An air introduction part 17 is provided at the tip of the pipe 16 connected to the air compressor 15 on the carriage 37 and approaches the water introduction part 13 at the center of the floor slab 7 of the compressed air chamber 4. Thus, an ejection hole 18 of the air introduction part 17 is formed.

これにより、空気導入部17の噴出孔18から供給された高圧の圧縮空気3は、気泡Bとなって浮力によりその位置から真上に滞留水12中を上昇して行くが、水導入部13の上部にはスクリュー部材40が回転しているので、圧縮空気3の気泡Bはスクリュー部材40の翼44に絡みつきくことになる。したがって、空気導入部17から供給された高圧の圧縮空気3は、スクリュー部材40の回転運動によって生じる接触界面S部での移動に伴い、仕切壁21に向かって移動させられて仕切壁21を経て排出部20から排出されることになる。   As a result, the high-pressure compressed air 3 supplied from the ejection hole 18 of the air introduction part 17 becomes a bubble B and rises in the accumulated water 12 from the position directly above by the buoyancy, but the water introduction part 13 Since the screw member 40 is rotating at the upper part of the air bubble, the bubbles B of the compressed air 3 are entangled with the blades 44 of the screw member 40. Therefore, the high-pressure compressed air 3 supplied from the air introduction portion 17 is moved toward the partition wall 21 along with the movement at the contact interface S generated by the rotational movement of the screw member 40, and passes through the partition wall 21. It is discharged from the discharge unit 20.

図10で示した例では、スクリュー部材40の翼44による接触界面Sを撹拌する撹拌動作により、接触界面Sに乱流を発生させて高圧の圧縮空気3を滞留水12に混ぜ合わせるこができ、結果として、酸素の溶け込みが促進され、より水質改善効果が高まる。また、水質改善槽5は台船37から吊り下げられているため、設置場所を簡単に移動できる利点がある。   In the example shown in FIG. 10, turbulent flow is generated in the contact interface S by the stirring operation of stirring the contact interface S by the blades 44 of the screw member 40, and the high-pressure compressed air 3 can be mixed with the staying water 12. As a result, the penetration of oxygen is promoted, and the water quality improving effect is further enhanced. Moreover, since the water quality improvement tank 5 is suspended from the carriage 37, there exists an advantage which can move an installation place easily.

なお、図10に示した例では、圧縮空気室4を形成する水質改善槽5を台船37から吊り下げて閉鎖水域1の底層部2に設置するようにしているが、設置場所が予め決まっているのであれば、台船37を使わずに水底9に架台を設けて架台の上に設置してもよい。
[発明の実施の形態6]
In the example shown in FIG. 10, the water quality improvement tank 5 forming the compressed air chamber 4 is suspended from the carriage 37 and installed on the bottom layer 2 of the closed water area 1, but the installation location is determined in advance. If this is the case, a pedestal may be provided on the bottom 9 without using the carriage 37 and installed on the pedestal.
[Sixth Embodiment of the Invention]

図11は、この発明の実施の形態6に係る水質改善装置の一部断面とした正面図である。図12は、その平面図である。   FIG. 11: is the front view made into the partial cross section of the water quality improvement apparatus which concerns on Embodiment 6 of this invention. FIG. 12 is a plan view thereof.

圧縮空気室4は、底面が開口した立体形状のカバー体45と閉鎖水域1の水底9とで形成され、カバー体45の開口縁部46と閉鎖水域1の水底9との接触部を排出部20として圧縮空気3が排出できるようにしている。   The compressed air chamber 4 is formed by a three-dimensional cover body 45 having an open bottom surface and a water bottom 9 of the closed water area 1, and a contact portion between the opening edge 46 of the cover body 45 and the water bottom 9 of the closed water area 1 is discharged. The compressed air 3 can be discharged as 20.

図11に示した例では、カバー体45が、高圧の圧縮空気3による圧力に耐え得る引張強度を持った、例えばラミネートフィルムゴム製、樹脂製或いは薄い鋼板等で気密状態を保つことのできるドーム状を呈する気密膜でできている。カバー体45の周囲の開口縁部46には浮力に抵抗できる重錘47を設けるか、アンカー材(図示ぜす)を使用して水底9に固定する。開口縁部46の下方には仕切壁21を有し、その下端部には正面から見て鋸歯状の凹凸が形成されている。仕切壁21の一部及び鋸歯状の凹凸は水底9に埋設される。   In the example shown in FIG. 11, the cover body 45 has a tensile strength that can withstand the pressure of the high-pressure compressed air 3, and can be kept airtight with, for example, laminated film rubber, resin, or a thin steel plate. It is made of an airtight membrane that exhibits a shape. A weight 47 capable of resisting buoyancy is provided at the opening edge 46 around the cover body 45 or is fixed to the water bottom 9 using an anchor material (shown). A partition wall 21 is provided below the opening edge 46, and serrated irregularities are formed at the lower end portion when viewed from the front. A part of the partition wall 21 and the serrated irregularities are embedded in the water bottom 9.

カバー体45の開口縁部46の近傍には、圧縮空気室4に高圧の圧縮空気3を送り込むための空気導入部17が取り付けられており、空気導入部17には圧縮空気3を排出する噴出孔18が形成されている。   In the vicinity of the opening edge 46 of the cover body 45, an air introduction part 17 for sending the high-pressure compressed air 3 into the compressed air chamber 4 is attached, and the air introduction part 17 ejects the compressed air 3. A hole 18 is formed.

図11に示した例では、圧縮空気室4内へ空気導入部17を介して高圧の圧縮空気3が送り込まれると、カバー体45を水底9に固定した当初に圧縮空気室4内に閉じこめられている滞留水12が、圧縮空気3に押し出されるようにして仕切壁21の鋸歯状の凹凸からカバー体45の外側の滞留水12へ排出される。そして、連続して高圧の圧縮空気3を圧縮空気室4内に送り続けると、仕切壁21の一部及びその下端部の鋸歯状の凹凸が水底9に埋設されているため、水底9の表層部に圧縮空気3が侵入すると接触界面Sが当初の水底9より下がり、圧縮空気室4内の水底9に干潟が形成されることになる。   In the example shown in FIG. 11, when the high-pressure compressed air 3 is fed into the compressed air chamber 4 through the air introduction part 17, the cover body 45 is initially enclosed in the water bottom 9 and is enclosed in the compressed air chamber 4. The staying water 12 is discharged to the staying water 12 outside the cover body 45 from the serrated irregularities of the partition wall 21 so as to be pushed out by the compressed air 3. When the high-pressure compressed air 3 is continuously fed into the compressed air chamber 4, a part of the partition wall 21 and the serrated irregularities at the lower end thereof are embedded in the water bottom 9, so that the surface layer of the water bottom 9 When the compressed air 3 enters the area, the contact interface S is lowered from the original water bottom 9, and a tidal flat is formed on the water bottom 9 in the compressed air chamber 4.

これにより、水底9には圧縮空気3が侵入して酸素が供給されることになるから、水底下の土粒子間に酸素が満たされるので土粒子間に残留する有機物質との酸化が促進されるため圧縮空気室4内の水底9の活性化も行うことができる。   As a result, the compressed air 3 enters the water bottom 9 and oxygen is supplied, so that oxygen is filled between the soil particles under the water bottom, so that the oxidation with the organic substance remaining between the soil particles is promoted. Therefore, activation of the water bottom 9 in the compressed air chamber 4 can also be performed.

この発明の実施の形態1に係る水質改善装置の一部断面とした正面図である。It is the front view made into the partial cross section of the water quality improvement apparatus which concerns on Embodiment 1 of this invention. 同実施の形態1に係る水質改善装置の図1のA−A断面図である。It is AA sectional drawing of the water quality improvement apparatus which concerns on the same Embodiment 1 of FIG. この発明の実施の形態2に係る水質改善装置の一部断面とした正面図である。It is the front view made into the partial cross section of the water quality improvement apparatus which concerns on Embodiment 2 of this invention. 同実施の形態2に係る水質改善装置の図3のB−B断面図である。It is BB sectional drawing of FIG. 3 of the water quality improvement apparatus which concerns on the same Embodiment 2. FIG. この発明の実施の形態2に係る水質改善装置の別態様の一部断面とした正面図である。It is the front view made into the partial cross section of another aspect of the water quality improvement apparatus which concerns on Embodiment 2 of this invention. 同実施の形態2に係る水質改善装置の別態様の図5のC−C断面図である。It is CC sectional drawing of FIG. 5 of another aspect of the water quality improvement apparatus which concerns on the same Embodiment 2. FIG. この発明の実施の形態3に係る水質改善装置の一部断面とした正面図である。It is the front view made into the partial cross section of the water quality improvement apparatus which concerns on Embodiment 3 of this invention. 同実施の形態3に係る水質改善装置の図7のD−D断面図である。It is DD sectional drawing of FIG. 7 of the water quality improvement apparatus which concerns on the same Embodiment 3. FIG. この発明の実施の形態4に係る水質改善装置の一部断面とした正面図である。It is the front view made into the partial cross section of the water quality improvement apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る水質改善装置の一部断面とした正面図である。It is the front view made into the partial cross section of the water quality improvement apparatus which concerns on Embodiment 5 of this invention. この発明の実施の形態6に係る水質改善装置の一部断面とした正面図である。It is the front view made into the partial cross section of the water quality improvement apparatus which concerns on Embodiment 6 of this invention. 実施の形態6に係る水質改善装置の平面図である。It is a top view of the water quality improvement apparatus concerning Embodiment 6. 従来の小規模用の水質改善装置の概念図である。It is a conceptual diagram of the conventional small-scale water quality improvement apparatus. 従来の大規模用の水質改善装置の概念図である。It is a conceptual diagram of the conventional large-scale water quality improvement apparatus.

符号の説明Explanation of symbols

1 閉鎖水域
2 底層部
3 圧縮空気
4 圧縮空気室
5 水質改善槽
6 天版
7 床版
8 側壁
9 水底
10 基礎部
12 滞留水
13 水導入部
15 空気圧縮機
16 配管
17 空気導入部
18 噴出孔
20 排出部
21 仕切壁
22 連通口
26 隔壁
27 連結部材
37 台船
45 カバー部材
46 開口縁部
DESCRIPTION OF SYMBOLS 1 Closed water area 2 Bottom layer part 3 Compressed air 4 Compressed air chamber 5 Water quality improvement tank 6 Top plate 7 Floor slab 8 Side wall 9 Water bottom 10 Foundation part 12 Stagnant water 13 Water introduction part 15 Air compressor 16 Piping 17 Air introduction part 18 Ejection hole 20 Discharge Part 21 Partition Wall 22 Communication Port 26 Bulkhead 27 Connecting Member 37 Carrier 45 Cover Member 46 Opening Edge

Claims (8)

閉鎖水域の底層部の滞留水と高圧の圧縮空気を貯めることのできる空間を有する圧縮空気室と、該圧縮空気室内に圧縮空気を送り込むための空気導入部と、前記圧縮空気室内の圧縮空気を排出するための排出部とを有する水質改善装置であって、前記空気導入部から前記圧縮空気室へ送り込まれた圧縮空気が前記排出部から気泡となって前記閉鎖水域の水面方向に上昇する流れに伴って、前記圧縮空気室内の滞留水を前記排出部から排出させるようにしたことを特徴とする水質改善装置。 A compressed air chamber having a space capable of storing stagnant water and high-pressure compressed air in the bottom layer of the closed water area, an air introducing portion for sending compressed air into the compressed air chamber, and compressed air in the compressed air chamber. A water quality improvement device having a discharge portion for discharging, wherein the compressed air sent from the air introduction portion to the compressed air chamber becomes bubbles from the discharge portion and rises in the water surface direction of the closed water area Accordingly, the water quality improving apparatus is characterized in that the stagnant water in the compressed air chamber is discharged from the discharge portion. 閉鎖水域の底層部の滞留水と高圧の圧縮空気を貯めることのできる空間を有する圧縮空気室と、該圧縮空気室内に圧縮空気を送り込むための空気導入部と、前記圧縮空気室内の圧縮空気を排出するための排出部とを有する水質改善装置であって、前記圧縮空気室は、底面が開口した立体形状のカバー体と前記閉鎖水域の水底とで形成され、前記カバー体の開口縁部と前記閉鎖水域の水底との接触部を前記排出部として前記圧縮空気が排出できるようにしたことを特徴とする水質改善装置。 A compressed air chamber having a space capable of storing stagnant water and high-pressure compressed air in the bottom layer of the closed water area, an air introducing portion for sending compressed air into the compressed air chamber, and compressed air in the compressed air chamber. A water quality improvement device having a discharge portion for discharging, wherein the compressed air chamber is formed of a three-dimensional cover body having an open bottom surface and a water bottom of the closed water area, and an opening edge of the cover body; The water quality improvement device characterized in that the compressed air can be discharged by using a contact portion with the bottom of the closed water area as the discharge portion. 前記圧縮空気室には、前記底層部の滞留水を導入するための水導入部を有し、前記圧縮空気の流れに伴って連続的に前記圧縮空気室の外の滞留水を前記水導入部から導入して前記排出部から排出させるようにしたことを特徴とする請求項1に記載の水質改善装置。 The compressed air chamber has a water introducing portion for introducing the accumulated water in the bottom layer portion, and continuously retains the remaining water outside the compressed air chamber with the flow of the compressed air. The water quality improvement device according to claim 1, wherein the water quality improvement device is introduced from the discharge portion and discharged from the discharge portion. 前記水導入部と前記排出部との間には、前記圧縮空気室の天井部から下方に向かう仕切壁が設けられており、水圧と空気圧のバランスによって前記滞留水と前記圧縮空気とを隔てる接触界面が形成されるようにしていることを特徴とする請求項3に記載の水質改善装置。 A partition wall that extends downward from the ceiling of the compressed air chamber is provided between the water introduction portion and the discharge portion, and contacts the separated water and the compressed air by a balance between water pressure and air pressure. The water quality improving apparatus according to claim 3, wherein an interface is formed. 前記水導入部と前記仕切壁との間に少なくとも一つの隔壁が設けられており、隔壁と仕切壁又は隔壁と隔壁とで仕切られた区画内の水位が前記排出部に近いほど高くなるように前記隔壁の高さが設定されていることを特徴とする請求項4に記載の水質改善装置。 At least one partition wall is provided between the water introduction part and the partition wall, so that the water level in the partition partitioned by the partition wall and the partition wall or the partition wall and the partition wall becomes higher as it is closer to the discharge part. The water quality improving apparatus according to claim 4, wherein a height of the partition wall is set. 前記圧縮空気室が上下に複数配置されており、下段の圧縮空気室と上段の圧縮空気室とは連絡部によって連通されていることを特徴とする請求項4又は5に記載の水質改善装置。 6. The water quality improvement apparatus according to claim 4, wherein a plurality of the compressed air chambers are arranged above and below, and the lower compressed air chamber and the upper compressed air chamber communicate with each other through a connecting portion. 前記圧縮空気室が並列に配置されており、それぞれの圧縮空気室の一端部に前記水導入部を有し、それぞれの圧縮空気室の他端部は前記排出口を備えた連結部材で一体化されていることを特徴とする請求項4又は5に記載の水質改善装置。 The compressed air chambers are arranged in parallel, each of the compressed air chambers has the water introduction portion at one end, and the other end of each compressed air chamber is integrated with a connecting member having the discharge port. The water quality improvement apparatus according to claim 4 or 5, wherein the water quality improvement apparatus is provided. 前記圧縮空気室の底面の中央部に前記水導入部と前記空気導入部を設け、前記圧縮空気室の外周部に前記排出部を設け、前記接触界面を撹拌することのできる攪拌装置を設けたことを特徴とする請求項4又は5に記載の水質改善装置。 The water introduction part and the air introduction part are provided in the central part of the bottom surface of the compressed air chamber, the discharge part is provided in the outer peripheral part of the compressed air chamber, and a stirring device capable of stirring the contact interface is provided. The water quality improvement apparatus according to claim 4 or 5, characterized in that.
JP2006031858A 2006-02-09 2006-02-09 Water quality improvement device Expired - Fee Related JP4489709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006031858A JP4489709B2 (en) 2006-02-09 2006-02-09 Water quality improvement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006031858A JP4489709B2 (en) 2006-02-09 2006-02-09 Water quality improvement device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008332313A Division JP2009113039A (en) 2008-12-26 2008-12-26 Water quality improvement apparatus

Publications (2)

Publication Number Publication Date
JP2007209883A true JP2007209883A (en) 2007-08-23
JP4489709B2 JP4489709B2 (en) 2010-06-23

Family

ID=38488754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006031858A Expired - Fee Related JP4489709B2 (en) 2006-02-09 2006-02-09 Water quality improvement device

Country Status (1)

Country Link
JP (1) JP4489709B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195524U1 (en) * 2019-10-25 2020-01-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" WATER OXYGENATION DEVICE
CN112158966A (en) * 2020-08-15 2021-01-01 苏州云刚智能科技有限公司 High-pressure aeration system and high-pressure aeration method applied to industrial sewage treatment
RU207664U1 (en) * 2021-07-29 2021-11-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" DEVICE FOR INCREASING THE INTENSITY OF WATER OXYGENATION
KR102423100B1 (en) * 2021-12-31 2022-07-21 코리아엔텍 주식회사 Apparatus and system for water purification using blown air and bucket wheel
JP7132655B1 (en) 2021-07-28 2022-09-07 ゼニヤ海洋サービス株式会社 Aerator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762700U (en) * 1980-10-01 1982-04-14
JPH03113520U (en) * 1990-03-02 1991-11-20
JPH07256292A (en) * 1994-03-18 1995-10-09 Hitachi Ltd River aeration apparatus and control thereof
JPH0839094A (en) * 1994-08-03 1996-02-13 Marsima Aqua Syst Corp Air diffusion device
JPH08309386A (en) * 1995-05-22 1996-11-26 Marsima Aqua Syst Corp Bottom layer water purifying device for lake, marsh or the like
JPH0947789A (en) * 1995-08-07 1997-02-18 Mitsuo Okamoto Underwater aerator
JPH11179394A (en) * 1997-12-18 1999-07-06 Inax Corp Aeration apparatus
JP2000140823A (en) * 1998-11-02 2000-05-23 Takeshi Yoshioka Submerged aeration device
JP2001104985A (en) * 1999-10-13 2001-04-17 Ebara Corp Method and apparatus for supplying oxygen to lower layer part of water area
WO2005075365A1 (en) * 2004-02-03 2005-08-18 Matsuedoken Co., Ltd. Gas-liquid dissolution apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762700U (en) * 1980-10-01 1982-04-14
JPH03113520U (en) * 1990-03-02 1991-11-20
JPH07256292A (en) * 1994-03-18 1995-10-09 Hitachi Ltd River aeration apparatus and control thereof
JPH0839094A (en) * 1994-08-03 1996-02-13 Marsima Aqua Syst Corp Air diffusion device
JPH08309386A (en) * 1995-05-22 1996-11-26 Marsima Aqua Syst Corp Bottom layer water purifying device for lake, marsh or the like
JPH0947789A (en) * 1995-08-07 1997-02-18 Mitsuo Okamoto Underwater aerator
JPH11179394A (en) * 1997-12-18 1999-07-06 Inax Corp Aeration apparatus
JP2000140823A (en) * 1998-11-02 2000-05-23 Takeshi Yoshioka Submerged aeration device
JP2001104985A (en) * 1999-10-13 2001-04-17 Ebara Corp Method and apparatus for supplying oxygen to lower layer part of water area
WO2005075365A1 (en) * 2004-02-03 2005-08-18 Matsuedoken Co., Ltd. Gas-liquid dissolution apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195524U1 (en) * 2019-10-25 2020-01-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" WATER OXYGENATION DEVICE
CN112158966A (en) * 2020-08-15 2021-01-01 苏州云刚智能科技有限公司 High-pressure aeration system and high-pressure aeration method applied to industrial sewage treatment
CN112158966B (en) * 2020-08-15 2022-11-11 东营华泰精细化工有限责任公司 High-pressure aeration system and high-pressure aeration method applied to industrial sewage treatment
JP7132655B1 (en) 2021-07-28 2022-09-07 ゼニヤ海洋サービス株式会社 Aerator
JP2023019013A (en) * 2021-07-28 2023-02-09 ゼニヤ海洋サービス株式会社 Aerator
RU207664U1 (en) * 2021-07-29 2021-11-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" DEVICE FOR INCREASING THE INTENSITY OF WATER OXYGENATION
KR102423100B1 (en) * 2021-12-31 2022-07-21 코리아엔텍 주식회사 Apparatus and system for water purification using blown air and bucket wheel

Also Published As

Publication number Publication date
JP4489709B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
US4316680A (en) Air-assisted hydraulic re-circulatory bouyancy pump
JP4489709B2 (en) Water quality improvement device
CN103828759A (en) Free-moving efficient aerator
US5741443A (en) Oxygenation of stratified water
US6223689B1 (en) Nelson trawlers aquaculture unit
JP4006063B2 (en) Floating water generator
CN208692069U (en) Settling type buoyancy tank and fishery cultivating platform
US8172206B2 (en) System for forming mini microbubbles
US20180078910A1 (en) Artificial-whirlpool generator
JPH10229781A (en) Method and device for deffusing air into water
JP2001293467A (en) Cleaning method of cultivation water and device therefor
JP6541148B2 (en) Liquid circulation system
JP2009113039A (en) Water quality improvement apparatus
JP4687999B2 (en) Floating water quality improvement device
KR20060112055A (en) Water circulating apparatus of reservoir
KR102039306B1 (en) Micro bubble product device for water quality improvement
KR101196995B1 (en) Water-Circulating Apparatus of Water Supply Utility using Draft Tube
JP2004351377A (en) Purification agent diffusion device of organic sludge
JP2002205088A (en) Apparatus for moving dissolved oxygen rich water to deep water part
KR100653595B1 (en) Apparatus and method for water transfering from surface to deep place
JP5774848B2 (en) Water quality improvement device and water quality improvement method
JP4194863B2 (en) Bottom mud quality improvement device with high concentration oxygen supply mechanism
JP2001047088A (en) Water quality improving apparatus
JPH0957286A (en) Water purifying device
JP3158262B2 (en) Current generation method and facilities in aquaculture area

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees