JP2007208684A - Transmitter having distortion compensating function - Google Patents

Transmitter having distortion compensating function Download PDF

Info

Publication number
JP2007208684A
JP2007208684A JP2006025469A JP2006025469A JP2007208684A JP 2007208684 A JP2007208684 A JP 2007208684A JP 2006025469 A JP2006025469 A JP 2006025469A JP 2006025469 A JP2006025469 A JP 2006025469A JP 2007208684 A JP2007208684 A JP 2007208684A
Authority
JP
Japan
Prior art keywords
distortion compensation
signal
calculation unit
value
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006025469A
Other languages
Japanese (ja)
Inventor
Masahiro Kinomura
昌宏 木野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006025469A priority Critical patent/JP2007208684A/en
Publication of JP2007208684A publication Critical patent/JP2007208684A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmitter having a distortion compensating function applying a distortion compensation to a specific signal-amplitude region largely having an effect on distortion characteristics. <P>SOLUTION: The transmitter having the distortion compensating function has an amplitude-value arithmetic section 25 for arithmetically operating an amplitude value from an input modulation signal, and a comparison arithmetic section 26 for comparing an output from the amplitude-value arithmetic section 25 and a threshold-value signal S10. The transmitter further has an address calculation section 15 for calculating an address only when the amplitude value of the input modulation signal is kept within a specified range determined by the threshold-value signal S10 in the comparison arithmetic section 26. Since a distortion is compensated only when the amplitude value of the input modulation signal is kept within the specified range determined by the threshold-value signal S10, a distortion-compensating range can be allocated only to the specified range largely having the effect on distortion characteristics. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無線通信システム等の送信装置における電力増幅器等の非線形歪の補償を行う歪補償機能付き送信装置に関し、特に、非線形歪の高い領域に対してのみ歪補償を行う歪補償機能付き送信装置に関するものである。   The present invention relates to a transmission apparatus with a distortion compensation function that compensates for nonlinear distortion of a power amplifier or the like in a transmission apparatus such as a wireless communication system, and more particularly, transmission with a distortion compensation function that performs distortion compensation only for a region with high nonlinear distortion. It relates to the device.

現在、電力増幅器の低歪化を実現するために様々な取り組みが行なわれている。歪補償方式としては、主にアナログ回路を用いた方式と、ベースバンド信号処理を用いたディジタル方式の二方式がこれまでに検討されている。近年の移動体通信においては、高速で大容量のデータ伝送速度が求められてきており、補償すべき信号帯域は広がる傾向にある。信号帯域が広がることにより、これまで用いられてきたアナログ方式での歪補償方式では十分な補償周波数帯域を確保することが難しい。このため、ディジタル方式の歪補償方式の検討が盛んに行われている。   Currently, various efforts are being made to achieve low distortion of power amplifiers. As a distortion compensation method, two methods, mainly a method using an analog circuit and a digital method using baseband signal processing, have been studied so far. In recent mobile communications, a high-speed and large-capacity data transmission rate has been demanded, and the signal band to be compensated tends to widen. Due to the widening of the signal band, it is difficult to secure a sufficient compensation frequency band with the analog distortion compensation system used so far. For this reason, a digital distortion compensation method has been actively studied.

ディジタル歪補償方式には、電力増幅器の非線形特性の逆特性を多項式で近似して入力変調信号に掛け合わす方式(多項式方式)と、LUT(Look Up Table)に入力変調信号レベルに応じた電力増幅器の逆特性を記憶させ、必要に応じて、このLUTを呼び出す方式の二方式が広く知られている。各々の方式については一長一短があるが、非線形性が大きい電力増幅器にはLUT方式が適していると考えられている。これは、多項式方式では電力増幅器の逆特性を限られたメモリ(多項式の近似次数)で表現することが困難になるためである。このため、非線形性の高い電力増幅器に対してはLUT方式を用いることが望ましい。   The digital distortion compensation system includes a system (polynomial system) in which the inverse characteristic of the nonlinear characteristic of the power amplifier is approximated by a polynomial and multiplied by the input modulation signal, and a power amplifier corresponding to the input modulation signal level in the LUT (Look Up Table). There are widely known two methods of storing the inverse characteristics of and calling this LUT as necessary. Each method has advantages and disadvantages, but it is considered that the LUT method is suitable for a power amplifier having a large nonlinearity. This is because it is difficult to represent the inverse characteristics of the power amplifier with a limited memory (approximate degree of polynomial) in the polynomial method. For this reason, it is desirable to use the LUT method for a power amplifier with high nonlinearity.

従来のLUTを用いた歪補償方式として以下の方式が知られている。電力増幅器に入力される入力信号を、信号レベルの最小値から最大値までの間を均等に分割する。この分割された各々の入力変調信号レベルに対し電力増幅器の逆特性となる値を歪補償係数としてLUTに格納しておく。電力増幅器に入力する信号レベルを検出し、その信号レベルに応じたLUTのアドレスを算出し、入力変調信号レベルに応じた逆特性を出力する。出力された逆特性を電力増幅器に入力することにより非線形特性が相殺され線形特性を得る方式である。従来のLUTを用いた歪補償方式では、歪補償係数の収束時間の短縮を図り補償精度を改善させるために、歪補償係数を格納したLUTである歪補償係数テーブルのアドレス発生頻度の均一化を行っている(例えば、特許文献1参照)。   The following methods are known as distortion compensation methods using a conventional LUT. The input signal input to the power amplifier is divided equally between the minimum value and the maximum value of the signal level. A value that is an inverse characteristic of the power amplifier for each of the divided input modulation signal levels is stored in the LUT as a distortion compensation coefficient. A signal level input to the power amplifier is detected, an LUT address corresponding to the signal level is calculated, and an inverse characteristic corresponding to the input modulation signal level is output. This is a method of obtaining a linear characteristic by canceling the non-linear characteristic by inputting the output inverse characteristic to the power amplifier. In the conventional distortion compensation method using the LUT, in order to shorten the convergence time of the distortion compensation coefficient and improve the compensation accuracy, the address generation frequency of the distortion compensation coefficient table which is an LUT storing the distortion compensation coefficient is made uniform. (For example, refer to Patent Document 1).

図7は、前記特許文献1に記載された従来の歪補償方式を用いた送信装置の全体構成を示すブロック図である。図7を用いて従来の歪補償方式を用いた送信装置における補償特性の改善方法を示す。入力変調信号S1は乗算部1を介して電力増幅器2に入力され、電力増幅器2から出力変調信号S2を出力する。減算部3にて、出力変調信号S2の一部を入力変調信号S1から減算し、その差分値を元に歪補償係数演算部4により歪補償係数S3を算出して歪補償係数テーブル5に格納する。歪補償係数S3を歪補償係数テーブル5に格納するためのアドレスは以下により決定する。振幅演算部6により入力変調信号S1の振幅値を算出し、算出した振幅値から振幅出現頻度算出部7により入力変調信号S1の振幅出現頻度を算出する。振幅出現頻度に応じて歪補償係数テーブル5のアドレスをアドレス算出部8で決定する。決定したアドレスに従い歪補償係数S3を歪補償係数テーブル5に格納して歪補償係数テーブルのデータを更新する。乗算部1において更新した歪補償係数S3と入力変調信号S1とを掛け合わせ、歪補償信号として電力増幅器2に入力する。   FIG. 7 is a block diagram showing an overall configuration of a transmission apparatus using the conventional distortion compensation method described in Patent Document 1. In FIG. FIG. 7 shows a method for improving compensation characteristics in a transmission apparatus using a conventional distortion compensation method. The input modulation signal S1 is input to the power amplifier 2 via the multiplier 1, and the output modulation signal S2 is output from the power amplifier 2. The subtraction unit 3 subtracts a part of the output modulation signal S2 from the input modulation signal S1, calculates the distortion compensation coefficient S3 by the distortion compensation coefficient calculation unit 4 based on the difference value, and stores it in the distortion compensation coefficient table 5. To do. The address for storing the distortion compensation coefficient S3 in the distortion compensation coefficient table 5 is determined as follows. The amplitude calculation unit 6 calculates the amplitude value of the input modulation signal S1, and the amplitude appearance frequency calculation unit 7 calculates the amplitude appearance frequency of the input modulation signal S1 from the calculated amplitude value. The address calculation unit 8 determines the address of the distortion compensation coefficient table 5 according to the amplitude appearance frequency. According to the determined address, the distortion compensation coefficient S3 is stored in the distortion compensation coefficient table 5, and the data of the distortion compensation coefficient table is updated. The distortion compensation coefficient S3 updated in the multiplier 1 is multiplied by the input modulation signal S1 and input to the power amplifier 2 as a distortion compensation signal.

図8(a)は、前記特許文献1に記載された従来の歪補償方式を用いた送信装置における入力変調信号の振幅値の出現頻度を表す図、図8(b)は、前記特許文献1に記載された従来の歪補償方式を用いた送信装置における歪補償係数テーブルのアドレスの出現頻度を表す図である。図8(a)に示すように、入力変調信号S1は振幅値に対してある分布を有している。このため、そのままでは出現頻度の高い振幅領域における歪補償係数テーブルの更新回数が高くなる。一方、出現頻度の低い振幅領域では十分な更新回数が得られない。特に、歪特性に大きな影響を及ぼす最大振幅値の付近では十分な補償効果が得られない。このため、振幅出現頻度算出部7では入力変調信号S1の振幅値の再演算を行う。図8(b)に示すように、振幅値の各ステップに対応する歪補償係数テーブルのアドレスの出現頻度が均等な分布となるように、変調信号の振幅値の各ステップ幅を調整する。図8(a)に示すように、ステップ幅を調整して振幅値の各ステップの出現回数を等しくした場合、振幅出現が低いほど振幅値の幅が広がる。これにより、歪補償係数テーブル5の各アドレスの出現頻度が均等になる。以上により、振幅値の各ステップに対するテーブル更新回数が均一になり歪補償係数の収束時間の短縮を図ることができ、精度の高い歪補償を行うことができる。
特開2003−347944号公報(図1、図2)
FIG. 8A is a diagram showing the appearance frequency of the amplitude value of the input modulation signal in the transmission apparatus using the conventional distortion compensation method described in Patent Document 1, and FIG. 6 is a diagram illustrating the frequency of appearance of addresses in a distortion compensation coefficient table in a transmission apparatus using the conventional distortion compensation scheme described in FIG. As shown in FIG. 8A, the input modulation signal S1 has a certain distribution with respect to the amplitude value. For this reason, the number of updates of the distortion compensation coefficient table in the amplitude region having a high appearance frequency is increased as it is. On the other hand, a sufficient number of updates cannot be obtained in an amplitude region with a low appearance frequency. In particular, a sufficient compensation effect cannot be obtained in the vicinity of the maximum amplitude value that greatly affects the distortion characteristics. Therefore, the amplitude appearance frequency calculation unit 7 recalculates the amplitude value of the input modulation signal S1. As shown in FIG. 8B, each step width of the amplitude value of the modulation signal is adjusted so that the frequency of appearance of addresses in the distortion compensation coefficient table corresponding to each step of the amplitude value has a uniform distribution. As shown in FIG. 8A, when the step width is adjusted to equalize the number of appearances of each step of the amplitude value, the amplitude value width increases as the amplitude appearance decreases. Thereby, the appearance frequency of each address in the distortion compensation coefficient table 5 becomes equal. As described above, the number of times the table is updated for each step of the amplitude value becomes uniform, the convergence time of the distortion compensation coefficient can be shortened, and highly accurate distortion compensation can be performed.
JP 2003-347944 A (FIGS. 1 and 2)

しかしながら従来の技術では、アドレス出現頻度を均一にするために振幅値の各ステップ幅を調整するので、入力変調信号の平均値とピーク信号との差(以下、ピークファクタという)が大きい変調方式においては、歪特性への影響が大きい振幅最大値付近での振幅値のステップ幅がより広くなる。このため、振幅出現頻度の高い領域(すなわち、振幅値のステップ幅が狭い領域)と比較して補償係数の精度は低くなり、歪特性の補償量は小さくなる。また、補償量を大きくするためにはテーブルの記憶容量を増やす必要があり、これによりコストが増すことになるという課題を有していた。   However, in the conventional technique, each step width of the amplitude value is adjusted in order to make the address appearance frequency uniform. Therefore, in the modulation method in which the difference between the average value of the input modulation signal and the peak signal (hereinafter referred to as the peak factor) is large. The step width of the amplitude value in the vicinity of the maximum amplitude value that has a large influence on the distortion characteristics becomes wider. For this reason, the accuracy of the compensation coefficient is lower and the compensation amount of the distortion characteristic is smaller than in a region where the amplitude appearance frequency is high (that is, a region where the step width of the amplitude value is narrow). In addition, in order to increase the compensation amount, it is necessary to increase the storage capacity of the table, which causes a problem that the cost increases.

また従来の技術では、エンベロープトラッキング方式のような、入力変調信号の振幅値に応じて電力増幅器の電源電圧を切り替える方式では、電源電圧の切り替えを行う振幅値付近では、異なる二つの電力増幅器の特性に対して、歪補償係数を算出する振幅領域が同じである場合に、一つの補償係数で二つの利得特性を補償する動作となってしまい十分な歪補償効果が得られない。これらはエンベロープトラッキング方式以外の、制御信号、電源等の切り替えにより電力増幅器の特性を変化させる方式では同様である。   Further, in the conventional technique, in the method of switching the power supply voltage of the power amplifier according to the amplitude value of the input modulation signal such as the envelope tracking method, the characteristics of two different power amplifiers are close to the amplitude value for switching the power supply voltage. On the other hand, when the amplitude region for calculating the distortion compensation coefficient is the same, the operation for compensating the two gain characteristics with one compensation coefficient is not possible, and a sufficient distortion compensation effect cannot be obtained. These are the same in systems other than the envelope tracking system in which the characteristics of the power amplifier are changed by switching control signals, power supplies, and the like.

本発明は、このような従来の問題点を解決するものであり、歪特性に大きな影響を与える特定の信号振幅領域に歪補償を適用した歪補償機能付き送信装置を提供することを目的とする。   The present invention solves such a conventional problem, and an object of the present invention is to provide a transmission device with a distortion compensation function in which distortion compensation is applied to a specific signal amplitude region that greatly affects distortion characteristics. .

前記従来の課題を解決するために、本発明の歪補償機能付き送信装置は、入力変調信号から振幅値を演算する振幅値演算部、前記振幅値演算部の出力と閾値を比較する比較演算部からなる入力変調信号判定部と、前記入力変調信号判定部において前記入力変調信号の振幅値が前記閾値で決定される所定の範囲にある時のみアドレスの算出を行うアドレス算出部とを有し、前記入力変調信号の振幅値が前記閾値で決定される所定の範囲にある時のみ歪補償を行う。   In order to solve the above-described conventional problems, a transmission device with a distortion compensation function according to the present invention includes an amplitude value calculation unit that calculates an amplitude value from an input modulation signal, and a comparison calculation unit that compares an output of the amplitude value calculation unit with a threshold value An input modulation signal determination unit comprising: an address calculation unit that calculates an address only when an amplitude value of the input modulation signal is within a predetermined range determined by the threshold in the input modulation signal determination unit; Distortion compensation is performed only when the amplitude value of the input modulation signal is within a predetermined range determined by the threshold value.

本構成によって、歪補償範囲を歪特性に大きく影響する所定の範囲に対してのみ割り当てることが可能となる。   With this configuration, it is possible to assign the distortion compensation range only to a predetermined range that greatly affects the distortion characteristics.

また、本発明の歪補償機能付き送信装置は、アドレス算出部において、入力変調信号の振幅値に応じて制御される電源電圧切り替え信号に連動して、電力増幅器の電源電圧を切り替える振幅値と、歪補償係数テーブルのアドレスを切り替える振幅値とを略一致させるようにアドレスを算出することにより、同一アドレス領域内に異なる二つの利得特性が略存在しないようにしたものである。   Further, the transmission device with a distortion compensation function of the present invention, the address calculation unit, the amplitude value for switching the power supply voltage of the power amplifier in conjunction with the power supply voltage switching signal controlled according to the amplitude value of the input modulation signal, By calculating the address so as to substantially match the amplitude value for switching the address of the distortion compensation coefficient table, two different gain characteristics do not substantially exist in the same address area.

また、本発明の歪補償機能付き送信装置は、前記誤差信号演算部の出力から誤差振幅値を演算する誤差振幅値演算部、前記誤差振幅値演算部の出力と第二の閾値とを比較する第二の比較演算部からなる誤差信号判定部と、前記第二の比較演算部において、前記誤差信号演算部の出力が前記第二の閾値より大きい場合は前記パラメータ信号の値を大きくし、前記誤差信号演算部の出力が前記第二の閾値より小さい場合は前記パラメータ信号の値を小さくするように動作するパラメータ信号算出部とを設けることにより、誤差振幅値が第二の閾値より大きい場合は補償量を大きくし、誤差振幅値が第二の閾値より小さい場合は補償量を小さくするようにしたものである。   The transmission device with a distortion compensation function according to the present invention compares an error amplitude value calculation unit that calculates an error amplitude value from an output of the error signal calculation unit, an output of the error amplitude value calculation unit, and a second threshold value. In the error signal determination unit composed of a second comparison calculation unit and the second comparison calculation unit, when the output of the error signal calculation unit is larger than the second threshold, the value of the parameter signal is increased, When the error amplitude value is larger than the second threshold value by providing a parameter signal calculation unit that operates to reduce the value of the parameter signal when the output of the error signal calculation unit is smaller than the second threshold value. The compensation amount is increased, and when the error amplitude value is smaller than the second threshold value, the compensation amount is decreased.

本発明の本発明の歪補償機能付き送信装置によれば、歪補償係数を記憶するテーブルの記憶容量を増やすさずに、歪補償精度を高くすることができる。   According to the transmission device with a distortion compensation function of the present invention, it is possible to increase the distortion compensation accuracy without increasing the storage capacity of the table for storing the distortion compensation coefficient.

また、本発明の本発明の歪補償機能付き送信装置によれば、電力増幅器の電源電圧を切り替えたときの歪補償精度の劣化を改善することができる。   Further, according to the transmission device with a distortion compensation function of the present invention, it is possible to improve the degradation of distortion compensation accuracy when the power supply voltage of the power amplifier is switched.

また、本発明の本発明の歪補償機能付き送信装置によれば、歪補償の収束速度と精度を改善することができる。   Moreover, according to the transmission apparatus with a distortion compensation function of the present invention, it is possible to improve the convergence speed and accuracy of distortion compensation.

以下、本発明の実施の形態について図面を参照して詳細に説明する。
(実施の形態1)
図1、図2は本発明の実施の形態1に係る歪補償機能付き送信装置を説明する図である。図1は、実施の形態1における歪補償機能付き送信装置の全体構成を示すブロック図である。図1において、歪補償機能付き送信装置は、電力増幅器10、歪補償部11、電源19とから構成される。歪補償部11は、誤差信号演算部12、歪補償係数演算部13、入力変調信号判定部14、アドレス算出部15、歪補償係数テーブル16、第二の複素共役演算部17、第三の乗算部18、とから構成される。誤差信号演算部12は、利得回路20と減算部21とから構成される。歪補償係数演算部13は、第一の複素共役演算部22、第一の乗算器23、第二の乗算器24とから構成される。入力変調信号判定部14は、振幅値演算部25と比較演算部26とから構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
1 and 2 are diagrams for explaining a transmission device with a distortion compensation function according to Embodiment 1 of the present invention. FIG. 1 is a block diagram showing an overall configuration of a transmission apparatus with a distortion compensation function in the first embodiment. In FIG. 1, the transmission device with a distortion compensation function includes a power amplifier 10, a distortion compensation unit 11, and a power source 19. The distortion compensation unit 11 includes an error signal calculation unit 12, a distortion compensation coefficient calculation unit 13, an input modulation signal determination unit 14, an address calculation unit 15, a distortion compensation coefficient table 16, a second complex conjugate calculation unit 17, and a third multiplication. Part 18. The error signal calculation unit 12 includes a gain circuit 20 and a subtraction unit 21. The distortion compensation coefficient calculation unit 13 includes a first complex conjugate calculation unit 22, a first multiplier 23, and a second multiplier 24. The input modulation signal determination unit 14 includes an amplitude value calculation unit 25 and a comparison calculation unit 26.

本発明の実施の形態1において、入力変調信号Xは第三の乗算部18を介して電力増幅器10に入力される。また、入力変調信号Xを振幅値演算部14に入力して振幅値を算出し、比較演算部26にて閾値信号S10と比較する。このとき入力変調信号Xの振幅値が閾値信号S10で決定される所定の範囲より大きい場合、アドレス算出部15にて歪補償係数テーブル16の値を更新するためのアドレス値を算出する。また、入力変調信号Xの振幅値が閾値信号S10で決定される所定の範囲より小さい場合、アドレス値の算出および、歪補償係数算出のための一連の演算を行わないことを特徴としている。   In Embodiment 1 of the present invention, the input modulation signal X is input to the power amplifier 10 via the third multiplier 18. Further, the input modulation signal X is input to the amplitude value calculation unit 14 to calculate the amplitude value, and the comparison calculation unit 26 compares it with the threshold signal S10. At this time, if the amplitude value of the input modulation signal X is larger than the predetermined range determined by the threshold signal S10, the address calculation unit 15 calculates an address value for updating the value of the distortion compensation coefficient table 16. Further, when the amplitude value of the input modulation signal X is smaller than a predetermined range determined by the threshold signal S10, a series of calculations for calculating an address value and a distortion compensation coefficient are not performed.

歪補償係数の算出方法は一般的なRMS(Root Mean Square)法を用いたものなどが利用でき、以下にRMS法を用いた歪補償方法を示す。電力増幅器10の出力変調信号Yの一部Y1が取り出され、利得回路20で電力増幅器10の利得Gで除算されて出力信号S11(=Y1/G)を得る。減算部20により入力変調信号Xから利得回路20の出力信号S11を減算して誤差信号e(=X−Y1/G)を得る。第一の複素共役演算部22で誤差信号eを複素共役値conj(e)とする。さらに第一の乗算部23で、電力増幅器10の補償量を決定するパラメータ信号uと誤差信号eの複素共役値conj(e)とを乗算してu×conj(e)とする。さらに第二の乗算部24において、第一の乗算部23の出力と入力変調信号Xとを乗算する。そして第二の乗算部24の乗算出力pd_lut(=X×u×conj(e))を歪補償係数テーブル16に格納する。歪補償係数テーブル16は、入力変調信号Xの振幅値を元にアドレス算出部15で算出したアドレス値に基づいてテーブル値を逐次更新していく。このとき比較演算部26において、振幅値演算部25で算出した振幅値と閾値信号S10とを比較する。アドレス算出部15では、入力変調信号Xの振幅値が閾値信号S10で決定される所定の範囲より大きい場合に、歪補償係数テーブル16の値を更新するためのアドレス値を算出する。入力変調信号Xの振幅値が閾値信号S10で決定される所定の範囲より小さい場合は、アドレス値を算出せずテーブル値の更新は行わない。第二の複素共役演算部17において、歪補償係数テーブル16の出力である歪補償係数pd_lutを複素共役値conj(pd_lut)とする。第三の乗算部18において、複素共役値conj(pd_lut)と入力変調信号Xとを乗算して電力増幅器10に入力することで歪補償を行う。   As a method for calculating a distortion compensation coefficient, a method using a general RMS (Root Mean Square) method or the like can be used, and a distortion compensation method using the RMS method will be described below. A part Y1 of the output modulation signal Y of the power amplifier 10 is taken out and divided by the gain G of the power amplifier 10 by the gain circuit 20 to obtain an output signal S11 (= Y1 / G). The subtractor 20 subtracts the output signal S11 of the gain circuit 20 from the input modulation signal X to obtain an error signal e (= X−Y1 / G). The first complex conjugate calculation unit 22 sets the error signal e to the complex conjugate value conj (e). Further, the first multiplier 23 multiplies the parameter signal u that determines the compensation amount of the power amplifier 10 by the complex conjugate value conj (e) of the error signal e to obtain u × conj (e). Further, the second multiplier 24 multiplies the output of the first multiplier 23 and the input modulation signal X. Then, the multiplication output pd_lut (= X × u × conj (e)) of the second multiplication unit 24 is stored in the distortion compensation coefficient table 16. The distortion compensation coefficient table 16 sequentially updates the table value based on the address value calculated by the address calculation unit 15 based on the amplitude value of the input modulation signal X. At this time, the comparison calculation unit 26 compares the amplitude value calculated by the amplitude value calculation unit 25 with the threshold signal S10. The address calculation unit 15 calculates an address value for updating the value of the distortion compensation coefficient table 16 when the amplitude value of the input modulation signal X is larger than a predetermined range determined by the threshold signal S10. When the amplitude value of the input modulation signal X is smaller than the predetermined range determined by the threshold signal S10, the address value is not calculated and the table value is not updated. In the second complex conjugate calculation unit 17, the distortion compensation coefficient pd_lut, which is the output of the distortion compensation coefficient table 16, is set as a complex conjugate value conj (pd_lut). The third multiplication unit 18 multiplies the complex conjugate value conj (pd_lut) and the input modulation signal X and inputs them to the power amplifier 10 to perform distortion compensation.

次に、電力増幅器10の利得対入力変調信号特性における歪補償係数の算出振幅領域について、図2(a)、図2(b)を参照して説明する。図2(a)は従来の歪補償係数の算出範囲を示した電力増幅器10の利得特性図、図2(b)は本発明の実施の形態1における歪補償係数の算出範囲を示した電力増幅器10の利得特性図である。図2(a)は、電力増幅器10の入力変調信号の全振幅領域に渡り補償係数を算出した場合を示している。電力増幅器10は、入力変調信号の振幅値が小さい領域においてはほぼ線形な利得特性であり、出力変調信号の歪は小さい。一方、電力増幅器10の歪特性に大きな影響を与えるのは利得特性が非線形な領域である。このため、電力増幅器10の歪補償では入力変調信号の全振幅領域に渡り補償係数を算出する必要はなく、電力増幅器10の入力振幅が小さい領域に対して歪補償係数を算出していた分を、非線形性の高い領域付近に対応させることにより、より精度の高い補償係数が得られる。図2(b)は、利得特性における非線形性の高い領域に歪補償係数の算出範囲を対応させた場合を示している。ここで、歪補償係数の算出を開始する振幅値は、前述の閾値信号S10で決定される値である。非線形性の高い領域のみで補償係数を算出することにより、同一のテーブル分解能であってもより精度の高い補償係数を得ることができることを示している。   Next, the calculated amplitude region of the distortion compensation coefficient in the gain vs. input modulation signal characteristic of the power amplifier 10 will be described with reference to FIGS. 2 (a) and 2 (b). 2A is a gain characteristic diagram of the power amplifier 10 showing the calculation range of the conventional distortion compensation coefficient, and FIG. 2B is a power amplifier showing the calculation range of the distortion compensation coefficient in the first embodiment of the present invention. FIG. FIG. 2A shows a case where the compensation coefficient is calculated over the entire amplitude region of the input modulation signal of the power amplifier 10. The power amplifier 10 has a substantially linear gain characteristic in a region where the amplitude value of the input modulation signal is small, and distortion of the output modulation signal is small. On the other hand, it is the region where the gain characteristic is nonlinear that has a great influence on the distortion characteristic of the power amplifier 10. For this reason, in the distortion compensation of the power amplifier 10, it is not necessary to calculate a compensation coefficient over the entire amplitude region of the input modulation signal, and the distortion compensation coefficient is calculated for the region where the input amplitude of the power amplifier 10 is small. By making it correspond to the vicinity of a region with high nonlinearity, a more accurate compensation coefficient can be obtained. FIG. 2B shows a case where the calculation range of the distortion compensation coefficient is made to correspond to a region with high nonlinearity in the gain characteristic. Here, the amplitude value at which the calculation of the distortion compensation coefficient is started is a value determined by the threshold signal S10 described above. It is shown that by calculating the compensation coefficient only in the region with high nonlinearity, a more accurate compensation coefficient can be obtained even with the same table resolution.

本発明の実施の形態1によれば、入力変調信号の振幅値が閾値で決定される所定の範囲にあることを判定する判定手段を設け、所定の範囲の入力変調信号に対して歪補償動作を実施することにより、歪補償係数テーブルの補償範囲を歪特性に大きく影響する領域に対してのみ割り当てることが可能となり、少ない記憶容量のテーブルでも歪補償精度を高めることができる。
なお、本発明の実施の形態1において、振幅値演算部25で入力変調信号の振幅値を算出して閾値信号S10と比較しているが、振幅値の代わりに電力値を用いた構成としても良い。
According to the first embodiment of the present invention, there is provided determination means for determining that the amplitude value of the input modulation signal is within a predetermined range determined by the threshold value, and the distortion compensation operation is performed on the input modulation signal within the predetermined range By implementing the above, it becomes possible to assign the compensation range of the distortion compensation coefficient table only to the region that greatly affects the distortion characteristics, and the distortion compensation accuracy can be improved even with a table having a small storage capacity.
In the first embodiment of the present invention, the amplitude value calculation unit 25 calculates the amplitude value of the input modulation signal and compares it with the threshold signal S10. However, a configuration using a power value instead of the amplitude value is also possible. good.

また、本発明の実施の形態1において、RMS法を用いた歪補償方法を示したが、他の方法を用いた構成としても良い。
(実施の形態2)
図3から図5は本発明の実施の形態2に係る歪補償機能付き送信装置を説明する図である。図3は、本発明の実施の形態2における歪補償機能付き送信装置の全体構成を示すブロック図である。図3において、本発明の実施の形態2の歪補償機能付き送信装置は、電力増幅器10の電源電圧を電源電圧切り替え信号S30で切り替えるように構成し、入力変調信号の振幅値の大きさに応じて、電源電圧切り替え信号S30により電源電圧を制御することで、エンベロープトラッキング方式のようなシステムに対応させるものである。
In the first embodiment of the present invention, the distortion compensation method using the RMS method has been described. However, a configuration using another method may be used.
(Embodiment 2)
3 to 5 are diagrams for explaining a transmission device with a distortion compensation function according to Embodiment 2 of the present invention. FIG. 3 is a block diagram showing an overall configuration of a transmission apparatus with a distortion compensation function according to Embodiment 2 of the present invention. In FIG. 3, the transmitter with distortion compensation function according to the second embodiment of the present invention is configured to switch the power supply voltage of the power amplifier 10 using the power supply voltage switching signal S30, and according to the magnitude of the amplitude value of the input modulation signal. Thus, the power supply voltage is controlled by the power supply voltage switching signal S30 so as to correspond to a system such as an envelope tracking system.

本発明の実施の形態2の構成は、既に図1に示した本発明の実施の形態1に対して、アドレス算出部15を第二のアドレス算出部30に、電源19を第二の電源31に置き換えた構成としている。第二のアドレス算出部30は、入力変調信号の振幅値に応じて制御される電源電圧切り替え信号S30に連動して、電源電圧を切り替える振幅値と、歪補償係数テーブルのアドレスを切り替える振幅値とを略一致させるようにアドレスを算出する。第二の電源31は、入力変調信号の振幅値に応じて制御される電源電圧切り替え信号S30により、電力増幅器10の電源電圧の切り替えることを特徴としている。電源電圧の切り替え数は本発明の場合2電圧としたが、さらに多くの電圧に切り替えることも可能である。   The configuration of the second embodiment of the present invention is different from the first embodiment of the present invention shown in FIG. 1 in that the address calculation unit 15 is the second address calculation unit 30 and the power source 19 is the second power source 31. The configuration is replaced with. The second address calculation unit 30 is coupled with the power supply voltage switching signal S30 controlled according to the amplitude value of the input modulation signal, and the amplitude value for switching the power supply voltage and the amplitude value for switching the address of the distortion compensation coefficient table. The addresses are calculated so as to substantially match. The second power supply 31 is characterized in that the power supply voltage of the power amplifier 10 is switched by a power supply voltage switching signal S30 controlled according to the amplitude value of the input modulation signal. In the present invention, the number of power supply voltages to be switched is two, but it is also possible to switch to more voltages.

次に、本発明の実施の形態2に係る歪補償機能付き送信装置の動作特性について、図4を用いて説明する。図4(a)は、従来のアドレス算出処理による歪補償係数テーブルのステップ幅を示した電力増幅器の利得特性図、図4(b)は、本発明の実施の形態2のアドレス算出処理における歪補償係数テーブルのステップ幅を示した電力増幅器の利得特性図である。図4(a)は、電力増幅器10の電源電圧を、入力変調信号の振幅値に応じて電源電圧切り替え信号S30により切り替えた場合の利得特性を示している。電源電圧が低い場合(図中、電源電圧1)の利得が低く、電源電圧が高い場合(図中、電源電圧2)の利得が高い特性を示している。エンベロープトラッキング方式のような、入力変調信号の振幅値に応じて電力増幅器の電源電圧を切り替える方式では、電力効率や歪特性等の電力増幅器10の特性が最善となる入力変調信号の振幅値付近で電源電圧を切り替える。電力増幅器10の特性が最善となる振幅値を切り替え点Qとすると、切り替え点Qで電力増幅器10の電源電圧を電源電圧1から電源電圧2に切り替えることにより利得特性が不連続に変化する。図4(a)に示すように、切り替え点Qにおいて、電源電圧1の場合と電源電圧2の場合とで二つの異なる利得特性が同一アドレス領域内に存在すると、一つの補償係数で二つの利得特性を補償する動作となってしまい十分な歪補償効果が得られない。また図示しないが、位相特性についても同様に十分な歪補償効果が得られない。   Next, the operating characteristics of the transmission apparatus with a distortion compensation function according to Embodiment 2 of the present invention will be described with reference to FIG. 4A is a gain characteristic diagram of the power amplifier showing the step width of the distortion compensation coefficient table by the conventional address calculation process, and FIG. 4B is the distortion in the address calculation process according to the second embodiment of the present invention. It is a gain characteristic figure of a power amplifier which showed the step width of the compensation coefficient table. FIG. 4A shows gain characteristics when the power supply voltage of the power amplifier 10 is switched by the power supply voltage switching signal S30 in accordance with the amplitude value of the input modulation signal. The characteristics are low when the power supply voltage is low (power supply voltage 1 in the figure) and high when the power supply voltage is high (power supply voltage 2 in the figure). In the method of switching the power supply voltage of the power amplifier according to the amplitude value of the input modulation signal, such as the envelope tracking method, near the amplitude value of the input modulation signal where the characteristics of the power amplifier 10 such as power efficiency and distortion characteristics are the best. Switch the power supply voltage. Assuming that the switching point Q is the amplitude value at which the characteristic of the power amplifier 10 is best, the gain characteristic changes discontinuously by switching the power supply voltage of the power amplifier 10 from the power supply voltage 1 to the power supply voltage 2 at the switching point Q. As shown in FIG. 4A, at the switching point Q, when two different gain characteristics exist in the same address region for the power supply voltage 1 and the power supply voltage 2, two gains are obtained with one compensation coefficient. Since the operation compensates for the characteristics, a sufficient distortion compensation effect cannot be obtained. Although not shown, a sufficient distortion compensation effect cannot be obtained for the phase characteristics as well.

一方、図4(b)は、本発明の実施の形態2のアドレス算出処理により、電力増幅器10の電源電圧の切り替えと、歪補償係数テーブルのアドレスの切り替えを、略同じ入力変調信号の振幅値(切り替え点Q)で行い、同一アドレス領域内に異なる二つの利得特性が略存在しないようにした場合を示している。   On the other hand, FIG. 4B shows the amplitude value of the input modulation signal that is substantially the same as the switching of the power supply voltage of the power amplifier 10 and the switching of the address of the distortion compensation coefficient table by the address calculation process of the second embodiment of the present invention. This is performed at (switching point Q) so that two different gain characteristics do not substantially exist in the same address area.

ここで、図4(b)に示す本発明の実施の形態2のアドレス算出処理に関し、切り替え点Qを基準にアドレス領域の算出を行う動作について図4、図5を用いて説明する。図5(a)は、本発明の実施の形態2の第二のアドレス算出部30におけるアドレス算出処理を説明する処理フロー図である。電力増幅器10に入力可能な振幅の最大値を入力最大振幅Vmax、電源電圧切り替え信号S30で電源電圧を切り替える振幅値を電源電圧切り替え振幅Vq、歪補償係数テーブル16の最小アドレス値を1、最大アドレス値を最大アドレス値Nmax、電源電圧切り替え信号S30で電源電圧を切り替えるアドレス値を電源電圧切り替えアドレス値Qとしたときに、歪補償係数テーブル16の各アドレスの切り替え振幅値Vpは以下のように決定される。
まず、入力最大振幅Vmaxと、電源電圧切り替え振幅Vqから振幅値の差分B(=Vmax−Vq)を算出する(処理1)。次に、歪補償係数テーブル16の最大アドレス値Nmaxと電源電圧切り替えアドレス値Qから、振幅値の差分Bの区間に存在するアドレス数C(=Nmax−Q)を算出する(処理2)。さらに振幅値の差分Bをアドレス数Cで割る演算を行うことにより、一つのアドレス当たりのステップ幅Rを算出する(処理3)。そして、ステップ幅Rと最大アドレス値Nmaxから歪補償を行う振幅範囲(=R×Nmax)を求め、入力最大振幅Vmaxから減ずることで歪補償の振幅下限値Vmin(=Vmax−R×Nmax)を算出する。次に、アドレス値Nにおける切り替え振幅値Vpを算出する。アドレス値Nとステップ幅Rから、アドレス値1からNの振幅範囲Vn(=N×R)を求める。そして、歪補償の振幅下限値Vminと、アドレス値1からNの振幅範囲Vnとを加算することで、次式に示すように、アドレス値Nにおける切り替え振幅値Vpを決定する(処理4)。
Here, regarding the address calculation processing according to the second embodiment of the present invention shown in FIG. 4B, the operation of calculating the address area with reference to the switching point Q will be described with reference to FIGS. FIG. 5A is a process flow diagram illustrating the address calculation process in the second address calculation unit 30 according to the second embodiment of the present invention. The maximum value of the amplitude that can be input to the power amplifier 10 is the maximum input amplitude Vmax, the amplitude value that switches the power supply voltage by the power supply voltage switching signal S30 is the power supply voltage switching amplitude Vq, the minimum address value of the distortion compensation coefficient table 16 is 1, and the maximum address When the value is the maximum address value Nmax and the power supply voltage switching signal S30 is the power supply voltage switching address value Q, the switching amplitude value Vp of each address in the distortion compensation coefficient table 16 is determined as follows. Is done.
First, an amplitude value difference B (= Vmax−Vq) is calculated from the input maximum amplitude Vmax and the power supply voltage switching amplitude Vq (processing 1). Next, the number of addresses C (= Nmax−Q) existing in the interval of the amplitude difference B is calculated from the maximum address value Nmax and the power supply voltage switching address value Q in the distortion compensation coefficient table 16 (processing 2). Further, a step width R per address is calculated by performing an operation of dividing the amplitude value difference B by the number of addresses C (processing 3). Then, an amplitude range (= R × Nmax) for performing distortion compensation is obtained from the step width R and the maximum address value Nmax, and an amplitude lower limit value Vmin (= Vmax−R × Nmax) for distortion compensation is obtained by subtracting from the input maximum amplitude Vmax. calculate. Next, the switching amplitude value Vp at the address value N is calculated. From the address value N and the step width R, an amplitude range Vn (= N × R) from the address value 1 to N is obtained. Then, the switching amplitude value Vp at the address value N is determined by adding the distortion compensation amplitude lower limit value Vmin and the address value 1 to N amplitude range Vn (process 4).

Vp=(Vmax−R×Nmax)+(N×R)=Vmin+Vn
ただし、N≦Nmax
ここで、アドレス値Nの値をQ(電源電圧を切り替えるアドレス値)とすると、電源電圧切り替え振幅Vqと歪補償係数テーブルのアドレスを切り替える振幅値Vpとを同じにすることができる。
図5(b)は、入力最大振幅Vmax=5V、電源電圧切り替え振幅Vq=4V、最大アドレス値Nmax=100、電源電圧切り替えアドレス値Q=60とした場合におけるアドレス順位Nにおける切り替え振幅Vpの計算例を示している。図5(b)に示すように、一つのアドレスに対応するステップ幅Rは0.025V、歪補償係数を算出する範囲は2.5〜5Vの範囲となる。電源電圧切り替えアドレス値Q(N=60)においてアドレスが切り替わる振幅値Vpは4Vとなり、電源電圧切り替え振幅Vqと同じ電圧になっている。
Vp = (Vmax−R × Nmax) + (N × R) = Vmin + Vn
However, N ≦ Nmax
Here, when the address value N is Q (address value for switching the power supply voltage), the power supply voltage switching amplitude Vq and the amplitude value Vp for switching the address of the distortion compensation coefficient table can be made the same.
FIG. 5B shows the calculation of the switching amplitude Vp at the address rank N when the maximum input amplitude Vmax = 5 V, the power supply voltage switching amplitude Vq = 4 V, the maximum address value Nmax = 100, and the power supply voltage switching address value Q = 60. An example is shown. As shown in FIG. 5B, the step width R corresponding to one address is 0.025V, and the range for calculating the distortion compensation coefficient is 2.5 to 5V. In the power supply voltage switching address value Q (N = 60), the amplitude value Vp at which the address is switched is 4 V, which is the same voltage as the power supply voltage switching amplitude Vq.

本発明の実施の形態2によれば、入力変調信号の振幅値に応じて制御される電源電圧切り替え信号S30に連動して、電力増幅器10の電源電圧を切り替える振幅値と、歪補償係数テーブルのアドレスを切り替える振幅値とを略一致させるようにアドレスを算出する第二のアドレス算出部30を設けることにより、同一アドレス領域内に異なる二つの利得特性が略存在しないようになり、電力増幅器の電源電圧を切り替えることにより不連続に電力増幅器の特性が変動する場合においても、歪補償精度を高めることができる。   According to the second embodiment of the present invention, the amplitude value for switching the power supply voltage of the power amplifier 10 in conjunction with the power supply voltage switching signal S30 controlled according to the amplitude value of the input modulation signal, and the distortion compensation coefficient table By providing the second address calculation unit 30 for calculating the address so as to substantially match the amplitude value for switching the address, two different gain characteristics do not substantially exist in the same address region, and the power supply of the power amplifier Even when the characteristics of the power amplifier change discontinuously by switching the voltage, the distortion compensation accuracy can be improved.

なお、このような電力増幅器の複数の特性を用いる装置として、エンベロープトラッキング方式の他に、ドハティー方式などにおいても実施可能である。
(実施の形態3)
次に、本発明の実施の形態3について、図6を参照して説明する。図6は、本発明の実施の形態3における歪補償機能付き送信装置の構成を示すブロック図である。実施の形態3では、本発明の実施の形態1の構成に加えて、誤差振幅値演算部40と第二の比較演算部41とを有する誤差信号判定部42、パラメータ信号算出部43とを追加して構成されている。既に述べた実施の形態1では、補償量を決定するパラメータ信号uを固定値として演算していたが、本発明の実施の形態3では、電力増幅器10の出力変調信号Yの一部Y1と入力変調信号Xとの誤差を示す誤差信号eの大小により可変パラメータ信号vを変化させる点に特徴がある。なお、本発明の実施の形態1と同じ構成要素には同じ参照符号を付している。
可変パラメータ信号vの算出は以下のように行う。誤差信号演算部12の出力を誤差振幅値演算部40に入力して誤差信号eの誤差振幅値を得る。第二の比較演算部41において、誤差振幅値演算部40の出力と第二の閾値信号S20とを比較する。パラメータ信号算出部43では、誤差信号eの振幅値が第二の閾値信号S20より大きい場合は可変パラメータ信号vを大きく、閾値以下であった場合は可変パラメータ信号vを小さくするように値を算出する。
In addition to the envelope tracking method, the device using a plurality of characteristics of the power amplifier can be implemented in the Doherty method.
(Embodiment 3)
Next, Embodiment 3 of the present invention will be described with reference to FIG. FIG. 6 is a block diagram showing a configuration of a transmission apparatus with a distortion compensation function according to Embodiment 3 of the present invention. In the third embodiment, in addition to the configuration of the first embodiment of the present invention, an error signal determination unit 42 and a parameter signal calculation unit 43 having an error amplitude value calculation unit 40 and a second comparison calculation unit 41 are added. Configured. In the first embodiment already described, the parameter signal u for determining the compensation amount is calculated as a fixed value. However, in the third embodiment of the present invention, a part Y1 of the output modulation signal Y of the power amplifier 10 and the input are input. It is characterized in that the variable parameter signal v is changed depending on the magnitude of an error signal e indicating an error from the modulation signal X. The same components as those in the first embodiment of the present invention are denoted by the same reference numerals.
The variable parameter signal v is calculated as follows. An error amplitude value of the error signal e is obtained by inputting the output of the error signal calculation unit 12 to the error amplitude value calculation unit 40. The second comparison calculation unit 41 compares the output of the error amplitude value calculation unit 40 with the second threshold signal S20. The parameter signal calculation unit 43 calculates the value so that the variable parameter signal v is increased when the amplitude value of the error signal e is larger than the second threshold signal S20, and is decreased when it is less than or equal to the threshold. To do.

すなわち、本発明の実施の形態3によれば、誤差信号eと閾値信号S20とを比較する誤差信号判定部42と、誤差信号eの値が閾値信号S20より大きい場合は可変パラメータ信号vを大きく、閾値信号S40以下であった場合は可変パラメータ信号vを小さくするようなパラメータ信号算出部43とを設けることにより、誤差信号eが閾値信号S20より大きい場合は補償量が大きくなることで収束速度が改善し、誤差信号eが閾値信号S20より小さい場合は補償量が小さくなることで線形精度を向上することができる。   That is, according to the third embodiment of the present invention, the error signal determination unit 42 that compares the error signal e and the threshold signal S20, and the variable parameter signal v is increased when the value of the error signal e is larger than the threshold signal S20. When the error signal e is larger than the threshold signal S20, a convergence speed is obtained by providing a parameter signal calculation unit 43 that reduces the variable parameter signal v when the threshold signal S40 is lower than the threshold signal S20. When the error signal e is smaller than the threshold signal S20, the amount of compensation is reduced, so that the linear accuracy can be improved.

本発明にかかる歪補償機能付き送信装置は、歪補償係数を記憶するテーブルの記憶容量を増やさずに、歪補償精度を高くすることができるので、ピークファクタが大きい高速、広帯域な送信信号で発生する歪を補償する、歪補償機能付き送信装置等として有用である。   The transmission device with a distortion compensation function according to the present invention can increase the distortion compensation accuracy without increasing the storage capacity of the table for storing the distortion compensation coefficient, so that it is generated with a high-speed, wide-band transmission signal having a large peak factor. It is useful as a transmitter with a distortion compensation function that compensates for distortion.

本発明の実施の形態1における歪補償機能付き送信装置の全体構成を示すブロック図1 is a block diagram showing an overall configuration of a transmission device with a distortion compensation function according to Embodiment 1 of the present invention. (a)従来の歪補償係数の算出範囲を示した電力増幅器10の利得特性図(b)本発明の実施の形態1における歪補償係数の算出範囲を示した電力増幅器10の利得特性図(A) Gain characteristic diagram of power amplifier 10 showing a calculation range of a conventional distortion compensation coefficient (b) Gain characteristic diagram of power amplifier 10 showing a calculation range of a distortion compensation coefficient in the first embodiment of the present invention 本発明の実施の形態2における歪補償機能付き送信装置の全体構成を示すブロック図The block diagram which shows the whole structure of the transmitter with a distortion compensation function in Embodiment 2 of this invention. (a)従来のアドレス算出処理による歪補償係数テーブルのステップ幅を示した電力増幅器10の利得特性図(b)本発明の実施の形態2のアドレス算出処理における歪補償係数テーブルのステップ幅を示した電力増幅器10の利得特性図(A) Gain characteristic diagram of power amplifier 10 showing step width of distortion compensation coefficient table by conventional address calculation processing (b) Step width of distortion compensation coefficient table in address calculation processing of embodiment 2 of the present invention Gain characteristics diagram of power amplifier 10 (a)本発明の実施の形態2の第二のアドレス算出部30におけるアドレス算出処理を説明する処理フロー図(b)アドレス順位Nの切り替え振幅Vpの計算例(A) Process flow diagram for explaining the address calculation process in the second address calculation unit 30 according to the second embodiment of the present invention (b) Calculation example of the switching amplitude Vp of the address rank N 本発明の実施の形態3における歪補償送信装置の全体構成を示すブロック図The block diagram which shows the whole structure of the distortion compensation transmission apparatus in Embodiment 3 of this invention. 従来の歪補償方式を用いた送信装置の全体構成を示すブロック図The block diagram which shows the whole structure of the transmitter which used the conventional distortion compensation system (a)従来の歪補償方式を用いた送信装置における入力変調信号の振幅値の出現頻度を表す図(b)従来の歪補償方式を用いた送信装置における歪補償係数テーブルのアドレスの出現頻度を表す図(A) The figure showing the appearance frequency of the amplitude value of the input modulation signal in the transmission device using the conventional distortion compensation method. (B) The appearance frequency of the address of the distortion compensation coefficient table in the transmission device using the conventional distortion compensation method. Figure representing

符号の説明Explanation of symbols

10 電力増幅器
11 歪補償部
12 誤差信号演算部
13 歪補償係数演算部
14 入力変調信号判定部
15 アドレス算出部
16 歪補償係数テーブル
17 第二の複素共役演算部
18 第三の乗算部
19 電源
20 利得回路
21 減算部
22 第一の複素共役演算部
23 第一の乗算部
24 第二の乗算部
25 振幅値演算部
26 比較演算部
30 第二のアドレス算出部
31 第二の電源
40 誤差振幅値演算部
41 第二の比較演算部
42 誤差信号判定部
43 パラメータ信号算出部
DESCRIPTION OF SYMBOLS 10 Power amplifier 11 Distortion compensation part 12 Error signal calculation part 13 Distortion compensation coefficient calculation part 14 Input modulation signal determination part 15 Address calculation part 16 Distortion compensation coefficient table 17 2nd complex conjugate calculation part 18 3rd multiplication part 19 Power supply 20 Gain circuit 21 Subtraction unit 22 First complex conjugate calculation unit 23 First multiplication unit 24 Second multiplication unit 25 Amplitude value calculation unit 26 Comparison calculation unit 30 Second address calculation unit 31 Second power supply 40 Error amplitude value Calculation unit 41 Second comparison calculation unit 42 Error signal determination unit 43 Parameter signal calculation unit

Claims (3)

入力変調信号を増幅する電力増幅器と、
前記入力変調信号に歪補償係数を乗じて前記電力増幅器の非線形歪を補償する歪補償部とからなる歪補償機能付き送信装置であって、
前記歪補償部は、
前記電力増幅器からの出力と前記入力変調信号との誤差である誤差信号を生成する誤差信号演算部と、
前記誤差信号演算部の出力を複素共役演算する第一の複素共役演算部、前記第一の複素共役演算部の出力と前記歪補償係数の変化量を決定するパラメータ信号とを乗算する第一の乗算部、前記第一の乗算部の出力と前記入力変調信号とを乗算する第二の乗算部からなる歪補償係数演算部と、
前記入力変調信号から振幅値を演算する振幅値演算部、前記振幅値演算部の出力と閾値を比較する比較演算部からなる入力変調信号判定部と、
前記入力変調信号判定部において前記入力変調信号の振幅値が前記閾値で決定される所定の範囲にある時のみアドレスの算出を行うアドレス算出部と、
前記歪補償係数演算部の出力を前記アドレス算出部で算出されたアドレスに保持する歪補償係数テーブルと、
前記歪補償係数テーブルからの出力を複素共役演算する第二の複素共役演算部と、
前記第二の複素共役演算部からの出力と前記入力変調信号とを乗算する第三の乗算部とを有し、
前記歪補償部は、前記入力変調信号の振幅値が前記閾値で決定される所定の範囲にある時のみ歪補償を行うことを特徴とする歪補償機能付き送信装置。
A power amplifier for amplifying the input modulation signal;
A transmission device with a distortion compensation function comprising a distortion compensation unit that multiplies the input modulation signal by a distortion compensation coefficient to compensate for nonlinear distortion of the power amplifier,
The distortion compensation unit
An error signal calculation unit that generates an error signal that is an error between the output from the power amplifier and the input modulation signal;
A first complex conjugate computing unit that performs complex conjugate computation on the output of the error signal computing unit; a first that multiplies the output of the first complex conjugate computing unit and a parameter signal that determines the amount of change in the distortion compensation coefficient; A distortion compensation coefficient calculation unit including a multiplication unit, a second multiplication unit that multiplies the output of the first multiplication unit and the input modulation signal;
An amplitude value calculation unit that calculates an amplitude value from the input modulation signal, an input modulation signal determination unit that includes a comparison calculation unit that compares an output of the amplitude value calculation unit and a threshold value;
An address calculation unit that calculates an address only when an amplitude value of the input modulation signal is within a predetermined range determined by the threshold value in the input modulation signal determination unit;
A distortion compensation coefficient table that holds the output of the distortion compensation coefficient calculator at the address calculated by the address calculator;
A second complex conjugate calculation unit for calculating complex conjugate of the output from the distortion compensation coefficient table;
A third multiplier that multiplies the output from the second complex conjugate calculator and the input modulation signal;
The transmission apparatus with a distortion compensation function, wherein the distortion compensation unit performs distortion compensation only when an amplitude value of the input modulation signal is within a predetermined range determined by the threshold value.
入力変調信号の振幅値に応じて制御される電源電圧切り替え信号により前記電力増幅器の電源電圧を切り替える電源を有し、
前記アドレス算出部は、前記電源電圧切り替え信号に連動して、電源電圧を切り替える振幅値と前記歪補償係数テーブルのアドレスを切り替える振幅値とを略一致させるようにアドレスを算出することを特徴とする請求項1に記載の歪補償機能付き送信装置。
A power supply for switching the power supply voltage of the power amplifier by a power supply voltage switching signal controlled according to the amplitude value of the input modulation signal;
The address calculating unit calculates an address so that an amplitude value for switching a power supply voltage and an amplitude value for switching an address of the distortion compensation coefficient table are substantially matched with the power supply voltage switching signal. The transmission apparatus with a distortion compensation function according to claim 1.
前記誤差信号演算部の出力から誤差振幅値を演算する誤差振幅値演算部、前記誤差振幅値演算部の出力と第二の閾値とを比較する第二の比較演算部からなる誤差信号判定部と、
前記誤差信号判定部において、前記誤差信号演算部の出力が前記第二の閾値より大きい場合は前記パラメータ信号の値を大きくし、前記誤差信号演算部の出力が前記第二の閾値より小さい場合は前記パラメータ信号の値を小さくするように動作するパラメータ信号算出部とを有することを特徴とする請求項1または請求項2に記載の歪補償送信装置。
An error amplitude determination unit that calculates an error amplitude value from an output of the error signal calculation unit, an error signal determination unit that includes a second comparison calculation unit that compares the output of the error amplitude value calculation unit and a second threshold value; ,
In the error signal determination unit, when the output of the error signal calculation unit is larger than the second threshold, the value of the parameter signal is increased, and when the output of the error signal calculation unit is smaller than the second threshold The distortion compensation transmission apparatus according to claim 1, further comprising: a parameter signal calculation unit that operates so as to reduce a value of the parameter signal.
JP2006025469A 2006-02-02 2006-02-02 Transmitter having distortion compensating function Pending JP2007208684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025469A JP2007208684A (en) 2006-02-02 2006-02-02 Transmitter having distortion compensating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025469A JP2007208684A (en) 2006-02-02 2006-02-02 Transmitter having distortion compensating function

Publications (1)

Publication Number Publication Date
JP2007208684A true JP2007208684A (en) 2007-08-16

Family

ID=38487737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025469A Pending JP2007208684A (en) 2006-02-02 2006-02-02 Transmitter having distortion compensating function

Country Status (1)

Country Link
JP (1) JP2007208684A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089118A (en) * 2007-10-01 2009-04-23 Hitachi Kokusai Electric Inc Distortion compensation apparatus
JP2011193154A (en) * 2010-03-12 2011-09-29 Fujitsu Ltd Radio apparatus, distortion correction device, and distortion correction method
WO2013179399A1 (en) 2012-05-29 2013-12-05 富士通株式会社 Distortion compensation device and distortion compensation method
US8897391B2 (en) 2011-09-30 2014-11-25 Fujitsu Limited Distortion compensator and distortion compensation method
US9225364B1 (en) 2014-08-25 2015-12-29 Fujitsu Limited Distortion compensation method, distortion compensation apparatus, and non-transitory computer readable storage medium
CN116610181A (en) * 2023-05-22 2023-08-18 南京工业大学 Method and system for sectional tracking of amplitude range of envelope

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089118A (en) * 2007-10-01 2009-04-23 Hitachi Kokusai Electric Inc Distortion compensation apparatus
JP2011193154A (en) * 2010-03-12 2011-09-29 Fujitsu Ltd Radio apparatus, distortion correction device, and distortion correction method
US8897391B2 (en) 2011-09-30 2014-11-25 Fujitsu Limited Distortion compensator and distortion compensation method
WO2013179399A1 (en) 2012-05-29 2013-12-05 富士通株式会社 Distortion compensation device and distortion compensation method
US9337783B2 (en) 2012-05-29 2016-05-10 Fujitsu Limited Distortion compensation apparatus and distortion compensation method
US9225364B1 (en) 2014-08-25 2015-12-29 Fujitsu Limited Distortion compensation method, distortion compensation apparatus, and non-transitory computer readable storage medium
CN116610181A (en) * 2023-05-22 2023-08-18 南京工业大学 Method and system for sectional tracking of amplitude range of envelope
CN116610181B (en) * 2023-05-22 2023-11-28 南京工业大学 Method and system for sectional tracking of amplitude range of envelope

Similar Documents

Publication Publication Date Title
US7414470B2 (en) Predistortion amplifier for compensation distortion
JP4845574B2 (en) Polar modulation circuit, integrated circuit, and wireless device
JP4308163B2 (en) Distortion compensation device
JP4786644B2 (en) Distortion compensation device
JP4652091B2 (en) Distortion compensation device
US8022763B2 (en) Amplifier failure detection apparatus
US8451055B2 (en) Distortion compensating apparatus, transmitting apparatus, and distortion compensating method
JPWO2003103167A1 (en) Table reference predistorter
JP2013026631A (en) Distortion compensation device, transmitter, and distortion compensation method
JP5056490B2 (en) Distortion compensation coefficient updating apparatus and distortion compensation amplifier
JP2007208684A (en) Transmitter having distortion compensating function
JP2012235316A (en) Distortion compensation device and distortion compensation method
JP2012129661A (en) Distortion compensation device, distortion compensation method and radio apparatus
JP5707999B2 (en) Distortion compensation apparatus, transmitter, and distortion compensation method
JP5170259B2 (en) Distortion compensation circuit, transmitter, and distortion compensation method
EP2858251B1 (en) Distortion compensation device and distortion compensation method
JP5482561B2 (en) Distortion compensation amplification apparatus and distortion compensation method
JP2015061106A (en) Distortion compensation device, transmission device, and distortion compensation method
JP6015386B2 (en) Distortion compensation apparatus and distortion compensation method
JP5673475B2 (en) Distortion compensation apparatus and distortion compensation method
JP2011193156A (en) Radio apparatus, distortion correction device, and distortion correction method
JP5040924B2 (en) Distortion compensation device
JP2020088528A (en) Distortion compensation circuit, transmission device, and distortion compensation method
KR20070106761A (en) Strain compensation device
WO2018109862A1 (en) Power amplification circuit